Graph Polynomials motivated by Gene Assembly

Size: px
Start display at page:

Download "Graph Polynomials motivated by Gene Assembly"

Transcription

1 Colloquium USF Tampa Jan Graph Polynomials motivated by Gene Assembly Hendrik Jan Hoogeboom, Leiden NL with Robert Brijder, Hasselt B

2 transition polynomials assembly polynomial of G w for doc-word w S(G w )(p,t) = s p π(s) t c(s), follow / consistent π / inconsistent never p w = p t+p t+p +pt +p+t p t p t p t p t p t 0 p t 0 p t 0 p 0 t Burns, Dolzhenko, Jonoska, Muche, Saito: Four-regular graphs with rigid vertices associated to DNA recombination (0)

3 contents motivation: models for gene recombination ciliates: -regular graphs + Euler tours graph polynomials concept: interlacing pqpq four worlds, getting more abstract strings rewriting graphs combinatorics matrices linear algebra (set systems) symm diff XOR same operation (pivot), different tools

4 USF Colloquium I Ciliates

5 I ciliates cell structure:. macronucleous. micronucleous 8. cilium wikipedia Franciscosp Unlike most other eukaryotes, ciliates have two different sorts of nuclei: a small, diploid micronucleus (reproduction), and a large, polyploid macronucleus (general cell regulation). The latter is generated from the micronucleus by amplification of the genome and heavy editing.

6 I ciliates MDS IES Ciliates: two types of nucleus gene assembly: splicing and recombination MIC micronucleus MDS macronucleus destined M i IES internal eliminated M M M M M M 9 M M M 8 inverted MAC macronucleus M M M M M M M 7 M 8 M 9 pointers: small overlap

7 I recombine at pointers merge consecutive MDS s align pointers & swap I l I l I r Ir I l I l I r Ir

8 I proposed model no pointers # # # # # Ehrenfeucht, Harju, Petre, Prescott, Rozenberg: Computation in Living Cells Gene Assembly in Ciliates (00)

9 I string pointer model goal: sorting [deleting] pointers inverted... M 9 M M M split u ppu p u ppu invert u pu pu p u pū pu swap u pu qu pu qu p,q u pu qu pu qu in in in }{{} sp in sw result depends on operations?

10 I graph model David M. Prescott. Genome gymnastics: unique modes of dna evolution and processing in ciliates. Nature Reviews Genetics (December 000)

11 I 7 Actin I gene of Sterkiella nova M 9 I p 9 I 9 p 8 M 8 I p I 0 M p 7 I 8 M 7 p M I 7 p M I MIC p I p MAC M I M M I MIC I 0 M I M I M I M I M 7 I M 9 I M I 7 M I 8 M 8 I 9 MAC I 9 I I 8 I 7 M M M 8 M 9 }{{} I I 0, I and I I I -regular graph with Euler circuit

12 I 8 abstraction double occurrence string w defines -regular graph G w + Euler circuit C w or -in -out graph + directed circuit w =

13 I 9 reconnecting at vertex w = segment split 7 0 segment inverted 9 8 &

14 I 0 (a) follows C (b) orientation consistent (c) orientation inconsistent inverting and splitting p q (a) (b) (c) split invert p q interlaced... p... q }{{}... p... q }{{} p... q }{{}... p... q }{{}... segments are swapped Kotzig. Eulerian lines in finite -valent graphs (9)

15 I interlaced symbols rearrangements should not break genome...p...q }{{}...p...q }{{}... interlace graph I(C w ) w = circle graph (bar + loop for orientation)

16 I keeping track of interlaced pairs circular string interlace {} {,} doc string w {} w = w {,} invert swap

17 I keeping track of interlaced pairs -regular graph (circle graph) + Euler cycle interlace graph C I(C) invert local complement C v I(C) v... x...v...y...x... v...y... x...v... x...ȳ...v...y interleaved not interleaved v v y x y x

18 I graph operations G G u looped vertex u N u = N G (u)\{u} local complementation u u N u N u G G {u,v} unlooped edge {u, v} N u = N G (u)\n G (v) N v = N G (v)\n G (u) N b = N G (u) N G (v) edge complementation u v N b u v N b N u N v N u N v invert I(C u) = I(C) v swap I(C {u,v}) = I(C) {u,v} when defined

19 I questions how do these operations interact? dependent on (order) operations chosen? what are the intermediate products?

20 I move to adjacency Z -matrices {}?? PPT

21 I 7 principal pivot transform A = ( X V\X X P Q V\X R S ) A X = ( X V\X ) X P P Q V\X RP S RP Q partial inverse ( ) x A = y ( x y ) iff A X ( x y ) = ( x y ) PPT matches edge & local complement Geelen. A Generalization of Tutte s Characterization of Totally Unimodular Matrices. JCTB (997) P = ( p ) p, P = ( p q ) p 0 q 0

22 I 8 ( x (partial inverse) A y ) = ( x y ) iff A X ( x y ) = ( x y ) Thm. (A X) Y = A (X Y) symmetric difference when defined any sequence involving all pointers: A {p,p } {p n } = A V = A Cor. does not depend on order of operations (!)

23 I 9 four worlds doc strings circle graphs binary matrices set systems {,{},{},{,}, {,},{,,} } invert local compl ppt {} xor {} { {},,{,},{}, {,,},{,} } swap, edge compl {,} {,} { {,,},{,},{,}, {},{}, }

24 USF Colloquium II Graph Polynomials

25 II graph invariants colours 80 acyclic orientations

26 II graph invariants u v u v chromatic polynomial χ G (t) = t(t )(t ) (t 7 t +7t 0t +9t 8t +77t ) u v uv χ G (t) = χ G+uv (t)+χ G/uv (t) χ G (t) = χ G e (t) χ G/e (t) deletion & contraction # acyclic orientations 80 = ( ) V G χ G ( )

27 II graph polynomials definitions recursive / closed form combinatorial / algebraic evaluations combinatorial interpretation polynomials Tutte (one to rule them all...) Martin (on -in -out graphs) assembly (Ciliates) transition pol interlace (DNA reconstruction) and their relations!

28 II Tutte: deletion & contraction loops and parallel edges diamond graph: T D = x +x +xy+x+y +y x +x +x+y x (x+y) x +x+y x +xy x xy+y x+y y xy x y

29 II Tutte polynomial T G (x,y) = A E G = (V,E), G[A] = (V,A) k(a) connected components in G[A] (x ) k(a) k(e) (y ) k(a)+ A V rank nullity circuit rank deletion & contraction T G (x,y) = no edges xt G/e (x,y) bridge e yt G e (x,y) loop e T G e (x,y)+t G/e (x,y) other T G (x,y) = x i y j with i bridges and j loops extended to matroids

30 II Tutte everywhere recipe theorem: deletion-contraction implies Tutte evaluation (Tutte-Grothendieck invariant) χ G (t) = ( ) V c(g) t c(g) T G ( t,0) T D = x +x +xy+x+y +y χ D (t) = t(t )(t ) (check Wolfram alpha) evaluations: T G (,0) acyclic orientations = ( ) V χ G ( ) T G (,) forests T G (,) spanning forests T G (,) spanning subgraphs T G (0,) strongly connected orientations

31 II 7 Martin (-in -out) G counting components:, 7,,.

32 II 8 transition system T( G) (graph state) half-edge connections at vertices Martin polynomial Martin polynomial of -in -out digraph G m( G;y) = (y ) k(t) c( G) T T( G) G c( G) components k(t) circuits for transition system T k :, 7,,. (y ) 0 +7(y ) +(y ) +(y ) Thm. () recursive form () Tutte connection () evaluations Pierre Martin, Enumérations eulériennes dans les multigraphes et invariants de Tutte-Grothendieck, PhD thesis, 977

33 II 9 Martin () recursive formulation v (y ) 0 +7(y ) + (y ) +(y ) graph reductions: glueing edges Def. m( G;y) = for n = 0 m( G;y) = ym( G ;y) cut vertex m(g;y) = m( G v;y)+m( G v; y) without loops y +y G y y y y y y y

34 II 0 Martin () Tutte connection plane graph G, with medial graph G m Thm. m( G m ;y) = T(G;y,y) proof: deletion-contraction glueing edges

35 II Martin () evaluations m( G;y) = T T( G) (y )k(t) c( G) G -in -out digraph and n = V( G) G a( G) anti circuits m( G;y) = y +y m( G; ) = Thm. m( G; ) = ( ) n ( ) a( G) m( G;0) = 0, when n > 0 m( G; ) number of Eulerian systems m( G;) = n m( G;) = k m( G; ) for odd k third connection

36 USF Colloquium III Rearrangement Polynomials

37 III rearrangement vs. Martin Assembly polynomial Interlace polynonial connected to Martin polynomial interlace graph local and edge complement

38 III transition polynomials assembly polynomial of G w for doc-word w S(G w )(p,t) = s p π(s) t c(s), follow / consistent π / inconsistent never p w = p t+p t+p +pt +p+t p t p t p t p t p t 0 p t 0 p t 0 p 0 t Burns, Dolzhenko, Jonoska, Muche, Saito: Four-regular graphs with rigid vertices associated to DNA recombination (0)

39 III weighted polynomials transition polynomials W = (a, b, c) transition T defines partition V,V,V eg wrt fixed cycle weight W(T) = a V b V c V M(G,W;y) = T T( G) polynomial a b c Martin 0 (-way) assembly 0 p Penrose 0 - W(T)y k(t) c( G) F. Jaeger: On transition polynomials of -regular graphs (990)

40 III de Bruijn graphs How to apply de Bruijn graphs to genome assembly, Compeau, Pevzner & Tesler

41 III interlace polynomial de Bruijn Graphs for DNA Sequencing originally recursive definition simple graph G (with loops) interlace polynomial (single-variable, vertex-nullity) q(g;y) = (y ) n(a(g)[x]) X V(G) as Tutte, but: vertices vs. edges, algebraic vs. combinatorial Arratia, Bollobás, Sorkin: The interlace polynomial: a new graph polynomial (000) Aigner, van der Holst: Interlace polynomials (00) Bouchet: TutteMartin polynomials and orienting vectors of isotropic systems (99)

42 III recursive formulation local & edge complement Def. q(g;y) = if n = 0 q(g;y) = yq(g\v;y) q(g;y) = q(g\v;y)+q((g v)\v;y) v isolated (unlooped) v looped q(g;y) = q(g\v;y)+q((g e)\v;y) e = {v,w} unlooped edge q = y +y+ \b y +y a d c \a y d c \c {c,d}\c d y a b d c b\b a d c y+ {a,c}\a \a a\a y d c d c y+ \c c\c d y d \d d\d

43 III 7 Cohn-Lempel-Traldi e e e e D D D -regular graph G with Eulerian system C k circuit partition of E(G), partition vertices: D follows C D orientation consistent D orientation inconsistent Thm. Then k c(g) = n((i(c)+d )\D )

44 III 8 for circle graphs q(i(c);y) = X V(G) (y ) n(a(i(c))[x]) k c(g) = n((i(c)+d )\D ) = m( G;y) = (y ) k(t) c( G) T T( G) Thm. m( G;y) = q(i(c);y) w =

45 III 9 basic properties Thm. q(g;y) = q(g v;y) q(g;y) = q(g e;y) q(g;y) = q(g X;y) v looped e unlooped edge G[X] nonsingular Thm. m( G; ) = ( ) n ( ) a( G) q(g; ) = ( ) n ( ) n(a(g)+i) m( G;0) = 0, when n > 0 q(g;0) = 0 if n > 0, no loops m( G; ) #Eulerian systems q(g; ) #induced subgraphs with odd number of perfect matchings m( G;) = n q(g;) = n m( G;) = k m( G; ) odd k q(g;) = k q(g; ) odd k

46 III 0 what did we do? defined and studied these polynomials for -matroids (some things become less complicated that way) nullity corresponds to minimal size two directions deletion and contraction need another minor for third direction thank you ciliates!

47 III conclusion when studying new polynomials look back at old ones connections to recursive formulations, and special evaluations THANKS

The Algebra of Gene Assembly in Ciliates

The Algebra of Gene Assembly in Ciliates The Algebra of Gene Assembly in Ciliates Robert Brijder and Hendrik Jan Hoogeboom Abstract The formal theory of intramolecular gene assembly in ciliates is fitted into the well-established theories of

More information

arxiv: v3 [cs.dm] 4 Aug 2010

arxiv: v3 [cs.dm] 4 Aug 2010 Nullity Invariance for Pivot and the Interlace Polynomial Robert Brijder and Hendrik Jan Hoogeboom arxiv:0912.0878v3 [cs.dm] 4 Aug 2010 Leiden Institute of Advanced Computer Science, Leiden University,

More information

Recombination Faults in Gene Assembly in Ciliates Modeled Using Multimatroids

Recombination Faults in Gene Assembly in Ciliates Modeled Using Multimatroids Recombination Faults in Gene Assembly in Ciliates Modeled Using Multimatroids Robert Brijder 1 Hasselt University and Transnational University of Limburg, Belgium Abstract We formally model the process

More information

Discrete Applied Mathematics. Maximal pivots on graphs with an application to gene assembly

Discrete Applied Mathematics. Maximal pivots on graphs with an application to gene assembly Discrete Applied Mathematics 158 (2010) 1977 1985 Contents lists available at ScienceDirect Discrete Applied Mathematics journal homepage: www.elsevier.com/locate/dam Maximal pivots on graphs with an application

More information

The Interlace Polynomial of Graphs at 1

The Interlace Polynomial of Graphs at 1 The Interlace Polynomial of Graphs at 1 PN Balister B Bollobás J Cutler L Pebody July 3, 2002 Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152 USA Abstract In this paper we

More information

A multivariate interlace polynomial

A multivariate interlace polynomial A multivariate interlace polynomial Bruno Courcelle LaBRI, Université Bordeaux 1 and CNRS General objectives : Logical descriptions of graph polynomials Application to their computations Systematic construction

More information

The adjacency matroid of a graph

The adjacency matroid of a graph The adjacency matroid of a graph Robert Brijder Hasselt University and Transnational University of Limburg Belgium Hendrik Jan Hoogeboom LIACS, Leiden University The Netherlands h.j.hoogeboom@cs.leidenuniv.nl

More information

Patterns of Simple Gene Assembly in Ciliates

Patterns of Simple Gene Assembly in Ciliates Patterns of Simple Gene Assembly in Ciliates Tero Harju Department of Mathematics, University of Turku Turku 20014 Finland harju@utu.fi Ion Petre Academy of Finland and Department of Information Technologies

More information

ARTICLE IN PRESS Discrete Mathematics ( )

ARTICLE IN PRESS Discrete Mathematics ( ) Discrete Mathematics ( ) Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc On the interlace polynomials of forests C. Anderson a, J. Cutler b,,

More information

Theoretical Computer Science. Rewriting rule chains modeling DNA rearrangement pathways

Theoretical Computer Science. Rewriting rule chains modeling DNA rearrangement pathways Theoretical Computer Science 454 (2012) 5 22 Contents lists available at SciVerse ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Rewriting rule chains modeling

More information

Polynomials in graph theory

Polynomials in graph theory Polynomials in graph theory Alexey Bogatov Department of Software Engineering Faculty of Mathematics and Mechanics Saint Petersburg State University JASS 2007 Saint Petersburg Course 1: Polynomials: Their

More information

Computational nature of gene assembly in ciliates

Computational nature of gene assembly in ciliates Computational nature of gene assembly in ciliates Robert Brijder 1, Mark Daley 2, Tero Harju 3, Natasha Jonoska 4, Ion Petre 5, and Grzegorz Rozenberg 1,6 1 Leiden Institute of Advanced Computer Science,

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 436 (2012) 1072 1089 Contents lists available at SciVerse ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa On the linear

More information

Computational processes

Computational processes Spring 2010 Computational processes in living cells Lecture 6: Gene assembly as a pointer reduction in MDS descriptors Vladimir Rogojin Department of IT, Abo Akademi http://www.abo.fi/~ipetre/compproc/

More information

ALTERNATING KNOT DIAGRAMS, EULER CIRCUITS AND THE INTERLACE POLYNOMIAL

ALTERNATING KNOT DIAGRAMS, EULER CIRCUITS AND THE INTERLACE POLYNOMIAL ALTERNATING KNOT DIAGRAMS, EULER CIRCUITS AND THE INTERLACE POLYNOMIAL P. N. BALISTER, B. BOLLOBÁS, O. M. RIORDAN AND A. D. SCOTT Abstract. We show that two classical theorems in graph theory and a simple

More information

Preliminaries and Complexity Theory

Preliminaries and Complexity Theory Preliminaries and Complexity Theory Oleksandr Romanko CAS 746 - Advanced Topics in Combinatorial Optimization McMaster University, January 16, 2006 Introduction Book structure: 2 Part I Linear Algebra

More information

Combinatorial models for DNA rearrangements in ciliates

Combinatorial models for DNA rearrangements in ciliates University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2009 Combinatorial models for DNA rearrangements in ciliates Angela Angeleska University of South Florida Follow

More information

Tutte Polynomials with Applications

Tutte Polynomials with Applications Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 6 (26), pp. 4781 4797 Research India Publications http://www.ripublication.com/gjpam.htm Tutte Polynomials with Applications

More information

Characteristic polynomials of skew-adjacency matrices of oriented graphs

Characteristic polynomials of skew-adjacency matrices of oriented graphs Characteristic polynomials of skew-adjacency matrices of oriented graphs Yaoping Hou Department of Mathematics Hunan Normal University Changsha, Hunan 410081, China yphou@hunnu.edu.cn Tiangang Lei Department

More information

Models of Natural Computation: Gene Assembly and Membrane Systems. Robert Brijder

Models of Natural Computation: Gene Assembly and Membrane Systems. Robert Brijder Models of Natural Computation: Gene Assembly and Membrane Systems Robert Brijder The work in this thesis has been carried out under the auspices of the research school IPA (Institute for Programming research

More information

Topics in Graph Theory

Topics in Graph Theory Topics in Graph Theory September 4, 2018 1 Preliminaries A graph is a system G = (V, E) consisting of a set V of vertices and a set E (disjoint from V ) of edges, together with an incidence function End

More information

Complexity Measures for Gene Assembly

Complexity Measures for Gene Assembly Tero Harju Chang Li Ion Petre Grzegorz Rozenberg Complexity Measures for Gene Assembly TUCS Technical Report No 781, September 2006 Complexity Measures for Gene Assembly Tero Harju Department of Mathematics,

More information

Matroids/1. I and I 2 ,I 2 > I 1

Matroids/1. I and I 2 ,I 2 > I 1 Matroids 1 Definition A matroid is an abstraction of the notion of linear independence in a vector space. See Oxley [6], Welsh [7] for further information about matroids. A matroid is a pair (E,I ), where

More information

Notes on Graph Theory

Notes on Graph Theory Notes on Graph Theory Maris Ozols June 8, 2010 Contents 0.1 Berge s Lemma............................................ 2 0.2 König s Theorem........................................... 3 0.3 Hall s Theorem............................................

More information

15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu)

15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu) 15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu) First show l = c by proving l c and c l. For a maximum matching M in G, let V be the set of vertices covered by M. Since any vertex in

More information

Isotropic matroids III: Connectivity

Isotropic matroids III: Connectivity Isotropic matroids III: Connectivity Robert Brijder Hasselt University Belgium robert.brijder@uhasselt.be Lorenzo Traldi Lafayette College Easton, Pennsylvania 18042, USA traldil@lafayette.edu arxiv:1602.03899v2

More information

COMPUTATIONAL PROCESSES IN LIVING CELLS

COMPUTATIONAL PROCESSES IN LIVING CELLS COMPUTATIONAL PROCESSES IN LIVING CELLS Lecture 7: Formal Systems for Gene Assembly in Ciliates: the String Pointer Reduction System March 31, 2010 MDS-descriptors MDS descriptors: strings over the following

More information

An Introduction of Tutte Polynomial

An Introduction of Tutte Polynomial An Introduction of Tutte Polynomial Bo Lin December 12, 2013 Abstract Tutte polynomial, defined for matroids and graphs, has the important property that any multiplicative graph invariant with a deletion

More information

Exploring Phylogenetic Relationships in Drosophila with Ciliate Operations

Exploring Phylogenetic Relationships in Drosophila with Ciliate Operations Exploring Phylogenetic Relationships in Drosophila with Ciliate Operations Jacob Herlin, Anna Nelson, and Dr. Marion Scheepers Department of Mathematical Sciences, University of Northern Colorado, Department

More information

Every line graph of a 4-edge-connected graph is Z 3 -connected

Every line graph of a 4-edge-connected graph is Z 3 -connected European Journal of Combinatorics 0 (2009) 595 601 Contents lists available at ScienceDirect European Journal of Combinatorics journal homepage: www.elsevier.com/locate/ejc Every line graph of a 4-edge-connected

More information

Theoretical Computer Science

Theoretical Computer Science Theoretical Computer Science 411 (2010) 919 925 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Algorithmic properties of ciliate sequence

More information

Decomposition Theorems for Square-free 2-matchings in Bipartite Graphs

Decomposition Theorems for Square-free 2-matchings in Bipartite Graphs Decomposition Theorems for Square-free 2-matchings in Bipartite Graphs Kenjiro Takazawa RIMS, Kyoto University ISMP 2015 Pittsburgh July 13, 2015 1 Overview G = (V,E): Bipartite, Simple M E: Square-free

More information

hal , version 2-14 Apr 2008

hal , version 2-14 Apr 2008 Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 97-108 www.stacs-conf.org ON THE COMPLEXITY OF THE INTERLACE POLYNOMIAL MARKUS BLÄSER 1 AND CHRISTIAN HOFFMANN 1 1 Saarland University,

More information

The number of Euler tours of random directed graphs

The number of Euler tours of random directed graphs The number of Euler tours of random directed graphs Páidí Creed School of Mathematical Sciences Queen Mary, University of London United Kingdom P.Creed@qmul.ac.uk Mary Cryan School of Informatics University

More information

Advanced Topics in Discrete Math: Graph Theory Fall 2010

Advanced Topics in Discrete Math: Graph Theory Fall 2010 21-801 Advanced Topics in Discrete Math: Graph Theory Fall 2010 Prof. Andrzej Dudek notes by Brendan Sullivan October 18, 2010 Contents 0 Introduction 1 1 Matchings 1 1.1 Matchings in Bipartite Graphs...................................

More information

Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic).

Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic). Trees A tree is a graph which is (a) Connected and (b) has no cycles (acyclic). 1 Lemma 1 Let the components of G be C 1, C 2,..., C r, Suppose e = (u, v) / E, u C i, v C j. (a) i = j ω(g + e) = ω(g).

More information

Minors and Tutte invariants for alternating dimaps

Minors and Tutte invariants for alternating dimaps Minors and Tutte invariants for alternating dimaps Graham Farr Clayton School of IT Monash University Graham.Farr@monash.edu Work done partly at: Isaac Newton Institute for Mathematical Sciences (Combinatorics

More information

arxiv: v1 [math.co] 20 Sep 2012

arxiv: v1 [math.co] 20 Sep 2012 arxiv:1209.4628v1 [math.co] 20 Sep 2012 A graph minors characterization of signed graphs whose signed Colin de Verdière parameter ν is two Marina Arav, Frank J. Hall, Zhongshan Li, Hein van der Holst Department

More information

RELATIVE TUTTE POLYNOMIALS FOR COLORED GRAPHS AND VIRTUAL KNOT THEORY. 1. Introduction

RELATIVE TUTTE POLYNOMIALS FOR COLORED GRAPHS AND VIRTUAL KNOT THEORY. 1. Introduction RELATIVE TUTTE POLYNOMIALS FOR COLORED GRAPHS AND VIRTUAL KNOT THEORY Y. DIAO AND G. HETYEI Abstract. We introduce the concept of a relative Tutte polynomial. We show that the relative Tutte polynomial

More information

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2,

List of Theorems. Mat 416, Introduction to Graph Theory. Theorem 1 The numbers R(p, q) exist and for p, q 2, List of Theorems Mat 416, Introduction to Graph Theory 1. Ramsey s Theorem for graphs 8.3.11. Theorem 1 The numbers R(p, q) exist and for p, q 2, R(p, q) R(p 1, q) + R(p, q 1). If both summands on the

More information

Rigidity of Graphs and Frameworks

Rigidity of Graphs and Frameworks Rigidity of Graphs and Frameworks Rigid Frameworks The Rigidity Matrix and the Rigidity Matroid Infinitesimally Rigid Frameworks Rigid Graphs Rigidity in R d, d = 1,2 Global Rigidity in R d, d = 1,2 1

More information

Preliminaries. Graphs. E : set of edges (arcs) (Undirected) Graph : (i, j) = (j, i) (edges) V = {1, 2, 3, 4, 5}, E = {(1, 3), (3, 2), (2, 4)}

Preliminaries. Graphs. E : set of edges (arcs) (Undirected) Graph : (i, j) = (j, i) (edges) V = {1, 2, 3, 4, 5}, E = {(1, 3), (3, 2), (2, 4)} Preliminaries Graphs G = (V, E), V : set of vertices E : set of edges (arcs) (Undirected) Graph : (i, j) = (j, i) (edges) 1 2 3 5 4 V = {1, 2, 3, 4, 5}, E = {(1, 3), (3, 2), (2, 4)} 1 Directed Graph (Digraph)

More information

Compatible Circuit Decompositions of 4-Regular Graphs

Compatible Circuit Decompositions of 4-Regular Graphs Compatible Circuit Decompositions of 4-Regular Graphs Herbert Fleischner, François Genest and Bill Jackson Abstract A transition system T of an Eulerian graph G is a family of partitions of the edges incident

More information

ORIENTED CIRCUIT DOUBLE COVER AND CIRCULAR FLOW AND COLOURING

ORIENTED CIRCUIT DOUBLE COVER AND CIRCULAR FLOW AND COLOURING Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. 5 (2010), No. 4, pp. 349-368 ORIENTED CIRCUIT DOUBLE COVER AND CIRCULAR FLOW AND COLOURING BY ZHISHI PAN 1 AND XUDING ZHU 2 Abstract

More information

Bounded Treewidth Graphs A Survey German Russian Winter School St. Petersburg, Russia

Bounded Treewidth Graphs A Survey German Russian Winter School St. Petersburg, Russia Bounded Treewidth Graphs A Survey German Russian Winter School St. Petersburg, Russia Andreas Krause krausea@cs.tum.edu Technical University of Munich February 12, 2003 This survey gives an introduction

More information

Neutrosophic Graphs: A New Dimension to Graph Theory. W. B. Vasantha Kandasamy Ilanthenral K Florentin Smarandache

Neutrosophic Graphs: A New Dimension to Graph Theory. W. B. Vasantha Kandasamy Ilanthenral K Florentin Smarandache Neutrosophic Graphs: A New Dimension to Graph Theory W. B. Vasantha Kandasamy Ilanthenral K Florentin Smarandache 2015 This book can be ordered from: EuropaNova ASBL Clos du Parnasse, 3E 1000, Bruxelles

More information

1. Introduction ON THE COMPLEXITY OF THE INTERLACE POLYNOMIAL

1. Introduction ON THE COMPLEXITY OF THE INTERLACE POLYNOMIAL Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 97-108 www.stacs-conf.org ON THE COMPLEXITY OF THE INTERLACE POLYNOMIAL MARKUS BLÄSER 1 AND CHRISTIAN HOFFMANN 1 1 Saarland University,

More information

Siegel s theorem, edge coloring, and a holant dichotomy

Siegel s theorem, edge coloring, and a holant dichotomy Siegel s theorem, edge coloring, and a holant dichotomy Tyson Williams (University of Wisconsin-Madison) Joint with: Jin-Yi Cai and Heng Guo (University of Wisconsin-Madison) Appeared at FOCS 2014 1 /

More information

Graphs & Algorithms: Advanced Topics Nowhere-Zero Flows

Graphs & Algorithms: Advanced Topics Nowhere-Zero Flows Graphs & Algorithms: Advanced Topics Nowhere-Zero Flows Uli Wagner ETH Zürich Flows Definition Let G = (V, E) be a multigraph (allow loops and parallel edges). An (integer-valued) flow on G (also called

More information

Strongly chordal and chordal bipartite graphs are sandwich monotone

Strongly chordal and chordal bipartite graphs are sandwich monotone Strongly chordal and chordal bipartite graphs are sandwich monotone Pinar Heggernes Federico Mancini Charis Papadopoulos R. Sritharan Abstract A graph class is sandwich monotone if, for every pair of its

More information

arxiv: v1 [cs.dm] 10 Nov 2015

arxiv: v1 [cs.dm] 10 Nov 2015 A tight relation between series parallel graphs and Bipartite Distance Hereditary graphs. Nicola Apollonio Massimiliano Caramia Paolo Giulio Franciosa Jean-François Mascari arxiv:1511.03100v1 [cs.dm] 10

More information

Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs

Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs Approximation Algorithms for Asymmetric TSP by Decomposing Directed Regular Multigraphs Haim Kaplan Tel-Aviv University, Israel haimk@post.tau.ac.il Nira Shafrir Tel-Aviv University, Israel shafrirn@post.tau.ac.il

More information

Packing triangles in regular tournaments

Packing triangles in regular tournaments Packing triangles in regular tournaments Raphael Yuster Abstract We prove that a regular tournament with n vertices has more than n2 11.5 (1 o(1)) pairwise arc-disjoint directed triangles. On the other

More information

Linear graph theory. Basic definitions of linear graphs

Linear graph theory. Basic definitions of linear graphs Linear graph theory Linear graph theory, a branch of combinatorial mathematics has proved to be a useful tool for the study of large or complex systems. Leonhard Euler wrote perhaps the first paper on

More information

The cycle polynomial of a permutation group

The cycle polynomial of a permutation group The cycle polynomial of a permutation group Peter J. Cameron School of Mathematics and Statistics University of St Andrews North Haugh St Andrews, Fife, U.K. pjc0@st-andrews.ac.uk Jason Semeraro Department

More information

Diskrete Mathematik und Optimierung

Diskrete Mathematik und Optimierung Diskrete Mathematik und Optimierung Winfried Hochstättler: Towards a flow theory for the dichromatic number Technical Report feu-dmo032.14 Contact: winfried.hochstaettler@fernuni-hagen.de FernUniversität

More information

FORBIDDEN MINORS FOR THE CLASS OF GRAPHS G WITH ξ(g) 2. July 25, 2006

FORBIDDEN MINORS FOR THE CLASS OF GRAPHS G WITH ξ(g) 2. July 25, 2006 FORBIDDEN MINORS FOR THE CLASS OF GRAPHS G WITH ξ(g) 2 LESLIE HOGBEN AND HEIN VAN DER HOLST July 25, 2006 Abstract. For a given simple graph G, S(G) is defined to be the set of real symmetric matrices

More information

Compatible Circuit Decompositions of Eulerian Graphs

Compatible Circuit Decompositions of Eulerian Graphs Compatible Circuit Decompositions of Eulerian Graphs Herbert Fleischner, François Genest and Bill Jackson Septemeber 5, 2006 1 Introduction Let G = (V, E) be an Eulerian graph. Given a bipartition (X,

More information

The Strong Largeur d Arborescence

The Strong Largeur d Arborescence The Strong Largeur d Arborescence Rik Steenkamp (5887321) November 12, 2013 Master Thesis Supervisor: prof.dr. Monique Laurent Local Supervisor: prof.dr. Alexander Schrijver KdV Institute for Mathematics

More information

The Structure of the Tutte-Grothendieck Ring of Ribbon Graphs

The Structure of the Tutte-Grothendieck Ring of Ribbon Graphs Rose-Hulman Undergraduate Mathematics Journal Volume 13 Issue 2 Article 2 The Structure of the Tutte-Grothendieck Ring of Ribbon Graphs Daniel C. Thompson MIT, dthomp@math.mit.edu Follow this and additional

More information

SERGEI CHMUTOV AND IGOR PAK

SERGEI CHMUTOV AND IGOR PAK Dedicated to Askold Khovanskii on the occasion of his 60th birthday THE KAUFFMAN BRACKET OF VIRTUAL LINKS AND THE BOLLOBÁS-RIORDAN POLYNOMIAL SERGEI CHMUTOV AND IGOR PAK Abstract. We show that the Kauffman

More information

A survey of Tutte-Whitney polynomials

A survey of Tutte-Whitney polynomials A survey of Tutte-Whitney polynomials Graham Farr Faculty of IT Monash University Graham.Farr@infotech.monash.edu.au July 2007 Counting colourings proper colourings Counting colourings proper colourings

More information

Non-Recursively Constructible Recursive Families of Graphs

Non-Recursively Constructible Recursive Families of Graphs Non-Recursively Constructible Recursive Families of Graphs Colleen Bouey Department of Mathematics Loyola Marymount College Los Angeles, CA 90045, USA cbouey@lion.lmu.edu Aaron Ostrander Dept of Math and

More information

arxiv: v2 [math.co] 19 Aug 2015

arxiv: v2 [math.co] 19 Aug 2015 THE (2k 1)-CONNECTED MULTIGRAPHS WITH AT MOST k 1 DISJOINT CYCLES H.A. KIERSTEAD, A.V. KOSTOCHKA, AND E.C. YEAGER arxiv:1406.7453v2 [math.co] 19 Aug 2015 Abstract. In 1963, Corrádi and Hajnal proved that

More information

Tutte Functions of Matroids

Tutte Functions of Matroids Tutte Functions of Matroids Joanna Ellis-Monaghan Thomas Zaslavsky AMS Special Session on Matroids University of Kentucky 27 March 2010... and then, what? F (M) = δ e F (M\e) + γ e F (M/e) 1 2 E-M & Z

More information

Group Colorability of Graphs

Group Colorability of Graphs Group Colorability of Graphs Hong-Jian Lai, Xiankun Zhang Department of Mathematics West Virginia University, Morgantown, WV26505 July 10, 2004 Abstract Let G = (V, E) be a graph and A a non-trivial Abelian

More information

Solutions to the 74th William Lowell Putnam Mathematical Competition Saturday, December 7, 2013

Solutions to the 74th William Lowell Putnam Mathematical Competition Saturday, December 7, 2013 Solutions to the 74th William Lowell Putnam Mathematical Competition Saturday, December 7, 213 Kiran Kedlaya and Lenny Ng A1 Suppose otherwise. Then each vertex v is a vertex for five faces, all of which

More information

From Potts to Tutte and back again... A graph theoretical view of statistical mechanics

From Potts to Tutte and back again... A graph theoretical view of statistical mechanics From Potts to Tutte and back again... A graph theoretical view of statistical mechanics Jo Ellis-Monaghan e-mail: jellis-monaghan@smcvt.edu website: http://academics.smcvt.edu/jellis-monaghan 10/27/05

More information

Group connectivity of certain graphs

Group connectivity of certain graphs Group connectivity of certain graphs Jingjing Chen, Elaine Eschen, Hong-Jian Lai May 16, 2005 Abstract Let G be an undirected graph, A be an (additive) Abelian group and A = A {0}. A graph G is A-connected

More information

Packing of Rigid Spanning Subgraphs and Spanning Trees

Packing of Rigid Spanning Subgraphs and Spanning Trees Packing of Rigid Spanning Subgraphs and Spanning Trees Joseph Cheriyan Olivier Durand de Gevigney Zoltán Szigeti December 14, 2011 Abstract We prove that every 6k + 2l, 2k-connected simple graph contains

More information

A tree-decomposed transfer matrix for computing exact partition functions for arbitrary graphs

A tree-decomposed transfer matrix for computing exact partition functions for arbitrary graphs A tree-decomposed transfer matrix for computing exact partition functions for arbitrary graphs Andrea Bedini 1 Jesper L. Jacobsen 2 1 MASCOS, The University of Melbourne, Melbourne 2 LPTENS, École Normale

More information

Optimal Parity Edge-Coloring of Complete Graphs

Optimal Parity Edge-Coloring of Complete Graphs Optimal Parity Edge-Coloring of Complete Graphs David P. Bunde, Kevin Milans, Douglas B. West, Hehui Wu Abstract A parity walk in an edge-coloring of a graph is a walk along which each color is used an

More information

Acyclic Digraphs arising from Complete Intersections

Acyclic Digraphs arising from Complete Intersections Acyclic Digraphs arising from Complete Intersections Walter D. Morris, Jr. George Mason University wmorris@gmu.edu July 8, 2016 Abstract We call a directed acyclic graph a CI-digraph if a certain affine

More information

T -choosability in graphs

T -choosability in graphs T -choosability in graphs Noga Alon 1 Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. and Ayal Zaks 2 Department of Statistics and

More information

Transforming Inductive Proofs to Bijective Proofs

Transforming Inductive Proofs to Bijective Proofs Transforming Inductive Proofs to Bijective Proofs Nathaniel Shar Stanford University nshar@stanford.edu June 2010 1 Introduction A bijective proof of an identity A = B is a pair of sets S,T and a bijection

More information

Combining the cycle index and the Tutte polynomial?

Combining the cycle index and the Tutte polynomial? Combining the cycle index and the Tutte polynomial? Peter J. Cameron University of St Andrews Combinatorics Seminar University of Vienna 23 March 2017 Selections Students often meet the following table

More information

Rigidity of Graphs and Frameworks

Rigidity of Graphs and Frameworks School of Mathematical Sciences Queen Mary, University of London England DIMACS, 26-29 July, 2016 Bar-and-Joint Frameworks A d-dimensional bar-and-joint framework is a pair (G, p), where G = (V, E) is

More information

Matroid Representation of Clique Complexes

Matroid Representation of Clique Complexes Matroid Representation of Clique Complexes Kenji Kashiwabara 1, Yoshio Okamoto 2, and Takeaki Uno 3 1 Department of Systems Science, Graduate School of Arts and Sciences, The University of Tokyo, 3 8 1,

More information

Combinatorics and Optimization 442/642, Fall 2012

Combinatorics and Optimization 442/642, Fall 2012 Compact course notes Combinatorics and Optimization 44/64, Fall 0 Graph Theory Contents Professor: J. Geelen transcribed by: J. Lazovskis University of Waterloo December 6, 0 0. Foundations..............................................

More information

NORTHERN INDIA ENGINEERING COLLEGE, LKO D E P A R T M E N T O F M A T H E M A T I C S. B.TECH IIIrd SEMESTER QUESTION BANK ACADEMIC SESSION

NORTHERN INDIA ENGINEERING COLLEGE, LKO D E P A R T M E N T O F M A T H E M A T I C S. B.TECH IIIrd SEMESTER QUESTION BANK ACADEMIC SESSION NORTHERN INDIA ENGINEERING COLLEGE, LKO D E P A R T M E N T O F M A T H E M A T I C S B.TECH IIIrd SEMESTER QUESTION BANK ACADEMIC SESSION 011-1 DISCRETE MATHEMATICS (EOE 038) 1. UNIT I (SET, RELATION,

More information

Graph polynomials from simple graph sequences

Graph polynomials from simple graph sequences Graph polynomials from simple graph sequences Delia Garijo 1 Andrew Goodall 2 Patrice Ossona de Mendez 3 Jarik Nešetřil 2 1 University of Seville, Spain 2 Charles University, Prague, Czech Republic 3 CAMS,

More information

Paths, cycles, trees and sub(di)graphs in directed graphs

Paths, cycles, trees and sub(di)graphs in directed graphs Paths, cycles, trees and sub(di)graphs in directed graphs Jørgen Bang-Jensen University of Southern Denmark Odense, Denmark Paths, cycles, trees and sub(di)graphs in directed graphs p. 1/53 Longest paths

More information

and critical partial Latin squares.

and critical partial Latin squares. Nowhere-zero 4-flows, simultaneous edge-colorings, and critical partial Latin squares Rong Luo Department of Mathematical Sciences Middle Tennessee State University Murfreesboro, TN 37132, U.S.A luor@math.wvu.edu

More information

PERFECT BINARY MATROIDS

PERFECT BINARY MATROIDS DEPARTMENT OF MATHEMATICS TECHNICAL REPORT PERFECT BINARY MATROIDS Allan Mills August 1999 No. 1999-8 TENNESSEE TECHNOLOGICAL UNIVERSITY Cookeville, TN 38505 PERFECT BINARY MATROIDS ALLAN D. MILLS Abstract.

More information

Basic Combinatorics. Math 40210, Section 01 Fall Homework 8 Solutions

Basic Combinatorics. Math 40210, Section 01 Fall Homework 8 Solutions Basic Combinatorics Math 4010, Section 01 Fall 01 Homework 8 Solutions 1.8.1 1: K n has ( n edges, each one of which can be given one of two colors; so Kn has (n -edge-colorings. 1.8.1 3: Let χ : E(K k

More information

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

(This is a sample cover image for this issue. The actual cover is not yet available at this time.) (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author

More information

Decomposition algorithms in Clifford algebras

Decomposition algorithms in Clifford algebras Decomposition algorithms in Clifford algebras G. Stacey Staples 1 Department of Mathematics and Statistics Southern Illinois University Edwardsville Combinatorics and Computer Algebra Fort Collins, 2015

More information

Lecture 1 : Probabilistic Method

Lecture 1 : Probabilistic Method IITM-CS6845: Theory Jan 04, 01 Lecturer: N.S.Narayanaswamy Lecture 1 : Probabilistic Method Scribe: R.Krithika The probabilistic method is a technique to deal with combinatorial problems by introducing

More information

Counting bases of representable matroids

Counting bases of representable matroids Counting bases of representable matroids Michael Snook School of Mathematics, Statistics and Operations Research Victoria University of Wellington Wellington, New Zealand michael.snook@msor.vuw.ac.nz Submitted:

More information

CONTRACTION OF DIGRAPHS ONTO K 3.

CONTRACTION OF DIGRAPHS ONTO K 3. DUCHET (Pierre), JANAQI (Stefan), LESCURE (Françoise], MAAMOUN (Molaz), MEYNIEL (Henry), On contractions of digraphs onto K 3 *, Mat Bohemica, to appear [2002-] CONTRACTION OF DIGRAPHS ONTO K 3 S Janaqi

More information

Sinks in Acyclic Orientations of Graphs

Sinks in Acyclic Orientations of Graphs Sinks in Acyclic Orientations of Graphs David D. Gebhard Department of Mathematics, Wisconsin Lutheran College, 8800 W. Bluemound Rd., Milwaukee, WI 53226 and Bruce E. Sagan Department of Mathematics,

More information

MULTI DE BRUIJN SEQUENCES

MULTI DE BRUIJN SEQUENCES MULTI DE BRUIJN SEQUENCES GLENN TESLER * arxiv:1708.03654v1 [math.co] 11 Aug 2017 Abstract. We generalize the notion of a de Bruijn sequence to a multi de Bruijn sequence : a cyclic or linear sequence

More information

Independent Dominating Sets and a Second Hamiltonian Cycle in Regular Graphs

Independent Dominating Sets and a Second Hamiltonian Cycle in Regular Graphs Journal of Combinatorial Theory, Series B 72, 104109 (1998) Article No. TB971794 Independent Dominating Sets and a Second Hamiltonian Cycle in Regular Graphs Carsten Thomassen Department of Mathematics,

More information

THE (2k 1)-CONNECTED MULTIGRAPHS WITH AT MOST k 1 DISJOINT CYCLES

THE (2k 1)-CONNECTED MULTIGRAPHS WITH AT MOST k 1 DISJOINT CYCLES COMBINATORICA Bolyai Society Springer-Verlag Combinatorica 10pp. DOI: 10.1007/s00493-015-3291-8 THE (2k 1)-CONNECTED MULTIGRAPHS WITH AT MOST k 1 DISJOINT CYCLES HENRY A. KIERSTEAD*, ALEXANDR V. KOSTOCHKA,

More information

0-Sum and 1-Sum Flows in Regular Graphs

0-Sum and 1-Sum Flows in Regular Graphs 0-Sum and 1-Sum Flows in Regular Graphs S. Akbari Department of Mathematical Sciences Sharif University of Technology Tehran, Iran School of Mathematics, Institute for Research in Fundamental Sciences

More information

Lecture Notes on GRAPH THEORY Tero Harju

Lecture Notes on GRAPH THEORY Tero Harju Lecture Notes on GRAPH THEORY Tero Harju Department of Mathematics University of Turku FIN-20014 Turku, Finland e-mail: harju@utu.fi 2007 Contents 1 Introduction........................................................

More information

Modularity and Structure in Matroids

Modularity and Structure in Matroids Modularity and Structure in Matroids by Rohan Kapadia A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Doctor of Philosophy in Combinatorics and

More information

Genomes Comparision via de Bruijn graphs

Genomes Comparision via de Bruijn graphs Genomes Comparision via de Bruijn graphs Student: Ilya Minkin Advisor: Son Pham St. Petersburg Academic University June 4, 2012 1 / 19 Synteny Blocks: Algorithmic challenge Suppose that we are given two

More information

Math 0031, Final Exam Study Guide December 7, 2015

Math 0031, Final Exam Study Guide December 7, 2015 Math 0031, Final Exam Study Guide December 7, 2015 Chapter 1. Equations of a line: (a) Standard Form: A y + B x = C. (b) Point-slope Form: y y 0 = m (x x 0 ), where m is the slope and (x 0, y 0 ) is a

More information

Branch-and-Bound for the Travelling Salesman Problem

Branch-and-Bound for the Travelling Salesman Problem Branch-and-Bound for the Travelling Salesman Problem Leo Liberti LIX, École Polytechnique, F-91128 Palaiseau, France Email:liberti@lix.polytechnique.fr March 15, 2011 Contents 1 The setting 1 1.1 Graphs...............................................

More information