Positive and Nodal Solutions For a Nonlinear Schrödinger Equation with Indefinite Potential

Size: px
Start display at page:

Download "Positive and Nodal Solutions For a Nonlinear Schrödinger Equation with Indefinite Potential"

Transcription

1 Advanced Nonlinear Studies 8 (008), Positive and Nodal Solutions For a Nonlinear Schrödinger Equation with Indefinite Potential Marcelo F. Furtado, Liliane A. Maia Universidade de Brasília - Departamento de Matemática , Brasília - DF Brazil mfurtado@unb.br, lilimaia@unb.br Everaldo S. Medeiros Universidade Federal da Paraíba - Departamento de Matemática João Pessoa - PB Brazil everaldo@mat.ufpb.br Received 6 October 007 Communicated by Paul Rabinowitz Abstract We deal with the nonlinear Schrödinger equation u + V (x)u = f(u) in R N, where V is a (possible) sign changing potential satisfying mild assumptions and the nonlinearity f C 1 (R, R) is a subcritical and superlinear function. By combining variational techniques and the concentration-compactness principle we obtain a positive ground state solution and also a nodal solution. The proofs rely in localizing the infimum of the associated functional constrained to Nehari type sets Mathematics Subject Classification. 35J0, 35J60, 35B38. Key words. Schrödinger equation, indefinite potential, nodal solution The author was partially supported by FEMAT-DF and Universal/CNPq. The author was partially supported by Pronex MAT-UnB/CNPq and Universal/CNPq. The author was partially supported by Universal/CNPq. 353

2 354 M.F. Furtado, L.A. Maia, E.S. Medeiros 1 Introduction The existence of stationary solutions of the form ψ(x, t) = u(x)e iet h Schrödinger equation for the nonlinear ih ψ t = h ψ ψ + V (x)ψ f( ψ ) m ψ has been extensively studied in the past twenty years involving the use of variational methods (see for instance [8, 14, 3] and references therein). Substituting in the equation and making suitable changes of variables leads to the following semilinear elliptic equation (P ) u + V (x)u = f(u) in R N. Works on the existence of positive solutions for (P ) when the potential V is bounded from below by a positive constant and f has subcritical growth, using mountain pass arguments are well known ([3, 14, ]). Existence of standing waves of problem (P ) by minimization of constrained variational problems was shown in [0, 8, 18] among many others. Several new results concerning sign changing potentials V have appeared lately (e.g. [4, 11, 13, 15, 16, 17]). Furthermore, nodal solutions of (P ) in a bounded domain are proved to exist in [] and in unbounded domain in [9, 3], for instance. In this paper we are concerned with the existence of a positive ground state and additionally a nodal solution for the problem (P ) with V : R N R being a (possible) sign changing potential satisfying very mild assumptions and the nonlinearity f : R R being a superlinear function of class C 1 with subcritical growth. In order to impose precise conditions on V, let us denote V = V + V with V ± := max{±v, 0}. We list below the basic assumptions on V. (V 0 ) V L t loc (RN ) for some t > N/; (V 1 ) V + := lim x V (x) > 0; (V ) if we denote by S the best constant to the Sobolev embedding, namely { } S := inf u L (R N ) : u D1, (R N ) and u L (R N ) = 1, then V L N/ (R N ) < S. After the work of P.L. Lions [0], conditions like (V 1 ) have appeared in many works with positive or sign changing potentials [9, 3, 9, 11, 7]. Some conditions related to (V ) have already appeared in [5, 4, 11, 1, 6] where the authors considered problem (P ) or some of its variants. Concerning the nonlinearity f, we start by assuming that (f 0 ) f C 1 (R, R);

3 Positive and nodal solutions of Schrödinger equation 355 (f 1 ) there exist q + 1 < η + 1 < := N/(N ) such that f (s) lim s 0 s q 1 = 0 and lim sup s f (s) < +. s η 1 Conditions (f 0 ) (f 1 ) and (V 1 ) (V ) show that problem (P ) has a variational structure. More specifically, the weak solutions of problem (P ) are precisely the critical points of the C 1 -functional I : W 1, (R N ) R given by I(u) := 1 ( u + V (x)u ) dx F (u) dx, R N R N where F (s) := s f(τ)dτ. In order to obtain such critical points, we use minimax theorems and the concentration-compactness principle. The main idea is to use (V 1 ) to correctly 0 localize the infimum of I constrained to Nehari type sets. To achieve this objective, we also assume that f satisfies the well-known Ambrosetti-Rabinowitz superlinear condition and a monotonicity condition. More specifically, we shall impose the following (f ) there exists θ > such that 0 < θf (s) sf(s) for all s 0; (f 3 ) the function s f(s)/s is increasing in (0, + ). We recall that a solution u 1 of (P ) is called ground state solution if it possesses minimum energy among all solutions, that is, Our first existence result is I(u 1 ) = min {I(u) : u 0 is a solution of (P )}. Theorem 1.1 Suppose that f satisfies (f 0 ) (f 3 ) and V satisfies (V 0 ) (V ). Then problem (P ) has a positive ground state solution provided V satisfies (V 3 ) V (x) V + for all x R N, V V +. In our second result we are interested in the question of multiple solutions for (P ). In order to obtain a solution of (P ) which changes sign in R N, we need a condition stronger than (f 3 ), namely ( ˆf 3 ) there exist η σ 1 and C > 0 such that f (s)s f(s) C s σ 1 s, for all s R. We can state now our multiplicity results as follows.

4 356 M.F. Furtado, L.A. Maia, E.S. Medeiros Theorem 1. Suppose that f is odd and satisfies (f 0 ) (f ) and ( ˆf 3 ). Suppose also that V satisfies (V 0 ) (V ) and, for some γ < V + q/(q + 1), there holds ( V 3 ) V (x) V + Ce γ x for all x R N. Then problem (P ) has in addition to a positive ground state solution a solution which changes sign. As far as a positive solution is concerned, our result is complementary to previous results since the potential we consider may change sign and satisfy mild integral conditions. Moreover, we may have V L N/ (R N ) and therefore Theorem 1.1 also complements the results of [3, 7]. On the other hand, very little is known about existence of a sign changing solution for this problem and hence our interest. We notice that, unlike in [4], we do not assume that V is bounded from below. Moreover, we do not assume any kind of regularity for V at the origin and the set {x R N : V (x) > 0} has finite measure. Thus, our results are not contained in [11]. More generally, the potential V ε : R N R given by V ε (x) := x 1+ x, for x > 1, ε x α for x 1, where ε > 0 is small and 0 < α <, satisfies our hypotheses but the arguments of [3, 7, 4, 11] do not apply for this potential. Finally, we would like to cite the recent papers [15, 16], where the authors have considered a singularly perturbed version of (P ) and have obtained some results related, but not comparable, with ours. As previously said, the proof of the results rely in applying variational methods together with a concentration-compactness argument, as in [6], in order to overcome the problem of lack of compactness of Sobolev embeddings in unbounded domains. Some of the ideas and calculations are inspired by the papers [10, 9, 1]. The paper is organized as follows. In Section we present the variational framework and a version of the well known splitting lemma which is going to be the main tool in posterior compactness arguments. The existence of a ground state solution is proved in Section 3. Finally, Section 4 is devoted to the proof of existence of a solution for (P ) which changes sign. The variational framework In this section we present the variational framework to deal with problem (P ) and also give some preliminaries which are useful later. Since ( f 3 ) implies (f 3 ), throughout the paper we assume that f satisfies (f 0 ) (f 3 ) and V satisfies (V 0 ) (V ). We denote by u p the L p (R N )-norm of u L p (R N ). If u L 1 (R N ), we write only u instead of R N u(x)dx. We start with a straightforward consequence of our hypotheses on V. Lemma.1 The quadratic form ( u u + V + (x)u )

5 Positive and nodal solutions of Schrödinger equation 357 defines a norm in W 1, (R N ) which is equivalent to the usual one. Proof. In view of condition (V 1 ) there exists R > 0 such that ν := V + V + (x) 3V + = 3ν, for all x R N \ B R (0), where B R (0) := {x R N : x < R}. This, Hölder s inequality and the definition of S provide ( u + V + (x)u ) = u + V + (x)u dx + V + (x)u dx B R (0) x R u + V + L N/ (B R (0)) u + 3ν u dx (1 + C 1 ) u + 3ν u max {1 + C 1, 3ν} ( u + u ), x R with C 1 := S 1 V + L N/ (B R (0)). On the other hand, we have that ( ) / u dx B R (0) /N u dx C B R (0) B R (0) u, where C := S 1 B R (0) /N and B R (0) denotes the Lebesgue measure of B R (0). Hence, ( u + u ) = u + u dx + u dx (1 + C ) B R (0) u + 1 ν x R x R V + (x)u dx max { 1 + C, ν 1} ( u + V + (x)u ), and the lemma is proved. In view of the above result we can set X as being the Hilbert space W 1, (R N ) endowed with the inner product u, v X := ( u v + V + (x)uv ), for all u, v X and associated norm given by ( u X := u + V + (x)u ) 1/, for all u X.

6 358 M.F. Furtado, L.A. Maia, E.S. Medeiros Since X is equivalent to the usual norm of W 1, (R N ), the embedding X L p (R N ) is continuous for any p. By (f 1 ), for any given δ > 0 there exists C δ > 0 such that f(s) δ s q + C δ s η, for all s R. (.1) Recalling that q + 1 < η + 1 <, we can integrate the above inequality to conclude that the functional u F (u) is well defined in X. Moreover, since V L N/ (R N ), we have that V (x)u V N/ u S 1 V N/ u X <, (.) for any u X. Thus, the functional I : X R given by I(u) := 1 u X 1 V (x)u F (u) (.3) is well defined. By using standard arguments (see [8, Theorem A.VI]) we can show that I C 1 (X, R) with I (u)ϕ = ( u ϕ + V (x)uϕ) f(u)ϕ, for all u, ϕ X. Consequently, critical points of the functional I are precisely the weak solutions of problem (P ). We now recall a well known compactness condition: we say that I satisfies the Palais- Smale condition at level c R ((PS) c for short) if any sequence (u n ) X such that I(u n ) c and I (u n ) 0 possesses a convergent subsequence. Lemma. If (u n ) X is a (PS) c sequence for I, then (u n ) is bounded in X. Proof. Since I(u n ) c and I (u n ) 0, we can use (f ) and (.) to get c + o n (1) u n X = I(u n ) 1 θ I (u n )u n ( 1 1 θ ) ( 1 V N/ S ) u n X, where o n (1) denotes a quantity approaching zero as n. The above inequality implies that (u n ) is bounded in X. In order to get compactness, it is important to consider the limit problem associated to (P ), namely the autonomous problem (P ) u + V + u = f(u) in R N, whose solutions are the critical points of the functional I : X R given by I (u) := 1 ( u + V + u ) F (u).

7 Positive and nodal solutions of Schrödinger equation 359 Let N be the Nehari manifold of I, that is N := {u X \ {0} : I (u)u = 0} and consider the related minimization problem c := inf I (u). u N The proof of the next result can be found in Berestycki-Lions [8]. Proposition.1 Problem (P ) has a positive and radially symmetrical solution u X such that I (u) = c. Moreover, if the function f is odd, for any 0 < δ < V +, there exists a constant C = C(δ) > 0 such that u(x) Ce δ x, for all x R N. (.4) In order to prove that the functional I satisfies some compactness condition we shall need the following version of a result due to Struwe [6] (see also [4]). Lemma.3 (Splitting Lemma) Let (u n ) X be such that I(u n ) c, I (u n ) 0 and u n u 0 weakly in X. Then I (u 0 ) = 0 and we have either (a) u n u 0 strongly in X, or (b) there exists k N, (yn) j R N with yn j, j = 1,..., k, and nontrivial solutions u 1,..., u k of the problem (P ), such that I(u n ) I(u 0 ) + k I (u j ) (.5) j=1 and u n u 0 k u j ( yn) j 0. X j=1 The proof of this kind of compactness global lemma is by now standard, and therefore we only provide a sketch of the proof. Since we are not dealing with homogeneous nonlinearities, we shall need the following technical result, proof of which can be found in [1, Lemma 3.1]. Lemma.4 Let Ω R N be an open set, s and (g n ) L s (Ω) L (Ω) be a sequence bounded in L (Ω) such that g n (x) 0 a.e in Ω.

8 360 M.F. Furtado, L.A. Maia, E.S. Medeiros (i) If f satisfies (f 1 ), then F (g n + w) F (g n ) F (w) = o n (1), for each w L η+1 (Ω) L q+1 (Ω). Ω (ii) If f satisfies (f 1 ) (f 3 ), then f(g n + w) f(g n ) f(w) r = o n (1), for all 1 < r, Ω and w L (Ω) L (Ω). We present below the main ideas of the proof of Lemma.3. Proof of Lemma.3. We follow the proof presented in [8, Section 8.1]. Firstly, the compactness of the embedding X L p loc (RN ), (.1) and straightforward calculations show that I (u 0 ) = 0. Step 1: By setting u 1 n := u n u 0, we have that (a.1) u 1 n X = u n X u 0 X + o n(1), (b.1) I (u 1 n) c I(u 0 ), (c.1) I (u 1 n) 0. Indeed, (a.1) follows from the weak convergence of (u n ). In order to prove (b.1) we first notice that, since u 0 L (R N ) and u n u 0 in L loc (RN ), we have that V u + n u 0 = V u o n (1). This equality, the weak convergence of (u n ) and Lemma.4(i) imply that I (u 1 n) I(u n ) + I(u 0 ) = 1 (V + V )((u n ) (u 0 ) ) + o n (1). (.6) Now, for each ε > 0 there exists R > 0 such that V + V (x) < ε on R N \ B R (0). Setting B R := B R (0), we can use the boundedness of (u n ) and Hölder s inequality to get (V + V )((u n ) (u 0 ) ) V + V (u n ) (u 0 ) B R +ε (u n ) (u 0 ) R N \B R C 1 u n u 0 L (B R ) + C ε = o n (1). The above expression and (.6) imply that (b.1) holds. For the proof of (c.1) it suffices to argue as above and use Lemma.4(ii). We omit the details.

9 Positive and nodal solutions of Schrödinger equation 361 Let us define δ := lim sup n sup y R N B 1(y) u 1 n dx. If δ = 0, it follows from a result due to P.L. Lions [0, Lemma I.1] that u 1 n 0 in L t (R N ) for any < t <. Since I (u 1 n) 0, it follows that u 1 n 0 in X and the proof is complete. If δ > 0, we obtain a sequence (y 1 n) R N such that B 1 (y 1 n ) u 1 n dx > δ. We now define a new sequence (vn) 1 X by setting vn 1 := u 1 n( + yn). 1 Notice that (vn) 1 is bounded and therefore we may assume that vn 1 u 1 in X and vn 1 u 1 a.e on R N. Since vn 1 dx > δ B 1 (0) it follows from the Sobolev embedding that u 1 0. Moreover, since u 1 n 0 in X, we have that (y 1 n) is unbounded. Hence, going to a subsequence if necessary, we may assume that y 1 n. Furthermore, we can check that I (u 1 ) = 0. Step : We now define u n := u 1 n u 1 ( y 1 n). As done for (u 1 n), we can check that (a.) u n X = u n X u 0 X u1 X + o n(1), (b.) I (u n) c I(u 0 ) I (u 1 ), (c.) I (u n) 0. We now proceed by iteration. Notice that if u is a nontrivial critical point of I and u is a ground state of problem (P ), then we have by (f ) that ( ) 1 I (u) I (u) = f(u)u F (u) = β > 0, and therefore it follows from (b.) above that the iteration must finish at some index k N. This concludes the proof. We present below the compactness result which will be used in the proofs of our main theorems. Corollary.1 The functional I satisfies (PS) c for any c < c. Proof. Let (u n ) X be such that I(u n ) c < c and I (u n ) 0. Lemma. implies that (u n ) is bounded in X and therefore, going to a subsequence if necessary, we can suppose that u n u 0 weakly in X. By Lemma.3 we have I (u 0 ) = 0. Hence, we conclude from (f ) that ( ) 1 I(u 0 ) = f(u 0)u 0 F (u 0 ) 0.

10 36 M.F. Furtado, L.A. Maia, E.S. Medeiros If u n u 0 in X, we can invoke Lemma.3 again to obtain k N and nontrivial solutions u 1,..., u k of (P ) satisfying lim I(u n) = c = I(u 0 ) + n k I (u j ) kc c, contrary to the hypothesis. Hence u n u 0 strongly in X and the corollary is proved. j=1 3 Positive ground state solution We devote this section to the proof of Theorem 1.1. As stated before, we are looking for critical points of the functional I. We start by introducing the Nehari manifold of I defined as Let N := {u X \ {0} : I (u)u = 0}. c 1 := inf u N I(u). In what follows we present some properties of c 1 and N. For the proofs we refer to [8, Chapter 4]. First we observe that hypothesis (f 3 ) gives that, for any u X \ {0}, there exists a unique t u > 0 such that t u u N. The maximum of the function t I(tu) for t 0 is achieved at t = t u. We now note that, in view of (.1) and the Sobolev embeddings, the origin is a local minimum of I. Moreover, condition (f ) provides C > 0 such that F (s) C s θ, for all s R. Without loss of generality, we can assume that θ (, ). Thus, if u 0 and t > 0, we have I(tu) t u X t V (x)u Ct θ u θ and we conclude that I(tu) as t. These observations show that I has the Mountain Pass geometry. By using (f 3 ) and the same arguments presented in the proof of [8, Theorem 4.], we can prove that c 1 is positive, it coincides with the Mountain Pass level of I and has the following characterization c 1 = inf g Γ max t [0,1] I(g(t)) = inf max I(tu) > 0, (3.1) u X\{0} t 0 where Γ := {g C([0, 1], X) : g(0) = 0, I(g(1)) < 0}. In what follows we use the above remarks to obtain a relation between c 1 and c. Proposition 3.1 Suppose that V satisfies (V 3 ). Then 0 < c 1 < c.

11 Positive and nodal solutions of Schrödinger equation 363 Proof. Let u N be given by Proposition.1 and t u > 0 be the unique number such that t u u N. We claim that t u < 1. Indeed, by using condition (V 3 ) we deduce that f(t u u)t u u = t u ( u + V (x)u ) < t u ( u + V u + ) = t u f(u)u, that is ( f(tu u) t u u f(u) ) u < 0. u This inequality and (f 3 ) imply that t u < 1. It follows from (3.1) and its previous remarks that c 1 max t 0 I(tu) = I(t uu) = ( 1 f(t uu)t u u F (t u u) By (f 3 ), we have that h : (0, ) R defined by ( ) 1 h(t) := f(tu)tu F (tu) is strictly increasing. Hence, we conclude that ( ) 1 c 1 h(t u ) < h(1) = f(u)u F (u) = c and the proposition is proved. We are now ready to prove our first result. Proof of Theorem 1.1. Since I satisfies the geometry of the Mountain Pass Theorem there exists a sequence (u n ) X such that I(u n ) c 1 and I (u n ) 0. Proposition 3.1 and Corollary.1 imply that the sequence (u n ) strongly converges to a function u X such that I(u) = c 1 > 0 and I (u) = 0. Clearly u 0 and therefore u is a ground state solution of (P ). In order to show that u is nonnegative we first note that, since we are interested in positive solutions, we can suppose that f(s) = 0 for any s 0. Thus, since I (u)u = 0, we get u X = V (x)(u ) V N/ S and therefore ( 1 V ) N/ u X = 0, S u from which follows that u 0. Elliptic regularity and the strong maximum principle imply that u > 0 in R N. ).

12 364 M.F. Furtado, L.A. Maia, E.S. Medeiros Remark 3.1 Let u 1 X be the solution given by Theorem 1.1. In view of Proposition.1, we can argue as in [19, Theorem 3.1] to conclude that u 1 has the same decay of the solution u of the limit problem, that is, for any 0 < δ < V +, there exists C = C(δ) > 0 such that u 1 (x) Ce δ x, for all x R. (3.) 4 Nodal solution We start by introducing the closed set N ± := { u X : u + 0, u 0, I (u + )u + = 0 = I (u )u }. Note that any solution of (P ) which belongs to N ± changes sign. It is easy to check that I is bounded from below in N ± and there exists ρ > 0 such that Let us consider the following minimization problem u ± X ρ, for all u N ±. (4.1) c := inf I(u). u N ± In our next result we establish the relation between c and the other minimizers c 1 and c. For its proof, we follow the approach of [9]. Since f is nonhomogeneous, the calculations are more involved. Proposition 4.1 Suppose that V satisfies (V 1 ) and ( V 3 ). Then 0 < c < c 1 + c. (4.) Proof. Let u be given by Proposition.1 and define u n (x) := u(x x n ), where x n := (0,...0, n). From now on we denote by u 1 a positive ground state of (P ) given by Theorem 1.1. For any α, β > 0 we consider the functions h ± (α, β, n) := (αu 1 βu n ) ± + V (x) (αu 1 βu n ) ± f((αu 1 βu n ) ± )(αu 1 βu n ) ±. Recalling that I (u 1 )u 1 = 0 and using (f 3 ) we get ( (u 1 /) + V (x) (u 1 /) ) = f (u 1 /) (u 1 /) ( f(u1 ) f(u ) (u1 ) 1/) (4.3) > 0. u 1 (u 1 /)

13 Positive and nodal solutions of Schrödinger equation 365 Analogously, ( (u 1 ) + V (x) (u 1 ) ) f(u 1 )(u 1 ) < 0. (4.4) Claim 1. For n sufficiently large there holds ( (u n /) + V (x) (u n /) ) ( (u n ) + V (x) (u n ) ) f (u n /) (u n /) > 0, (4.5) f(u n )(u n ) < 0. (4.6) We only prove (4.5), since the other inequality can be proved in the same way. First, notice that ( (u n /) + V (x) (u n /) ) f (u n /) (u n /) = γ 1 + J n, (4.7) where γ 1 := ( (u n /) + V + (u n /) ) f (u n /) (u n /) and J n := 1 4 (V (x) V + ) u n. It follows from (f 3 ) that γ 1 > 0. Thus, it suffices to check that J n 0 as n. Given ε > 0 we can use (V 1 ) to obtain R > 0 such that V (x) V + ε for x > R. Hence, (V (x) V + )u n ε u n = ε u. (4.8) R N \B R (0) We now recall that, since u is radially symmetric, by the Radial Lemma (see [5]) there exists C > 0 such that u(x) C x (1 N)/ u W 1, (R N ), a.e. x R N. Since x x n x n x n R on B R (0), we get B R (0) (V (x) V )u + n V V + L N/ (B R (0)) C 1 ( 1 n R ( ) (N 1)(N )/N u W 1, (R N ). ) (N )/N (u(x x n )) B R (0) The above estimate and (4.8) imply that J n 0 as n. This proves (4.5) and establishes the claim. Since u(x) 0 as x, it follows from (4.3)-(4.6) that there exists n 0 > 0 such that { h + (1/, β, n) > 0 h + (, β, n) < 0,

14 366 M.F. Furtado, L.A. Maia, E.S. Medeiros for n n 0 and β [1/, ]. Now, for all α [1/, ], we have { h (α, 1/, n) > 0 h (α,, n) < 0. Hence, we can apply a variant of the Mean Value Theorem due to Miranda [1] (see also [7]), to obtain α, β [1/, ] such that h ± (α, β, n) = 0, for any n n 0. Thus, α u 1 β u n N ± for n n 0. In view of the definition of c, it suffices to show that sup I(αu 1 βu n ) < c 1 + c, 1 α,β for some n n 0. In order to do this, we compute I(αu 1 βu n ) = 1 ( (αu1 ) + (βu n ) ) + 1 V (x) ( (αu 1 ) + (βu n ) ) αβ ( u 1 u n + V (x)u 1 u n ) F (αu 1 βu n ) ± F (αu 1 ). Since u 1 is a positive solution of (P ) we have that ( u 1 u n + V (x)u 1 u n ) 0, and therefore I(αu 1 βu n ) { I(αu 1 ) + } F (αu 1 ) + 1 ( (βun ) + V (x)(βu n ) ) F (αu 1 βu n ) ± V (βu + n ) ± F (βu n ), where = I(αu 1 ) + I (βu n ) + 1 (V (x) V + ) (βun ) J α,β,n, J α,β,n := (F (αu 1 βu n ) F (αu 1 ) F (βu n )). (4.9) Claim. For some n n 0, we have 1 (V (x) V + ) (βun ) J α,β,n < 0. (4.10) If this is true we can use (4.9) and I (βu n ) = I (βu) to get sup I(αu 1 βu n ) < sup I(αu 1 ) + sup I (βu) = c 1 + c, 1 α,β α 0 β 0

15 Positive and nodal solutions of Schrödinger equation 367 which concludes the proof of the lemma. It remains to prove Claim. We start by noting that, in view of ( V 3 ) and (.4), we have 1 (V ) (x) V + (βun ) = β (V (x + xn ) V + ) u(x) C e γ x+xn u(x) C e γn e γ x u(x) = C 3 e γn. On the other hand, it follows from [1, Lemma.4] and (.1) that J α,β,n f(αu 1 )u n + f(βu n )u 1 ( ) C 4 u q 1 u n + u η 1 u n + u 1 u q n + u 1 u η n. (4.11) (4.1) Setting A n := B n/(q+1) (0) we can use Holder s inequality and (.4) to write A n u q 1 u n ( ) q/(q+1) ( u q+1 1 u q+1 n dx A n C 5 (A n e δ(q+1) x xn dx) 1/(q+1). ) 1/(q+1) Since x n x x n x = n x, we get ( u q 1 u ndx C 5 e δn A n A n e δ(q+1) x dx ) 1/(q+1) ( 1/(q+1) n/(q+1) = C 6 e δn e δ(q+1)r r dr) N 1. 0 (4.13) We now recall that, for any fixed t > 0 we have e tr r N 1 dr = e tr P (r), where P (r) := rn 1 t Hence, by taking t := δ(q + 1), we get n/(q+1) 0 (N 1) t r N (N 1)(N ) + t 3 r N 3 N+1 (N 1)! + + ( 1) t N. e δ(q+1)r r N 1 dr = e δn P (n/(q + 1)) = C 7 e nδ + C 8,

16 368 M.F. Furtado, L.A. Maia, E.S. Medeiros where C 7 and C 8 depend only on δ. The above estimate and (4.13) provide u q 1 u ndx C 9 (e δn e δn/(q+1) + e δn) C 10 e δn( q+1) q. (4.14) A n Analogously we have R N \A n u q 1 u n dx ( R N \A n u q+1 1 dx) q/(q+1) ( (u(x x n )) q+1 dx C 11 ( R N \A n e δ(q+1) x dx ) q/(q+1) ) 1/(q+1) = C 1 ( n/(q+1) e δ(q+1)r r N 1 dr ) q/(q+1) C 13 e δn( q+1) q. This together with (4.14) implies that u q 1 u n C 14 e δn( q q+1). (4.15) Since q < η, we can proceed as above to obtain C 15 > 0 such that { } max u η 1 u n, u 1 u q n, u 1 u η n C 15 e δn( q+1) q. The above estimate, (4.15), (4.1) and (4.11) imply that 1 (V ) (x) V + (βun ) J α,β,n C 3 e γn + C 16 e δn( q+1) q. Since γ < V + q/(q + 1), we can choose 0 < δ < V + sufficiently close to V + in such way that γ < δq/(q + 1). It follows for this choice and the above expression that (4.10) is satisfied for n large enough. This concludes the proof of the proposition. In the our next result, we adapt some ideas from [10] (see also [9, 9]). Proposition 4. There exists a sequence (u n ) in N ± satisfying I(u n ) c and I (u n ) 0. (4.16) Proof. Since I is bounded from below on N ±, we can apply the Ekeland variational principle to obtain a sequence (u n ) N ± satisfying c I(u n ) c + 1 n

17 Positive and nodal solutions of Schrödinger equation 369 and I(v) I(u n ) 1 n v u n X, for all v N ±. (4.17) For any fixed ϕ X, n N, we introduce the C 1 -functions h ± n : R 3 R given by h ± n (t, s, l) := (u n + tϕ + su + n + lu n ) ± + V (x) (u n + tϕ + su + n + lu n ) ± f((u n + tϕ + su + n + lu n ) ± )(u n + tϕ + su + n + lu n ) ±. Note that h ± n (0, 0, 0) = 0, ( h + n / l)(0, 0, 0) = 0 and ( h n / s)(0, 0, 0) = 0. Moreover, recalling that I (u + n )u + n = 0 and using ( f 3 ), we get h + n (0, 0, 0) = ( u + n + V (x)(u + n ) ) s f (u + n )(u + n ) + f(u + n )(u + n ) (4.18) = f(u + n )(u + n ) f (u + n )(u + n ) C u ± n σ+1. Claim 1. There exists C 1 > 0 such that u ± n σ+1 C 1 > 0. In order to prove the claim we first notice that (u n ) is bounded in X. Moreover, for any given δ > 0, we can use (f 1 ), I (u + n )u + n = 0 and (.) to obtain C δ > 0 such that ( 1 V ) N/ u + n X δ u + n q+1 + C δ u + n η+1. S Arguing by contradiction we suppose that, up to a subsequence, u + n σ+1 0. Since (u n ) is bounded in X and q +1 < η +1 σ +1, we can use interpolation to conclude that the right hand side of the above expression goes to zero, contradicting (4.1). The same can be done for u n and therefore the claim holds. It follows from (4.18) and the above claim that Similarly, we can check that h + n s h n l (0, 0, 0) < 0. (0, 0, 0) < 0.

18 370 M.F. Furtado, L.A. Maia, E.S. Medeiros Hence, we can apply the Implicit Function Theorem to obtain δ n > 0 and two C 1 -functions s n, l n : ( δ n, δ n ) R such that s n (0) = l n (0) = 0 and Claim. There exists C > 0 such that Indeed, by using (4.19) we get h ± n (t, s n (t), l m (t)) = 0. (4.19) s n(0) C, l n(0) C. s n(0) = ( h+ n / t) (0, 0, 0) ( h + n / s ) (0, 0, 0) ( u + n ϕ + V (x)u + n ϕ ) (f (u + n )u + n + f(u + n ))ϕ =. f (u + n )(u + n ) f(u + n )u + n This, (4.19), (f 1 ) and the boundedness of u n in X imply that s n(0) C for some C > 0. A similar argument can be applied for the sequence (l n(0)). We now note that, by (4.19), we have that u n + tϕ + s n (t)u + n + l n (t)u n N ±, for any t ( δ n, δ n ) and therefore we can use (4.17) to get I(u n + tϕ + s n (t)u + n + l n (t)u n ) I(u n ) 1 n tϕ + s n(t)u + n + l n (t)u n X, (4.0) for any t ( δ n, δ n ). Claim 3. We have that If this is true, it follows that I (u n )ϕ 1 n ϕ X C 3 n. (4.1) I (u n ) C 4 n, and therefore the second statement in (4.) holds and the proof is complete. It remains to prove Claim 3. Let w n := tϕ + s n (t)u + n + l n (t)u n and notice that, since I (u n )u ± n = I (u ± n )u ± n = 0, we have that I(u n + w n ) I(u n ) = I (u n )w n + r(t, n) = ti (u n )ϕ + r(t, n), (4.) where r(t, n) = o( tϕ + s n (t)u + n + l n (t)u n X ) as t 0. This expression, (4.0), the boundedness of (u n ) and Claim imply that I (u n )ϕ + r(t,n) t 1 n ϕ X 1 n s n(t) t u + n + l n(t) t u n X (4.3) 1 n ϕ X C3 n,

19 Positive and nodal solutions of Schrödinger equation 371 for any t > 0. By using Claim again we conclude that r(t, n) t = r(t, n) tϕ + s n (t)u + n + l n (t)u. tϕ + s n(t)u + n + l n (t)u n X n X t = o(1), as t 0. Letting t 0 + in (4.3) we get (4.1) and therefore the proposition is proved. In view of the two previous propositions we can argue as in [9] to prove Theorem 1.. For the sake of completeness, we present the proof here. Proof of Theorem 1.. Let (u n ) N ± be the sequence given by the above proposition. We can easily check that (u n ) is bounded in X. Hence, up to a subsequence, u n u 0 weakly in X with I (u 0 ) = 0. In view of Lemma.3 we have either u n u 0 strongly in X or there exists u 1,..., u k nontrivial solutions of (P ) satisfying the conclusions of Lemma.3(b). Since c 1 < c it follows from (.5) that k 1. Suppose that u 0 0. In this case, since c > 0, we have that k = 1 and therefore u n u 1 ( y 1 n) X 0. Since y 1 n and (u n ) N ±, the convergence above and (4.1) imply that (u 1 ) ± N. Hence, c 1 + c > c = I (u 1 ) = I ((u 1 ) + ) + I ((u 1 ) ) c contradicting c 1 < c. Thus u 0 0 and we can use c < c 1 + c again to conclude that k = 0, that is, u n u 0 strongly in X. It follows from (4.1) that u 0 N ± is a sign changing solution of (P ). References [1] C.O. Alves, E.S. Medeiros and P.C. Carrião, Multiplicity of solutions for a class of quasilinear problem in exterior domains with Neumann conditions, Abstr. Appl. Anal. 3 (004), [] T. Bartsch and Z.Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on R N, Comm. Partial Differential Equations 0 (1995), no. 9-10, [3] T. Bartsch and Z.Q. Wang, On the existence of sign changing solutions for semilinear Dirichlet problems, Topol. Methods Nonlinear Anal. 7 (1996), no. 1, [4] V. Benci and G. Cerami, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rat. Mech. Anal. 99 (1987), no. 4, [5] V. Benci and G. Cerami, Existence of positive solutions of the equation u + a(x)u = u (N+)/(N ) in R N, J. Funct. Anal. 88 (1990), no. 1, [6] V. Benci, C.R. Grisanti and A.M. Micheletti, Existence and non existence of the ground state solution for the nonlinear Schroedinger equations with V ( ) = 0, Topol. Methods Nonlinear Anal. 6 (005), no., [7] A. K. Ben-Naoum, C. Troestler and M. Willem, Extrema problems with critical Sobolev exponents on unbounded domains, Nonlinear Anal. 6 (1996), no. 4,

20 37 M.F. Furtado, L.A. Maia, E.S. Medeiros [8] H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 8 (1983), no. 4, [9] D.C. Cao, Multiple solutions for a Neumann problem in an exterior domain, Commun. Partial Differential Equations 18 (1993), no. 3-4, [10] G. Cerami, S. Solimini and M. Struwe Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal. 69 (1986), no. 3, [11] J. Chen and S.J. Li, Existence and multiplicity of nontrivial solutions for an elliptic equation on R N with indefinite linear part, Manuscripta Math. 111 (003), no., [1] J. Chen, S.J. Li and Y. Li, Multiple solutions for a semilinear equation involving singular potential and critical exponent, Z. Angew. Math. Phys. 56 (005), no. 3, [13] J. Chen and Y. Li, On a semilinear elliptic equation with indefinite linear part, Nonlinear Anal. 48 (00), no. 3, Ser. A: Theory Methods, [14] W.Y. Ding and W.M. Ni, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal. 91 (1986), no. 4, [15] Y. Ding and A. Szulkin, Bound states for semilinear Schrödinger equations with signchanging potential, Calc. Var. Partial Differential Equations 9 (007), no. 3, [16] Y. Ding and J. Wei, Semiclassical states for nonlinear Schrödinger equations with signchanging potentials, J. Funct. Anal. 51 (007), no., [17] L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger equation on R N, Indiana University Mathematics Journal 54 (005), no., [18] Y. Li, Remarks on a semilinear elliptic equation on R N, J. Differential Equations 74 (1988), no. 1, [19] G.B. Li and S.S. Yan, Eigenvalue problems for quasilinear elliptic equations on R N, Comm. Partial Differential Equations 14 (1989), no. 8-9, [0] P.L. Lions, The concentration-compactness principle in the calculus of variation. The locally compact case. II, Ann. Inst. H. Poincaré Non Linéaire 1 (1984), no. 4, [1] C. Miranda, Un osservazione su un teorema di Brouwer, Boll. Un. Mat. Ital. () 3 (1940), 5 7 (French). [] E.S. Noussair and J. Wei, On the effect of domain geometry on the existence of nodal solutions in singular perturbations problems, Indiana Univ. Math. J. 46 (1997), no. 4, [3] P.H. Rabinowitz, On a class of nonlinear Schrdinger equations, Z. Angew. Math. Phys. 43 (199), no., [4] B. Sirakov, Existence and multiplicity of solutions of semi-linear elliptic equations in R N, Calc. Var. Partial Differential Equations 11 (000), no., [5] W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), [6] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187 (1984), no. 4, [7] M. N. Vrahatis, A short proof and a generalization of Miranda s existence theorem, Proc. Amer. Math. Soc. 107 (1989), no. 3,

21 Positive and nodal solutions of Schrödinger equation 373 [8] M. Willem, Minimax theorems, Birkhäuser, Boston, [9] X.P. Zhu, Multiple entire solutions of a semilinear elliptic equation, Nonlinear Anal. 1 (1988), no. 11,

EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A QUASILINEAR SCHRÖDINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL

EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A QUASILINEAR SCHRÖDINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 05, pp. 1 8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTENCE OF NONTRIVIAL

More information

EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC SCHRÖDINGER EQUATIONS

EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC SCHRÖDINGER EQUATIONS Electronic Journal of Differential Equations, Vol. 017 (017), No. 15, pp. 1 7. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC

More information

NONLINEAR SCHRÖDINGER ELLIPTIC SYSTEMS INVOLVING EXPONENTIAL CRITICAL GROWTH IN R Introduction

NONLINEAR SCHRÖDINGER ELLIPTIC SYSTEMS INVOLVING EXPONENTIAL CRITICAL GROWTH IN R Introduction Electronic Journal of Differential Equations, Vol. 014 (014), No. 59, pp. 1 1. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu NONLINEAR SCHRÖDINGER

More information

A nodal solution of the scalar field equation at the second minimax level

A nodal solution of the scalar field equation at the second minimax level Bull. London Math. Soc. 46 (2014) 1218 1225 C 2014 London Mathematical Society doi:10.1112/blms/bdu075 A nodal solution of the scalar field equation at the second minimax level Kanishka Perera and Cyril

More information

MULTIPLE SOLUTIONS FOR A KIRCHHOFF EQUATION WITH NONLINEARITY HAVING ARBITRARY GROWTH

MULTIPLE SOLUTIONS FOR A KIRCHHOFF EQUATION WITH NONLINEARITY HAVING ARBITRARY GROWTH MULTIPLE SOLUTIONS FOR A KIRCHHOFF EQUATION WITH NONLINEARITY HAVING ARBITRARY GROWTH MARCELO F. FURTADO AND HENRIQUE R. ZANATA Abstract. We prove the existence of infinitely many solutions for the Kirchhoff

More information

POSITIVE GROUND STATE SOLUTIONS FOR SOME NON-AUTONOMOUS KIRCHHOFF TYPE PROBLEMS

POSITIVE GROUND STATE SOLUTIONS FOR SOME NON-AUTONOMOUS KIRCHHOFF TYPE PROBLEMS ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 47, Number 1, 2017 POSITIVE GROUND STATE SOLUTIONS FOR SOME NON-AUTONOMOUS KIRCHHOFF TYPE PROBLEMS QILIN XIE AND SHIWANG MA ABSTRACT. In this paper, we study

More information

EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS WITH UNBOUNDED POTENTIAL. 1. Introduction In this article, we consider the Kirchhoff type problem

EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS WITH UNBOUNDED POTENTIAL. 1. Introduction In this article, we consider the Kirchhoff type problem Electronic Journal of Differential Equations, Vol. 207 (207), No. 84, pp. 2. ISSN: 072-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS

More information

POSITIVE GROUND STATE SOLUTIONS FOR QUASICRITICAL KLEIN-GORDON-MAXWELL TYPE SYSTEMS WITH POTENTIAL VANISHING AT INFINITY

POSITIVE GROUND STATE SOLUTIONS FOR QUASICRITICAL KLEIN-GORDON-MAXWELL TYPE SYSTEMS WITH POTENTIAL VANISHING AT INFINITY Electronic Journal of Differential Equations, Vol. 017 (017), No. 154, pp. 1 11. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu POSITIVE GROUND STATE SOLUTIONS FOR QUASICRITICAL

More information

SUPER-QUADRATIC CONDITIONS FOR PERIODIC ELLIPTIC SYSTEM ON R N

SUPER-QUADRATIC CONDITIONS FOR PERIODIC ELLIPTIC SYSTEM ON R N Electronic Journal of Differential Equations, Vol. 015 015), No. 17, pp. 1 11. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu SUPER-QUADRATIC CONDITIONS

More information

arxiv: v1 [math.ap] 28 Aug 2018

arxiv: v1 [math.ap] 28 Aug 2018 Note on semiclassical states for the Schrödinger equation with nonautonomous nonlinearities Bartosz Bieganowski Nicolaus Copernicus University, Faculty of Mathematics and Computer Science, ul. Chopina

More information

INFINITELY MANY SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRÖDINGER EQUATIONS. Jing Chen and X. H. Tang 1. INTRODUCTION

INFINITELY MANY SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRÖDINGER EQUATIONS. Jing Chen and X. H. Tang 1. INTRODUCTION TAIWANESE JOURNAL OF MATHEMATICS Vol. 19, No. 2, pp. 381-396, April 2015 DOI: 10.11650/tjm.19.2015.4044 This paper is available online at http://journal.taiwanmathsoc.org.tw INFINITELY MANY SOLUTIONS FOR

More information

ON THE EXISTENCE OF SIGNED SOLUTIONS FOR A QUASILINEAR ELLIPTIC PROBLEM IN R N. Dedicated to Luís Adauto Medeiros on his 80th birthday

ON THE EXISTENCE OF SIGNED SOLUTIONS FOR A QUASILINEAR ELLIPTIC PROBLEM IN R N. Dedicated to Luís Adauto Medeiros on his 80th birthday Matemática Contemporânea, Vol..., 00-00 c 2006, Sociedade Brasileira de Matemática ON THE EXISTENCE OF SIGNED SOLUTIONS FOR A QUASILINEAR ELLIPTIC PROBLEM IN Everaldo S. Medeiros Uberlandio B. Severo Dedicated

More information

On the Schrödinger Equation in R N under the Effect of a General Nonlinear Term

On the Schrödinger Equation in R N under the Effect of a General Nonlinear Term On the Schrödinger Equation in under the Effect of a General Nonlinear Term A. AZZOLLINI & A. POMPONIO ABSTRACT. In this paper we prove the existence of a positive solution to the equation u + V(x)u =

More information

Existence of Positive Solutions to Semilinear Elliptic Systems Involving Concave and Convex Nonlinearities

Existence of Positive Solutions to Semilinear Elliptic Systems Involving Concave and Convex Nonlinearities Journal of Physical Science Application 5 (2015) 71-81 doi: 10.17265/2159-5348/2015.01.011 D DAVID PUBLISHING Existence of Positive Solutions to Semilinear Elliptic Systems Involving Concave Convex Nonlinearities

More information

ON NONHOMOGENEOUS BIHARMONIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT

ON NONHOMOGENEOUS BIHARMONIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT PORTUGALIAE MATHEMATICA Vol. 56 Fasc. 3 1999 ON NONHOMOGENEOUS BIHARMONIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT M. Guedda Abstract: In this paper we consider the problem u = λ u u + f in, u = u

More information

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 21, 2003, 211 226 SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS Massimo Grosi Filomena Pacella S.

More information

NONTRIVIAL SOLUTIONS FOR SUPERQUADRATIC NONAUTONOMOUS PERIODIC SYSTEMS. Shouchuan Hu Nikolas S. Papageorgiou. 1. Introduction

NONTRIVIAL SOLUTIONS FOR SUPERQUADRATIC NONAUTONOMOUS PERIODIC SYSTEMS. Shouchuan Hu Nikolas S. Papageorgiou. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 34, 29, 327 338 NONTRIVIAL SOLUTIONS FOR SUPERQUADRATIC NONAUTONOMOUS PERIODIC SYSTEMS Shouchuan Hu Nikolas S. Papageorgiou

More information

SOLUTIONS TO SINGULAR QUASILINEAR ELLIPTIC EQUATIONS ON BOUNDED DOMAINS

SOLUTIONS TO SINGULAR QUASILINEAR ELLIPTIC EQUATIONS ON BOUNDED DOMAINS Electronic Journal of Differential Equations, Vol. 018 (018), No. 11, pp. 1 1. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu SOLUTIONS TO SINGULAR QUASILINEAR ELLIPTIC EQUATIONS

More information

MULTIPLE SOLUTIONS FOR AN INDEFINITE KIRCHHOFF-TYPE EQUATION WITH SIGN-CHANGING POTENTIAL

MULTIPLE SOLUTIONS FOR AN INDEFINITE KIRCHHOFF-TYPE EQUATION WITH SIGN-CHANGING POTENTIAL Electronic Journal of Differential Equations, Vol. 2015 (2015), o. 274, pp. 1 9. ISS: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu MULTIPLE SOLUTIOS

More information

COMBINED EFFECTS FOR A STATIONARY PROBLEM WITH INDEFINITE NONLINEARITIES AND LACK OF COMPACTNESS

COMBINED EFFECTS FOR A STATIONARY PROBLEM WITH INDEFINITE NONLINEARITIES AND LACK OF COMPACTNESS Dynamic Systems and Applications 22 (203) 37-384 COMBINED EFFECTS FOR A STATIONARY PROBLEM WITH INDEFINITE NONLINEARITIES AND LACK OF COMPACTNESS VICENŢIU D. RĂDULESCU Simion Stoilow Mathematics Institute

More information

Some nonlinear elliptic equations in R N

Some nonlinear elliptic equations in R N Nonlinear Analysis 39 000) 837 860 www.elsevier.nl/locate/na Some nonlinear elliptic equations in Monica Musso, Donato Passaseo Dipartimento di Matematica, Universita di Pisa, Via Buonarroti,, 5617 Pisa,

More information

EXISTENCE OF POSITIVE GROUND STATE SOLUTIONS FOR A CLASS OF ASYMPTOTICALLY PERIODIC SCHRÖDINGER-POISSON SYSTEMS

EXISTENCE OF POSITIVE GROUND STATE SOLUTIONS FOR A CLASS OF ASYMPTOTICALLY PERIODIC SCHRÖDINGER-POISSON SYSTEMS Electronic Journal of Differential Equations, Vol. 207 (207), No. 2, pp.. ISSN: 072-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE OF POSITIVE GROUND STATE SOLUTIONS FOR A

More information

HOMOCLINIC SOLUTIONS FOR SECOND-ORDER NON-AUTONOMOUS HAMILTONIAN SYSTEMS WITHOUT GLOBAL AMBROSETTI-RABINOWITZ CONDITIONS

HOMOCLINIC SOLUTIONS FOR SECOND-ORDER NON-AUTONOMOUS HAMILTONIAN SYSTEMS WITHOUT GLOBAL AMBROSETTI-RABINOWITZ CONDITIONS Electronic Journal of Differential Equations, Vol. 010010, No. 9, pp. 1 10. ISSN: 107-6691. UL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu HOMOCLINIC SOLUTIONS FO

More information

INFINITELY MANY SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRÖDINGER EQUATIONS

INFINITELY MANY SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRÖDINGER EQUATIONS Journal of Applied Analysis and Computation Volume 8, Number 5, October 018, 1475 1493 Website:http://jaac-online.com/ DOI:10.11948/018.1475 INFINITELY MANY SOLUTIONS FOR A CLASS OF SUBLINEAR SCHRÖDINGER

More information

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN: 1017-060X (Print) ISSN: 1735-8515 (Online) Bulletin of the Iranian Mathematical Society Vol. 42 (2016), No. 1, pp. 129 141. Title: On nonlocal elliptic system of p-kirchhoff-type in Author(s): L.

More information

GROUND STATE SOLUTIONS FOR CHOQUARD TYPE EQUATIONS WITH A SINGULAR POTENTIAL. 1. Introduction In this article, we study the Choquard type equation

GROUND STATE SOLUTIONS FOR CHOQUARD TYPE EQUATIONS WITH A SINGULAR POTENTIAL. 1. Introduction In this article, we study the Choquard type equation Electronic Journal of Differential Equations, Vol. 2017 (2017), o. 52, pp. 1 14. ISS: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu GROUD STATE SOLUTIOS FOR CHOQUARD TYPE EQUATIOS

More information

Local mountain-pass for a class of elliptic problems in R N involving critical growth

Local mountain-pass for a class of elliptic problems in R N involving critical growth Nonlinear Analysis 46 (2001) 495 510 www.elsevier.com/locate/na Local mountain-pass for a class of elliptic problems in involving critical growth C.O. Alves a,joão Marcos do O b; ;1, M.A.S. Souto a;1 a

More information

VANISHING-CONCENTRATION-COMPACTNESS ALTERNATIVE FOR THE TRUDINGER-MOSER INEQUALITY IN R N

VANISHING-CONCENTRATION-COMPACTNESS ALTERNATIVE FOR THE TRUDINGER-MOSER INEQUALITY IN R N VAISHIG-COCETRATIO-COMPACTESS ALTERATIVE FOR THE TRUDIGER-MOSER IEQUALITY I R Abstract. Let 2, a > 0 0 < b. Our aim is to clarify the influence of the constraint S a,b = { u W 1, (R ) u a + u b = 1 } on

More information

Nonlinear Maxwell equations a variational approach Version of May 16, 2018

Nonlinear Maxwell equations a variational approach Version of May 16, 2018 Nonlinear Maxwell equations a variational approach Version of May 16, 018 Course at the Karlsruher Institut für Technologie Jarosław Mederski Institute of Mathematics of the Polish Academy of Sciences

More information

Nonlinear elliptic systems with exponential nonlinearities

Nonlinear elliptic systems with exponential nonlinearities 22-Fez conference on Partial Differential Equations, Electronic Journal of Differential Equations, Conference 9, 22, pp 139 147. http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu

More information

p-laplacian problems with critical Sobolev exponents

p-laplacian problems with critical Sobolev exponents Nonlinear Analysis 66 (2007) 454 459 www.elsevier.com/locate/na p-laplacian problems with critical Sobolev exponents Kanishka Perera a,, Elves A.B. Silva b a Department of Mathematical Sciences, Florida

More information

A REMARK ON LEAST ENERGY SOLUTIONS IN R N. 0. Introduction In this note we study the following nonlinear scalar field equations in R N :

A REMARK ON LEAST ENERGY SOLUTIONS IN R N. 0. Introduction In this note we study the following nonlinear scalar field equations in R N : PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 131, Number 8, Pages 399 408 S 000-9939(0)0681-1 Article electronically published on November 13, 00 A REMARK ON LEAST ENERGY SOLUTIONS IN R N LOUIS

More information

Multiple Solutions for Parametric Neumann Problems with Indefinite and Unbounded Potential

Multiple Solutions for Parametric Neumann Problems with Indefinite and Unbounded Potential Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 8, Number 2, pp. 281 293 (2013) http://campus.mst.edu/adsa Multiple Solutions for Parametric Neumann Problems with Indefinite and Unbounded

More information

ON THE SCHRÖDINGER EQUATION INVOLVING A CRITICAL SOBOLEV EXPONENT AND MAGNETIC FIELD. Jan Chabrowski Andrzej Szulkin. 1.

ON THE SCHRÖDINGER EQUATION INVOLVING A CRITICAL SOBOLEV EXPONENT AND MAGNETIC FIELD. Jan Chabrowski Andrzej Szulkin. 1. Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 25, 2005, 3 21 ON THE SCHRÖDINGER EQUATION INVOLVING A CRITICAL SOBOLEV EXPONENT AND MAGNETIC FIELD Jan Chabrowski

More information

EXISTENCE OF WEAK SOLUTIONS FOR A NONUNIFORMLY ELLIPTIC NONLINEAR SYSTEM IN R N. 1. Introduction We study the nonuniformly elliptic, nonlinear system

EXISTENCE OF WEAK SOLUTIONS FOR A NONUNIFORMLY ELLIPTIC NONLINEAR SYSTEM IN R N. 1. Introduction We study the nonuniformly elliptic, nonlinear system Electronic Journal of Differential Equations, Vol. 20082008), No. 119, pp. 1 10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu login: ftp) EXISTENCE

More information

A semilinear Schrödinger equation with magnetic field

A semilinear Schrödinger equation with magnetic field A semilinear Schrödinger equation with magnetic field Andrzej Szulkin Department of Mathematics, Stockholm University 106 91 Stockholm, Sweden 1 Introduction In this note we describe some recent results

More information

LEAST ENERGY SIGN-CHANGING SOLUTIONS FOR NONLINEAR PROBLEMS INVOLVING FRACTIONAL LAPLACIAN

LEAST ENERGY SIGN-CHANGING SOLUTIONS FOR NONLINEAR PROBLEMS INVOLVING FRACTIONAL LAPLACIAN Electronic Journal of Differential Equations, Vol. 016 (016), No. 38, pp. 1 10. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu LEAST ENERGY SIGN-CHANGING SOLUTIONS FOR NONLINEAR

More information

A REMARK ON MINIMAL NODAL SOLUTIONS OF AN ELLIPTIC PROBLEM IN A BALL. Olaf Torné. 1. Introduction

A REMARK ON MINIMAL NODAL SOLUTIONS OF AN ELLIPTIC PROBLEM IN A BALL. Olaf Torné. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 24, 2004, 199 207 A REMARK ON MINIMAL NODAL SOLUTIONS OF AN ELLIPTIC PROBLEM IN A BALL Olaf Torné (Submitted by Michel

More information

EXISTENCE RESULTS FOR OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS VIA THE MOUNTAIN PASS THEOREM

EXISTENCE RESULTS FOR OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS VIA THE MOUNTAIN PASS THEOREM EXISTENCE RESULTS FOR OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS VIA THE MOUNTAIN PASS THEOREM JENICĂ CRÎNGANU We derive existence results for operator equations having the form J ϕu = N f u, by using

More information

SEMILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT

SEMILINEAR ELLIPTIC EQUATIONS WITH DEPENDENCE ON THE GRADIENT Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 139, pp. 1 9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu SEMILINEAR ELLIPTIC

More information

MULTIPLE SOLUTIONS FOR CRITICAL ELLIPTIC PROBLEMS WITH FRACTIONAL LAPLACIAN

MULTIPLE SOLUTIONS FOR CRITICAL ELLIPTIC PROBLEMS WITH FRACTIONAL LAPLACIAN Electronic Journal of Differential Equations, Vol. 016 (016), No. 97, pp. 1 11. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu MULTIPLE SOLUTIONS

More information

Existence of Solutions for a Class of p(x)-biharmonic Problems without (A-R) Type Conditions

Existence of Solutions for a Class of p(x)-biharmonic Problems without (A-R) Type Conditions International Journal of Mathematical Analysis Vol. 2, 208, no., 505-55 HIKARI Ltd, www.m-hikari.com https://doi.org/0.2988/ijma.208.886 Existence of Solutions for a Class of p(x)-biharmonic Problems without

More information

KIRCHHOFF TYPE PROBLEMS WITH POTENTIAL WELL AND INDEFINITE POTENTIAL. 1. Introduction In this article, we will study the Kirchhoff type problem

KIRCHHOFF TYPE PROBLEMS WITH POTENTIAL WELL AND INDEFINITE POTENTIAL. 1. Introduction In this article, we will study the Kirchhoff type problem Electronic Journal of Differential Equations, Vol. 216 (216), No. 178, pp. 1 13. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu KIRCHHOFF TYPE PROBLEMS WITH POTENTIAL WELL

More information

On a Nonlocal Elliptic System of p-kirchhoff-type Under Neumann Boundary Condition

On a Nonlocal Elliptic System of p-kirchhoff-type Under Neumann Boundary Condition On a Nonlocal Elliptic System of p-kirchhoff-type Under Neumann Boundary Condition Francisco Julio S.A Corrêa,, UFCG - Unidade Acadêmica de Matemática e Estatística, 58.9-97 - Campina Grande - PB - Brazil

More information

EXISTENCE OF SOLUTIONS FOR A RESONANT PROBLEM UNDER LANDESMAN-LAZER CONDITIONS

EXISTENCE OF SOLUTIONS FOR A RESONANT PROBLEM UNDER LANDESMAN-LAZER CONDITIONS Electronic Journal of Differential Equations, Vol. 2008(2008), No. 98, pp. 1 10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) EXISTENCE

More information

Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent

Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent Yūki Naito a and Tokushi Sato b a Department of Mathematics, Ehime University, Matsuyama 790-8577, Japan b Mathematical

More information

NONHOMOGENEOUS ELLIPTIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT AND WEIGHT

NONHOMOGENEOUS ELLIPTIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT AND WEIGHT Electronic Journal of Differential Equations, Vol. 016 (016), No. 08, pp. 1 1. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu NONHOMOGENEOUS ELLIPTIC

More information

Necessary Conditions and Sufficient Conditions for Global Existence in the Nonlinear Schrödinger Equation

Necessary Conditions and Sufficient Conditions for Global Existence in the Nonlinear Schrödinger Equation Necessary Conditions and Sufficient Conditions for Global Existence in the Nonlinear Schrödinger Equation Pascal Bégout aboratoire Jacques-ouis ions Université Pierre et Marie Curie Boîte Courrier 187,

More information

On the Second Minimax Level of the Scalar Field Equation and Symmetry Breaking

On the Second Minimax Level of the Scalar Field Equation and Symmetry Breaking arxiv:128.1139v3 [math.ap] 2 May 213 On the Second Minimax Level of the Scalar Field Equation and Symmetry Breaking Kanishka Perera Department of Mathematical Sciences Florida Institute of Technology Melbourne,

More information

Some results on the nonlinear Klein-Gordon-Maxwell equations

Some results on the nonlinear Klein-Gordon-Maxwell equations Some results on the nonlinear Klein-Gordon-Maxwell equations Alessio Pomponio Dipartimento di Matematica, Politecnico di Bari, Italy Granada, Spain, 2011 A solitary wave is a solution of a field equation

More information

MULTIPLE SOLUTIONS FOR THE p-laplace EQUATION WITH NONLINEAR BOUNDARY CONDITIONS

MULTIPLE SOLUTIONS FOR THE p-laplace EQUATION WITH NONLINEAR BOUNDARY CONDITIONS Electronic Journal of Differential Equations, Vol. 2006(2006), No. 37, pp. 1 7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) MULTIPLE

More information

Multiplicity of nodal solutions for a critical quasilinear equation with symmetry

Multiplicity of nodal solutions for a critical quasilinear equation with symmetry Nonlinear Analysis 63 (25) 1153 1166 www.elsevier.com/locate/na Multiplicity of nodal solutions for a critical quasilinear equation with symmetry Marcelo F. Furtado,1 IMECC-UNICAMP, Cx. Postal 665, 1383-97

More information

EXISTENCE OF SOLUTIONS FOR CROSS CRITICAL EXPONENTIAL N-LAPLACIAN SYSTEMS

EXISTENCE OF SOLUTIONS FOR CROSS CRITICAL EXPONENTIAL N-LAPLACIAN SYSTEMS Electronic Journal of Differential Equations, Vol. 2014 (2014), o. 28, pp. 1 10. ISS: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTECE OF SOLUTIOS

More information

arxiv: v1 [math.ap] 28 Mar 2014

arxiv: v1 [math.ap] 28 Mar 2014 GROUNDSTATES OF NONLINEAR CHOQUARD EQUATIONS: HARDY-LITTLEWOOD-SOBOLEV CRITICAL EXPONENT VITALY MOROZ AND JEAN VAN SCHAFTINGEN arxiv:1403.7414v1 [math.ap] 28 Mar 2014 Abstract. We consider nonlinear Choquard

More information

NONLINEAR FREDHOLM ALTERNATIVE FOR THE p-laplacian UNDER NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION

NONLINEAR FREDHOLM ALTERNATIVE FOR THE p-laplacian UNDER NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 210, pp. 1 7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu NONLINEAR FREDHOLM ALTERNATIVE FOR THE p-laplacian

More information

arxiv: v1 [math.ap] 24 Oct 2014

arxiv: v1 [math.ap] 24 Oct 2014 Multiple solutions for Kirchhoff equations under the partially sublinear case Xiaojing Feng School of Mathematical Sciences, Shanxi University, Taiyuan 030006, People s Republic of China arxiv:1410.7335v1

More information

arxiv: v1 [math.ap] 16 Jan 2015

arxiv: v1 [math.ap] 16 Jan 2015 Three positive solutions of a nonlinear Dirichlet problem with competing power nonlinearities Vladimir Lubyshev January 19, 2015 arxiv:1501.03870v1 [math.ap] 16 Jan 2015 Abstract This paper studies a nonlinear

More information

RADIAL SOLUTIONS FOR INHOMOGENEOUS BIHARMONIC ELLIPTIC SYSTEMS

RADIAL SOLUTIONS FOR INHOMOGENEOUS BIHARMONIC ELLIPTIC SYSTEMS Electronic Journal of Differential Equations, Vol. 018 (018), No. 67, pp. 1 14. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu RADIAL SOLUTIONS FOR INHOMOGENEOUS BIHARMONIC

More information

Nodal solutions of a NLS equation concentrating on lower dimensional spheres

Nodal solutions of a NLS equation concentrating on lower dimensional spheres Presentation Nodal solutions of a NLS equation concentrating on lower dimensional spheres Marcos T.O. Pimenta and Giovany J. M. Figueiredo Unesp / UFPA Brussels, September 7th, 2015 * Supported by FAPESP

More information

CRITICAL POINT METHODS IN DEGENERATE ANISOTROPIC PROBLEMS WITH VARIABLE EXPONENT. We are interested in discussing the problem:

CRITICAL POINT METHODS IN DEGENERATE ANISOTROPIC PROBLEMS WITH VARIABLE EXPONENT. We are interested in discussing the problem: STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume LV, Number 4, December 2010 CRITICAL POINT METHODS IN DEGENERATE ANISOTROPIC PROBLEMS WITH VARIABLE EXPONENT MARIA-MAGDALENA BOUREANU Abstract. We work on

More information

SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS. M. Grossi S. Kesavan F. Pacella M. Ramaswamy. 1. Introduction

SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS. M. Grossi S. Kesavan F. Pacella M. Ramaswamy. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 12, 1998, 47 59 SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS M. Grossi S. Kesavan F. Pacella M. Ramaswamy

More information

BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED

BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED TAOUFIK HMIDI AND SAHBI KERAANI Abstract. In this note we prove a refined version of compactness lemma adapted to the blowup analysis

More information

Compactness results and applications to some zero mass elliptic problems

Compactness results and applications to some zero mass elliptic problems Compactness results and applications to some zero mass elliptic problems A. Azzollini & A. Pomponio 1 Introduction and statement of the main results In this paper we study the elliptic problem, v = f (v)

More information

Existence of Multiple Positive Solutions of Quasilinear Elliptic Problems in R N

Existence of Multiple Positive Solutions of Quasilinear Elliptic Problems in R N Advances in Dynamical Systems and Applications. ISSN 0973-5321 Volume 2 Number 1 (2007), pp. 1 11 c Research India Publications http://www.ripublication.com/adsa.htm Existence of Multiple Positive Solutions

More information

Multiplicity of solutions for resonant elliptic systems

Multiplicity of solutions for resonant elliptic systems J. Math. Anal. Appl. 39 006) 435 449 www.elsevier.com/locate/jmaa Multiplicity of solutions for resonant elliptic systems Marcelo F. Furtado,, Francisco O.V. de Paiva IMECC-UNICAMP, Caixa Postal 6065,

More information

ATTRACTORS FOR SEMILINEAR PARABOLIC PROBLEMS WITH DIRICHLET BOUNDARY CONDITIONS IN VARYING DOMAINS. Emerson A. M. de Abreu Alexandre N.

ATTRACTORS FOR SEMILINEAR PARABOLIC PROBLEMS WITH DIRICHLET BOUNDARY CONDITIONS IN VARYING DOMAINS. Emerson A. M. de Abreu Alexandre N. ATTRACTORS FOR SEMILINEAR PARABOLIC PROBLEMS WITH DIRICHLET BOUNDARY CONDITIONS IN VARYING DOMAINS Emerson A. M. de Abreu Alexandre N. Carvalho Abstract Under fairly general conditions one can prove that

More information

EXISTENCE RESULTS FOR QUASILINEAR HEMIVARIATIONAL INEQUALITIES AT RESONANCE. Leszek Gasiński

EXISTENCE RESULTS FOR QUASILINEAR HEMIVARIATIONAL INEQUALITIES AT RESONANCE. Leszek Gasiński DISCRETE AND CONTINUOUS Website: www.aimsciences.org DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp. 409 418 EXISTENCE RESULTS FOR QUASILINEAR HEMIVARIATIONAL INEQUALITIES AT RESONANCE Leszek Gasiński Jagiellonian

More information

Nonvariational problems with critical growth

Nonvariational problems with critical growth Nonlinear Analysis ( ) www.elsevier.com/locate/na Nonvariational problems with critical growth Maya Chhetri a, Pavel Drábek b, Sarah Raynor c,, Stephen Robinson c a University of North Carolina, Greensboro,

More information

ON THE EXISTENCE OF THREE SOLUTIONS FOR QUASILINEAR ELLIPTIC PROBLEM. Paweł Goncerz

ON THE EXISTENCE OF THREE SOLUTIONS FOR QUASILINEAR ELLIPTIC PROBLEM. Paweł Goncerz Opuscula Mathematica Vol. 32 No. 3 2012 http://dx.doi.org/10.7494/opmath.2012.32.3.473 ON THE EXISTENCE OF THREE SOLUTIONS FOR QUASILINEAR ELLIPTIC PROBLEM Paweł Goncerz Abstract. We consider a quasilinear

More information

EXISTENCE OF MULTIPLE SOLUTIONS TO ELLIPTIC PROBLEMS OF KIRCHHOFF TYPE WITH CRITICAL EXPONENTIAL GROWTH

EXISTENCE OF MULTIPLE SOLUTIONS TO ELLIPTIC PROBLEMS OF KIRCHHOFF TYPE WITH CRITICAL EXPONENTIAL GROWTH Electronic Journal of Differential Equations, Vol. 2014 (2014, o. 107, pp. 1 12. ISS: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTECE OF MULTIPLE

More information

Variational eigenvalues of degenerate eigenvalue problems for the weighted p-laplacian

Variational eigenvalues of degenerate eigenvalue problems for the weighted p-laplacian Variational eigenvalues of degenerate eigenvalue problems for the weighted p-laplacian An Lê Mathematics Sciences Research Institute, 17 Gauss Way, Berkeley, California 94720 e-mail: anle@msri.org Klaus

More information

POTENTIAL LANDESMAN-LAZER TYPE CONDITIONS AND. 1. Introduction We investigate the existence of solutions for the nonlinear boundary-value problem

POTENTIAL LANDESMAN-LAZER TYPE CONDITIONS AND. 1. Introduction We investigate the existence of solutions for the nonlinear boundary-value problem Electronic Journal of Differential Equations, Vol. 25(25), No. 94, pp. 1 12. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) POTENTIAL

More information

Periodic solutions of weakly coupled superlinear systems

Periodic solutions of weakly coupled superlinear systems Periodic solutions of weakly coupled superlinear systems Alessandro Fonda and Andrea Sfecci Abstract By the use of a higher dimensional version of the Poincaré Birkhoff theorem, we are able to generalize

More information

A Caffarelli-Kohn-Nirenberg type inequality with variable exponent and applications to PDE s

A Caffarelli-Kohn-Nirenberg type inequality with variable exponent and applications to PDE s A Caffarelli-Kohn-Nirenberg type ineuality with variable exponent and applications to PDE s Mihai Mihăilescu a,b Vicenţiu Rădulescu a,c Denisa Stancu-Dumitru a a Department of Mathematics, University of

More information

Multiple minimal nodal solutions for a quasilinear Schrödinger equation with symmetric potential

Multiple minimal nodal solutions for a quasilinear Schrödinger equation with symmetric potential J. Math. Anal. Appl. 34 25) 17 188 www.elsevier.com/locate/jmaa Multiple minimal nodal solutions for a quasilinear Schrödinger equation with symmetric potential Marcelo F. Furtado 1 UNICAMP-IMECC, Cx.

More information

Standing waves with large frequency for 4-superlinear Schrödinger-Poisson systems

Standing waves with large frequency for 4-superlinear Schrödinger-Poisson systems Standing waves with large frequency for 4-superlinear Schrödinger-Poisson systems Huayang Chen a, Shibo Liu b a Department of Mathematics, Shantou University, Shantou 515063, China b School of Mathematical

More information

arxiv: v1 [math.ap] 7 May 2009

arxiv: v1 [math.ap] 7 May 2009 Existence of solutions for a problem of resonance road space with weight arxiv:0905.1016v1 [math.ap] 7 May 2009 Antonio Ronaldo G. Garcia, Moisés D. dos Santos and Adrião D. D. Neto 2 Abstract Universidade

More information

Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator

Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator Hongjun Gao Institute of Applied Physics and Computational Mathematics 188 Beijing, China To Fu Ma Departamento de Matemática

More information

Existence of a ground state and blow-up problem for a nonlinear Schrödinger equation with critical growth

Existence of a ground state and blow-up problem for a nonlinear Schrödinger equation with critical growth Existence of a ground state and blow-up problem for a nonlinear Schrödinger equation with critical growth Takafumi Akahori, Slim Ibrahim, Hiroaki Kikuchi and Hayato Nawa 1 Introduction In this paper, we

More information

ON A CONJECTURE OF P. PUCCI AND J. SERRIN

ON A CONJECTURE OF P. PUCCI AND J. SERRIN ON A CONJECTURE OF P. PUCCI AND J. SERRIN Hans-Christoph Grunau Received: AMS-Classification 1991): 35J65, 35J40 We are interested in the critical behaviour of certain dimensions in the semilinear polyharmonic

More information

MULTIPLE POSITIVE SOLUTIONS FOR A KIRCHHOFF TYPE PROBLEM

MULTIPLE POSITIVE SOLUTIONS FOR A KIRCHHOFF TYPE PROBLEM Electronic Journal of Differential Equations, Vol. 205 (205, No. 29, pp. 0. ISSN: 072-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu MULTIPLE POSITIVE SOLUTIONS

More information

Multiple positive solutions for a class of quasilinear elliptic boundary-value problems

Multiple positive solutions for a class of quasilinear elliptic boundary-value problems Electronic Journal of Differential Equations, Vol. 20032003), No. 07, pp. 1 5. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu login: ftp) Multiple positive

More information

Least energy solutions for indefinite biharmonic problems via modified Nehari-Pankov manifold

Least energy solutions for indefinite biharmonic problems via modified Nehari-Pankov manifold Least energy solutions for indefinite biharmonic problems via modified Nehari-Pankov manifold MIAOMIAO NIU, ZHONGWEI TANG and LUSHUN WANG School of Mathematical Sciences, Beijing Normal University, Beijing,

More information

arxiv: v3 [math.ap] 1 Oct 2018

arxiv: v3 [math.ap] 1 Oct 2018 ON A CLASS OF NONLINEAR SCHRÖDINGER-POISSON SYSTEMS INVOLVING A NONRADIAL CHARGE DENSITY CARLO MERCURI AND TERESA MEGAN TYLER arxiv:1805.00964v3 [math.ap] 1 Oct 018 Abstract. In the spirit of the classical

More information

In this paper we are concerned with the following nonlinear field equation:

In this paper we are concerned with the following nonlinear field equation: Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 17, 2001, 191 211 AN EIGENVALUE PROBLEM FOR A QUASILINEAR ELLIPTIC FIELD EQUATION ON R n V. Benci A. M. Micheletti

More information

Existence of at least two periodic solutions of the forced relativistic pendulum

Existence of at least two periodic solutions of the forced relativistic pendulum Existence of at least two periodic solutions of the forced relativistic pendulum Cristian Bereanu Institute of Mathematics Simion Stoilow, Romanian Academy 21, Calea Griviţei, RO-172-Bucharest, Sector

More information

AN EIGENVALUE PROBLEM FOR THE SCHRÖDINGER MAXWELL EQUATIONS. Vieri Benci Donato Fortunato. 1. Introduction

AN EIGENVALUE PROBLEM FOR THE SCHRÖDINGER MAXWELL EQUATIONS. Vieri Benci Donato Fortunato. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume, 998, 83 93 AN EIGENVALUE PROBLEM FOR THE SCHRÖDINGER MAXWELL EQUATIONS Vieri Benci Donato Fortunato Dedicated to

More information

GROUND STATES OF LINEARLY COUPLED SCHRÖDINGER SYSTEMS

GROUND STATES OF LINEARLY COUPLED SCHRÖDINGER SYSTEMS Electronic Journal of Differential Equations, Vol. 2017 (2017), o. 05,. 1 10. ISS: 1072-6691. URL: htt://ejde.math.txstate.edu or htt://ejde.math.unt.edu GROUD STATES OF LIEARLY COUPLED SCHRÖDIGER SYSTEMS

More information

Nonexistence of solutions for quasilinear elliptic equations with p-growth in the gradient

Nonexistence of solutions for quasilinear elliptic equations with p-growth in the gradient Electronic Journal of Differential Equations, Vol. 2002(2002), No. 54, pp. 1 8. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp) Nonexistence

More information

ASYMMETRIC SUPERLINEAR PROBLEMS UNDER STRONG RESONANCE CONDITIONS

ASYMMETRIC SUPERLINEAR PROBLEMS UNDER STRONG RESONANCE CONDITIONS Electronic Journal of Differential Equations, Vol. 07 (07), No. 49, pp. 7. ISSN: 07-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ASYMMETRIC SUPERLINEAR PROBLEMS UNDER STRONG RESONANCE

More information

Existence of ground states for fourth-order wave equations

Existence of ground states for fourth-order wave equations Accepted Manuscript Existence of ground states for fourth-order wave equations Paschalis Karageorgis, P.J. McKenna PII: S0362-546X(10)00167-7 DOI: 10.1016/j.na.2010.03.025 Reference: NA 8226 To appear

More information

MULTIPLE SOLUTIONS FOR BIHARMONIC ELLIPTIC PROBLEMS WITH THE SECOND HESSIAN

MULTIPLE SOLUTIONS FOR BIHARMONIC ELLIPTIC PROBLEMS WITH THE SECOND HESSIAN Electronic Journal of Differential Equations, Vol 2016 (2016), No 289, pp 1 16 ISSN: 1072-6691 URL: http://ejdemathtxstateedu or http://ejdemathuntedu MULTIPLE SOLUTIONS FOR BIHARMONIC ELLIPTIC PROBLEMS

More information

Para el cumpleaños del egregio profesor Ireneo Peral

Para el cumpleaños del egregio profesor Ireneo Peral On two coupled nonlinear Schrödinger equations Para el cumpleaños del egregio profesor Ireneo Peral Dipartimento di Matematica Sapienza Università di Roma Salamanca 13.02.2007 Coauthors Luca Fanelli (Sapienza

More information

MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS SCHRÖDINGER-POISSON EQUATIONS WITH SIGN-CHANGING POTENTIAL. Lixia Wang. Shiwang Ma. Na Xu

MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS SCHRÖDINGER-POISSON EQUATIONS WITH SIGN-CHANGING POTENTIAL. Lixia Wang. Shiwang Ma. Na Xu MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS SCHRÖDINGER-POISSON EQUATIONS WITH SIGN-CHANGING POTENTIAL Lixia Wang School of Sciences Tianjin Chengjian University, Tianjin 0084, China Shiwang Ma School of Mathematical

More information

Global unbounded solutions of the Fujita equation in the intermediate range

Global unbounded solutions of the Fujita equation in the intermediate range Global unbounded solutions of the Fujita equation in the intermediate range Peter Poláčik School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA Eiji Yanagida Department of Mathematics,

More information

SPECTRAL PROPERTIES AND NODAL SOLUTIONS FOR SECOND-ORDER, m-point, BOUNDARY VALUE PROBLEMS

SPECTRAL PROPERTIES AND NODAL SOLUTIONS FOR SECOND-ORDER, m-point, BOUNDARY VALUE PROBLEMS SPECTRAL PROPERTIES AND NODAL SOLUTIONS FOR SECOND-ORDER, m-point, BOUNDARY VALUE PROBLEMS BRYAN P. RYNNE Abstract. We consider the m-point boundary value problem consisting of the equation u = f(u), on

More information

On a Periodic Schrödinger Equation with Nonlocal Superlinear Part

On a Periodic Schrödinger Equation with Nonlocal Superlinear Part On a Periodic Schrödinger Equation with Nonlocal Superlinear Part Nils Ackermann Abstract We consider the Choquard-Pekar equation u + V u = (W u 2 )u u H 1 (R 3 ) and focus on the case of periodic potential

More information

GLOBAL EXISTENCE AND ENERGY DECAY OF SOLUTIONS TO A PETROVSKY EQUATION WITH GENERAL NONLINEAR DISSIPATION AND SOURCE TERM

GLOBAL EXISTENCE AND ENERGY DECAY OF SOLUTIONS TO A PETROVSKY EQUATION WITH GENERAL NONLINEAR DISSIPATION AND SOURCE TERM Georgian Mathematical Journal Volume 3 (26), Number 3, 397 4 GLOBAL EXITENCE AND ENERGY DECAY OF OLUTION TO A PETROVKY EQUATION WITH GENERAL NONLINEAR DIIPATION AND OURCE TERM NOUR-EDDINE AMROUN AND ABBE

More information

Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities

Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities Louis Jeanjean and Kazunaga Tanaka Equipe de Mathématiques (UMR CNRS 6623) Université de Franche-Comté 16

More information

Non-radial solutions to a bi-harmonic equation with negative exponent

Non-radial solutions to a bi-harmonic equation with negative exponent Non-radial solutions to a bi-harmonic equation with negative exponent Ali Hyder Department of Mathematics, University of British Columbia, Vancouver BC V6TZ2, Canada ali.hyder@math.ubc.ca Juncheng Wei

More information