UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Oldham Fall 1999


 Sharlene Mason
 1 years ago
 Views:
Transcription
1 UNIVERSITY OF CLIFORNI College of Engineering Department of Electrical Engineering and Computer Sciences Professor Oldham Fall 1999 EECS 40 FINL EXM 13 December 1999 Name: Last, First Student ID: T: Kusuma Chang Guidelines: One page of notes allowed (both sides). You may use a calculator. Do not unstaple the exam. (d) Show all your work and reasoning on the exam in order to receive full or partial credit. (e) This exam contains 16 pages plus the cover page and 2 sheets of scratch paper included at the end of the exam. You can remove these from the rest of the exam if you wish. Problem Points Possible Your Score Total 200 K 10 3 m 10 3 µ 10 6 n 10 9 p f 10 15
2 Problem 1 Nodal nalysis (20 points) Write 2 nodal equations sufficient to find voltages and B. R 4 B R I 1 4 R 2 V 1 + R 3 I 3 The switch closes at t 0 (after a very long time open). Write 2 nodal differential equations describing V x and V y. t 0 X Y V 1 R 1 R 2 + C 1 C 2 R 0 What are the values of V x, V y at t 0 + and t? 1 of 16
3 Problem 1 nswers V x ( t 0 + ) V y ( t 0 + ) V x ( t ) V y ( t ) 2 of 16
4 Problem 2 Nerd Contest (25 points) In a postbig Game Nerd Competition, teams from Stanford and UCB were asked to draw logic diagrams to implement the following function: The Stanford team came up with the following design based on NOR gates C B T + BC G H T SS Design SS The Berkeley team came up with the following design based on NND gates: C B D E Design BB T BB Fill out the truth tables opposite to evaluate and. T SS T BB Do both circuits function as desired? Define the unit gate delay of the NOR gates as and unit gate delay of the NND as. τ NOR τ NND ssume the outputs, T, are loaded by similar gates. What is the delay of the Stanford circuit and what is the delay of the Berkeley circuit (in terms of, )? τ NOR τ NND 3 of 16
5 Problem 2 Worksheet and nswers FILL OUT WITH ZEROS ND ONES B C G H T SS D E T BB Function correct? (yes or no?) T SS T BB Delay SS Circuit BB Circuit 4 of 16
6 Problem 3 Nerd Contest Details (30 points) (Independent of Problem 2) The schematic of a CMOS inverter analyzed in Lecture 25 is shown in the figure below. Note the unit gate delay is 16.5 ps when the inverter drives an identical inverter. Using the same CMOS technology, you are to design (that means draw the schematic of) a 2input NND gate [NOT a layout please!]. Please size the devices for equal worstcase rise and fall times, and use 1.5/0.18 as the pchannel device size. V DD R N R P 3.1K 0.69RC ( µm µm) 16.5ps ( µm µm) 0.18 (d) Find the input capacitance and the output resistance of such a NND gate (worst case). Compute the gate delay assuming the NND gate drives an input to identical NND gates. Ignore drainbulk and interconnect capacitance. Now draw the schematic of the NOR gate and indicate device sizes needed to get equal (worstcase) rise and fall times. gain use 1.5/0.18 as the pchannel device size. Find the input capacitance and the output resistance of such a NOR gate. Compute the unit gate delay assuming the NOR gate drives an input to identical NOR gates. Ignore drainbulk and interconnect capacitance. 5 of 16
7 Problem 3 Worksheet and nswers PMOS W L NMOS W L schematic of NND gate C GP ff C GN ff R K Unit Gate Delay ps PMOS W L NMOS W L schematic of NOR gate (d) C GP ff C GN ff R K Unit Gate Delay ps 6 of 16
8 Problem 4 Simple Circuits (25 points) 1V + X V X 2V + 2m + 5V Power delivered by 1m source 1m 2kΩ Power delivered by 2m source 2V + 10pF Y C 2 3K 1m 4K 100pF C 1 V Y Power delivered by 1m source Energy stored in C 2 6V + 10K X 2pF 1pF 2pF Capacitors are initially uncharged. Find long after the switch is V X closed. Find peak power PMX delivered by the voltage source. V X P MX (d) V 1 + X ssume the 4 diodes are perfect rectifiers. What is V X when V 1 5V? What is V X when 5V? V 1 a) V X b) V X (e) X 3V 1V 2V Z 4V m 1KΩ 2KΩ 3m V X V Z 7 of 16
9 Problem 4 Worksheet 8 of 16
10 Problem 5 Inverter Transient (25 points) V DD V IN V IN R S 500 C T C B 0.1pF 0.3pF 2.5V t (nsec) Inverter is a CMOS inverter with effective output resistance of 1.5K. V DD 2.5V and V Tl 0.7, V Th 1.8V. The input capacitance of inverter is 5 ff, V IN was zero for t < 0, then a pulse generator (with very low output resistance) produces the input waveform shown above. Sketch the general form of V OUT () t. Calculate V OUT at t 0+, t 1 nsec, and t 2 nsec. Resketch V OUT ( + ) very carefully and neatly. 9 of 16
11 Problem 5 nswer Sheet V OUT t (nsec) b.1) V OUT ( t 0+ ) b.2) V OUT ( t 1 nsec) b.3) V OUT ( t 2 nsec) V OUT t (nsec) 10 of 16
12 Problem 6 Thévenin Equivalents (20 points) Find the Thévenin equivalent circuit for each of the following. B 1K 1K 2K 2m 6V + 1m 2K B 6K 3K 1K + 2V B 2K + 2K 2K + 3V (Opamp is ideal) 10K (d) B 1K + + 2V 10K 2K + 2K (Opamps are ideal) 11 of 16
13 Problem 6 Worksheet and nswers R TH V Thev + B V TH R TH V TH R TH V TH R TH (d) V TH R TH 12 of 16
14 Problem 7 Capacitive Load (25 points) We are designing a CMOS logic circuit with the latest devices that use L 0.15µm. n inverter schematic is shown for the basic inverter IN I O OUT IN V DD 1.5V 1 W L OUT W  L C Gp C Gn 2fF 1fF R p 3.5K R n 3.5K We need to drive an interconnect wire going across the chip with a capacitance of 192 ff. Estimate the stage delay (time to switch the output from zero to V DD 2 with the input going from V DD to 0) if this inverter drives the wire directly. The 192fF load is connected to the node labeled OUT. Suppose we insert two buffer inverters that have larger W L (and therefore, lower R p, R n ) to drive the load capacitance faster: For Inverter : W L N 0.15 I O I I B C i 192 ff For Inverter B: W L P 0.15 W L N 0.15 W L P 0.15 Now we suffer 3 stage delays! But let s compute them maybe it s not so bad. ssume the load on I O is the gate capacitance of I and similarly that the load on I is the input capacitance of I B. (b.1) Compute C Gn and C Gp for I and I B. (b.2) Compute R p and R n for I and I B. (ce) Find the unit gate delay for all 3 stages (input step V DD 0 or 0  and output moving from 0 to V DD 2 or V DD to V DD 2 ). V DD (f) Compare total gate delay with that of part. 13 of 16
15 Problem 7 Worksheet and nswers I O C wire 192 ff Unit gate delay ps Inverter Inverter B C Gn C Gp R p R n I O I delay Unit gate delay (d) I I B delay Unit gate delay (e) I B delay 192 ff Unit gate delay (f) Total of + (d) + (e) versus 14 of 16
16 Problem 8 CMOS Technology (30 points) The layout of a CMOS logic circuit is shown below. lso shown on the page opposite is the crosssection E E of the chip. (dark field) Our standard CMOS process is: (1) Start: ptype Si wafer (2) Well mask, implant donors (3) Grow field oxide 0.5µm (4) Pattern oxide (oxide cut for thin oxide) (5) Grow gate oxide (6) Deposit 0.5µm polysilicon (7) Pattern polysilicon (8) Two select masks with implants (masks not shown) (9) Deposit 0.5µm oxide (10) Contact mask, etch oxide (11) Deposit 0.5µm metal (12) Pattern metal In the space provided, draw crosssection . Use EE as a guide for scale. Draw crosssection BB. Label the inputs and outputs of this circuit on the figure above. (Note that there are 6 wires entering from the left and of these, only 2 are labeled, namely and ground. You are to label the others and use these labels in part d.) V DD (d) Write the logic function of the circuit (for example, OUT ( + B) C ). 15 of 16
17 Problem 8 nswers metal poly oxide Silicon substrate Crosssection E  E Crosssection  Crosssection BB (Label figure on opposite page.) (d) Logic Equation OUT 16 of 16
CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING DIGITAL INTEGRATED CIRCUITS FALL 2002
CARNEGIE MELLON UNIVERSITY DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 18322 DIGITAL INTEGRATED CIRCUITS FALL 2002 Final Examination, Monday Dec. 16, 2002 NAME: SECTION: Time: 180 minutes Closed
More informationUniversity of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences. EECS 40 Midterm II
University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences EECS 40 Midterm II Spring 2001 Prof. Roger T. Howe April 11, 2001 Name: Last, First Student
More informationUNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences
UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences EECS 40 Spring 2000 Introduction to Microelectronic Devices Prof. King MIDTERM EXAMINATION
More informationVLSI GATE LEVEL DESIGN UNIT  III P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT
VLSI UNIT  III GATE LEVEL DESIGN P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) contents GATE LEVEL DESIGN : Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time Delays, Driving large
More informationLecture 12 CMOS Delay & Transient Response
EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 12 CMOS Delay & Transient Response Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology
More informationDesigning Information Devices and Systems II Fall 2017 Miki Lustig and Michel Maharbiz Homework 1. This homework is due September 5, 2017, at 11:59AM.
EECS 16 Designing Information Devices and Systems II Fall 017 Miki Lustig and Michel Maharbiz Homework 1 This homework is due September 5, 017, at 11:59M. 1. Fundamental Theorem of Solutions to Differential
More informationFig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NORgate C = NOT (A or B)
1 Introduction to TransistorLevel Logic Circuits 1 By Prawat Nagvajara At the transistor level of logic circuits, transistors operate as switches with the logic variables controlling the open or closed
More informationLecture 0: Introduction
Lecture 0: Introduction Introduction q Integrated circuits: many transistors on one chip q Very Large Scale Integration (VLSI): bucketloads! q Complementary Metal Oxide Semiconductor Fast, cheap, low power
More informationand V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )
ECE 4420 Spring 2005 Page 1 FINAL EXAMINATION NAME SCORE /100 Problem 1O 2 3 4 5 6 7 Sum Points INSTRUCTIONS: This exam is closed book. You are permitted four sheets of notes (three of which are your sheets
More informationUniversity of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences
University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences EECS151/251A V. Stojanovic, J. Wawrzynek Fall 2015 10/13/15 Midterm Exam Name: ID
More informationName: Grade: Q1 Q2 Q3 Q4 Q5 Total. ESE370 Fall 2015
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 205 Midterm Wednesday, November 4 Point values
More informationVLSI VLSI CIRCUIT DESIGN PROCESSES P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) Department of Electronics and Communication Engineering, VBIT
VLSI VLSI CIRCUIT DESIGN PROCESSES P.VIDYA SAGAR ( ASSOCIATE PROFESSOR) SYLLABUS UNIT II VLSI CIRCUIT DESIGN PROCESSES: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, 2 m CMOS Design
More information6.012 Electronic Devices and Circuits Spring 2005
6.012 Electronic Devices and Circuits Spring 2005 May 16, 2005 Final Exam (200 points) OPEN BOOK Problem NAME RECITATION TIME 1 2 3 4 5 Total General guidelines (please read carefully before starting):
More informationP. R. Nelson 1 ECE418  VLSI. Midterm Exam. Solutions
P. R. Nelson 1 ECE418  VLSI Midterm Exam Solutions 1. (8 points) Draw the crosssection view for AA. The crosssection view is as shown below.. ( points) Can you tell which of the metal1 regions is the
More informationEEC 116 Lecture #5: CMOS Logic. Rajeevan Amirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation
EEC 116 Lecture #5: CMOS Logic Rajeevan mirtharajah Bevan Baas University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW
More informationEE371  Advanced VLSI Circuit Design
EE371  Advanced VLSI Circuit Design Midterm Examination May 1999 Name: No. Points Score 1. 20 2. 24 3. 26 4. 20 TOTAL / 90 In recognition of and in the spirit of the Stanford University Honor Code, I
More informationEE115C Digital Electronic Circuits Homework #5
EE115C Digital Electronic Circuits Homework #5 Due Thursday, May 13, 6pm @ 56147E EIV Problem 1 Elmore Delay Analysis Calculate the Elmore delay from node A to node B using the values for the resistors
More informationCMOS Transistors, Gates, and Wires
CMOS Transistors, Gates, and Wires Should the hardware abstraction layers make today s lecture irrelevant? pplication R P C W / R W C W / 6.375 Complex Digital Systems Christopher atten February 5, 006
More information2. (2pts) What is the major difference between an epitaxial layer and a polysilicon layer?
EE 330 Exam 1 Spring 2017 Name Instructions: Students may bring 1 page of notes (front and back) to this exam and a calculator but the use of any device that has wireless communication capability is prohibited.
More informationUniversity of Toronto. Final Exam
University of Toronto Final Exam Date  Apr 18, 011 Duration:.5 hrs ECE334 Digital Electronics Lecturer  D. Johns ANSWER QUESTIONS ON THESE SHEETS USING BACKS IF NECESSARY 1. Equation sheet is on last
More informationECE321 Electronics I
ECE321 Electronics I Lecture 1: Introduction to Digital Electronics Payman ZarkeshHa Office: ECE Bldg. 230B Office hours: Tuesday 2:003:00PM or by appointment Email: payman@ece.unm.edu Slide: 1 Textbook
More informationENEE 359a Digital VLSI Design
SLIDE 1 ENEE 359a Digital VLSI Design & Logical Effort Prof. blj@ece.umd.edu Credit where credit is due: Slides contain original artwork ( Jacob 2004) as well as material taken liberally from Irwin & Vijay
More informationEE115C Digital Electronic Circuits Homework #6
Problem 1 Sizing of adder blocks Electrical Engineering Department Spring 2010 EE115C Digital Electronic Circuits Homework #6 Solution Figure 1: Mirror adder. Study the mirror adder cell (textbook, pages
More informationInterconnects. Wire Resistance Wire Capacitance Wire RC Delay Crosstalk Wire Engineering Repeaters. ECE 261 James Morizio 1
Interconnects Wire Resistance Wire Capacitance Wire RC Delay Crosstalk Wire Engineering Repeaters ECE 261 James Morizio 1 Introduction Chips are mostly made of wires called interconnect In stick diagram,
More informationTopics to be Covered. capacitance inductance transmission lines
Topics to be Covered Circuit Elements Switching Characteristics Power Dissipation Conductor Sizes Charge Sharing Design Margins Yield resistance capacitance inductance transmission lines Resistance of
More informationEECS 141: FALL 05 MIDTERM 1
University of California College of Engineering Department of Electrical Engineering and Computer Sciences D. Markovic TuTh 111:3 Thursday, October 6, 6:38:pm EECS 141: FALL 5 MIDTERM 1 NAME Last SOLUTION
More informationEE382M14 CMOS Analog Integrated Circuit Design
EE382M14 CMOS Analog Integrated Circuit Design Lecture 3, MOS Capacitances, Passive Components, and Layout of Analog Integrated Circuits MOS Capacitances Type of MOS transistor capacitors Depletion capacitance
More informationAE74 VLSI DESIGN JUN 2015
Q.2 a. Write down the different levels of integration of IC industry. (4) b. With neat sketch explain briefly PMOS & NMOS enhancement mode transistor. NMOS enhancement mode transistor: This transistor
More informationEECS 151/251A Homework 5
EECS 151/251A Homework 5 Due Monday, March 5 th, 2018 Problem 1: Timing The datapath shown below is used in a simple processor. clk rd1 rd2 0 wr regfile 1 0 ALU REG 1 The elements used in the design have
More informationEE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing
EE115C Winter 2017 Digital Electronic Circuits Lecture 3: MOS RC Model, CMOS Manufacturing Agenda MOS Transistor: RC Model (pp. 104113) S R on D CMOS Manufacturing Process (pp. 3646) S S C GS G G C GD
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences
MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Sciences nalysis and Design of Digital Integrated Circuits (6.374)  Fall 2003 Quiz #1 Prof. nantha Chandrakasan Student
More informationEE 330 Lecture 6. Improved SwitchLevel Model Propagation Delay Stick Diagrams Technology Files  Design Rules
EE 330 Lecture 6 Improved witchlevel Model Propagation elay tick iagrams Technology Files  esign Rules Review from Last Time MO Transistor Qualitative iscussion of nchannel Operation Bulk ource Gate
More information9/18/2008 GMU, ECE 680 Physical VLSI Design
ECE680: Physical VLSI Design Chapter III CMOS Device, Inverter, Combinational circuit Logic and Layout Part 3 Combinational Logic Gates (textbook chapter 6) 9/18/2008 GMU, ECE 680 Physical VLSI Design
More informationCMOS logic gates. João Canas Ferreira. March University of Porto Faculty of Engineering
CMOS logic gates João Canas Ferreira University of Porto Faculty of Engineering March 2016 Topics 1 General structure 2 General properties 3 Cell layout João Canas Ferreira (FEUP) CMOS logic gates March
More informationInterconnect (2) Buffering Techniques. Logical Effort
Interconnect (2) Buffering Techniques. Logical Effort Lecture 14 18322 Fall 2002 Textbook: [Sections 4.2.1, 8.2.3] A few announcements! M1 is almost over: The checkoff is due today (by 9:30PM) Students
More informationDesigning Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Homework 5. This homework is due February 29, 2016, at Noon.
EECS 16 Designing Information Devices and Systems II Spring 2016 nant Sahai and Michel Maharbiz Homework 5 This homework is due February 29, 2016, at Noon. 1. Homework process and study group Who else
More informationCMOS Inverter (static view)
Review: Design Abstraction Levels SYSTEM CMOS Inverter (static view) + MODULE GATE [Adapted from Chapter 5. 5.3 CIRCUIT of G DEVICE Rabaey s Digital Integrated Circuits,, J. Rabaey et al.] S D Review:
More informationEE115C Digital Electronic Circuits Homework #4
EE115 Digital Electronic ircuits Homework #4 Problem 1 Power Dissipation Solution Vdd =1.0V onsider the source follower circuit used to drive a load L =20fF shown above. M1 and M2 are both NMOS transistors
More informationToday s lecture. EE141 Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model
 Spring 003 Lecture 4 Design Rules CMOS Inverter MOS Transistor Model Today s lecture Design Rules The CMOS inverter at a glance An MOS transistor model for manual analysis Important! Labs start next
More informationLecture 5: DC & Transient Response
Lecture 5: DC & Transient Response Outline q Pass Transistors q DC Response q Logic Levels and Noise Margins q Transient Response q RC Delay Models q Delay Estimation 2 Activity 1) If the width of a transistor
More informationELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft
ELEN0037 Microelectronic IC Design Prof. Dr. Michael Kraft Lecture 2: Technological Aspects Technology Passive components Active components CMOS Process Basic Layout Scaling CMOS Technology Integrated
More informationTHE INVERTER. Inverter
THE INVERTER DIGITAL GATES Fundamental Parameters Functionality Reliability, Robustness Area Performance» Speed (delay)» Power Consumption» Energy Noise in Digital Integrated Circuits v(t) V DD i(t) (a)
More informationVLSI Design and Simulation
VLSI Design and Simulation Performance Characterization Topics Performance Characterization Resistance Estimation Capacitance Estimation Inductance Estimation Performance Characterization Inverter Voltage
More informationEECS 141: SPRING 09 MIDTERM 2
University of California College of Engineering Department of Electrical Engineering and Computer Sciences J. Rabaey WeFr 23:30pm We, April 22, 2:003:30pm EECS 141: SPRING 09 MIDTERM 2 NAME Last First
More informationSpiral 2 7. Capacitance, Delay and Sizing. Mark Redekopp
27.1 Spiral 2 7 Capacitance, Delay and Sizing Mark Redekopp 27.2 Learning Outcomes I understand the sources of capacitance in CMOS circuits I understand how delay scales with resistance, capacitance
More informationnmos IC Design Report Module: EEE 112
nmos IC Design Report Author: 1302509 Zhao Ruimin Module: EEE 112 Lecturer: Date: Dr.Zhao Ce Zhou June/5/2015 Abstract This lab intended to train the experimental skills of the layout designing of the
More informationCOMBINATIONAL LOGIC. Combinational Logic
COMINTIONL LOGIC Overview Static CMOS Conventional Static CMOS Logic Ratioed Logic Pass Transistor/Transmission Gate Logic Dynamic CMOS Logic Domino npcmos Combinational vs. Sequential Logic In Logic
More informationInterconnects. Introduction
Interconnects Wire Resistance Wire Capacitance Wire RC Delay Crosstalk Wire Engineering Repeaters ECE 261 Krish Chakrabarty 1 Introduction Chips are mostly made of ires called interconnect In stick diagram,
More informationEE213, Spr 2017 HW#3 Due: May 17 th, in class. Figure 1
RULES: Please try to work on your own. Discussion is permissible, but identical submissions are unacceptable! Please show all intermediate steps: a correct solution without an explanation will get zero
More information3. Design a stick diagram for the PMOS logic shown below [16] Y = (A + B).C. 4. Design a layout diagram for the CMOS logic shown below [16]
Code No: RR420203 Set No. 1 1. (a) Find g m and r ds for an nchannel transistor with V GS = 1.2V; V tn = 0.8V; W/L = 10; µncox = 92 µa/v 2 and V DS = Veff + 0.5V The out put impedance constant. λ = 95.3
More informationEE 466/586 VLSI Design. Partha Pande School of EECS Washington State University
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 9 Propagation delay Power and delay Tradeoffs Follow board notes Propagation Delay Switching Time
More informationLecture 7 Circuit Delay, Area and Power
Lecture 7 Circuit Delay, Area and Power lecture notes from S. Mitra Intro VLSI System course (EE271) Introduction to VLSI Systems 1 Circuits and Delay Introduction to VLSI Systems 2 Power, Delay and Area:
More informationEE141Microelettronica. CMOS Logic
Microelettronica CMOS Logic CMOS logic Power consumption in CMOS logic gates Where Does Power Go in CMOS? Dynamic Power Consumption Charging and Discharging Capacitors Short Circuit Currents Short Circuit
More informationExam 2 Fall How does the total propagation delay (T HL +T LH ) for an inverter sized for equal
EE 434 Exam 2 Fall 2006 Name Instructions. Students may bring 2 pages of notes to this exam. There are 10 questions and 5 problems. The questions are worth 2 points each and the problems are all worth
More informationCMOS Digital Integrated Circuits Lec 13 Semiconductor Memories
Lec 13 Semiconductor Memories 1 Semiconductor Memory Types Semiconductor Memories Read/Write (R/W) Memory or Random Access Memory (RAM) ReadOnly Memory (ROM) Dynamic RAM (DRAM) Static RAM (SRAM) 1. Mask
More informationLow Power CMOS Dr. Lynn Fuller Webpage:
ROCHESTER INSTITUTE OF TECHNOLOGY MICROELECTRONIC ENGINEERING Dr. Lynn Fuller Webpage: http://people.rit.edu/lffeee 82 Lomb Memorial Drive Rochester, NY 146235604 Email: Lynn.Fuller@rit.edu Department
More information5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1
5.0 CMOS Inverter W.Kucewicz VLSICirciuit Design 1 Properties Switching Threshold Dynamic Behaviour Capacitance Propagation Delay nmos/pmos Ratio Power Consumption Contents W.Kucewicz VLSICirciuit Design
More informationEE 330 Lecture 6. Improved SwitchLevel Model Propagation Delay Stick Diagrams Technology Files
EE 330 Lecture 6 Improved witchlevel Model Propagation elay tick iagrams Technology Files Review from Last Time MO Transistor Qualitative iscussion of nchannel Operation Bulk ource Gate rain rain G Gate
More informationEEC 118 Lecture #16: Manufacturability. Rajeevan Amirtharajah University of California, Davis
EEC 118 Lecture #16: Manufacturability Rajeevan Amirtharajah University of California, Davis Outline Finish interconnect discussion Manufacturability: Rabaey G, H (Kang & Leblebici, 14) Amirtharajah, EEC
More informationEEC 118 Lecture #6: CMOS Logic. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation
EEC 118 Lecture #6: CMOS Logic Rajeevan mirtharajah University of California, Davis Jeff Parkhurst Intel Corporation nnouncements Quiz 1 today! Lab 2 reports due this week Lab 3 this week HW 3 due this
More informationProperties of CMOS Gates Snapshot
MOS logic 1 Properties of MOS Gates Snapshot High noise margins: V OH and V OL are at V DD and GND, respectively. No static power consumption: There never exists a direct path between V DD and V SS (GND)
More informationENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)
ENGR89 Digital VLSI Design Fall 5 Lecture 4: CMOS Inverter (static view) [Adapted from Chapter 5 of Digital Integrated Circuits, 3, J. Rabaey et al.] [Also borrowed from Vijay Narayanan and Mary Jane Irwin]
More informationECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120
ECE 6412, Spring 2002 Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120 Problem 1O 2O 3 4 5 6 7 8 Score INSTRUCTIONS: This exam is closed book with four sheets of notes permitted. The exam consists of
More informationLecture 6 Power Zhuo Feng. Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 2010
EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng 6.1 Outline Power and Energy Dynamic Power Static Power 6.2 Power and Energy Power is drawn from a voltage source attached to the V DD
More informationMassachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits & Electronics Spring 2007.
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.002 Circuits & Electronics Spring 2007 Quiz #2 25 April 2007 Name: There are 20 pages in this quiz, including
More informationESE570 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals
University of Pennsylvania Department of Electrical and System Engineering Digital Integrated Cicruits AND VLSI Fundamentals ESE570, Spring 2018 Final Monday, Apr 0 5 Problems with point weightings shown.
More informationVery Large Scale Integration (VLSI)
Very Large Scale Integration (VLSI) Lecture 4 Dr. Ahmed H. Madian Ah_madian@hotmail.com Dr. Ahmed H. MadianVLSI Contents Delay estimation Simple RC model PenfieldRubenstein Model Logical effort Delay
More informationE40M Capacitors. M. Horowitz, J. Plummer, R. Howe
E40M Capacitors 1 Reading Reader: Chapter 6 Capacitance A & L: 9.1.1, 9.2.1 2 Why Are Capacitors Useful/Important? How do we design circuits that respond to certain frequencies? What determines how fast
More informationName: Answers. Mean: 83, Standard Deviation: 12 Q1 Q2 Q3 Q4 Q5 Q6 Total. ESE370 Fall 2015
University of Pennsylvania Department of Electrical and System Engineering CircuitLevel Modeling, Design, and Optimization for Digital Systems ESE370, Fall 2015 Final Tuesday, December 15 Problem weightings
More informationThe Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic
Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Inverter Revised from Digital Integrated Circuits, Jan M. Rabaey el, 2003 Propagation Delay CMOS
More informationLecture 9: Interconnect
Digital Integrated Circuits (83313) Lecture 9: Interconnect Semester B, 201617 Lecturer: Dr. Adam Teman TAs: Itamar Levi, Robert Giterman 23 May 2017 Disclaimer: This course was prepared, in its entirety,
More informationEECS 312: Digital Integrated Circuits Midterm Exam 2 December 2010
Signature: EECS 312: Digital Integrated Circuits Midterm Exam 2 December 2010 obert Dick Show your work. Derivations are required for credit; end results are insufficient. Closed book. No electronic mental
More informationDigital Integrated Circuits A Design Perspective
Digital Integrated Circuits Design Perspective Jan M. Rabaey nantha Chandrakasan orivoje Nikolić Designing Combinational Logic Circuits November 2002. 1 Combinational vs. Sequential Logic In Combinational
More information5. CMOS Gate Characteristics CS755
5. CMOS Gate Characteristics Last module: CMOS Transistor theory This module: DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Transistor ehavior 1) If the width of a transistor
More informationCMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor
CMPEN 411 VLSI Digital Circuits Lecture 03: MOS Transistor Kyusun Choi [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] CMPEN 411 L03 S.1
More informationVLSI Design, Fall Logical Effort. Jacob Abraham
6. Logical Effort 6. Logical Effort Jacob Abraham Department of Electrical and Computer Engineering The University of Texas at Austin VLSI Design Fall 207 September 20, 207 ECE Department, University of
More informationECE 546 Lecture 10 MOS Transistors
ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor NChannel MOSFET Built on ptype
More informationDigital Integrated Circuits A Design Perspective
igital Integrated Circuits esign Perspective esigning Combinational Logic Circuits 1 Combinational vs. Sequential Logic In Combinational Logic Circuit Out In Combinational Logic Circuit Out State Combinational
More informationChapter 9. Estimating circuit speed. 9.1 Counting gate delays
Chapter 9 Estimating circuit speed 9.1 Counting gate delays The simplest method for estimating the speed of a VLSI circuit is to count the number of VLSI logic gates that the input signals must propagate
More informationTopic 4. The CMOS Inverter
Topic 4 The CMOS Inverter Peter Cheung Department of Electrical & Electronic Engineering Imperial College London URL: www.ee.ic.ac.uk/pcheung/ Email: p.cheung@ic.ac.uk Topic 41 Noise in Digital Integrated
More informationMidterm Exam (closed book/notes) Tuesday, February 23, 2010
University of California, Berkeley Spring 2010 EE 42/100 Prof. A. Niknejad Midterm Exam (closed book/notes) Tuesday, February 23, 2010 Guidelines: Closed book. You may use a calculator. Do not unstaple
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 2: January 17, 2017 MOS Fabrication pt. 1: Physics and Methodology Lecture Outline! Digital CMOS Basics! VLSI Fundamentals! Fabrication Process
More informationEE 466/586 VLSI Design. Partha Pande School of EECS Washington State University
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University pande@eecs.wsu.edu Lecture 8 Power Dissipation in CMOS Gates Power in CMOS gates Dynamic Power Capacitance switching Crowbar
More informationECE 342 Electronic Circuits. Lecture 6 MOS Transistors
ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. SchuttAine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2
More informationMOS Transistor Properties Review
MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO
More informationEECS 141 F01 Lecture 17
EECS 4 F0 Lecture 7 With major inputs/improvements From MaryJane Irwin (Penn State) Dynamic CMOS In static circuits at every point in time (except when switching) the output is connected to either GND
More informationDigital Integrated Circuits (83313) Lecture 5: Interconnect. Semester B, Lecturer: Adam Teman TAs: Itamar Levi, Robert Giterman 1
Digital Integrated Circuits (83313) Lecture 5: Interconnect Semester B, 201516 Lecturer: Adam Teman TAs: Itamar Levi, Robert Giterman 1 What will we learn today? 1 A First Glance at Interconnect 2 3
More informationECEN 474/704 Lab 2: Layout Design
ECEN 474/704 Lab 2: Layout esign Objectives Learn Techniques for successful integrated circuit layout design. Introduction In this lab you will learn in detail how to generate a simple transistor layout.
More informationPURPOSE: See suggested breadboard configuration on following page!
ECE4902 Lab 1 C2011 PURPOSE: Determining Capacitance with Risetime Measurement Reverse Biased Diode Junction Capacitance MOSFET Gate Capacitance Simulation: SPICE Parameter Extraction, Transient Analysis
More informationS No. Questions Bloom s Taxonomy Level UNITI
GROUPA (SHORT ANSWER QUESTIONS) S No. Questions Bloom s UNITI 1 Define oxidation & Classify different types of oxidation Remember 1 2 Explain about Ion implantation Understand 1 3 Describe lithography
More informationHw 6 and 7 Graded and available Project Phase 2 Graded Project Phase 3 Launch Today
EECS141 1 Hw 8 Posted Last one to be graded Due Friday April 30 Hw 6 and 7 Graded and available Project Phase 2 Graded Project Phase 3 Launch Today EECS141 2 1 6 5 4 3 2 1 0 1.5 2 2.5 3 3.5 4 Frequency
More informationMiscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]
Miscellaneous Lecture topics Mary Jane Irwin [dapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.] MOS Switches MOS transistors can be viewed as simple switches. In an NSwitch, the
More informationESE 570: Digital Integrated Circuits and VLSI Fundamentals
ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 2: January 19, 2016 MOS Fabrication pt. 1: Physics and Methodology Lecture Outline! Digital CMOS Basics! VLSI Fundamentals! Fabrication Process
More informationLecture 4: DC & Transient Response
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response David Harris Harvey Mudd College Spring 004 Outline DC Response Logic Levels and Noise Margins Transient Response Delay Estimation Slide
More informationLecture 4: CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q
More informationEECS C245 ME C218 Midterm Exam
University of California at Berkeley College of Engineering EECS C245 ME C218 Midterm Eam Fall 2003 Prof. Roger T. Howe October 15, 2003 Dr. Thara Srinivasan Guidelines Your name: SOLUTIONS Circle your
More informationCMOS Technology Worksheet
CMOS Technology Worksheet Concept Inventory: Notes: PFET, NFET: voltage controlled switches CMOS composition rules: complementary pullup and pulldown CMOS gates are naturally inverting t PD and t CD timing
More informationEECS 312: Digital Integrated Circuits Final Exam Solutions 23 April 2009
Signature: EECS 312: Digital Integrated Circuits Final Exam Solutions 23 April 2009 Robert Dick Show your work. Derivations are required for credit; end results are insufficient. Closed book. You may use
More informationECE 201 Fall 2009 Final Exam
ECE 01 Fall 009 Final Exam December 16, 009 Division 0101: Tan (11:30am) Division 001: Clark (7:30 am) Division 0301: Elliott (1:30 pm) Instructions 1. DO NOT START UNTIL TOLD TO DO SO.. Write your Name,
More informationFloating Point Representation and Digital Logic. Lecture 11 CS301
Floating Point Representation and Digital Logic Lecture 11 CS301 Administrative Daily Review of today s lecture w Due tomorrow (10/4) at 8am Lab #3 due Friday (9/7) 1:29pm HW #5 assigned w Due Monday 10/8
More information