Belief Classification Approach based on Dynamic Core for Web Mining database

Size: px
Start display at page:

Download "Belief Classification Approach based on Dynamic Core for Web Mining database"

Transcription

1 Third international workshop on Rough Set Theory RST 11 Milano, Italy September 14 16, 2010 Belief Classification Approach based on Dynamic Core for Web Mining database Salsabil Trabelsi Zied Elouedi Larodec, Institut Supérieur de gestion de Tunis, Tunisie Pawan Lingras Saint Mary's University, Halifax, Canada 1

2 Plan Introduction Rough set theory Belief function theory BRSC-GDT based on dynamic core Experimentations on web usage database Conclusion 2

3 Introduction The World Wide Web is a fertile area for data mining research. The Web usage mining has seen a rapid increase in interest. The Rough Sets proposed by Pawlak (1982) constitutes a sound basis for decision support system and data mining. J The models generated by rough sets take the form of "IF-THEN". J This classifier performs feature selection before generation rules. J This method can avoid many iterations. J It is a efficient technique that try to produce a minimal and a significant set of decision rules. It is a successful technique of classification applied in several real-world applications like web usage area. 3

4 Introduction The web usage databases may be characterized by incomplete or uncertain data. We have applied a new approach of classification denoted Belief Rough Set Classifier based on generalization distribution table (BRSC-GDT) to discover hidden patterns from uncertain and real web usage database. This classifier was able to learn decision rules from uncertain data. The uncertainty appears only in decision attributes and is handled by the belief function theory. The web usage mining dataset was obtained from web access logs of the introductory computing science course at Saint Mary's University. To better handle the noise and the uncertain issues existing in the chosen web usage mining database, the feature selection step used to construct our BRSC GDT will be based on dynamic core. Decision rules induced by means of dynamic core are more appropriate to classify new objects. 4

5 Rough set theory Basic concepts Decision Table (DT) Indiscernibility relation Set approximation Positive region & Dependency of attributes Reduct & Core Value reduct & Value Core Dynamic reduct & Dynamic Core 5

6 Belief function theory Basic concepts Frame of discernment (Θ) Basic belief assignment (bba) Belief function (bel) Plausibility functions (pl) The Rules of combination Discounting The pignistic transformation 6

7 BRSC-GDT based on dynamic core New belief classification technique based on the hyprid system GDT-RS (combination of Generalization distribution Table (GDT) and Rough Set (RS) methodology).

8 BRSC-GDT based on dynamic core based on the redefined basic concepts of Rough Set theory under Belief function framework

9 BRSC-GDT based on dynamic core Basic concepts of rough sets under uncertainty 1) Uncertain Decision Table (UDT) 2) Tolerance relation 3) Set approximation 4) Positive region & Dependency of attributes 5) Reduct & Core 6) Value Reduct & Value Core 7) Dynamic reduct & Dynamic core 9

10 Basic concepts of rough sets under uncertainty Uncertain decision table Our uncertain decision system A= (U, C {ud}) U contains n objects o j C = {c 1,c 2,.c n } set of certain condition attributes ud uncertain decision attribute represented by a bba m j for the object o j Patients Headache Muscle - pain Temperature Flu o 1 yes yes very high m 1 ({yes})=0.95 m 1 (Θ)=0.05 o 2 yes no high m 2 ({no})=1 o 3 yes yes normal m 3 ({yes})=0.5 m 3 (Θ)=0.5 o 4 no yes normal m 4 ({no})=0.4 m 4 (Θ)=0.6 o 5 no yes normal m 5 ({no})=1 o 6 yes no high m 6 ({no})=0.95 m 6 (Θ)=0.05 o 7 no yes very high m 7 ({yes})=1 o 8 no yes high m 8 ({yes})=0.9 m 8 (Θ)=0.1 For o 3, 0.5 of beliefs are exactly committed to decision ud 1 =yes, whereas 0.5 of beliefs is assigned to Θ. 10

11 Basic concepts of rough sets under uncertainty Tolerance relation J Indiscernibility relation for the condition attributes is the same as in the certain case. L Indiscernibility relation for the decision attribute is not the same. The decision is represented by a bba. We need to assign each object characterized by a bba m j to the right equivalence class ud i The idea is to use the distance between two bba s. (m j and a certain bba m({ud i })=1) We choose the distance measure proposed by (Bosse et al, 2001) which satisfies some properties such as non-negativity, non-degeneracy and symmetry. For every uncertain decision value ud i X i = {o j dist(m, m j ) <1- threshold} such that m({ud i })=1 The tolerance relation based on decision: IND {ud} = U/{ud} ={X i ud i Θ } 11

12 Basic concepts of rough sets under uncertainty Tolerance relation For the uncertain decision value ud 1 =yes Dist(m, m 1 ) < 1-threshold Dist(m, m 3 ) < 1-threshold Dist(m, m 4 ) < 1-threshold Dist(m, m 7 ) < 1-threshold Dist(m, m 8 ) < 1-threshold So, X 1 ={o 1, o 3, o 4, o 7, o 8 } For the uncertain decision value ud 2 =no Dist(m, m 2 ) < 1-threshold Dist(m, m 3 ) < 1-threshold Dist(m, m 4 ) < 1-threshold Dist(m, m 5 ) < 1-threshold Dist(m, m 6 ) < 1-threshold So, X 2 ={o 2,o 3,o 4,o 5,o 6 } U/{ud}={{o 1, o 3, o 4, o 7, o 8 }, {o 2, o 3, o 4, o 5, o 6 }} 12

13 Basic concepts of rough sets under uncertainty Set approximation To compute the new lower and upper approximations, we follow two steps: 1. For each equivalence class from U/C, combined their bba using operator mean to obtain m [oj]c 2. For each equivalence class X i from U/{ud}, compute the lower and upper approximation: CX i ={o j [o j ] C X and dist( m, m[o j ] C ) threshold} Such that m({ud i })=1 C X i ={o j [o j ] C X } 13

14 Basic concepts of rough sets under uncertainty Set approximation 1. For each equivalence class from U/C ={{o 1 }, {o 2, o 6 }, {o 3 }, {o 4, o 5 }, {o 7 }, {o 8 }}, combined their bba of using the mean operator: The combined bba for {o 4, o 5 } Patient m({yes}) m({no}) m(θ) o O.6 o m 4, For each equivalence class from U/{ud}={{o 1,o 3, o 4,o 7, o 8 }, {o 2,o 3,o 4,o 5,o 6 }}, compute the lower and upper approximation ud 1 =yes Let X 1 ={o 1, o 3, o 4, o 7, o 8 } ud 2 =no Let X 2 ={o 2, o 3, o 4, o 5, o 6 } CX 1 ={o 1,o 7, o 8 } CX 2 ={o 2,o 6 } CX 1 ={o 1, o 3, o 4, o 5, o 7,o 8 } CX 2 ={o 2, o 3, o 4, o 5, o 6 } NB C ={o 3, o 4, o 5 } 14

15 Basic concepts of rough sets under uncertainty Positive region & Dependency of attributes Positive region: UPos C (A, {ud})= CX X U/{ud} UPos C (A,{ud})={o 1,o 2,o 6,o 7,o 8 } Dependency of attributes k=γ C (A, {ud})= UPos C (A, {ud}) U k=γ C (A,{ud})=5/8 15

16 Basic concepts of rough sets under uncertainty Reduct & Core Reduct: Using the new formalism of positive region, we can find the reduct of C as a minimal set of attributes B C such that: UPos B (A, {ud}) = UPos C (A, {ud}) Core: The set of indispensable attributes It is included in every reduct. UCore C (A,{ud}) = URed C (A,{ud}) 16

17 Basic concepts of rough sets under uncertainty UPos C ({ud})={o 1,o 2,o 6,o 7,o 8 } UPos {Headache,Muscle-pain} ({ud})= {o 2,o 6 } UPos {Headache,Temperature} ({ud})= {o 1,o 2,o 6,o 7,o 8 } UPos {Muscle-pain,Temperature} ({ud})= {o 1,o 2,o 6,o 7,o 8 } UPos {Headache} ({ud})= UPos {Muscle-pain} ({ud})= UPos {Temperature} ({ud})= {o 1,o 7 } Reduct & Core There are two reducts: 1. {Headache, Temperature} 2. {Muscle-pain, Temperature} The Core {Headache, Temperature} {Muscle-pain, Temperature} = {Temperature} 17

18 Basic concepts of rough sets under uncertainty Value Reduct & Value Core Value Reduct: We also need to redefine the concept of value reduct follows: for each belief decision rule of the form: If C(o j ) then m j For all B C, let X= {o k B(o j )=B(o k )} If Max(dist(m j, m[o k ] B )) < threshold then B is a reduct value of o j Value Core: The set of indispensable attributes values It is included in every reduct. UCore j C (A,{ud}) = URedj C (A,{ud}) 18

19 Basic concepts of rough sets under uncertainty Dynamic reduct & dynamic core If A=(U, C {ud}) is an uncertain decision table, then any system A =(U, C {ud}) such that U U is called a sub-table of A. Let F be a family of sub-tables of A UDR(A, F)= URED (A, {ud}) RED (A, {ud}) B F Any element of UDR(A,F) is called an F-dynamic reduct of A. A reduct of A is dynamic if it is also a reduct of all sub-tables from a given family F 19

20 Basic concepts of rough sets under uncertainty Dynamic reduct & dynamic core If A=(U, C {ud}) is an uncertain decision table, then any system A =(U, C {ud}) such that U U is called a sub-table of A. Let F be a family of sub-tables of A. DCore(A, F)= UCore (A, {ud}) UCore (A, {ud}) A F Any element of DCore(A, F) is called an F-dynamic core of A. A core of A is dynamic if it is also a core of all sub-tables from a given family F. 20

21 Basic concepts of rough sets under uncertainty Dynamic reduct & dynamic core We divide our uncertain decision table to two sub-tables A and A to obtain a family F of sub-decision table. A contains the objects o 1, o 2, o 3, o 4 A contains the objects o 5, o 6, o 7, o 8 The two sub-tables have the same reducts as the whole decision table A. So, the sub-sets {Headache,Temperature} and {Musclepain,Temperature} are dynamic reducts relative to the chosen family F. The core Temperature is also the dymainc core relative to the chosen family F. 21

22 Construction procedure of BRSC-GDT based on dynamic core Step 1: Creation of the GDT: This step can be omitted because the prior distribution of a generalization can be calculated Step 2: Feature selection based on dynamic Core: We remove the superfluous condition attributes that are not in reducts. Therefore it is important to search stable reduct containing dynamic core (if it is also a core of all subtables from a given family F). Step 3: Definition of the compound object: considering the indiscernibily classes with respect to the subset B of the condition attribute as one object, called the compound object. Where B is the reduct containning the dynamic core 22

23 Construction procedure of BRSC-GDT based on dynamic core Step 4: Elimination of the contradictory compound objects: Removing the compound objects where the decision of their composing objects are not very similar. Step 5: Minimal description length of decision rule: Determining the sets of all reduct values of the compound object. Step 6: Selection of the best rules: Constructing the decision rules obtained from the local reducts for each compound object. Then, we select only the best rule having the best strength. 23

24 Experimentations on web usage database

25 Data description The study data were obtained from web access logs of the introductory computing science course at Saint Mary's University. The course is ``Introduction to Computing Science and Programming" offered in the first term of the first year. The initial number of students in the course was 180. The number reduced over the course of the semester to 140 students. The students in the course come from a wide variety of backgrounds. Lingras and West (2004) showed that visits from students attending the first course could fall into one of the following three categories (decision values): 1. Studious 2. Crammers 3. Workers 25

26 Data description Based on some observations, it was decided to use the following attributes for representing each visitor to the log web site: 1. On campus/off campus access 2. Day time/night time access 3. Access during lab/class days or non-lab/class days 4. Number of hits 5. Number of class-notes downloads Total visits were The visits where no class-notes were downloaded were eliminated, since these visits correspond to either casual visitors or workers. Elimination of outliers and visits from the search engines further reduced the sizes of the data set to Instead of representing an object as belonging to a cluster ud i (decision value), we also associated a degree of belief m j for the object o j. 26

27 Evaluation criteria & Experimental results The relevant criteria used to judge the performance of our classifier on the web usage database: 1. The accuracy represents the percent of correct classification (PCC). 2. The size represents the number of the generated belief decision rules. 3. The time requirement represents the number of seconds for the construction procedure. The experimental results relative to BRSC-GDT based on dynamic core Approach PCC Certain Uncertain Size Time requirement BRSC-GDT

28 Conclusion We have introduced the basic concept of rough set theory We have introduced the basic concept of belief function theory We have described the adaptation the basic concepts of rough sets under the belief function framework We have detailed the main steps to construct Belief classification approach based on dynamic core We have described our real and uncertain web usage database We have reported the experimental results on the real web user database. Based on three evaluation criteria : time requirement, size and accuracy. 28

A novel k-nn approach for data with uncertain attribute values

A novel k-nn approach for data with uncertain attribute values A novel -NN approach for data with uncertain attribute values Asma Trabelsi 1,2, Zied Elouedi 1, and Eric Lefevre 2 1 Université de Tunis, Institut Supérieur de Gestion de Tunis, LARODEC, Tunisia trabelsyasma@gmail.com,zied.elouedi@gmx.fr

More information

Rough Set Theory Fundamental Assumption Approximation Space Information Systems Decision Tables (Data Tables)

Rough Set Theory Fundamental Assumption Approximation Space Information Systems Decision Tables (Data Tables) Rough Set Theory Fundamental Assumption Objects from the domain are perceived only through the values of attributes that can be evaluated on these objects. Objects with the same information are indiscernible.

More information

Rough Set Model Selection for Practical Decision Making

Rough Set Model Selection for Practical Decision Making Rough Set Model Selection for Practical Decision Making Joseph P. Herbert JingTao Yao Department of Computer Science University of Regina Regina, Saskatchewan, Canada, S4S 0A2 {herbertj, jtyao}@cs.uregina.ca

More information

A new Approach to Drawing Conclusions from Data A Rough Set Perspective

A new Approach to Drawing Conclusions from Data A Rough Set Perspective Motto: Let the data speak for themselves R.A. Fisher A new Approach to Drawing Conclusions from Data A Rough et Perspective Zdzisław Pawlak Institute for Theoretical and Applied Informatics Polish Academy

More information

Handling imprecise and uncertain class labels in classification and clustering

Handling imprecise and uncertain class labels in classification and clustering Handling imprecise and uncertain class labels in classification and clustering Thierry Denœux 1 1 Université de Technologie de Compiègne HEUDIASYC (UMR CNRS 6599) COST Action IC 0702 Working group C, Mallorca,

More information

Contradiction Measures and Specificity Degrees of Basic Belief Assignments

Contradiction Measures and Specificity Degrees of Basic Belief Assignments Contradiction Measures and Specificity Degrees of Basic Belief Assignments Florentin Smarandache Arnaud Martin Christophe Osswald Originally published as: Smarandache F., Martin A., Osswald C - Contradiction

More information

Application of Rough Set Theory in Performance Analysis

Application of Rough Set Theory in Performance Analysis Australian Journal of Basic and Applied Sciences, 6(): 158-16, 1 SSN 1991-818 Application of Rough Set Theory in erformance Analysis 1 Mahnaz Mirbolouki, Mohammad Hassan Behzadi, 1 Leila Karamali 1 Department

More information

Decision T ree Tree Algorithm Week 4 1

Decision T ree Tree Algorithm Week 4 1 Decision Tree Algorithm Week 4 1 Team Homework Assignment #5 Read pp. 105 117 of the text book. Do Examples 3.1, 3.2, 3.3 and Exercise 3.4 (a). Prepare for the results of the homework assignment. Due date

More information

Application of Evidence Theory and Discounting Techniques to Aerospace Design

Application of Evidence Theory and Discounting Techniques to Aerospace Design Application of Evidence Theory and Discounting Techniques to Aerospace Design Fiona Browne 1, David Bell 1, Weiru Liu 1, Yan Jin 1, Colm Higgins 1, Niall Rooney 2, Hui Wang 2, and Jann Müller 3 1 School

More information

Feature Selection with Fuzzy Decision Reducts

Feature Selection with Fuzzy Decision Reducts Feature Selection with Fuzzy Decision Reducts Chris Cornelis 1, Germán Hurtado Martín 1,2, Richard Jensen 3, and Dominik Ślȩzak4 1 Dept. of Mathematics and Computer Science, Ghent University, Gent, Belgium

More information

ENTROPIES OF FUZZY INDISCERNIBILITY RELATION AND ITS OPERATIONS

ENTROPIES OF FUZZY INDISCERNIBILITY RELATION AND ITS OPERATIONS International Journal of Uncertainty Fuzziness and Knowledge-Based Systems World Scientific ublishing Company ENTOIES OF FUZZY INDISCENIBILITY ELATION AND ITS OEATIONS QINGUA U and DAEN YU arbin Institute

More information

Data Mining. Preamble: Control Application. Industrial Researcher s Approach. Practitioner s Approach. Example. Example. Goal: Maintain T ~Td

Data Mining. Preamble: Control Application. Industrial Researcher s Approach. Practitioner s Approach. Example. Example. Goal: Maintain T ~Td Data Mining Andrew Kusiak 2139 Seamans Center Iowa City, Iowa 52242-1527 Preamble: Control Application Goal: Maintain T ~Td Tel: 319-335 5934 Fax: 319-335 5669 andrew-kusiak@uiowa.edu http://www.icaen.uiowa.edu/~ankusiak

More information

A Rough Set Interpretation of User s Web Behavior: A Comparison with Information Theoretic Measure

A Rough Set Interpretation of User s Web Behavior: A Comparison with Information Theoretic Measure A Rough et Interpretation of User s Web Behavior: A Comparison with Information Theoretic easure George V. eghabghab Roane tate Dept of Computer cience Technology Oak Ridge, TN, 37830 gmeghab@hotmail.com

More information

Andrzej Skowron, Zbigniew Suraj (Eds.) To the Memory of Professor Zdzisław Pawlak

Andrzej Skowron, Zbigniew Suraj (Eds.) To the Memory of Professor Zdzisław Pawlak Andrzej Skowron, Zbigniew Suraj (Eds.) ROUGH SETS AND INTELLIGENT SYSTEMS To the Memory of Professor Zdzisław Pawlak Vol. 1 SPIN Springer s internal project number, if known Springer Berlin Heidelberg

More information

METRIC BASED ATTRIBUTE REDUCTION IN DYNAMIC DECISION TABLES

METRIC BASED ATTRIBUTE REDUCTION IN DYNAMIC DECISION TABLES Annales Univ. Sci. Budapest., Sect. Comp. 42 2014 157 172 METRIC BASED ATTRIBUTE REDUCTION IN DYNAMIC DECISION TABLES János Demetrovics Budapest, Hungary Vu Duc Thi Ha Noi, Viet Nam Nguyen Long Giang Ha

More information

Home Page. Title Page. Page 1 of 35. Go Back. Full Screen. Close. Quit

Home Page. Title Page. Page 1 of 35. Go Back. Full Screen. Close. Quit JJ II J I Page 1 of 35 General Attribute Reduction of Formal Contexts Tong-Jun Li Zhejiang Ocean University, China litj@zjou.edu.cn September, 2011,University of Milano-Bicocca Page 2 of 35 Objective of

More information

On Rough Set Modelling for Data Mining

On Rough Set Modelling for Data Mining On Rough Set Modelling for Data Mining V S Jeyalakshmi, Centre for Information Technology and Engineering, M. S. University, Abhisekapatti. Email: vsjeyalakshmi@yahoo.com G Ariprasad 2, Fatima Michael

More information

Reinforcement Learning as Classification Leveraging Modern Classifiers

Reinforcement Learning as Classification Leveraging Modern Classifiers Reinforcement Learning as Classification Leveraging Modern Classifiers Michail G. Lagoudakis and Ronald Parr Department of Computer Science Duke University Durham, NC 27708 Machine Learning Reductions

More information

On rule acquisition in incomplete multi-scale decision tables

On rule acquisition in incomplete multi-scale decision tables *Manuscript (including abstract) Click here to view linked References On rule acquisition in incomplete multi-scale decision tables Wei-Zhi Wu a,b,, Yuhua Qian c, Tong-Jun Li a,b, Shen-Ming Gu a,b a School

More information

Rough Sets and Conflict Analysis

Rough Sets and Conflict Analysis Rough Sets and Conflict Analysis Zdzis law Pawlak and Andrzej Skowron 1 Institute of Mathematics, Warsaw University Banacha 2, 02-097 Warsaw, Poland skowron@mimuw.edu.pl Commemorating the life and work

More information

Classification Based on Logical Concept Analysis

Classification Based on Logical Concept Analysis Classification Based on Logical Concept Analysis Yan Zhao and Yiyu Yao Department of Computer Science, University of Regina, Regina, Saskatchewan, Canada S4S 0A2 E-mail: {yanzhao, yyao}@cs.uregina.ca Abstract.

More information

Hierarchical Proportional Redistribution Principle for Uncertainty Reduction and BBA Approximation

Hierarchical Proportional Redistribution Principle for Uncertainty Reduction and BBA Approximation Hierarchical Proportional Redistribution Principle for Uncertainty Reduction and BBA Approximation Jean Dezert Deqiang Han Zhun-ga Liu Jean-Marc Tacnet Abstract Dempster-Shafer evidence theory is very

More information

Mathematical Approach to Vagueness

Mathematical Approach to Vagueness International Mathematical Forum, 2, 2007, no. 33, 1617-1623 Mathematical Approach to Vagueness Angel Garrido Departamento de Matematicas Fundamentales Facultad de Ciencias de la UNED Senda del Rey, 9,

More information

Index. C, system, 8 Cech distance, 549

Index. C, system, 8 Cech distance, 549 Index PF(A), 391 α-lower approximation, 340 α-lower bound, 339 α-reduct, 109 α-upper approximation, 340 α-upper bound, 339 δ-neighborhood consistent, 291 ε-approach nearness, 558 C, 443-2 system, 8 Cech

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

Detecting Anomalous and Exceptional Behaviour on Credit Data by means of Association Rules. M. Delgado, M.D. Ruiz, M.J. Martin-Bautista, D.

Detecting Anomalous and Exceptional Behaviour on Credit Data by means of Association Rules. M. Delgado, M.D. Ruiz, M.J. Martin-Bautista, D. Detecting Anomalous and Exceptional Behaviour on Credit Data by means of Association Rules M. Delgado, M.D. Ruiz, M.J. Martin-Bautista, D. Sánchez 18th September 2013 Detecting Anom and Exc Behaviour on

More information

Mining Classification Knowledge

Mining Classification Knowledge Mining Classification Knowledge Remarks on NonSymbolic Methods JERZY STEFANOWSKI Institute of Computing Sciences, Poznań University of Technology SE lecture revision 2013 Outline 1. Bayesian classification

More information

ROUGH SETS THEORY AND DATA REDUCTION IN INFORMATION SYSTEMS AND DATA MINING

ROUGH SETS THEORY AND DATA REDUCTION IN INFORMATION SYSTEMS AND DATA MINING ROUGH SETS THEORY AND DATA REDUCTION IN INFORMATION SYSTEMS AND DATA MINING Mofreh Hogo, Miroslav Šnorek CTU in Prague, Departement Of Computer Sciences And Engineering Karlovo Náměstí 13, 121 35 Prague

More information

INVESTIGATING DECISION MAKING WITH GAME-THEORETIC ROUGH SETS

INVESTIGATING DECISION MAKING WITH GAME-THEORETIC ROUGH SETS INVESTIGATING DECISION MAKING WITH GAME-THEORETIC ROUGH SETS A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

More information

Classification of Voice Signals through Mining Unique Episodes in Temporal Information Systems: A Rough Set Approach

Classification of Voice Signals through Mining Unique Episodes in Temporal Information Systems: A Rough Set Approach Classification of Voice Signals through Mining Unique Episodes in Temporal Information Systems: A Rough Set Approach Krzysztof Pancerz, Wies law Paja, Mariusz Wrzesień, and Jan Warcho l 1 University of

More information

Banacha Warszawa Poland s:

Banacha Warszawa Poland  s: Chapter 12 Rough Sets and Rough Logic: A KDD Perspective Zdzis law Pawlak 1, Lech Polkowski 2, and Andrzej Skowron 3 1 Institute of Theoretical and Applied Informatics Polish Academy of Sciences Ba ltycka

More information

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October,

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, 23 2013 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run

More information

Rough Set Approach for Generation of Classification Rules for Jaundice

Rough Set Approach for Generation of Classification Rules for Jaundice Rough Set Approach for Generation of Classification Rules for Jaundice Sujogya Mishra 1, Shakti Prasad Mohanty 2, Sateesh Kumar Pradhan 3 1 Research scholar, Utkal University Bhubaneswar-751004, India

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 4: Vector Data: Decision Tree Instructor: Yizhou Sun yzsun@cs.ucla.edu October 10, 2017 Methods to Learn Vector Data Set Data Sequence Data Text Data Classification Clustering

More information

Simple Neural Nets For Pattern Classification

Simple Neural Nets For Pattern Classification CHAPTER 2 Simple Neural Nets For Pattern Classification Neural Networks General Discussion One of the simplest tasks that neural nets can be trained to perform is pattern classification. In pattern classification

More information

A New ER-MCDA Mapping for Decision-Making based on Imperfect Information

A New ER-MCDA Mapping for Decision-Making based on Imperfect Information A New ER-MCDA Mapping for Decision-Making based on Imperfect Information Simon Carladous 1,2,4, Jean-Marc Tacnet 1, Jean Dezert 3, Guillaume Dupouy 1, and Mireille Batton-Hubert 4 1 Université Grenoble

More information

CRITERIA REDUCTION OF SET-VALUED ORDERED DECISION SYSTEM BASED ON APPROXIMATION QUALITY

CRITERIA REDUCTION OF SET-VALUED ORDERED DECISION SYSTEM BASED ON APPROXIMATION QUALITY International Journal of Innovative omputing, Information and ontrol II International c 2013 ISSN 1349-4198 Volume 9, Number 6, June 2013 pp. 2393 2404 RITERI REDUTION OF SET-VLUED ORDERED DEISION SYSTEM

More information

Machine Learning 3. week

Machine Learning 3. week Machine Learning 3. week Entropy Decision Trees ID3 C4.5 Classification and Regression Trees (CART) 1 What is Decision Tree As a short description, decision tree is a data classification procedure which

More information

Handling Uncertainty in Clustering Art-exhibition Visiting Styles

Handling Uncertainty in Clustering Art-exhibition Visiting Styles Handling Uncertainty in Clustering Art-exhibition Visiting Styles 1 joint work with Francesco Gullo 2 and Andrea Tagarelli 3 Salvatore Cuomo 4, Pasquale De Michele 4, Francesco Piccialli 4 1 DTE-ICT-HPC

More information

ROUGH set methodology has been witnessed great success

ROUGH set methodology has been witnessed great success IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 14, NO. 2, APRIL 2006 191 Fuzzy Probabilistic Approximation Spaces and Their Information Measures Qinghua Hu, Daren Yu, Zongxia Xie, and Jinfu Liu Abstract Rough

More information

Analysis of Classification in Interval-Valued Information Systems

Analysis of Classification in Interval-Valued Information Systems Analysis of Classification in Interval-Valued Information Systems AMAURY CABALLERO, KANG YEN, EDUARDO CABALLERO Department of Electrical & Computer Engineering Florida International University 10555 W.

More information

The Quadratic Entropy Approach to Implement the Id3 Decision Tree Algorithm

The Quadratic Entropy Approach to Implement the Id3 Decision Tree Algorithm Journal of Computer Science and Information Technology December 2018, Vol. 6, No. 2, pp. 23-29 ISSN: 2334-2366 (Print), 2334-2374 (Online) Copyright The Author(s). All Rights Reserved. Published by American

More information

Mining Classification Knowledge

Mining Classification Knowledge Mining Classification Knowledge Remarks on NonSymbolic Methods JERZY STEFANOWSKI Institute of Computing Sciences, Poznań University of Technology COST Doctoral School, Troina 2008 Outline 1. Bayesian classification

More information

Analyzing the Combination of Conflicting Belief Functions.

Analyzing the Combination of Conflicting Belief Functions. Analyzing the Combination of Conflicting Belief Functions. Philippe Smets IRIDIA Université Libre de Bruxelles 50 av. Roosevelt, CP 194-6, 1050 Bruxelles, Belgium psmets@ulb.ac.be http://iridia.ulb.ac.be/

More information

Pairwise Classifier Combination using Belief Functions

Pairwise Classifier Combination using Belief Functions Pairwise Classifier Combination using Belief Functions Benjamin Quost, Thierry Denœux and Marie-Hélène Masson UMR CNRS 6599 Heudiasyc Université detechnologiedecompiègne BP 059 - F-6005 Compiègne cedex

More information

C Ahmed Samet 1,2, Eric Lefèvre 2, and Sadok Ben Yahia 1 1 Laboratory of research in Programming, Algorithmic and Heuristic Faculty of Science of Tunis, Tunisia {ahmed.samet, sadok.benyahia}@fst.rnu.tn

More information

Predictive Analytics on Accident Data Using Rule Based and Discriminative Classifiers

Predictive Analytics on Accident Data Using Rule Based and Discriminative Classifiers Advances in Computational Sciences and Technology ISSN 0973-6107 Volume 10, Number 3 (2017) pp. 461-469 Research India Publications http://www.ripublication.com Predictive Analytics on Accident Data Using

More information

, and rewards and transition matrices as shown below:

, and rewards and transition matrices as shown below: CSE 50a. Assignment 7 Out: Tue Nov Due: Thu Dec Reading: Sutton & Barto, Chapters -. 7. Policy improvement Consider the Markov decision process (MDP) with two states s {0, }, two actions a {0, }, discount

More information

The Fourth International Conference on Innovative Computing, Information and Control

The Fourth International Conference on Innovative Computing, Information and Control The Fourth International Conference on Innovative Computing, Information and Control December 7-9, 2009, Kaohsiung, Taiwan http://bit.kuas.edu.tw/~icic09 Dear Prof. Yann-Chang Huang, Thank you for your

More information

On the connection of Hypergraph Theory with Formal Concept Analysis and Rough Set Theory 1

On the connection of Hypergraph Theory with Formal Concept Analysis and Rough Set Theory 1 On the connection of Hypergraph Theory with Formal Concept Analysis and Rough Set Theory 1 Gianpiero Cattaneo and Giampiero Chiaselotti o and Davide Ciucci and Tommaso Gentile o Department of Informatics,

More information

Sequential adaptive combination of unreliable sources of evidence

Sequential adaptive combination of unreliable sources of evidence Sequential adaptive combination of unreliable sources of evidence Zhun-ga Liu, Quan Pan, Yong-mei Cheng School of Automation Northwestern Polytechnical University Xi an, China Email: liuzhunga@gmail.com

More information

Decision Theory: Q-Learning

Decision Theory: Q-Learning Decision Theory: Q-Learning CPSC 322 Decision Theory 5 Textbook 12.5 Decision Theory: Q-Learning CPSC 322 Decision Theory 5, Slide 1 Lecture Overview 1 Recap 2 Asynchronous Value Iteration 3 Q-Learning

More information

Bhubaneswar , India 2 Department of Mathematics, College of Engineering and

Bhubaneswar , India 2 Department of Mathematics, College of Engineering and www.ijcsi.org 136 ROUGH SET APPROACH TO GENERATE CLASSIFICATION RULES FOR DIABETES Sujogya Mishra 1, Shakti Prasad Mohanty 2, Sateesh Kumar Pradhan 3 1 Research scholar, Utkal University Bhubaneswar-751004,

More information

total 58

total 58 CS687 Exam, J. Košecká Name: HONOR SYSTEM: This examination is strictly individual. You are not allowed to talk, discuss, exchange solutions, etc., with other fellow students. Furthermore, you are only

More information

CS6375: Machine Learning Gautam Kunapuli. Decision Trees

CS6375: Machine Learning Gautam Kunapuli. Decision Trees Gautam Kunapuli Example: Restaurant Recommendation Example: Develop a model to recommend restaurants to users depending on their past dining experiences. Here, the features are cost (x ) and the user s

More information

THÈSE EN COTUTELLE UNIVERSITÉ DE TUNIS INSTITUT SUPÉRIEUR DE GESTION NEW AHP METHODS FOR HANDLING UNCERTAINTY WITHIN THE BELIEF FUNCTION THEORY

THÈSE EN COTUTELLE UNIVERSITÉ DE TUNIS INSTITUT SUPÉRIEUR DE GESTION NEW AHP METHODS FOR HANDLING UNCERTAINTY WITHIN THE BELIEF FUNCTION THEORY UNIVERSITÉ DE TUNIS INSTITUT SUPÉRIEUR DE GESTION THÈSE EN COTUTELLE en vue de l obtention du titre de docteur en INFORMATIQUE DE GESTION GÉNIE INFORMATIQUE ET AUTOMATIQUE NEW AHP METHODS FOR HANDLING

More information

Multicomponent DS Fusion Approach for Waveform EKG Detection

Multicomponent DS Fusion Approach for Waveform EKG Detection Multicomponent DS Fusion Approach for Waveform EKG Detection Nicholas Napoli University of Virginia njn5fg@virginia.edu August 10, 2013 Nicholas Napoli (UVa) Multicomponent EKG Fusion August 10, 2013 1

More information

Reasoning with Uncertainty

Reasoning with Uncertainty Reasoning with Uncertainty Representing Uncertainty Manfred Huber 2005 1 Reasoning with Uncertainty The goal of reasoning is usually to: Determine the state of the world Determine what actions to take

More information

Identification and Evaluation of Functional Dependency Analysis using Rough sets for Knowledge Discovery

Identification and Evaluation of Functional Dependency Analysis using Rough sets for Knowledge Discovery Identification and Evaluation of Functional Dependency Analysis using Rough sets for Knowledge Discovery Y.V.Sreevani 1, Prof. T. Venkat Narayana Rao 2 Department of Computer Science and Engineering, Hyderabad

More information

Rough operations on Boolean algebras

Rough operations on Boolean algebras Rough operations on Boolean algebras Guilin Qi and Weiru Liu School of Computer Science, Queen s University Belfast Belfast, BT7 1NN, UK Abstract In this paper, we introduce two pairs of rough operations

More information

Anomaly (outlier) detection. Huiping Cao, Anomaly 1

Anomaly (outlier) detection. Huiping Cao, Anomaly 1 Anomaly (outlier) detection Huiping Cao, Anomaly 1 Outline General concepts What are outliers Types of outliers Causes of anomalies Challenges of outlier detection Outlier detection approaches Huiping

More information

A Tutorial on Learning with Bayesian Networks

A Tutorial on Learning with Bayesian Networks A utorial on Learning with Bayesian Networks David Heckerman Presented by: Krishna V Chengavalli April 21 2003 Outline Introduction Different Approaches Bayesian Networks Learning Probabilities and Structure

More information

On Improving the k-means Algorithm to Classify Unclassified Patterns

On Improving the k-means Algorithm to Classify Unclassified Patterns On Improving the k-means Algorithm to Classify Unclassified Patterns Mohamed M. Rizk 1, Safar Mohamed Safar Alghamdi 2 1 Mathematics & Statistics Department, Faculty of Science, Taif University, Taif,

More information

High Frequency Rough Set Model based on Database Systems

High Frequency Rough Set Model based on Database Systems High Frequency Rough Set Model based on Database Systems Kartik Vaithyanathan kvaithya@gmail.com T.Y.Lin Department of Computer Science San Jose State University San Jose, CA 94403, USA tylin@cs.sjsu.edu

More information

Analyzing the degree of conflict among belief functions.

Analyzing the degree of conflict among belief functions. Analyzing the degree of conflict among belief functions. Liu, W. 2006). Analyzing the degree of conflict among belief functions. Artificial Intelligence, 17011)11), 909-924. DOI: 10.1016/j.artint.2006.05.002

More information

Approximate Boolean Reasoning: Foundations and Applications in Data Mining

Approximate Boolean Reasoning: Foundations and Applications in Data Mining Approximate Boolean Reasoning: Foundations and Applications in Data Mining Hung Son Nguyen Institute of Mathematics, Warsaw University Banacha 2, 02-097 Warsaw, Poland son@mimuw.edu.pl Table of Contents

More information

1 Using standard errors when comparing estimated values

1 Using standard errors when comparing estimated values MLPR Assignment Part : General comments Below are comments on some recurring issues I came across when marking the second part of the assignment, which I thought it would help to explain in more detail

More information

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Devin Cornell & Sushruth Sastry May 2015 1 Abstract In this article, we explore

More information

Review of Lecture 1. Across records. Within records. Classification, Clustering, Outlier detection. Associations

Review of Lecture 1. Across records. Within records. Classification, Clustering, Outlier detection. Associations Review of Lecture 1 This course is about finding novel actionable patterns in data. We can divide data mining algorithms (and the patterns they find) into five groups Across records Classification, Clustering,

More information

FINAL: CS 6375 (Machine Learning) Fall 2014

FINAL: CS 6375 (Machine Learning) Fall 2014 FINAL: CS 6375 (Machine Learning) Fall 2014 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for

More information

A Logical Formulation of the Granular Data Model

A Logical Formulation of the Granular Data Model 2008 IEEE International Conference on Data Mining Workshops A Logical Formulation of the Granular Data Model Tuan-Fang Fan Department of Computer Science and Information Engineering National Penghu University

More information

Machine Learning Overview

Machine Learning Overview Machine Learning Overview Sargur N. Srihari University at Buffalo, State University of New York USA 1 Outline 1. What is Machine Learning (ML)? 2. Types of Information Processing Problems Solved 1. Regression

More information

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD WHAT IS A NEURAL NETWORK? The simplest definition of a neural network, more properly referred to as an 'artificial' neural network (ANN), is provided

More information

Method for Optimizing the Number and Precision of Interval-Valued Parameters in a Multi-Object System

Method for Optimizing the Number and Precision of Interval-Valued Parameters in a Multi-Object System Method for Optimizing the Number and Precision of Interval-Valued Parameters in a Multi-Object System AMAURY CABALLERO*, KANG YEN*, *, JOSE L. ABREU**, ALDO PARDO*** *Department of Electrical & Computer

More information

Naive Bayesian Rough Sets

Naive Bayesian Rough Sets Naive Bayesian Rough Sets Yiyu Yao and Bing Zhou Department of Computer Science, University of Regina Regina, Saskatchewan, Canada S4S 0A2 {yyao,zhou200b}@cs.uregina.ca Abstract. A naive Bayesian classifier

More information

CHAPTER-17. Decision Tree Induction

CHAPTER-17. Decision Tree Induction CHAPTER-17 Decision Tree Induction 17.1 Introduction 17.2 Attribute selection measure 17.3 Tree Pruning 17.4 Extracting Classification Rules from Decision Trees 17.5 Bayesian Classification 17.6 Bayes

More information

Gaussian Mixture Model Uncertainty Learning (GMMUL) Version 1.0 User Guide

Gaussian Mixture Model Uncertainty Learning (GMMUL) Version 1.0 User Guide Gaussian Mixture Model Uncertainty Learning (GMMUL) Version 1. User Guide Alexey Ozerov 1, Mathieu Lagrange and Emmanuel Vincent 1 1 INRIA, Centre de Rennes - Bretagne Atlantique Campus de Beaulieu, 3

More information

A PRIMER ON ROUGH SETS:

A PRIMER ON ROUGH SETS: A PRIMER ON ROUGH SETS: A NEW APPROACH TO DRAWING CONCLUSIONS FROM DATA Zdzisław Pawlak ABSTRACT Rough set theory is a new mathematical approach to vague and uncertain data analysis. This Article explains

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Decision Trees Instructor: Yang Liu 1 Supervised Classifier X 1 X 2. X M Ref class label 2 1 Three variables: Attribute 1: Hair = {blond, dark} Attribute 2: Height = {tall, short}

More information

Fuzzy Rough Sets with GA-Based Attribute Division

Fuzzy Rough Sets with GA-Based Attribute Division Fuzzy Rough Sets with GA-Based Attribute Division HUGANG HAN, YOSHIO MORIOKA School of Business, Hiroshima Prefectural University 562 Nanatsuka-cho, Shobara-shi, Hiroshima 727-0023, JAPAN Abstract: Rough

More information

Application of Evidence Theory to Construction Projects

Application of Evidence Theory to Construction Projects Application of Evidence Theory to Construction Projects Desmond Adair, University of Tasmania, Australia Martin Jaeger, University of Tasmania, Australia Abstract: Crucial decisions are necessary throughout

More information

Data preprocessing. DataBase and Data Mining Group 1. Data set types. Tabular Data. Document Data. Transaction Data. Ordered Data

Data preprocessing. DataBase and Data Mining Group 1. Data set types. Tabular Data. Document Data. Transaction Data. Ordered Data Elena Baralis and Tania Cerquitelli Politecnico di Torino Data set types Record Tables Document Data Transaction Data Graph World Wide Web Molecular Structures Ordered Spatial Data Temporal Data Sequential

More information

A Static Evidential Network for Context Reasoning in Home-Based Care Hyun Lee, Member, IEEE, Jae Sung Choi, and Ramez Elmasri, Member, IEEE

A Static Evidential Network for Context Reasoning in Home-Based Care Hyun Lee, Member, IEEE, Jae Sung Choi, and Ramez Elmasri, Member, IEEE 1232 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS PART A: SYSTEMS AND HUMANS, VOL. 40, NO. 6, NOVEMBER 2010 A Static Evidential Network for Context Reasoning in Home-Based Care Hyun Lee, Member,

More information

A Rough-fuzzy C-means Using Information Entropy for Discretized Violent Crimes Data

A Rough-fuzzy C-means Using Information Entropy for Discretized Violent Crimes Data A Rough-fuzzy C-means Using Information Entropy for Discretized Violent Crimes Data Chao Yang, Shiyuan Che, Xueting Cao, Yeqing Sun, Ajith Abraham School of Information Science and Technology, Dalian Maritime

More information

ARPN Journal of Science and Technology All rights reserved.

ARPN Journal of Science and Technology All rights reserved. Rule Induction Based On Boundary Region Partition Reduction with Stards Comparisons Du Weifeng Min Xiao School of Mathematics Physics Information Engineering Jiaxing University Jiaxing 34 China ABSTRACT

More information

On Probability of Matching in Probability Based Rough Set Definitions

On Probability of Matching in Probability Based Rough Set Definitions 2013 IEEE International Conference on Systems, Man, and Cybernetics On Probability of Matching in Probability Based Rough Set Definitions Do Van Nguyen, Koichi Yamada, and Muneyuki Unehara Department of

More information

Decision Trees. Each internal node : an attribute Branch: Outcome of the test Leaf node or terminal node: class label.

Decision Trees. Each internal node : an attribute Branch: Outcome of the test Leaf node or terminal node: class label. Decision Trees Supervised approach Used for Classification (Categorical values) or regression (continuous values). The learning of decision trees is from class-labeled training tuples. Flowchart like structure.

More information

Final Exam December 12, 2017

Final Exam December 12, 2017 Introduction to Artificial Intelligence CSE 473, Autumn 2017 Dieter Fox Final Exam December 12, 2017 Directions This exam has 7 problems with 111 points shown in the table below, and you have 110 minutes

More information

Quantization of Rough Set Based Attribute Reduction

Quantization of Rough Set Based Attribute Reduction A Journal of Software Engineering and Applications, 0, 5, 7 doi:46/sea05b0 Published Online Decemer 0 (http://wwwscirporg/ournal/sea) Quantization of Rough Set Based Reduction Bing Li *, Peng Tang, Tommy

More information

EVALUATING RISK FACTORS OF BEING OBESE, BY USING ID3 ALGORITHM IN WEKA SOFTWARE

EVALUATING RISK FACTORS OF BEING OBESE, BY USING ID3 ALGORITHM IN WEKA SOFTWARE EVALUATING RISK FACTORS OF BEING OBESE, BY USING ID3 ALGORITHM IN WEKA SOFTWARE Msc. Daniela Qendraj (Halidini) Msc. Evgjeni Xhafaj Department of Mathematics, Faculty of Information Technology, University

More information

Combination of classifiers with optimal weight based on evidential reasoning

Combination of classifiers with optimal weight based on evidential reasoning 1 Combination of classifiers with optimal weight based on evidential reasoning Zhun-ga Liu 1, Quan Pan 1, Jean Dezert 2, Arnaud Martin 3 1. School of Automation, Northwestern Polytechnical University,

More information

A New PCR Combination Rule for Dynamic Frame Fusion

A New PCR Combination Rule for Dynamic Frame Fusion Chinese Journal of Electronics Vol.27, No.4, July 2018 A New PCR Combination Rule for Dynamic Frame Fusion JIN Hongbin 1, LI Hongfei 2,3, LAN Jiangqiao 1 and HAN Jun 1 (1. Air Force Early Warning Academy,

More information

Index. Cambridge University Press Relational Knowledge Discovery M E Müller. Index. More information

Index. Cambridge University Press Relational Knowledge Discovery M E Müller. Index. More information s/r. See quotient, 93 R, 122 [x] R. See class, equivalence [[P Q]]s, 142 =, 173, 164 A α, 162, 178, 179 =, 163, 193 σ RES, 166, 22, 174 Ɣ, 178, 179, 175, 176, 179 i, 191, 172, 21, 26, 29 χ R. See rough

More information

Data mining using Rough Sets

Data mining using Rough Sets Data mining using Rough Sets Alber Sánchez 1 alber.ipia@inpe.br 1 Instituto Nacional de Pesquisas Espaciais, São José dos Campos, SP, Brazil Referata Geoinformatica, 2015 1 / 44 Table of Contents Rough

More information

Rough Set Approaches for Discovery of Rules and Attribute Dependencies

Rough Set Approaches for Discovery of Rules and Attribute Dependencies Rough Set Approaches for Discovery of Rules and Attribute Dependencies Wojciech Ziarko Department of Computer Science University of Regina Regina, SK, S4S 0A2 Canada Abstract The article presents an elementary

More information

Support Vector Machine. Industrial AI Lab.

Support Vector Machine. Industrial AI Lab. Support Vector Machine Industrial AI Lab. Classification (Linear) Autonomously figure out which category (or class) an unknown item should be categorized into Number of categories / classes Binary: 2 different

More information

Decision Support. Dr. Johan Hagelbäck.

Decision Support. Dr. Johan Hagelbäck. Decision Support Dr. Johan Hagelbäck johan.hagelback@lnu.se http://aiguy.org Decision Support One of the earliest AI problems was decision support The first solution to this problem was expert systems

More information

Easy Categorization of Attributes in Decision Tables Based on Basic Binary Discernibility Matrix

Easy Categorization of Attributes in Decision Tables Based on Basic Binary Discernibility Matrix Easy Categorization of Attributes in Decision Tables Based on Basic Binary Discernibility Matrix Manuel S. Lazo-Cortés 1, José Francisco Martínez-Trinidad 1, Jesús Ariel Carrasco-Ochoa 1, and Guillermo

More information

S T U D E N T G U I D E

S T U D E N T G U I D E How do scientists organize organisms? Part IA: In what domain do I belong? Scientists sort life forms into categories based on their characteristics. First, scientists look at the types of cells an organism

More information

Minimum Error Classification Clustering

Minimum Error Classification Clustering pp.221-232 http://dx.doi.org/10.14257/ijseia.2013.7.5.20 Minimum Error Classification Clustering Iwan Tri Riyadi Yanto Department of Mathematics University of Ahmad Dahlan iwan015@gmail.com Abstract Clustering

More information