Matroids and submodular optimization

Size: px
Start display at page:

Download "Matroids and submodular optimization"

Transcription

1 Matroids and submodular optimization Attila Bernáth Research fellow, Institute of Informatics, Warsaw University 23 May 2012 Attila Bernáth () Matroids and submodular optimization 23 May / 10

2 About me I have done my university studies and my PhD at Eötvös Loránd University, Budapest. Currently I am a postdoctoral researcher working in the ERC project titled Practical Approximation Algorithms led by Piotr Sankowski. Attila Bernáth () Matroids and submodular optimization 23 May / 10

3 About the course Title: Matroids and submodular optimization Subject: see later Language: English Prerequisities: some background in graph theory (spanning trees, network flows), linear algebra and complexity theory (polynomial algorithms, NP-completeness) Coursebook: Connections in Combinatorial Optimization written by András Frank Attila Bernáth () Matroids and submodular optimization 23 May / 10

4 Matroids - motivation Minimum weight spanning trees Given a (connected, undirected) graph G = (V, E) and edge-weights w : E R, find a spanning tree whose cost is minimal. Attila Bernáth () Matroids and submodular optimization 23 May / 10

5 Matroids - motivation Maximum weight spanning trees Given a (connected, undirected) graph G = (V, E) and edge-weights w : E R, find a spanning tree whose cost is maximal. Attila Bernáth () Matroids and submodular optimization 23 May / 10

6 Matroids - motivation Maximum weight spanning trees Given a (connected, undirected) graph G = (V, E) and edge-weights w : E R, find a spanning tree whose cost is maximal. Greedy algorithm (Kruskal) Assume w(e 1 ) w(e 2 ) w(e m ), and start with F = For i = 1, 2,..., m Include ei in F iff no cycle arises Output F. Attila Bernáth () Matroids and submodular optimization 23 May / 10

7 Matroids - motivation Given some vectors v 1, v 2,..., v m R n, find a linearly independent subset of maximum size... Attila Bernáth () Matroids and submodular optimization 23 May / 10

8 Matroids - motivation Given some vectors v 1, v 2,..., v m R n, find a linearly independent subset of maximum size... Or, more generally, find a linearly independent subset of maximum weight (where the weight w(v i ) of each vector is also given). Attila Bernáth () Matroids and submodular optimization 23 May / 10

9 Matroids - motivation Given some vectors v 1, v 2,..., v m R n, find a linearly independent subset of maximum size... Or, more generally, find a linearly independent subset of maximum weight (where the weight w(v i ) of each vector is also given). Greedy algorithm (the same as before) Assume w(v 1 ) w(v 2 ) w(v m ), and start with F = For i = 1, 2,..., m Include vi in F iff it remains linearly independent Output F. Attila Bernáth () Matroids and submodular optimization 23 May / 10

10 Matroids - definition Matroids grab this greedy structure (or: they generalize linear independence) Given some finite set S, let 2 S denote the set of all subsets of S. A family I 2 S is called hereditary, if X X I implies X I. Attila Bernáth () Matroids and submodular optimization 23 May / 10

11 Matroids - definition Matroids grab this greedy structure (or: they generalize linear independence) Given some finite set S, let 2 S denote the set of all subsets of S. A family I 2 S is called hereditary, if X X I implies X I. Definition (Matroid) The pair (S, I) is called a matroid, if I is nonempty, hereditary, and for any X S, the inclusionwise maximal members of I contained in X all have the same size. Members of I are called independent. Attila Bernáth () Matroids and submodular optimization 23 May / 10

12 Matroids - definition Matroids grab this greedy structure (or: they generalize linear independence) Given some finite set S, let 2 S denote the set of all subsets of S. A family I 2 S is called hereditary, if X X I implies X I. Definition (Matroid) The pair (S, I) is called a matroid, if I is nonempty, hereditary, and for any X S, the inclusionwise maximal members of I contained in X all have the same size. Members of I are called independent. In other words, if the greedy algorithm for finding a maximum weight member of I works for any 0 1 valued weight function (i.e. χ X ). Attila Bernáth () Matroids and submodular optimization 23 May / 10

13 Matroids - definition Matroids grab this greedy structure (or: they generalize linear independence) Given some finite set S, let 2 S denote the set of all subsets of S. A family I 2 S is called hereditary, if X X I implies X I. Definition (Matroid) The pair (S, I) is called a matroid, if I is nonempty, hereditary, and for any X S, the inclusionwise maximal members of I contained in X all have the same size. Members of I are called independent. In other words, if the greedy algorithm for finding a maximum weight member of I works for any 0 1 valued weight function (i.e. χ X ). (Note: this already implies that the greedy algorithm works properly for any weight function.) Attila Bernáth () Matroids and submodular optimization 23 May / 10

14 Matroids - examples Example 1: if G = (V, E) is a graph then forests form the independent sets of a matroid with ground set S = E (graphic matroid) Example 2: Given vectors v 1, v 2,..., v m, the linearly independent subsets also give a matroid (linear matroid). Attila Bernáth () Matroids and submodular optimization 23 May / 10

15 Matroids - applications Spanning tree union Given a graph G = (V, E), positive integer k, find k spanning trees, that are (pairwise) edge-disjoint. Polynomially solvable with matroid techniques, moreover... Attila Bernáth () Matroids and submodular optimization 23 May / 10

16 Matroids - applications Spanning tree union Given a graph G = (V, E), positive integer k, find k spanning trees, that are (pairwise) edge-disjoint. Polynomially solvable with matroid techniques, moreover... Maximum weight spanning tree union Given a graph G = (V, E), positive integer k and edge-weights w : E R, find k edge-disjoint spanning trees whose total weight is maximal. This is also polynomially solvable with matroid techniques (it is the special case of finding a maximum weight independent set in a matroid). Attila Bernáth () Matroids and submodular optimization 23 May / 10

17 Submodularity - motivating definition Suppose we have a factory that can produce any subset of a product set S. Attila Bernáth () Matroids and submodular optimization 23 May / 10

18 Submodularity - motivating definition Suppose we have a factory that can produce any subset of a product set S. If we decide to produce a subset X S, we have to pay a setup cost c(x ). Attila Bernáth () Matroids and submodular optimization 23 May / 10

19 Submodularity - motivating definition Suppose we have a factory that can produce any subset of a product set S. If we decide to produce a subset X S, we have to pay a setup cost c(x ). Suppose we have tentatively decided to produce some X S, and consider adding a new product e S \ X. The incremental setup cost will then be c(x + e) c(x ). Attila Bernáth () Matroids and submodular optimization 23 May / 10

20 Submodularity - motivating definition Suppose we have a factory that can produce any subset of a product set S. If we decide to produce a subset X S, we have to pay a setup cost c(x ). Suppose we have tentatively decided to produce some X S, and consider adding a new product e S \ X. The incremental setup cost will then be c(x + e) c(x ). Economists say, that in real-world applications this incremental setup cost of adding e can only get smaller, if X gets bigger, i.e. If X X and e S X, then c(x + e) c(x ) c(x + e) c(x ). Such a set function c is called submodular. Attila Bernáth () Matroids and submodular optimization 23 May / 10

21 Submodularity - motivating definition Suppose we have a factory that can produce any subset of a product set S. If we decide to produce a subset X S, we have to pay a setup cost c(x ). Suppose we have tentatively decided to produce some X S, and consider adding a new product e S \ X. The incremental setup cost will then be c(x + e) c(x ). Economists say, that in real-world applications this incremental setup cost of adding e can only get smaller, if X gets bigger, i.e. If X X and e S X, then c(x + e) c(x ) c(x + e) c(x ). Such a set function c is called submodular. Informally: introducing a new product is cheaper in a bigger factory. Attila Bernáth () Matroids and submodular optimization 23 May / 10

22 Submodularity - applications, examples Applications: optimization problems are usually tractable because submodularity is involved, many proofs in graph theory use submodularity. Attila Bernáth () Matroids and submodular optimization 23 May / 10

23 Submodularity - applications, examples Applications: optimization problems are usually tractable because submodularity is involved, Examples many proofs in graph theory use submodularity. The cut function d G : 2 V Z + of an (undirected) graph G = (V, E), defined by d G (X ) = {e E : e enters X } is submodular (it is also symmetric, meaning d G (X ) = d G ((V X ) for any X ), The in-degree function ϱ D : 2 V Z + of a directed graph D = (V, A) defined by ϱ D (X ) = {a A : a enters X } is (non-symmetric and) submodular (so is the out-degree function, of course), The rank function r : 2 S Z + of a matroid (S, I) defined by r(x ) = max{ I : I I, I X } is submodular. Attila Bernáth () Matroids and submodular optimization 23 May / 10

1 Matroid intersection

1 Matroid intersection CS 369P: Polyhedral techniques in combinatorial optimization Instructor: Jan Vondrák Lecture date: October 21st, 2010 Scribe: Bernd Bandemer 1 Matroid intersection Given two matroids M 1 = (E, I 1 ) and

More information

Greedy Algorithms My T. UF

Greedy Algorithms My T. UF Introduction to Algorithms Greedy Algorithms @ UF Overview A greedy algorithm always makes the choice that looks best at the moment Make a locally optimal choice in hope of getting a globally optimal solution

More information

Reachability-based matroid-restricted packing of arborescences

Reachability-based matroid-restricted packing of arborescences Egerváry Research Group on Combinatorial Optimization Technical reports TR-2016-19. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

More information

arxiv: v1 [math.co] 18 Jun 2015

arxiv: v1 [math.co] 18 Jun 2015 Blocking optimal arborescences Attila Bernáth Gyula Pap October 1, 018 arxiv:1506.05677v1 [math.co] 18 Jun 015 Abstract The problem of covering minimum cost common bases of two matroids is NP-complete,

More information

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 17: Combinatorial Problems as Linear Programs III. Instructor: Shaddin Dughmi

CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 17: Combinatorial Problems as Linear Programs III. Instructor: Shaddin Dughmi CS599: Convex and Combinatorial Optimization Fall 2013 Lecture 17: Combinatorial Problems as Linear Programs III Instructor: Shaddin Dughmi Announcements Today: Spanning Trees and Flows Flexibility awarded

More information

CMPSCI611: The Matroid Theorem Lecture 5

CMPSCI611: The Matroid Theorem Lecture 5 CMPSCI611: The Matroid Theorem Lecture 5 We first review our definitions: A subset system is a set E together with a set of subsets of E, called I, such that I is closed under inclusion. This means that

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Matroids and Greedy Algorithms Date: 10/31/16

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Matroids and Greedy Algorithms Date: 10/31/16 60.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Matroids and Greedy Algorithms Date: 0/3/6 6. Introduction We talked a lot the last lecture about greedy algorithms. While both Prim

More information

MAKING BIPARTITE GRAPHS DM-IRREDUCIBLE

MAKING BIPARTITE GRAPHS DM-IRREDUCIBLE SIAM J. DISCRETE MATH. Vol. 32, No. 1, pp. 560 590 c 2018 Society for Industrial and Applied Mathematics MAKING BIPARTITE GRAPHS DM-IRREDUCIBLE KRISTÓF BÉRCZI, SATORU IWATA, JUN KATO, AND YUTARO YAMAGUCHI

More information

1 Some loose ends from last time

1 Some loose ends from last time Cornell University, Fall 2010 CS 6820: Algorithms Lecture notes: Kruskal s and Borůvka s MST algorithms September 20, 2010 1 Some loose ends from last time 1.1 A lemma concerning greedy algorithms and

More information

Packing Arborescences

Packing Arborescences Egerváry Research Group on Combinatorial Optimization Technical reports TR-2009-04. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

More information

An Introduction to Matroids & Greedy in Approximation Algorithms

An Introduction to Matroids & Greedy in Approximation Algorithms An Introduction to Matroids & Greedy in Approximation Algorithms (Juliàn Mestre, ESA 2006) CoReLab Monday seminar presentation: Evangelos Bampas 1/21 Subset systems CoReLab Monday seminar presentation:

More information

Edge-connectivity of undirected and directed hypergraphs

Edge-connectivity of undirected and directed hypergraphs Edge-connectivity of undirected and directed hypergraphs by Tamás Király Dissertation submitted to Eötvös Loránd University, Faculty of Science, for the Ph. D. degree Doctoral School: Mathematics Director:

More information

ACO Comprehensive Exam March 20 and 21, Computability, Complexity and Algorithms

ACO Comprehensive Exam March 20 and 21, Computability, Complexity and Algorithms 1. Computability, Complexity and Algorithms Part a: You are given a graph G = (V,E) with edge weights w(e) > 0 for e E. You are also given a minimum cost spanning tree (MST) T. For one particular edge

More information

EE595A Submodular functions, their optimization and applications Spring 2011

EE595A Submodular functions, their optimization and applications Spring 2011 EE595A Submodular functions, their optimization and applications Spring 2011 Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering Winter Quarter, 2011 http://ee.washington.edu/class/235/2011wtr/index.html

More information

Downloaded 03/01/17 to Redistribution subject to SIAM license or copyright; see

Downloaded 03/01/17 to Redistribution subject to SIAM license or copyright; see SIAM J. DISCRETE MATH. Vol. 31, No. 1, pp. 335 382 c 2017 Society for Industrial and Applied Mathematics PARTITION CONSTRAINED COVERING OF A SYMMETRIC CROSSING SUPERMODULAR FUNCTION BY A GRAPH ATTILA BERNÁTH,

More information

Submodular Functions Properties Algorithms Machine Learning

Submodular Functions Properties Algorithms Machine Learning Submodular Functions Properties Algorithms Machine Learning Rémi Gilleron Inria Lille - Nord Europe & LIFL & Univ Lille Jan. 12 revised Aug. 14 Rémi Gilleron (Mostrare) Submodular Functions Jan. 12 revised

More information

Matroid Optimisation Problems with Nested Non-linear Monomials in the Objective Function

Matroid Optimisation Problems with Nested Non-linear Monomials in the Objective Function atroid Optimisation Problems with Nested Non-linear onomials in the Objective Function Anja Fischer Frank Fischer S. Thomas ccormick 14th arch 2016 Abstract Recently, Buchheim and Klein [4] suggested to

More information

Restricted b-matchings in degree-bounded graphs

Restricted b-matchings in degree-bounded graphs Egerváry Research Group on Combinatorial Optimization Technical reports TR-009-1. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

More information

Making Bipartite Graphs DM-irreducible

Making Bipartite Graphs DM-irreducible Making Bipartite Graphs DM-irreducible Kristóf Bérczi 1, Satoru Iwata 2, Jun Kato 3, Yutaro Yamaguchi 4 1. Eötvös Lorand University, Hungary. 2. University of Tokyo, Japan. 3. TOYOTA Motor Corporation,

More information

Algorithms for Enumerating Circuits in Matroids

Algorithms for Enumerating Circuits in Matroids Algorithms for Enumerating Circuits in Matroids Endre Boros 1, Khaled Elbassioni 1, Vladimir Gurvich 1, and Leonid Khachiyan 2 1 RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway NJ 08854-8003;

More information

On the Complexity of Some Enumeration Problems for Matroids

On the Complexity of Some Enumeration Problems for Matroids On the Complexity of Some Enumeration Problems for Matroids Endre Boros Khaled Elbassioni Vladimir Gurvich Leonid Khachiyan Abstract We present an incremental polynomial-time algorithm for enumerating

More information

Non-TDI graph-optimization with supermodular functions (extended abstract)

Non-TDI graph-optimization with supermodular functions (extended abstract) Egerváry Research Group on Combinatorial Optimization Technical reports TR-2015-14. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

More information

Matroids. Start with a set of objects, for example: E={ 1, 2, 3, 4, 5 }

Matroids. Start with a set of objects, for example: E={ 1, 2, 3, 4, 5 } Start with a set of objects, for example: E={ 1, 2, 3, 4, 5 } Start with a set of objects, for example: E={ 1, 2, 3, 4, 5 } The power set of E is the set of all possible subsets of E: {}, {1}, {2}, {3},

More information

Submodularity in Machine Learning

Submodularity in Machine Learning Saifuddin Syed MLRG Summer 2016 1 / 39 What are submodular functions Outline 1 What are submodular functions Motivation Submodularity and Concavity Examples 2 Properties of submodular functions Submodularity

More information

Word Alignment via Submodular Maximization over Matroids

Word Alignment via Submodular Maximization over Matroids Word Alignment via Submodular Maximization over Matroids Hui Lin, Jeff Bilmes University of Washington, Seattle Dept. of Electrical Engineering June 21, 2011 Lin and Bilmes Submodular Word Alignment June

More information

10.3 Matroids and approximation

10.3 Matroids and approximation 10.3 Matroids and approximation 137 10.3 Matroids and approximation Given a family F of subsets of some finite set X, called the ground-set, and a weight function assigning each element x X a non-negative

More information

Countable Menger s theorem with finitary matroid constraints on the ingoing edges

Countable Menger s theorem with finitary matroid constraints on the ingoing edges Countable Menger s theorem with finitary matroid constraints on the ingoing edges Attila Joó Alfréd Rényi Institute of Mathematics, MTA-ELTE Egerváry Research Group. Budapest, Hungary jooattila@renyi.hu

More information

A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees

A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees Yoshimi Egawa Department of Mathematical Information Science, Tokyo University of

More information

arxiv: v2 [math.co] 11 Mar 2019

arxiv: v2 [math.co] 11 Mar 2019 Complexity of packing common bases in matroids Kristóf Bérczi Tamás Schwarcz arxiv:1903.03579v2 [math.co] 11 Mar 2019 Abstract One of the most intriguing unsolved questions of matroid optimization is the

More information

and e 2 ~ e 2 iff e 1

and e 2 ~ e 2 iff e 1 Section 4. Equivalence Relations A binary relation is an equivalence relation if it has the three properties reflexive, symmetric, and transitive (RST). Examples. a. Equality on any set. b. x ~ y iff x

More information

Submodular Functions, Optimization, and Applications to Machine Learning

Submodular Functions, Optimization, and Applications to Machine Learning Submodular Functions, Optimization, and Applications to Machine Learning Spring Quarter, Lecture http://www.ee.washington.edu/people/faculty/bilmes/classes/eeb_spring_0/ Prof. Jeff Bilmes University of

More information

A combinatorial algorithm minimizing submodular functions in strongly polynomial time

A combinatorial algorithm minimizing submodular functions in strongly polynomial time A combinatorial algorithm minimizing submodular functions in strongly polynomial time Alexander Schrijver 1 Abstract We give a strongly polynomial-time algorithm minimizing a submodular function f given

More information

FRACTIONAL PACKING OF T-JOINS. 1. Introduction

FRACTIONAL PACKING OF T-JOINS. 1. Introduction FRACTIONAL PACKING OF T-JOINS FRANCISCO BARAHONA Abstract Given a graph with nonnegative capacities on its edges, it is well known that the capacity of a minimum T -cut is equal to the value of a maximum

More information

Maps of matroids with applications

Maps of matroids with applications Discrete Mathematics 303 (2005) 75 85 www.elsevier.com/locate/disc Maps of matroids with applications András Recski a,b, a Department of Computer Science and Information Theory, Budapest University of

More information

Submodular Functions, Optimization, and Applications to Machine Learning

Submodular Functions, Optimization, and Applications to Machine Learning Submodular Functions, Optimization, and Applications to Machine Learning Spring Quarter, Lecture http://www.ee.washington.edu/people/faculty/bilmes/classes/ee_spring_0/ Prof. Jeff Bilmes University of

More information

Matroid Representation of Clique Complexes

Matroid Representation of Clique Complexes Matroid Representation of Clique Complexes Kenji Kashiwabara 1, Yoshio Okamoto 2, and Takeaki Uno 3 1 Department of Systems Science, Graduate School of Arts and Sciences, The University of Tokyo, 3 8 1,

More information

Rough Sets. V.W. Marek. General introduction and one theorem. Department of Computer Science University of Kentucky. October 2013.

Rough Sets. V.W. Marek. General introduction and one theorem. Department of Computer Science University of Kentucky. October 2013. General introduction and one theorem V.W. Marek Department of Computer Science University of Kentucky October 2013 What it is about? is a popular formalism for talking about approximations Esp. studied

More information

General Methods for Algorithm Design

General Methods for Algorithm Design General Methods for Algorithm Design 1. Dynamic Programming Multiplication of matrices Elements of the dynamic programming Optimal triangulation of polygons Longest common subsequence 2. Greedy Methods

More information

Graphs (Matroids) with k ± ɛ-disjoint spanning trees (bases)

Graphs (Matroids) with k ± ɛ-disjoint spanning trees (bases) Graphs (Matroids) with k ± ɛ-disjoint spanning trees (bases) Hong-Jian Lai, Ping Li and Yanting Liang Department of Mathematics West Virginia University Morgantown, WV p. 1/30 Notation G: = connected graph

More information

Preliminaries and Complexity Theory

Preliminaries and Complexity Theory Preliminaries and Complexity Theory Oleksandr Romanko CAS 746 - Advanced Topics in Combinatorial Optimization McMaster University, January 16, 2006 Introduction Book structure: 2 Part I Linear Algebra

More information

Lecture 10 (Submodular function)

Lecture 10 (Submodular function) Discrete Methods in Informatics January 16, 2006 Lecture 10 (Submodular function) Lecturer: Satoru Iwata Scribe: Masaru Iwasa and Yukie Nagai Submodular functions are the functions that frequently appear

More information

A Min-Max Theorem for k-submodular Functions and Extreme Points of the Associated Polyhedra. Satoru FUJISHIGE and Shin-ichi TANIGAWA.

A Min-Max Theorem for k-submodular Functions and Extreme Points of the Associated Polyhedra. Satoru FUJISHIGE and Shin-ichi TANIGAWA. RIMS-1787 A Min-Max Theorem for k-submodular Functions and Extreme Points of the Associated Polyhedra By Satoru FUJISHIGE and Shin-ichi TANIGAWA September 2013 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES

More information

VIII. NP-completeness

VIII. NP-completeness VIII. NP-completeness 1 / 15 NP-Completeness Overview 1. Introduction 2. P and NP 3. NP-complete (NPC): formal definition 4. How to prove a problem is NPC 5. How to solve a NPC problem: approximate algorithms

More information

Discrete Optimization 2010 Lecture 2 Matroids & Shortest Paths

Discrete Optimization 2010 Lecture 2 Matroids & Shortest Paths Matroids Shortest Paths Discrete Optimization 2010 Lecture 2 Matroids & Shortest Paths Marc Uetz University of Twente m.uetz@utwente.nl Lecture 2: sheet 1 / 25 Marc Uetz Discrete Optimization Matroids

More information

On disjoint common bases in two matroids

On disjoint common bases in two matroids Egerváry Research Group on Combinatorial Optimization Technical reports TR-2010-10. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

More information

Deterministic Truncation of Linear Matroids

Deterministic Truncation of Linear Matroids Deterministic Truncation of Linear Matroids Daniel Lokshtanov Pranabendu Misra Fahad Panolan Saket Saurabh Abstract Let M = (E, I) be a matroid. A k-truncation of M is a matroid M = (E, I ) such that for

More information

15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu)

15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu) 15.1 Matching, Components, and Edge cover (Collaborate with Xin Yu) First show l = c by proving l c and c l. For a maximum matching M in G, let V be the set of vertices covered by M. Since any vertex in

More information

Graph coloring, perfect graphs

Graph coloring, perfect graphs Lecture 5 (05.04.2013) Graph coloring, perfect graphs Scribe: Tomasz Kociumaka Lecturer: Marcin Pilipczuk 1 Introduction to graph coloring Definition 1. Let G be a simple undirected graph and k a positive

More information

The cocycle lattice of binary matroids

The cocycle lattice of binary matroids Published in: Europ. J. Comb. 14 (1993), 241 250. The cocycle lattice of binary matroids László Lovász Eötvös University, Budapest, Hungary, H-1088 Princeton University, Princeton, NJ 08544 Ákos Seress*

More information

Minimum spanning tree

Minimum spanning tree Minimum spanning tree Jean Cousty MorphoGraph and Imagery 2011 J. Cousty : MorphoGraph and Imagery 1/17 Outline of the lecture 1 Minimum spanning tree 2 Cut theorem for MST 3 Kruskal algorithm J. Cousty

More information

Approximating Submodular Functions. Nick Harvey University of British Columbia

Approximating Submodular Functions. Nick Harvey University of British Columbia Approximating Submodular Functions Nick Harvey University of British Columbia Approximating Submodular Functions Part 1 Nick Harvey University of British Columbia Department of Computer Science July 11th,

More information

Fast algorithms for even/odd minimum cuts and generalizations

Fast algorithms for even/odd minimum cuts and generalizations Fast algorithms for even/odd minimum cuts and generalizations András A. Benczúr 1 and Ottilia Fülöp 2 {benczur,otti}@cs.elte.hu 1 Computer and Automation Institute, Hungarian Academy of Sciences, and Department

More information

Theory of Computation Chapter 9

Theory of Computation Chapter 9 0-0 Theory of Computation Chapter 9 Guan-Shieng Huang May 12, 2003 NP-completeness Problems NP: the class of languages decided by nondeterministic Turing machine in polynomial time NP-completeness: Cook

More information

The Complexity of Maximum. Matroid-Greedoid Intersection and. Weighted Greedoid Maximization

The Complexity of Maximum. Matroid-Greedoid Intersection and. Weighted Greedoid Maximization Department of Computer Science Series of Publications C Report C-2004-2 The Complexity of Maximum Matroid-Greedoid Intersection and Weighted Greedoid Maximization Taneli Mielikäinen Esko Ukkonen University

More information

Reachability of recurrent positions in the chip-firing game

Reachability of recurrent positions in the chip-firing game Egerváry Research Group on Combinatorial Optimization Technical reports TR-2015-10. Published by the Egerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

More information

A disjoint union theorem for trees

A disjoint union theorem for trees University of Warwick Mathematics Institute Fields Institute, 05 Finite disjoint union Theorem Theorem (Folkman) For every pair of positive integers m and r there is integer n 0 such that for every r-coloring

More information

NP-Complete Problems and Approximation Algorithms

NP-Complete Problems and Approximation Algorithms NP-Complete Problems and Approximation Algorithms Efficiency of Algorithms Algorithms that have time efficiency of O(n k ), that is polynomial of the input size, are considered to be tractable or easy

More information

arxiv: v2 [cs.ds] 7 Mar 2016

arxiv: v2 [cs.ds] 7 Mar 2016 The robust recoverable spanning tree problem with interval costs is polynomially solvable arxiv:1602.07422v2 [cs.ds] 7 Mar 2016 Mikita Hradovich, Adam Kasperski, Pawe l Zieliński Faculty of Fundamental

More information

A First Course in Combinatorial Optimization. JON LEE IBM T.J. Watson Research Center, Yorktown Heights, New York

A First Course in Combinatorial Optimization. JON LEE IBM T.J. Watson Research Center, Yorktown Heights, New York A First Course in Combinatorial Optimization JON LEE IBM T.J. Watson Research Center, Yorktown Heights, New York published by the press syndicate of the university of cambridge The Pitt Building, Trumpington

More information

Introduction to Automata

Introduction to Automata Introduction to Automata Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr 1 /

More information

A multivariate interlace polynomial

A multivariate interlace polynomial A multivariate interlace polynomial Bruno Courcelle LaBRI, Université Bordeaux 1 and CNRS General objectives : Logical descriptions of graph polynomials Application to their computations Systematic construction

More information

Applications of Submodular Functions in Speech and NLP

Applications of Submodular Functions in Speech and NLP Applications of Submodular Functions in Speech and NLP Jeff Bilmes Department of Electrical Engineering University of Washington, Seattle http://ssli.ee.washington.edu/~bilmes June 27, 2011 J. Bilmes Applications

More information

CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2014 Combinatorial Problems as Linear Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source Shortest

More information

Edmonds Branching Theorem in Digraphs without Forward-infinite Paths arxiv: v1 [math.co] 1 May 2017

Edmonds Branching Theorem in Digraphs without Forward-infinite Paths arxiv: v1 [math.co] 1 May 2017 Edmonds Branching Theorem in Digraphs without Forward-infinite Paths arxiv:1705.00471v1 [math.co] 1 May 2017 Attila Joó 2014 This is the peer reviewed version of the following article: [6], which has been

More information

On Greedy Algorithms and Approximate Matroids

On Greedy Algorithms and Approximate Matroids On Greedy Algorithms and Approximate Matroids a riff on Paul Milgrom s Prices and Auctions in Markets with Complex Constraints Tim Roughgarden (Stanford University) 1 A 50-Year-Old Puzzle Persistent mystery:

More information

Minimization and Maximization Algorithms in Discrete Convex Analysis

Minimization and Maximization Algorithms in Discrete Convex Analysis Modern Aspects of Submodularity, Georgia Tech, March 19, 2012 Minimization and Maximization Algorithms in Discrete Convex Analysis Kazuo Murota (U. Tokyo) 120319atlanta2Algorithm 1 Contents B1. Submodularity

More information

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Approximation Algorithms Seminar 1 Set Cover, Steiner Tree and TSP Siert Wieringa siert.wieringa@tkk.fi Approximation Algorithms Seminar 1 1/27 Contents Approximation algorithms for: Set Cover Steiner

More information

Packing of Rigid Spanning Subgraphs and Spanning Trees

Packing of Rigid Spanning Subgraphs and Spanning Trees Packing of Rigid Spanning Subgraphs and Spanning Trees Joseph Cheriyan Olivier Durand de Gevigney Zoltán Szigeti December 14, 2011 Abstract We prove that every 6k + 2l, 2k-connected simple graph contains

More information

ACO Comprehensive Exam March 17 and 18, Computability, Complexity and Algorithms

ACO Comprehensive Exam March 17 and 18, Computability, Complexity and Algorithms 1. Computability, Complexity and Algorithms (a) Let G(V, E) be an undirected unweighted graph. Let C V be a vertex cover of G. Argue that V \ C is an independent set of G. (b) Minimum cardinality vertex

More information

An algorithm to increase the node-connectivity of a digraph by one

An algorithm to increase the node-connectivity of a digraph by one Discrete Optimization 5 (2008) 677 684 Contents lists available at ScienceDirect Discrete Optimization journal homepage: www.elsevier.com/locate/disopt An algorithm to increase the node-connectivity of

More information

COSE215: Theory of Computation. Lecture 20 P, NP, and NP-Complete Problems

COSE215: Theory of Computation. Lecture 20 P, NP, and NP-Complete Problems COSE215: Theory of Computation Lecture 20 P, NP, and NP-Complete Problems Hakjoo Oh 2018 Spring Hakjoo Oh COSE215 2018 Spring, Lecture 20 June 6, 2018 1 / 14 Contents 1 P and N P Polynomial-time reductions

More information

Beyond JWP: A Tractable Class of Binary VCSPs via M-Convex Intersection

Beyond JWP: A Tractable Class of Binary VCSPs via M-Convex Intersection Beyond JWP: A Tractable Class of Binary VCSPs via M-Convex Intersection Hiroshi Hirai Department of Mathematical Informatics, University of Tokyo, Japan hirai@mist.i.u-tokyo.ac.jp Yuni Iwamasa Department

More information

Bipartite Matchings. Andreas Klappenecker

Bipartite Matchings. Andreas Klappenecker Bipartite Matchings Andreas Klappenecker Matching Number m(g) = number of edges in a maximally large matching. Why is m(g) < 4? m(g) = W iff A

More information

Weighted linear matroid matching

Weighted linear matroid matching Egerváry Research Group (EGRES) Eötvös University, Budapest, Hungary Waterloo, June 12, 2012 Definitions V is a vectorspace V 1, V 2,, V k < V are called skew subspaces ( independent subspaces ) if they

More information

1 Primals and Duals: Zero Sum Games

1 Primals and Duals: Zero Sum Games CS 124 Section #11 Zero Sum Games; NP Completeness 4/15/17 1 Primals and Duals: Zero Sum Games We can represent various situations of conflict in life in terms of matrix games. For example, the game shown

More information

Part II: Integral Splittable Congestion Games. Existence and Computation of Equilibria Integral Polymatroids

Part II: Integral Splittable Congestion Games. Existence and Computation of Equilibria Integral Polymatroids Kombinatorische Matroids and Polymatroids Optimierung in der inlogistik Congestion undgames im Verkehr Tobias Harks Augsburg University WINE Tutorial, 8.12.2015 Outline Part I: Congestion Games Existence

More information

Apprentice Linear Algebra, 1st day, 6/27/05

Apprentice Linear Algebra, 1st day, 6/27/05 Apprentice Linear Algebra, 1st day, 6/7/05 REU 005 Instructor: László Babai Scribe: Eric Patterson Definitions 1.1. An abelian group is a set G with the following properties: (i) ( a, b G)(!a + b G) (ii)

More information

An inequality for polymatroid functions and its applications

An inequality for polymatroid functions and its applications An inequality for polymatroid functions and its applications E. Boros a K. Elbassioni b V. Gurvich a L. Khachiyan b a RUTCOR, Rutgers University, 640 Bartholomew Road, Piscataway NJ 08854-8003; ({boros,

More information

An Algorithmic Framework for Wireless Information Flow

An Algorithmic Framework for Wireless Information Flow An Algorithmic Framework for Wireless Information Flow The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher

More information

Enumeration: logical and algebraic approach

Enumeration: logical and algebraic approach Enumeration: logical and algebraic approach Yann Strozecki Université Paris Sud - Paris 11 Novembre 2011, séminaire ALGO/LIX Introduction to Enumeration Enumeration and logic Enumeration and polynomials

More information

Determine the size of an instance of the minimum spanning tree problem.

Determine the size of an instance of the minimum spanning tree problem. 3.1 Algorithm complexity Consider two alternative algorithms A and B for solving a given problem. Suppose A is O(n 2 ) and B is O(2 n ), where n is the size of the instance. Let n A 0 be the size of the

More information

MATROIDS DENSER THAN A PROJECTIVE GEOMETRY

MATROIDS DENSER THAN A PROJECTIVE GEOMETRY MATROIDS DENSER THAN A PROJECTIVE GEOMETRY PETER NELSON Abstract. The growth-rate function for a minor-closed class M of matroids is the function h where, for each non-negative integer r, h(r) is the maximum

More information

Lecture 10 February 4, 2013

Lecture 10 February 4, 2013 UBC CPSC 536N: Sparse Approximations Winter 2013 Prof Nick Harvey Lecture 10 February 4, 2013 Scribe: Alexandre Fréchette This lecture is about spanning trees and their polyhedral representation Throughout

More information

THE DIRECT SUM, UNION AND INTERSECTION OF POSET MATROIDS

THE DIRECT SUM, UNION AND INTERSECTION OF POSET MATROIDS SOOCHOW JOURNAL OF MATHEMATICS Volume 28, No. 4, pp. 347-355, October 2002 THE DIRECT SUM, UNION AND INTERSECTION OF POSET MATROIDS BY HUA MAO 1,2 AND SANYANG LIU 2 Abstract. This paper first shows how

More information

A note on [k, l]-sparse graphs

A note on [k, l]-sparse graphs Egerváry Research Group on Combinatorial Optimization Technical reports TR-2005-05. Published by the Egrerváry Research Group, Pázmány P. sétány 1/C, H 1117, Budapest, Hungary. Web site: www.cs.elte.hu/egres.

More information

Minimization of Symmetric Submodular Functions under Hereditary Constraints

Minimization of Symmetric Submodular Functions under Hereditary Constraints Minimization of Symmetric Submodular Functions under Hereditary Constraints J.A. Soto (joint work with M. Goemans) DIM, Univ. de Chile April 4th, 2012 1 of 21 Outline Background Minimal Minimizers and

More information

Bounded Treewidth Graphs A Survey German Russian Winter School St. Petersburg, Russia

Bounded Treewidth Graphs A Survey German Russian Winter School St. Petersburg, Russia Bounded Treewidth Graphs A Survey German Russian Winter School St. Petersburg, Russia Andreas Krause krausea@cs.tum.edu Technical University of Munich February 12, 2003 This survey gives an introduction

More information

4. How to prove a problem is NPC

4. How to prove a problem is NPC The reducibility relation T is transitive, i.e, A T B and B T C imply A T C Therefore, to prove that a problem A is NPC: (1) show that A NP (2) choose some known NPC problem B define a polynomial transformation

More information

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, Notes 22 for CS 170

UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, Notes 22 for CS 170 UC Berkeley CS 170: Efficient Algorithms and Intractable Problems Handout 22 Lecturer: David Wagner April 24, 2003 Notes 22 for CS 170 1 NP-completeness of Circuit-SAT We will prove that the circuit satisfiability

More information

Connectivity augmentation algorithms

Connectivity augmentation algorithms Eötvös Loránd University Institute of Mathematics Summary of the Ph.D. dissertation Connectivity augmentation algorithms László Végh Doctoral School: Mathematics Director: Miklós Laczkovich Doctoral Program:

More information

APPROXIMATION ALGORITHMS RESOLUTION OF SELECTED PROBLEMS 1

APPROXIMATION ALGORITHMS RESOLUTION OF SELECTED PROBLEMS 1 UNIVERSIDAD DE LA REPUBLICA ORIENTAL DEL URUGUAY IMERL, FACULTAD DE INGENIERIA LABORATORIO DE PROBABILIDAD Y ESTADISTICA APPROXIMATION ALGORITHMS RESOLUTION OF SELECTED PROBLEMS 1 STUDENT: PABLO ROMERO

More information

1 Submodular functions

1 Submodular functions CS 369P: Polyhedral techniques in combinatorial optimization Instructor: Jan Vondrák Lecture date: November 16, 2010 1 Submodular functions We have already encountered submodular functions. Let s recall

More information

Approximability and Parameterized Complexity of Consecutive Ones Submatrix Problems

Approximability and Parameterized Complexity of Consecutive Ones Submatrix Problems Proc. 4th TAMC, 27 Approximability and Parameterized Complexity of Consecutive Ones Submatrix Problems Michael Dom, Jiong Guo, and Rolf Niedermeier Institut für Informatik, Friedrich-Schiller-Universität

More information

a 1 a 2 a 3 a 4 v i c i c(a 1, a 3 ) = 3

a 1 a 2 a 3 a 4 v i c i c(a 1, a 3 ) = 3 AM 221: Advanced Optimization Spring 2016 Prof. Yaron Singer Lecture 17 March 30th 1 Overview In the previous lecture, we saw examples of combinatorial problems: the Maximal Matching problem and the Minimum

More information

ON THE NP-COMPLETENESS OF SOME GRAPH CLUSTER MEASURES

ON THE NP-COMPLETENESS OF SOME GRAPH CLUSTER MEASURES ON THE NP-COMPLETENESS OF SOME GRAPH CLUSTER MEASURES JIŘÍ ŠÍMA AND SATU ELISA SCHAEFFER Academy of Sciences of the Czech Republic Helsinki University of Technology, Finland elisa.schaeffer@tkk.fi SOFSEM

More information

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Fall 2016 Combinatorial Problems as Linear and Convex Programs Instructor: Shaddin Dughmi Outline 1 Introduction 2 Shortest Path 3 Algorithms for Single-Source

More information

Efficient Computation of Representative Sets with Applications in Parameterized and Exact Algorithms

Efficient Computation of Representative Sets with Applications in Parameterized and Exact Algorithms Efficient Computation of Representative Sets with Applications in Parameterized and Exact Algorithms Fedor V. Fomin Daniel Lokshtanov Saket Saurabh Abstract Let M = (E, I) be a matroid and let S = {S 1,...,

More information

The complexity of finding arc-disjoint branching flows

The complexity of finding arc-disjoint branching flows The complexity of finding arc-disjoint branching flows J Bang-Jensen, Frédéric Havet, Anders Yeo To cite this version: J Bang-Jensen, Frédéric Havet, Anders Yeo. The complexity of finding arc-disjoint

More information

More Approximation Algorithms

More Approximation Algorithms CS 473: Algorithms, Spring 2018 More Approximation Algorithms Lecture 25 April 26, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 28 Formal definition of approximation

More information

On shredders and vertex connectivity augmentation

On shredders and vertex connectivity augmentation On shredders and vertex connectivity augmentation Gilad Liberman The Open University of Israel giladliberman@gmail.com Zeev Nutov The Open University of Israel nutov@openu.ac.il Abstract We consider the

More information