Astrodynamics of Interplanetary Cubesats

Size: px
Start display at page:

Download "Astrodynamics of Interplanetary Cubesats"

Transcription

1 Astrodynamics of Interplanetary Cubesats F. Topputo Politecnico di Milano, Italy 06 F. Topputo, Politecnico di Milano. All rights reserved. icubesat 06, 5th Interplanetary CubeSat Workshop 4-5 May 06, Oxford, United Kingdom

2 Outline Interplanetary trajectory design Conventional spacecraft Cubesats Main challenges Case study: Cubesat mission to Mars Proposed strategy Ballistic capture Dual propulsion Critical analysis

3 Interplanetary trajectory design for standard spacecraft Aim: To find best path for a conventional spacecraft Fuel-optimal, time-optimal, energy-optimal, etc. Manoeuvres accomplished through on-board propulsion Small errors in nominal trajectory zeroed with TCM 6 DoF control usually available (RCS) Control authority is not an issue S/C designed to cope with off-nominal conditions, unless catastrophic events occur S/C over-actuated 3

4 Trajectory design for interplanetary cubesats Aim: To find best solution under much tighter constraints Power generated Propellant stored Thrust exerted Interplanetary cubesats have much less control authority Capability of executing al manoeuvres strongly limited These features set new challenges in astrodynamics Arrival: How to acquire a final, closed about a planet? Cruise: How to accomplish interplanetary transfer? Departure: How to leave Earth? 4

5 Case study: Cubesat mission to Mars Devised strategy involves Arrival: Performing ballistic capture upon Mars arrival Cruise: Using on-board micro-propulsion Departure: Using hybrid propulsion to leave Earth Case study: A cubesat mission to Mars 5

6 Ballistic capture (in a nutshell) A massless particle is (temporarily) ballistically captured by a primary if (along ) its Kepler energy (H) goes from positive to negative The two-body state changes from hyperbolic to elliptic Requires n-body dynamics, with n 3 Permanent capture require dissipation The opposite behavior is ballistic escape Planet Temporary ballistic capture 6

7 Why ballistic capture Saves propellant Reduces hyperbolic excess velocity upon arrival Lowers magnitude of arrival maneuver, or Thus saving propellant, m p /m 0 = exp[ v/(i sp g 0 )] Widens launch windows Target is a point in space, not planet Increases safety Avoids single-point injection failures v Hyperbolic arrival 7

8 Why ballistic capture Saves propellant Reduces hyperbolic excess velocity upon arrival Lowers magnitude of arrival maneuver, or Thus saving propellant, m p /m 0 = exp[ v/(i sp g 0 )] Widens launch windows Target is a point in space, not planet Increases safety Avoids single-point injection failures v Hyperbolic arrival 7

9 Why ballistic capture Saves propellant Reduces hyperbolic excess velocity upon arrival Lowers magnitude of arrival maneuver, or Thus saving propellant, m p /m 0 = exp[ v/(i sp g 0 )] Widens launch windows Target is a point in space, not planet Increases safety Avoids single-point injection failures v Hyperbolic arrival 7

10 Why ballistic capture Saves propellant Reduces hyperbolic excess velocity upon arrival Lowers magnitude of arrival maneuver, or Thus saving propellant, m p /m 0 = exp[ v/(i sp g 0 )] Widens launch windows Target is a point in space, not planet Increases safety Avoids single-point injection failures v Hyperbolic arrival Low-energy arrival 7

11 Why ballistic capture Saves propellant Reduces hyperbolic excess velocity upon arrival Lowers magnitude of arrival maneuver, or Thus saving propellant, m p /m 0 = exp[ v/(i sp g 0 )] Widens launch windows Target is a point in space, not planet Increases safety Avoids single-point injection failures v Hyperbolic arrival Low-energy arrival 7

12 Why ballistic capture Saves propellant Reduces hyperbolic excess velocity upon arrival Lowers magnitude of arrival maneuver, or Thus saving propellant, m p /m 0 = exp[ v/(i sp g 0 )] Widens launch windows Target is a point in space, not planet Increases safety Avoids single-point injection failures v Hyperbolic arrival Low-energy arrival 7

13 of periapsis radius rp. Thisby ausing great departure Hohmann Figure 6: sample solution constructed in Figure Left: Figure 6:gardless AA sample solution constructed by isusing infrom Figure 4. 4.Left: transfers where cost increases for increasing rp. Sun-centered frame ( black needed target capture capture Sun-centered frame ( black is is needed tototarget point from Earth; red is capture ; blue point departing Earth; red is capture ; blue departing The redfrom dots in Figure 8 are organized into two di erent sets that correis post-capture ). Right: capture (red) and post-capture spond to two branches of capture sets, see Figure 3. is post-capture ). Right: capture (red) and post-capture (blue) rotating Mars-centered frame. (blue) in in rotating Mars-centered frame. Ballistic capture at Mars th Draft [Revision 0] Saturday 8 November, 04 at 4:4 (c) E. Belbruno and F. Topputo rp 0.5 Y (AU) SOI 0 0 xc xc 0 0 y (adim.) Ballistic capture y (adim.) 3.5 Y (AU)!"#$%&'()*+,-./ :;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{ }~ The set of red dots, as a function of rp is seen to have a series of gaps. This is due to structure of stable and unstable sets as defined x 0 x 0.5 in algorithm for weak stability boundary(see Appendix ). As is 4 4 Mar Mar p described in [6, 3], stable and unstable sets alternate on each radial 3 3 line emanating from secondary body (Mars in this case), giving a 0.5 Cantor-like structure. 3 V The results from Figure 8(b) are summarized in Table 3. vision 0] Saturday 8th November, 04 at 4:4 Mars e< x (c) E. BelbrunoInterplanetary and F. Topputo transfer Table 3: Comparison between ballistic capture transfers and Hohmann transfers c Ear th@dep Ear th@dep c smar Mar Figure : Structure of ballistic capture transfers to Mars. xc to xto c rp rp 3 3 for points in Figure 8(b). The saving, S, is computed as S = ( Vc V )/ Vc, where V associated to H3 case is xconsidered. S xis a X (AU) x (adim.) X (AU) (adim.) 0x 0 measure of efficiency of ballistic capture transfers. tc!p is timeinertial frame Rotating frame (a)(a) Inertial frame (b)(b) Rotating frame of-flight needed to go from xc to rp process is much more benign that high velocity capture maneuver at rp that must be done by a Hohmann transfer. From an operational point of view, this 3 3 is advantageous. H H We now describe se steps in detail in following sections. H3 H3 3 H H3 Point Vc (km) V by (km/s) S (%) P (km) solution 7: A rsample obtained targeting a pointtc!p in 6(days) C 6 (0.99, /). Figure /)..5 Figure () 7: A sample solution obtained by targeting a point in C (0.99, rp (A) % Model 6 6 This solution is interesting due facttarget targetpoint pointxcxcis is33 This solution is interesting due to to fact 00 (B) % 433 When our spacecraft, P, is in motion about Mars, from arrival at xc to Mars from Mars. Also, it takes approximately same amount of time reach km km from Mars. approximately amount of43 time toto reach (B) (C)motion (D) of P by planar elliptic restricted (C) Also, 9897it takes same -4.9% ballistic capture at rp, we(a) model Mars periapsis as case in Figure Left: Sun-centered inertial frame.right: Right: () Mars periapsis case in.04 Figure Left: frame. three-body problem, which () rp takes into account Mars eccentricity ep =H (D) as sun-centered -8.% inertial43 H H rp We view.5 mass of P to be zero..5 rotating Mars-centered frame. H4 H4 rotating Mars-centered frame. H4.5 () Vc or V (km/s) Vc or V (km/s) rp The planar elliptic restricted three-body problem studies motion of a massless particle, P, under gravitational field generated by mutual elliptic motion of two primaries, P, P, of masses m, m, respectively. In this motion. paper, Capt. P is Sun, and P is Mars. The equations for Ball. Capt. of P are mann x00 0 y 0 =!x, 0.5 Hohmann y 00 + x0 =!y..5 5 The derivatives of rp (km) 0subscripts in Eq. () are partial (x, y)!(x, y, f ) =, + 0 ep cos f (b) f = /4 where potential function is (x, y) = µ µ (x + y ) µ( r r µ), From this table it can be seen that time for spacecraft to go from xc to rpisis computed on orderbyofassuming a year. This should time should be able to bein decreased Ball. Capt. This spacecraft being already heliocentric This isvery computed by assuming spacecraft as as being already in heliocentric Hohmann by slightly adjusting V so that distance between spacecraft and c () at Earth s SOI; 4) A second maneuver, VcV performed to inject 0.5 cis, is at Earth s SOI; 4) A second maneuver,, performed to inject 0 Mars0.5decreases.5 rapidly..5 more 5 High altitude Mars s easily accessible rp (km) spacecraft into ballistic capture ; between two maneuvers, 0 ; spacecraft into ballistic capture 5) 5) In In between two maneuvers, Cheaper than Hohmann transfer(s) moves heliocentric space from both Earthand andmars, Mars, spacecraft moves in in heliocentric space farfar from both Earth ()spacecraft (c) f = / 0 refore dynamics is that of two-body problem 5 andand refore dynamics is that two-body problem [9].[9]. The No manoeuvre atof arrival needed! parameters of optimization (to be picked and held fixed) are: 8 The parameters of optimization (to be picked and held fixed) are: (3) on of Hohmann bitangential transfers and ballistic capture and r = (x + µ) + y, r = (x + µ ) + y. byequations ()capture sets C(e, fbarycentric, 0.99, f0 = 0, /4, /. are written in a nonuniformly rotating, adimen0 ), e = / /

14 Ballistic capture in news Topputo & Belbruno, arxiv, 05 Topputo & Belbruno, CMDA, 05 9

15 Reaching Mars with micro propulsion Aim: target a point in deep space, xc, to ensure capture using on-board Ion Propulsion Assumptions: m0 = kg, S/C in parabolic state wrt Earth T(AU) =.3e^(-.6*AU) [mn] Isp(AU) = 3887.*AU^ 384*AU [s] TOF = 79 days (3. years), mp =.79 kg (mass at Mars = 9. kg) Y (AU) c x c Earth@Dep Mars@r p X (AU) Thrust (mn) Thrust angle (rad) T Tmax time (days) time (days) φ 0

16 Escaping Earth Cubesats likely launched as piggy back payloads No control on launch date Released in low-altitude (LEO, GTO) Earth-bounded Escaping with on-board propulsion may be cumbersome Long duration needed to escape - Pointing, operations, costs, etc. strongly affected Much radiation dose accumulate - Solar arrays, shielding, etc. strongly affected Images taken from

17 Dual propulsion idea Both chemical and low-thrust propulsion on-board system How it works: S/C launched as piggy back in LEO Earth escape achieved with chemical, impulsive burn Short duration, less radiation Masses involve in chemical propulsion are thrown away Dual-staged S/C, interfaces, complexity Cruise accomplished with on-board low-thrust propulsion Concept proven in ESA study in 0 Implemented by Lisa Pathfinder (for or reasons)

18 Dual propulsion for cubesats (a) Ballistic escape via impulsive maneuver and lunar (b) Transfer trajectory as viewed in Sun-centered (b) Ballistic capture and low-thrust descending at Cubesat achieves escape with its own chemical propulsion system Cubesat performs Earth- Mars transfer with its own low-thrust propulsion Upon arrival, ballistic capture is performed (and low-altitude achieved) 3

19 Wrap up and conclusions Cubesats have been used successfully for Earth observation/communication Wandering in solar system with extremely lowresources space systems (cubesats) raises a set of completely new challenges in astrodynamics Ideas have been presented to attempt answering se new questions These include Performing ballistic capture Having a dual propulsion system More in-depth analyses needed 4

Earth Mars Transfers with Ballistic Capture

Earth Mars Transfers with Ballistic Capture Noname manuscript No. (will be inserted by the editor) Earth Mars Transfers with Ballistic Capture F. Topputo E. Belbruno Received: date / Accepted: date Abstract We construct a new type of transfer from

More information

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 4 Due Thursday, July 30.

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 4 Due Thursday, July 30. MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 4 Due Thursday, July 30. Guidelines: Please turn in a neat and clean homework that gives all the formulae that you have used as well as details that

More information

INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS

INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS INTERPLANETARY AND LUNAR TRANSFERS USING LIBRATION POINTS Francesco Topputo (), Massimiliano Vasile () and Franco Bernelli-Zazzera () () Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano,

More information

Space Travel on a Shoestring: CubeSat Beyond LEO

Space Travel on a Shoestring: CubeSat Beyond LEO Space Travel on a Shoestring: CubeSat Beyond LEO Massimiliano Vasile, Willem van der Weg, Marilena Di Carlo Department of Mechanical and Aerospace Engineering University of Strathclyde, Glasgow 5th Interplanetary

More information

Lecture D30 - Orbit Transfers

Lecture D30 - Orbit Transfers J. Peraire 16.07 Dynamics Fall 004 Version 1.1 Lecture D30 - Orbit Transfers In this lecture, we will consider how to transfer from one orbit, or trajectory, to another. One of the assumptions that we

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) L06: Interplanetary Trajectories Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation 2 Problem Statement? Hint #1: design the Earth-Mars transfer using known concepts

More information

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN Satellite Orbital Maneuvers and Transfers Dr Ugur GUVEN Orbit Maneuvers At some point during the lifetime of most space vehicles or satellites, we must change one or more of the orbital elements. For example,

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 10. Interplanetary Trajectories Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation 2 6. Interplanetary Trajectories 6.1 Patched conic method 6.2 Lambert s problem

More information

INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS

INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT ABOUT LIBRATION POINTS 6 th International Conference on Astrodynamics Tools and Technique (ICATT) INDIRECT PLANETARY CAPTURE VIA PERIODIC ORBIT LI Xiangyu, Qiao Dong, Cui Pingyuan Beijing Institute of Technology Institute of

More information

SUN INFLUENCE ON TWO-IMPULSIVE EARTH-TO-MOON TRANSFERS. Sandro da Silva Fernandes. Cleverson Maranhão Porto Marinho

SUN INFLUENCE ON TWO-IMPULSIVE EARTH-TO-MOON TRANSFERS. Sandro da Silva Fernandes. Cleverson Maranhão Porto Marinho SUN INFLUENCE ON TWO-IMPULSIVE EARTH-TO-MOON TRANSFERS Sandro da Silva Fernandes Instituto Tecnológico de Aeronáutica, São José dos Campos - 12228-900 - SP-Brazil, (+55) (12) 3947-5953 sandro@ita.br Cleverson

More information

Interplanetary Mission Opportunities

Interplanetary Mission Opportunities Interplanetary Mission Opportunities Introduction The quest for unravelling the mysteries of the universe is as old as human history. With the advent of new space technologies, exploration of space became

More information

Solar Orbiter Ballistic Transfer Mission Analysis Synthesis

Solar Orbiter Ballistic Transfer Mission Analysis Synthesis European Space Agency Agence Spatiale Européenne directorate of operations and infrastructure ground systems engineering department mission analysis office MAO Working Paper No. 483 Issue 1, Rev. 0 Solar

More information

Patch Conics. Basic Approach

Patch Conics. Basic Approach Patch Conics Basic Approach Inside the sphere of influence: Planet is the perturbing body Outside the sphere of influence: Sun is the perturbing body (no extra-solar system trajectories in this class...)

More information

arxiv:gr-qc/ v1 15 Nov 2004

arxiv:gr-qc/ v1 15 Nov 2004 Mission design for LISA Pathfinder arxiv:gr-qc/0411071v1 15 Nov 2004 M Landgraf, M Hechler, and S Kemble ESA/ESOC, Robert-Bosch-Straße 5, D-64293 Darmstadt, Germany E-mail: Markus.Landgraf@esa.int EADS

More information

Earth-Mars Halo to Halo Low Thrust

Earth-Mars Halo to Halo Low Thrust Earth-Mars Halo to Halo Low Thrust Manifold Transfers P. Pergola, C. Casaregola, K. Geurts, M. Andrenucci New Trends in Astrodynamics and Applications V 3 June / -2 July, 28 Milan, Italy Outline o Introduction

More information

From the Earth to the Moon: the weak stability boundary and invariant manifolds -

From the Earth to the Moon: the weak stability boundary and invariant manifolds - From the Earth to the Moon: the weak stability boundary and invariant manifolds - Priscilla A. Sousa Silva MAiA-UB - - - Seminari Informal de Matemàtiques de Barcelona 05-06-2012 P.A. Sousa Silva (MAiA-UB)

More information

Expanding opportunities for lunar gravity capture

Expanding opportunities for lunar gravity capture Expanding opportunities for lunar gravity capture Keita Tanaka 1, Mutsuko Morimoto 2, Michihiro Matsumoto 1, Junichiro Kawaguchi 3, 1 The University of Tokyo, Japan, 2 JSPEC/JAXA, Japan, 3 ISAS/JAXA, Japan,

More information

ASEN 6008: Interplanetary Mission Design Lab Spring, 2015

ASEN 6008: Interplanetary Mission Design Lab Spring, 2015 ASEN 6008: Interplanetary Mission Design Lab Spring, 2015 Lab 4: Targeting Mars using the B-Plane Name: I d like to give credit to Scott Mitchell who developed this lab exercise. He is the lead Astrodynamicist

More information

Rigorous Global Optimization of Impulsive Space Trajectories

Rigorous Global Optimization of Impulsive Space Trajectories Rigorous Global Optimization of Impulsive Space Trajectories P. Di Lizia, R. Armellin, M. Lavagna K. Makino, M. Berz Fourth International Workshop on Taylor Methods Boca Raton, December 16 19, 2006 Motivation

More information

Flight and Orbital Mechanics

Flight and Orbital Mechanics Flight and Orbital Mechanics Lecture slides Challenge the future 1 Flight and Orbital Mechanics AE-104, lecture hours 1-4: Interplanetary flight Ron Noomen October 5, 01 AE104 Flight and Orbital Mechanics

More information

Previous Lecture. Orbital maneuvers: general framework. Single-impulse maneuver: compatibility conditions

Previous Lecture. Orbital maneuvers: general framework. Single-impulse maneuver: compatibility conditions 2 / 48 Previous Lecture Orbital maneuvers: general framework Single-impulse maneuver: compatibility conditions closed form expression for the impulsive velocity vector magnitude interpretation coplanar

More information

DARE Mission and Spacecraft Overview

DARE Mission and Spacecraft Overview DARE Mission and Spacecraft Overview October 6, 2010 Lisa Hardaway, PhD Mike Weiss, Scott Mitchell, Susan Borutzki, John Iacometti, Grant Helling The information contained herein is the private property

More information

Optimal Gravity Assisted Orbit Insertion for Europa Orbiter Mission

Optimal Gravity Assisted Orbit Insertion for Europa Orbiter Mission Optimal Gravity Assisted Orbit Insertion for Europa Orbiter Mission Deepak Gaur 1, M. S. Prasad 2 1 M. Tech. (Avionics), Amity Institute of Space Science and Technology, Amity University, Noida, U.P.,

More information

OptElec: an Optimisation Software for Low-Thrust Orbit Transfer Including Satellite and Operation Constraints

OptElec: an Optimisation Software for Low-Thrust Orbit Transfer Including Satellite and Operation Constraints OptElec: an Optimisation Software for Low-Thrust Orbit Transfer Including Satellite and Operation Constraints 7th International Conference on Astrodynamics Tools and Techniques, DLR, Oberpfaffenhofen Nov

More information

5.12 The Aerodynamic Assist Trajectories of Vehicles Propelled by Solar Radiation Pressure References...

5.12 The Aerodynamic Assist Trajectories of Vehicles Propelled by Solar Radiation Pressure References... 1 The Two-Body Problem... 1 1.1 Position of the Problem... 1 1.2 The Conic Sections and Their Geometrical Properties... 12 1.3 The Elliptic Orbits... 20 1.4 The Hyperbolic and Parabolic Trajectories...

More information

Escape Trajectories from Sun Earth Distant Retrograde Orbits

Escape Trajectories from Sun Earth Distant Retrograde Orbits Trans. JSASS Aerospace Tech. Japan Vol. 4, No. ists30, pp. Pd_67-Pd_75, 06 Escape Trajectories from Sun Earth Distant Retrograde Orbits By Yusue OKI ) and Junichiro KAWAGUCHI ) ) Department of Aeronautics

More information

Astromechanics. 6. Changing Orbits

Astromechanics. 6. Changing Orbits Astromechanics 6. Changing Orbits Once an orbit is established in the two body problem, it will remain the same size (semi major axis) and shape (eccentricity) in the original orbit plane. In order to

More information

End-Of-Life Disposal Concepts for Lagrange-Point and Highly Elliptical Orbit Missions

End-Of-Life Disposal Concepts for Lagrange-Point and Highly Elliptical Orbit Missions End-Of-Life Disposal Concepts for Lagrange-Point and Highly Elliptical Orbit Missions Executive summary of the main study and the study extension Version 1.0 12 February 2015 ESA/ESOC contract No. 4000107624/13/F/MOS

More information

Ulrich Walter. Astronautics. The Physics of Space Flight. 2nd, Enlarged and Improved Edition

Ulrich Walter. Astronautics. The Physics of Space Flight. 2nd, Enlarged and Improved Edition Ulrich Walter Astronautics The Physics of Space Flight 2nd, Enlarged and Improved Edition Preface to Second Edition Preface XVII Acknowledgments XIX List of Symbols XXI XV 1 Rocket Fundamentals 1 1.1 Rocket

More information

Massimiliano Vasile, Stefano Campagnola, Paolo Depascale, Stefano Pessina, Francesco Topputo

Massimiliano Vasile, Stefano Campagnola, Paolo Depascale, Stefano Pessina, Francesco Topputo A Toolbox for Preliminary Massimiliano Vasile, Stefano Campagnola, Paolo Depascale, Stefano Pessina, Francesco Topputo Mission Analysis and Design PAMSIT IMAGO ATOM-C EPIC Massimiliano Vasile, Stefano

More information

ASTRIUM. Interplanetary Path Early Design Tools at ASTRIUM Space Transportation. Nathalie DELATTRE ASTRIUM Space Transportation.

ASTRIUM. Interplanetary Path Early Design Tools at ASTRIUM Space Transportation. Nathalie DELATTRE ASTRIUM Space Transportation. Interplanetary Path Early Design Tools at Space Transportation Nathalie DELATTRE Space Transportation Page 1 Interplanetary missions Prime approach: -ST has developed tools for all phases Launch from Earth

More information

CHAPTER 3 PERFORMANCE

CHAPTER 3 PERFORMANCE PERFORMANCE 3.1 Introduction The LM-3A performance figures given in this chapter are based on the following assumptions: Launching from XSLC (Xichang Satellite Launch Center, Sichuan Province, China),

More information

Global Optimization of Impulsive Interplanetary Transfers

Global Optimization of Impulsive Interplanetary Transfers Global Optimization of Impulsive Interplanetary Transfers R. Armellin, Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano Taylor Methods and Computer Assisted Proofs Barcelona, June, 3 7, 2008

More information

ASTOS for Low Thrust Mission Analysis

ASTOS for Low Thrust Mission Analysis ASTOS for Low Thrust Mission Analysis 3rd Astrodynamics Workshop, Oct. 26, ESTEC Overview Low Thrust Trajectory Computation Description of the Optimal Control Problem Trajectory Optimization and Mission

More information

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013 BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission with Novel Plasma Propulsion Technology Sara Spangelo, NASA JPL, Caltech Benjamin Longmier, University of Michigan Interplanetary Small

More information

A Simple Semi-Analytic Model for Optimum Specific Impulse Interplanetary Low Thrust Trajectories

A Simple Semi-Analytic Model for Optimum Specific Impulse Interplanetary Low Thrust Trajectories A Simple Semi-Analytic Model for Optimum Specific Impulse Interplanetary Low Thrust Trajectories IEPC-2011-010 * Presented at the 32nd International Electric Propulsion Conference, Wiesbaden Germany David

More information

ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary

ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary ASEN 5050 SPACEFLIGHT DYNAMICS Interplanetary Prof. Jeffrey S. Parker University of Colorado Boulder Lecture 29: Interplanetary 1 HW 8 is out Due Wednesday, Nov 12. J2 effect Using VOPs Announcements Reading:

More information

Optimal Control based Time Optimal Low Thrust Orbit Raising

Optimal Control based Time Optimal Low Thrust Orbit Raising Optimal Control based Time Optimal Low Thrust Orbit Raising Deepak Gaur 1, M. S. Prasad 2 1 M. Tech. (Avionics), Amity Institute of Space Science and Technology, Amity University, Noida, U.P., India 2

More information

THE TRAJECTORY CONTROL STRATEGIES FOR AKATSUKI RE-INSERTION INTO THE VENUS ORBIT

THE TRAJECTORY CONTROL STRATEGIES FOR AKATSUKI RE-INSERTION INTO THE VENUS ORBIT THE TRAJECTORY CONTROL STRATEGIES FOR AKATSUKI RE-INSERTION INTO THE VENUS ORBIT Chikako Hirose (), Nobuaki Ishii (), Yasuhiro Kawakatsu (), Chiaki Ukai (), and Hiroshi Terada () () JAXA, 3-- Yoshinodai

More information

Interplanetary Travel

Interplanetary Travel Interplanetary Travel Interplanetary Travel Concept Patched Conic Hypothesis Departure & Arrival Manoeuvres Interplanetary Travel Concept Interplanetary travel is concerned with motion of manmade objects

More information

CAS-ESA Call for small mission proposals - Technical annex

CAS-ESA Call for small mission proposals - Technical annex CAS-ESA Call for small mission proposals - Technical annex Copenhagen workshop 23/09/2014 Table of contents 1. General considerations Mass & power Schedule Work breakdown and share Technology readiness

More information

CHAPTER 3 PERFORMANCE

CHAPTER 3 PERFORMANCE PERFORMANCE 3.1 Introduction The LM-3B performance figures given in this chapter are based on the following assumptions: Launching from XSLC (Xichang Satellite Launch Center, Sichuan Province, China),

More information

Analysis for the Earth Escape Strategy Using Unstable Manifolds of Sun-Earth Halo Orbit and Lunar Gravity Assists

Analysis for the Earth Escape Strategy Using Unstable Manifolds of Sun-Earth Halo Orbit and Lunar Gravity Assists Analysis for the Earth Escape Strategy Using Unstable Manifolds of Sun-Earth Halo Orbit and Lunar Gravity Assists Hongru Chen ), Yasuhiro Kawakatsu ) and Toshiya Hanada ) ) Department of Aeronautics and

More information

IMPACT OF SPACE DEBRIS MITIGATION REQUIREMENTS ON THE MISSION DESIGN OF ESA SPACECRAFT

IMPACT OF SPACE DEBRIS MITIGATION REQUIREMENTS ON THE MISSION DESIGN OF ESA SPACECRAFT IMPACT OF SPACE DEBRIS MITIGATION REQUIREMENTS ON THE MISSION DESIGN OF ESA SPACECRAFT Rüdiger Jehn (1), Florian Renk (1) (1 ) European Space Operations Centre, Robert-Bosch-Str. 5, 64293 Darmstadt, Germany,

More information

Astrodynamics of Moving Asteroids

Astrodynamics of Moving Asteroids Astrodynamics of Moving Asteroids Damon Landau, Nathan Strange, Gregory Lantoine, Tim McElrath NASA-JPL/CalTech Copyright 2014 California Institute of Technology. Government sponsorship acknowledged. Capture

More information

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit Ryan Tyler, D.J. McComas, Howard Runge, John Scherrer, Mark Tapley 1 IBEX Science Requirements IBEX

More information

L eaving Earth and arriving at another planet or asteroid requires

L eaving Earth and arriving at another planet or asteroid requires Designing Interplanetary Transfers L eaving Earth and arriving at another planet or asteroid requires a spacecraft to implement a sequence of manoeuvres. These include changes of velocity needed to escape

More information

Escape Trajectories from the L 2 Point of the Earth-Moon System

Escape Trajectories from the L 2 Point of the Earth-Moon System Trans. Japan Soc. Aero. Space Sci. Vol. 57, No. 4, pp. 238 244, 24 Escape Trajectories from the L 2 Point of the Earth-Moon System By Keita TANAKA Þ and Jun ichiro KAWAGUCHI 2Þ Þ Department of Aeronautics

More information

Low Thrust Mission Trajectories to Near Earth Asteroids

Low Thrust Mission Trajectories to Near Earth Asteroids Low Thrust Mission Trajectories to Near Earth Asteroids Pratik Saripalli Graduate Research Assistant, College Park, Maryland, 20740, USA Eric Cardiff NASA Goddard Space Flight Center, Greenbelt, Maryland,

More information

End of Life Re-orbiting The Meteosat-5 Experience

End of Life Re-orbiting The Meteosat-5 Experience End of Life Re-orbiting The Meteosat-5 Experience Milan EUMETSAT, Darmstadt, Germany This article illustrates the orbit maneuver sequence performed during Meteosat- 5 End of Life (EOL) re-orbiting operations

More information

Optimal Generalized Hohmann Transfer with Plane Change Using Lagrange Multipliers

Optimal Generalized Hohmann Transfer with Plane Change Using Lagrange Multipliers Mechanics and Mechanical Engineering Vol. 21, No. 4 (2017) 11 16 c Lodz University of Technology Optimal Generalized Hohmann Transfer with Plane Change Using Lagrange Multipliers Osman M. Kamel Astronomy

More information

Powered Space Flight

Powered Space Flight Powered Space Flight KOIZUMI Hiroyuki ( 小泉宏之 ) Graduate School of Frontier Sciences, Department of Advanced Energy & Department of Aeronautics and Astronautics ( 基盤科学研究系先端エネルギー工学専攻, 工学系航空宇宙工学専攻兼担 ) Scope

More information

Previous Lecture. Approximate solutions for the motion about an oblate planet: The Brouwer model. The Cid- Lahulla model 2 / 39

Previous Lecture. Approximate solutions for the motion about an oblate planet: The Brouwer model. The Cid- Lahulla model 2 / 39 2 / 39 Previous Lecture Approximate solutions for the motion about an oblate planet: The Brouwer model The Cid- Lahulla model 3 / 39 Definition of Orbital Maneuvering Orbital maneuver: the use of the propulsion

More information

BIRDY-T : Focus on propulsive aspects of an icubsat to small bodies of the solar system

BIRDY-T : Focus on propulsive aspects of an icubsat to small bodies of the solar system BIRDY-T : Focus on propulsive aspects of an icubsat to small bodies of the solar system Gary Quinsac, PhD student at PSL Supervisor: Benoît Mosser Co-supervisors: Boris Segret, Christophe Koppel icubesat,

More information

ESMO Mission Analysis

ESMO Mission Analysis Changing the economics of space ESMO Mission Analysis SRR Workshop Alison Gibbings 22 nd 26 th March 2010 Review of the existing baseline Sensitivity analysis Contents At lunar Injection Along the WSB-Moon

More information

INTERSTELLAR PRECURSOR MISSIONS USING ADVANCED DUAL-STAGE ION PROPULSION SYSTEMS

INTERSTELLAR PRECURSOR MISSIONS USING ADVANCED DUAL-STAGE ION PROPULSION SYSTEMS INTERSTELLAR PRECURSOR MISSIONS USING ADVANCED DUAL-STAGE ION PROPULSION SYSTEMS David G Fearn, 23 Bowenhurst Road, Church Crookham, Fleet, Hants, GU52 6HS, UK dg.fearn@virgin.net Roger Walker Advanced

More information

Design of a Multi-Moon Orbiter

Design of a Multi-Moon Orbiter C C Dynamical A L T E C S H Design of a Multi-Moon Orbiter Shane D. Ross Control and Dynamical Systems and JPL, Caltech W.S. Koon, M.W. Lo, J.E. Marsden AAS/AIAA Space Flight Mechanics Meeting Ponce, Puerto

More information

Satellite Engineering

Satellite Engineering Satellite Engineering Universidad de Concepción November 2009 Gaëtan Kerschen Space Structures & Systems Lab University of Liège Satellite Engineering Universidad de Concepción November 2009 Day 3: Satellite

More information

ISAS MERCURY ORBITER MISSION TRAJECTORY DESIGN STRATEGY. Hiroshi Yamakawa

ISAS MERCURY ORBITER MISSION TRAJECTORY DESIGN STRATEGY. Hiroshi Yamakawa ISAS MERCURY ORBITER MISSION TRAJECTORY DESIGN STRATEGY Hiroshi Yamakawa Institute of Space and Astronautical Science (ISAS) 3-1-1 Yoshinodai, Sagamihara, Kanagawa, 229-851 Japan E-mail:yamakawa@pub.isas.ac.jp

More information

LOW-COST LUNAR COMMUNICATION AND NAVIGATION

LOW-COST LUNAR COMMUNICATION AND NAVIGATION LOW-COST LUNAR COMMUNICATION AND NAVIGATION Keric Hill, Jeffrey Parker, George H. Born, and Martin W. Lo Introduction Spacecraft in halo orbits near the Moon could relay communications for lunar missions

More information

Results found by the CNES team (team #4)

Results found by the CNES team (team #4) 3 rd Global Trajectory Optimisation Competition (GTOC3) organized by the Aerospace Propulsion Group of the Dipartimento di Energetica at Politecnico di Torino Results found by the CNES team (team #4) Presented

More information

Launch strategy for Indian lunar mission and precision injection to the Moon using genetic algorithm

Launch strategy for Indian lunar mission and precision injection to the Moon using genetic algorithm Launch strategy for Indian lunar mission and precision injection to the Moon using genetic algorithm VAdimurthy, R V Ramanan, S R Tandon and C Ravikumar Aeronautics Entity, Vikram Sarabhai Space Centre,

More information

OPTIMISATION COMPETITION

OPTIMISATION COMPETITION 1 ST ACT GLOBAL TRAJECTORY OPTIMISATION COMPETITION Carlos Corral Van Damme Raul Cadenas Gorgojo Jesus Gil Fernandez (GMV, S.A.) ESTEC, 2 nd February, 2006 GMV S.A., 2006 Property of GMV S.A. All rights

More information

The B-Plane Interplanetary Mission Design

The B-Plane Interplanetary Mission Design The B-Plane Interplanetary Mission Design Collin Bezrouk 2/11/2015 2/11/2015 1 Contents 1. Motivation for B-Plane Targeting 2. Deriving the B-Plane 3. Deriving Targetable B-Plane Elements 4. How to Target

More information

A Comparison of Low Cost Transfer Orbits from GEO to LLO for a Lunar CubeSat Mission

A Comparison of Low Cost Transfer Orbits from GEO to LLO for a Lunar CubeSat Mission A Comparison of Low Cost Transfer Orbits from GEO to LLO for a Lunar CubeSat Mission A presentation for the New Trends in Astrodynamics conference Michael Reardon 1, Jun Yu 2, and Carl Brandon 3 1 PhD

More information

Earth-Mars transfers with ballistic escape and low-thrust capture

Earth-Mars transfers with ballistic escape and low-thrust capture Earth-Mars transfers with ballistic escape and low-thrust capture G. Mingotti, F. Topputo, F. Bernelli-Zazzera To cite this version: G. Mingotti, F. Topputo, F. Bernelli-Zazzera. Earth-Mars transfers with

More information

IAC-16.A Jason A. Reiter a *, David B. Spencer b

IAC-16.A Jason A. Reiter a *, David B. Spencer b IAC-16.A6.7.5 Trading Spacecraft Propellant Use and Mission Performance to Determine the Optimal Collision Probability in Emergency Collision Avoidance Scenarios Jason A. Reiter a *, David B. Spencer b

More information

A VEGA Dedicated Electric Propulsion Transfer Module To The Moon

A VEGA Dedicated Electric Propulsion Transfer Module To The Moon A VEGA Dedicated Electric Propulsion Transfer Module To The Moon IEPC-2007-306 Presented at the 30 th International Electric Propulsion Conference, Florence, Italy C. Casaregola, K. Geurts, P.Pergola,

More information

Low-Thrust Trajectories to the Moon

Low-Thrust Trajectories to the Moon 3rd WSEAS International Conference on APPLIED and THEORETICAL MECHANICS, Spain, December 14-16, 7 257 Low-Thrust Trajectories to the Moon ANTONIO F. B. A. PRADO Space Mechanics and Control Division INPE

More information

The Astrodynamics and Mechanics of Orbital Spaceflight

The Astrodynamics and Mechanics of Orbital Spaceflight The Astrodynamics and Mechanics of Orbital Spaceflight Vedant Chandra 11-S1, TSRS Moulsari 1 1 Introduction to Rocketry Before getting into the details of orbital mechanics, we must understand the fundamentals

More information

Newton s Legacy. 1- accelerate to break free of Earth. Rocket Science: How to send a spacecraft to Mars

Newton s Legacy. 1- accelerate to break free of Earth. Rocket Science: How to send a spacecraft to Mars Reading: today: web-based reading on satellite orbits; Chap. 3 Sec. 5 Chap. 7, Sect. 1, 2 (for next week) Exam 1: Tuesday, September 26, 6:45-8:00. Room assignments on course website ESSAY QUESTION Homework

More information

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 About DSI A space technology and resources company Vision to enable the human space development by harvesting asteroid materials

More information

Interplanetary Spacecraft. Team 12. Alliance: Foxtrot

Interplanetary Spacecraft. Team 12. Alliance: Foxtrot Interplanetary Spacecraft Team 12 Alliance: Foxtrot February 26 th 2010 Team Name : Impala Cover Art : Parthsarathi Team Members: Parthsarathi Trivedi (L) Michael Thompson Seth Trey Mohd Alhafidz Yahya

More information

Overview of Astronautics and Space Missions

Overview of Astronautics and Space Missions Overview of Astronautics and Space Missions Prof. Richard Wirz Slide 1 Astronautics Definition: The science and technology of space flight Includes: Orbital Mechanics Often considered a subset of Celestial

More information

LOTNAV. A Low-Thrust Interplanetary Navigation Tool: The Trajectory Reconstruction Module

LOTNAV. A Low-Thrust Interplanetary Navigation Tool: The Trajectory Reconstruction Module LOTNAV A Low-Thrust Interplanetary Navigation Tool: The Trajectory Reconstruction Module Juan Luis Cano González Mission Analysis Division Deimos Space S.L. -1- The LOTNAV Tool The Low-Thrust Interplanetary

More information

ABOUT COMBINING TISSERAND GRAPH GRAVITY-ASSIST SEQUENCING WITH LOW-THRUST TRAJECTORY OPTIMIZATION

ABOUT COMBINING TISSERAND GRAPH GRAVITY-ASSIST SEQUENCING WITH LOW-THRUST TRAJECTORY OPTIMIZATION ABOUT COMBINING TISSERAND GRAPH GRAVITY-ASSIST SEQUENCING WITH LOW-THRUST TRAJECTORY OPTIMIZATION Volker Maiwald German Aerospace Center (DLR) Institute of Space Systems Department of System Analysis Space

More information

Gravity Assisted Maneuvers for Asteroids using Solar Electric Propulsion

Gravity Assisted Maneuvers for Asteroids using Solar Electric Propulsion Gravity Assisted Maneuvers for Asteroids using Solar Electric Propulsion Denilson P. S. dos Santos, Antônio F. Bertachini de A. Prado, Division of Space Mechanics and Control INPE C.P. 515, 17-310 São

More information

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded Code No: R05322106 Set No. 1 1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded rocket nozzles. (b) While on its way into orbit a space shuttle with an initial mass

More information

Earth-to-Moon Low Energy Transfers Targeting L 1 Hyperbolic Transit Orbits

Earth-to-Moon Low Energy Transfers Targeting L 1 Hyperbolic Transit Orbits Earth-to-Moon Low Energy Transfers Targeting L 1 Hyperbolic Transit Orbits Francesco Topputo Massimiliano Vasile Franco Bernelli-Zazzera Aerospace Engineering Department, Politecnico di Milano Via La Masa,

More information

TRAJECTORY DESIGN OF SOLAR ORBITER

TRAJECTORY DESIGN OF SOLAR ORBITER TRAJECTORY DESIGN OF SOLAR ORBITER José Manuel Sánchez Pérez ESA-ESOC HSO-GFA, Robert-Bosch-Str., Darmstadt, 293, Germany, 9--929, jose.manuel.sanchez.perez@esa.int Abstract: In the context of the ESA

More information

Method for Rapid Interplanetary Trajectory Analysis using V Maps with Flyby Options

Method for Rapid Interplanetary Trajectory Analysis using V Maps with Flyby Options Method for Rapid Interplanetary Trajectory Analysis using V Maps with Flyby Options The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Design of low energy space missions using dynamical systems theory

Design of low energy space missions using dynamical systems theory C C Dynamical A L T E C S H Design of low energy space missions using dynamical systems theory Shane D. Ross Control and Dynamical Systems, Caltech www.cds.caltech.edu/ shane Collaborators: J.E. Marsden

More information

IAC-12-C1.4.8 HIGH AREA-TO-MASS RATIO HYBRID PROPULSION EARTH TO MOON TRANSFERS IN THE CR3BP

IAC-12-C1.4.8 HIGH AREA-TO-MASS RATIO HYBRID PROPULSION EARTH TO MOON TRANSFERS IN THE CR3BP IAC-12-C1.4.8 HIGH AREA-TO-MASS RATIO HYBRID PROPULSION EARTH TO MOON TRANSFERS IN THE CR3BP Willem Johan van der Weg University of Strathclyde, United Kingdom, willem.van-der-weg@strath.ac.uk Massimiliano

More information

ASTRIUM. Minimum-time problem resolution under constraints for low-thrust stage trajectory computation. Nathalie DELATTRE ASTRIUM Space Transportation

ASTRIUM. Minimum-time problem resolution under constraints for low-thrust stage trajectory computation. Nathalie DELATTRE ASTRIUM Space Transportation Minimum-time problem resolution under constraints for low-thrust stage trajectory computation Nathalie DELATTRE Space Transportation Page 1 Introduction Purpose : Taking into account new technology for

More information

RAPID GEOSYNCHRONOUS TRANSFER ORBIT ASCENT PLAN GENERATION. Daniel X. Junker (1) Phone: ,

RAPID GEOSYNCHRONOUS TRANSFER ORBIT ASCENT PLAN GENERATION. Daniel X. Junker (1) Phone: , RAPID GEOSYNCHRONOUS TRANSFER ORBIT ASCENT PLAN GENERATION Daniel X. Junker (1) (1) LSE Space GmbH, Argelsrieder Feld 22, 82234 Wessling, Germany, Phone: +49 160 9111 6696, daniel.junker@lsespace.com Abstract:

More information

ADVANCED NAVIGATION STRATEGIES FOR AN ASTEROID SAMPLE RETURN MISSION

ADVANCED NAVIGATION STRATEGIES FOR AN ASTEROID SAMPLE RETURN MISSION AAS 11-499 ADVANCED NAVIGATION STRATEGIES FOR AN ASTEROID SAMPLE RETURN MISSION J. Bauman,* K. Getzandanner, B. Williams,* K. Williams* The proximity operations phases of a sample return mission to an

More information

DEVELOPMENT OF A MULTIPURPOSE LOW THRUST INTERPLANETARY TRAJECTORY CALCULATION CODE

DEVELOPMENT OF A MULTIPURPOSE LOW THRUST INTERPLANETARY TRAJECTORY CALCULATION CODE AAS 03-667 DEVELOPMENT OF A MULTIPURPOSE LOW THRUST INTERPLANETARY TRAJECTORY CALCULATION CODE Tadashi Sakai 1 and John R. Olds 2 A multipurpose low thrust interplanetary trajectory calculation code has

More information

Lunar Flashlight Project

Lunar Flashlight Project ABSTRACT Recent observations of the Moon with the Moon Mineralogy Mapper (M3), Lunar Crater Observation and Sensing Satellite (LCROSS), the Lunar Reconnaissance Orbiter (LRO) and other evidence suggest

More information

Chapter 8. Precise Lunar Gravity Assist Trajectories. to Geo-stationary Orbits

Chapter 8. Precise Lunar Gravity Assist Trajectories. to Geo-stationary Orbits Chapter 8 Precise Lunar Gravity Assist Trajectories to Geo-stationary Orbits Abstract A numerical search technique for designing a trajectory that transfers a spacecraft from a high inclination Earth orbit

More information

Earth-to-Moon Low Energy Transfers Targeting L 1 Hyperbolic Transit Orbits

Earth-to-Moon Low Energy Transfers Targeting L 1 Hyperbolic Transit Orbits Earth-to-Moon Low Energy Transfers Targeting L 1 Hyperbolic Transit Orbits FRANCESCO TOPPUTO, MASSIMILIANO VASILE, AND FRANCO BERNELLI-ZAZZERA Aerospace Engineering Department, Politecnico di Milano, Milan,

More information

ANALYSIS OF VARIOUS TWO SYNODIC PERIOD EARTH-MARS CYCLER TRAJECTORIES

ANALYSIS OF VARIOUS TWO SYNODIC PERIOD EARTH-MARS CYCLER TRAJECTORIES AIAA/AAS Astrodynamics Specialist Conference and Exhibit 5-8 August 2002, Monterey, California AIAA 2002-4423 ANALYSIS OF VARIOUS TWO SYNODIC PERIOD EARTH-MARS CYCLER TRAJECTORIES Dennis V. Byrnes Jet

More information

A Study of the Close Approach Between a Planet and a Cloud of Particles

A Study of the Close Approach Between a Planet and a Cloud of Particles A Study of the Close Approach Between a Planet a Cloud of Particles IIAN MARTINS GOMES, ANTONIO F. B. A. PRADO National Institute for Space Research INPE - DMC Av. Dos Astronautas 1758 São José dos Campos

More information

AIAA Calculation of Weak Stability Boundary Ballistic Lunar Transfer Trajectories

AIAA Calculation of Weak Stability Boundary Ballistic Lunar Transfer Trajectories Calculation of Weak Stability Boundary Ballistic Lunar Transfer Trajectories Edward A. Belbruno, Princeton University and Innovative Orbital Design, Inc. Princeton, New Jersey John P. Carrico, Analytical

More information

A study of trajectories to the Neptune system using gravity assists

A study of trajectories to the Neptune system using gravity assists Advances in Space Research 40 (2007) 125 133 www.elsevier.com/locate/asr A study of trajectories to the Neptune system using gravity assists C.R.H. Solórzano a, A.A. Sukhanov b, A.F.B.A. Prado a, * a National

More information

TRAJECTORY DESIGN FOR JOVIAN TROJAN ASTEROID EXPLORATION VIA SOLAR POWER SAIL. Kanagawa, Japan ,

TRAJECTORY DESIGN FOR JOVIAN TROJAN ASTEROID EXPLORATION VIA SOLAR POWER SAIL. Kanagawa, Japan , TRAJECTORY DESIGN FOR JOVIAN TROJAN ASTEROID EXPLORATION VIA SOLAR POWER SAIL Takanao Saiki (), Yoji Shirasawa (), Osamu Mori () and Jun ichiro Kawaguchi (4) ()()()(4) Japan Aerospace Exploration Agency,

More information

Design of Orbits and Spacecraft Systems Engineering. Scott Schoneman 13 November 03

Design of Orbits and Spacecraft Systems Engineering. Scott Schoneman 13 November 03 Design of Orbits and Spacecraft Systems Engineering Scott Schoneman 13 November 03 Introduction Why did satellites or spacecraft in the space run in this orbit, not in that orbit? How do we design the

More information

Semi analytical study of lunar transferences using impulsive maneuvers and gravitational capture

Semi analytical study of lunar transferences using impulsive maneuvers and gravitational capture Journal of Physics: Conference Series OPEN ACCESS Semi analytical study of lunar transferences using impulsive maneuvers and gravitational capture To cite this article: N C Makiyama et al 3 J. Phys.: Conf.

More information

Mission Trajectory Design to a Nearby Asteroid

Mission Trajectory Design to a Nearby Asteroid Mission Trajectory Design to a Nearby Asteroid A project present to The Faculty of the Department of Aerospace Engineering San Jose State University in partial fulfillment of the requirements for the degree

More information

, (2) German Aerospace Center (DLR), Porz-Wahnheide, Linder Hoehe, Koeln Germany,

, (2) German Aerospace Center (DLR), Porz-Wahnheide, Linder Hoehe, Koeln Germany, TRAJECTORY AND SYSTEM DESIGN OF AN ELECTRICALLY PROPELLED ORBITER FOR A MARS SAMPLE RETURN MISSION Uwe Derz (1), Wolfgang Seboldt (2) (1) EADS Astrium Space Transportation, Airbus Allee 1, 28199 Bremen

More information

Orbital Mechanics MARYLAND

Orbital Mechanics MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers Time in orbit Interplanetary trajectories Planetary launch and

More information