Midterm Exam 2 (Solutions)

Size: px
Start display at page:

Download "Midterm Exam 2 (Solutions)"

Transcription

1 EECS 6 Probability and Random Processes University of California, Berkeley: Spring 07 Kannan Ramchandran March, 07 Midterm Exam (Solutions) Last name First name SID Name of student on your left: Name of student on your right: DO NOT open the exam until instructed to do so. The total number of points is 0, but a score of 00 is considered perfect. You have 0 minutes to read this exam without writing anything and 05 minutes to work on the problems. Box your final answers. Partial credit will not be given to answers that have no proper reasoning. Remember to write your name and SID on the top left corner of every sheet of paper. Do not write on the reverse sides of the pages. All eletronic devices must be turned off. Textbooks, computers, calculators, etc. are prohibited. No form of collaboration between students is allowed. If you are caught cheating, you may fail the course and face disciplinary consequences. You must include explanations to receive credit. Problem Part Max Points Problem Part Max Points (a) 0 5 (b) 3 0 (c) (d) 0 Total 0

2 Problem. (a) (0 points, 4 points each part) Evaluate the statements with True or False. Give brief explanations in the provided boxes. Anything written outside the boxes will not be graded. () Given a random variable M Geom( 0 ) and i.i.d. exponential random variables X i Exp(), the distribution of the sum X + X + + X M is Erlang of order 0 with rate. True or False: False Explanation: It is exponential () Recall fountain codes as introduced in Lab 4. You would like to recover the packets x, x, x 3, x 4 and receive the following equations: x x 4 = x = x x x 3 x 4 = x 3 x 4 = The peeling decoder is able to recover all the packets that can possibly be recovered. True or False: False Explanation: An optimal decoder could recover all the packets, but peeling can recover only one

3 (3) Give an example of a discrete time Markov Chain which is transient and has period 3. (4) Consider a Poisson process with rate. Suppose that the 7 th arrival comes at time T. The joint distribution of the first 6 arrivals is the same as the joint distribution of U, U,..., U 6, where U i are i.i.d. U[0, T ] random variables. True or False: False Explanation: It has the joint distribution of the order statistics of 6 uniform random variables. (5) For a random variable X with a well-defined M X (s), we have: Var(X) = d ds ln M X(s) s=0 Explanation: True or False: True 3

4 (b) ( points) After attending an EE6 lecture, you went back home and started playing Twitch Plays Pokemon. Suddenly, you realized that you may be able to analyze Twitch Plays Pokemon. Figure : A snapshot of Twitch Plays Pokemon - (i) (6 points) The player in the top left corner performs a random walk on the 8 checkered squares and the square containing the stairs. At every step the player is equally likely to move to any of the squares in the four cardinal directions (North, West, East, South) if there is a square in that direction. Find the expected number of moves until the player reaches the stairs in Figure. Using symmetry, the 9 states can be grouped as follows. a b c b d e c e f Now, you can also observe that state d is equivalent to state c. a b c b c e c e f With the above states, one can write down the following first-step equations. T a = + T b T b = + 3 T a + 3 T c T c = + T b + T e T e = + 3 T c + 3 T f T f = 0 4

5 Solving the above equations gives: T a = 8, T b = 7, T c = 5, T d = Thus, the player has to make 8 moves to go downstairs on average. 5

6 Figure : A snapshot of Twitch Plays Pokemon - (ii) (6 points) The player randomly walks in the same way as in the previous part. Find the probability that the player reaches the stairs in the bottom right corner in Figure. Consider 9 initial states and corresponding probabilities of reaching the good stairs as follows. Using symmetry, one can obtain the following table. p q 0 p q With the above probabilities, one can write down the following first-step equations. Solving the above equations gives: p = q + q = 3 p p = 0.4, q = 0.3 Thus, Red is going to reach the good stairs with probability

7 (c) (8 points) Suppose that X, X,..., X n are i.i.d. random variables and X i U[, ]. Does the sequence Y n = max{x, X,..., X n } converge in probability? If so, what does it converge to? Consider ɛ [0, ]. We see that: Pr( Y n ɛ) = Pr(max{X,..., X n } ɛ) Thus, Pr( Y n ɛ) 0 and we are done. = Pr(X ɛ,..., X n ɛ) ( = Pr(X i ɛ) n = ɛ ) n 7

8 (d) (0 points) Nodes in a wireless sensor network are dropped randomly according to a twodimensional Poisson process. A two-dimensional Poisson process is defined as follows: (i.) For any region of area A, the number of nodes in that region has a Poisson distribution with mean λa, (ii.) The number of nodes in non-overlapping regions is independent. Suppose that you are at an arbitrary location in the plane. Let X be the distance to the nearest node in the sensor network. Find E[X]. (Here distance between the points (x, y ) and (x, y ) is defined as (x x ) + (y y ) ) Given an arbitrary location, X > t if and only if there are no special points in the circle of radius t around the given point. The expected number in that circle is λπt, and since the number in that circle is Poisson with expected value λπt, the probability that number is 0 is e λπt. Thus Pr(X > t) = e λπt. Since X 0, we have E[X] = 0 Pr(X > t)dt = 0 e λπt dt We can look this up in a table of integrals, or recognize its resemblance to the Gaussian PDF. If we define σ = /(πλ), the above integral is E[X] = σ π 0 σ t π e σ dt = σ π = λ. 8

9 Problem. (5 points) Consider the continuous time Markov chain given in the figure. A 8 C 8 B (a.) (7 points) Draw a DTMC (discrete time Markov Chain) which has the same stationary distribution as the given CTMC and find the stationary distribution. 6 A 3 C 6 3 B 6 6 The flow equations are given by: 0π A = 8π B + π C π C = π A + π B 0π B = 8π A π A + π B + π C = Thus, π A = 0, π B = 8, π C = 7 9

10 (b.) (8 points) Let τ denote the first time the CTMC is in state C after starting from state A at time 0. Find M τ (s), the MGF of τ. Let T C, T B be the events that the first transition is to state C and state B, respectively: E[e sτ ] = E[e sτ T C ]P (T C ) + E[e sτ T B ]P (T B ) = s 5 + E[esτ ] 4 5 Where in the last equality, we note that the hitting time to state C from state A is the same as the hitting time to state C from state B. Thus, M τ (s) = s. 0

11 Problem 3. (0 points) (a.) (0 points) Batteries from Company X last an amount of time exponentially distributed with rate λ. The company guarantees that λ. Suppose that you have used n batteries from Company X and observed their lifetimes to be X, X,..., X n. Using Chebyshev s inequality, find the minimum n required to construct a confidence interval for the mean interval of the light bulb such that it has tolerance at most ɛ and confidence at least δ. In other words, we want to find n such that ( n i= P X i n ) λ ε δ We require ( P n ) n X i λ ε δ. i= By Chebyshev s Inequality, the above inequality will be satisfied so long as Var(n n i= X i) ε = Var(X i) nε = nλ ε δ. From our trustworthy source, we have the lower bound λ, so we are happy if we choose n 4δε. (b.) (0 points) Suppose now that you have taken 0000 samples of the batteries. With the same tolerance level ɛ, use the CLT to find your new confidence (you may again use the company guarantee that λ ). You may leave your answer in terms of Φ, the CDF of the standard normal distribution. We now assume n n i= X i N (λ, n λ ). We now seek to bound the probability of an ε -deviation from the mean: ( ) n P X i n λ ε P ( N (λ, n λ ) λ ε) i= = P ( N (0, n λ ) ε) = P ( N (0, ) ελ n) Φ( 00ε).

12 Problem 4. (5 points, 5 points each) There are a set of M bins and a set of balls labeled f, f,.... Let f (i) = {f j : j i mod M} be the set of balls thrown to bin i. The interarrival time between balls thrown to bin i is exponential with rate λ balls per second, and all interarrival times are independent. The situation is illustrated in Figure 3. f () f () f (3) f (M)... B B B 3 B M Figure 3: Balls throwing to bins (a.) Alice and Bob decide to play a betting game. Bob bets that there will be at least one ball in bin B after λ seconds and Alice bets that there will be at least two balls in bin B after λ seconds. What is the probability that exactly one of Bob and Alice wins money? Let E be the event that Bob wins money and E the event that Alice wins money. We are interested in P (E, E c) + P (Ec, E ). Note that P (E, E c ) is the probability that there is exactly one arrival in the first λ seconds and no arrivals in the next λ seconds, so P (E, E (c) ) = e. Additionally, P (E c, E ) is the probability that there are no arrivals in the first λ seconds, and at least arrivals in the next λ seconds, which is given by e ( e ). Thus, the probability that exactly one of them wins money is e e. (b.) Suppose that λ =. You peek into bin B i at a random time t. Let X be the difference between the time of the most recent arrival to bin B 3 and the time of the next arrival to any of the M bins. Find E[X ]. Note that by the same argument as random incidence, the time to the most recent arrival to the bin is exponential with rate, and the time to the next arrival to any bin is exponential with rate M. We are interested in X, the sum of these two random variables. We note that since they are independent, we find M X (s) as the product of the MGFs of these random variables to see that: M X (s) = ( s )( M M s ) = M M + s (M + )s We note that E[X ] = d ds M X (s) s=0. Plugging in, one sees: E[X ] = M (M + ) + M = M + M + M

13 Your friend finds a switch which can send balls to two consecutive bins as in Figure 4. f () f () f (3) f (M)... B B B 3 B M B Figure 4: Balls throwing to bins in the new configuration (c.) Call a bin a singleton if it has exactly one ball contained in it. number of singletons at time T? MT λe T λ, by linearity of expectation. What is the expected (d.) Suppose that your friend randomly chooses the setting on the switch so that the situation is equally likely to be that of Figure 3 and Figure 4. What is the variance of the total number of distinct balls in B and B after second? Let N be the number of distinct balls in B and B and let S be the setting of part a., S be the setting of part b. We need E[N ] and EN. First, we see that E[N ] = E[N S ]P (S ) + E[N S ]P (S ). Noting that E[N S ] = Var(N S ) + E[N S ], and the analagous setting for E[N S ], we find that E[N ] = 5 λ + 3 λ. We likewise see that E[N] = 5 λ, so Var(N) = 5 λ + 4 λ. 3

14 (e.) Alice and Bob decide to play a new game. They flip the switch so that the set up is as in Figure 4, but with a twist. Now, the balls in f () arrive according to a Poisson process with rate λ, but all other sets of balls ( f (), f (3),... ) arrive according to a Poisson process with rate λ. The game is as follows: Alice wins if at any point in time, B 3 contains 0 balls more than B. What is the probability that Alice wins? Note that the balls which go to both B and B 3 do not factor into the difference. Now, consider the merged Poisson process containing balls that go to B but not B 3 and the balls that go to B 3 but not B. Now, note that each arrival goes to bin λ B with probability λ+λ = 3 and to bin B 3 with probability 3. Now, set a Markov chain that tracks the difference between the number of balls in B 3 and B. Let state 0 be the starting state, state 0 the state at which Alice wins and state 0 the state at which Bob wins. The transitions are governed by P i,i+ = 3, P i,i = 3 for i = {,,..., 9} and P 0,0 =, P 0,0 =. Let p i denote the probability of hitting state 0 when starting at state 0 and note that p i = 3 p i+ + 3 p i. Additionally, one has that p 0 =, p 0 = 0. Thus, one can see that p i = i p. Thus, setting p k =, one finds that p = 9 0. Plugging in, one sees that p 0 = 0 ( 0 ). 0 4

15 END OF THE EXAM. Please check whether you have written your name and SID on every page. 5

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2017 Kannan Ramchandran March 21, 2017.

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2017 Kannan Ramchandran March 21, 2017. EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2017 Kannan Ramchandran March 21, 2017 Midterm Exam 2 Last name First name SID Name of student on your left: Name of

More information

(Practice Version) Midterm Exam 2

(Practice Version) Midterm Exam 2 EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 7, 2014 (Practice Version) Midterm Exam 2 Last name First name SID Rules. DO NOT open

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014.

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014. EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 13, 2014 Midterm Exam 2 Last name First name SID Rules. DO NOT open the exam until instructed

More information

Midterm Exam 1 (Solutions)

Midterm Exam 1 (Solutions) EECS 6 Probability and Random Processes University of California, Berkeley: Spring 07 Kannan Ramchandran February 3, 07 Midterm Exam (Solutions) Last name First name SID Name of student on your left: Name

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran September 23, 2014.

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran September 23, 2014. EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran September 23, 2014 Midterm Exam 1 Last name First name SID Rules. DO NOT open the exam until instructed

More information

Midterm Exam 1 Solution

Midterm Exam 1 Solution EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2015 Kannan Ramchandran September 22, 2015 Midterm Exam 1 Solution Last name First name SID Name of student on your left:

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2018 Kannan Ramchandran February 14, 2018.

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2018 Kannan Ramchandran February 14, 2018. EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2018 Kannan Ramchandran February 14, 2018 Midterm 1 Last Name First Name SID You have 10 minutes to read the exam and

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2018 Kannan Ramchandran February 14, 2018.

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2018 Kannan Ramchandran February 14, 2018. EECS 6 Probability and Random Processes University of California, Berkeley: Spring 08 Kannan Ramchandran February 4, 08 Midterm Last Name First Name SID You have 0 minutes to read the exam and 90 minutes

More information

EECS 70 Discrete Mathematics and Probability Theory Fall 2015 Walrand/Rao Final

EECS 70 Discrete Mathematics and Probability Theory Fall 2015 Walrand/Rao Final EECS 70 Discrete Mathematics and Probability Theory Fall 2015 Walrand/Rao Final PRINT Your Name:, (last) SIGN Your Name: (first) PRINT Your Student ID: CIRCLE your exam room: 220 Hearst 230 Hearst 237

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015.

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015. EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015 Midterm Exam Last name First name SID Rules. You have 80 mins (5:10pm - 6:30pm)

More information

Statistics 433 Practice Final Exam: Cover Sheet and Marking Sheet

Statistics 433 Practice Final Exam: Cover Sheet and Marking Sheet Statistics 433 Practice Final Exam: Cover Sheet and Marking Sheet YOUR NAME INSTRUCTIONS: No notes, no calculators, and no communications devices are permitted. Please keep all materials away from your

More information

Final Solutions Fri, June 8

Final Solutions Fri, June 8 EE178: Probabilistic Systems Analysis, Spring 2018 Final Solutions Fri, June 8 1. Small problems (62 points) (a) (8 points) Let X 1, X 2,..., X n be independent random variables uniformly distributed on

More information

6.041/6.431 Fall 2010 Final Exam Wednesday, December 15, 9:00AM - 12:00noon.

6.041/6.431 Fall 2010 Final Exam Wednesday, December 15, 9:00AM - 12:00noon. 6.041/6.431 Fall 2010 Final Exam Wednesday, December 15, 9:00AM - 12:00noon. DO NOT TURN THIS PAGE OVER UNTIL YOU ARE TOLD TO DO SO Name: Recitation Instructor: TA: Question Score Out of 1.1 4 1.2 4 1.3

More information

1. Let X be a random variable with probability density function. 1 x < f(x) = 0 otherwise

1. Let X be a random variable with probability density function. 1 x < f(x) = 0 otherwise Name M36K Final. Let X be a random variable with probability density function { /x x < f(x = 0 otherwise Compute the following. You can leave your answers in integral form. (a ( points Find F X (t = P

More information

Twelfth Problem Assignment

Twelfth Problem Assignment EECS 401 Not Graded PROBLEM 1 Let X 1, X 2,... be a sequence of independent random variables that are uniformly distributed between 0 and 1. Consider a sequence defined by (a) Y n = max(x 1, X 2,..., X

More information

1 Basic continuous random variable problems

1 Basic continuous random variable problems Name M362K Final Here are problems concerning material from Chapters 5 and 6. To review the other chapters, look over previous practice sheets for the two exams, previous quizzes, previous homeworks and

More information

ISyE 3044 Fall 2015 Test #1 Solutions

ISyE 3044 Fall 2015 Test #1 Solutions 1 NAME ISyE 3044 Fall 2015 Test #1 Solutions You have 85 minutes. You get one cheat sheet. Put your succinct answers below. All questions are 3 points, unless indicated. You get 1 point for writing your

More information

Part I: Discrete Math.

Part I: Discrete Math. Part I: Discrete Math. 1. Propositions. 10 points. 3/3/4 (a) The following statement expresses the fact that there is a smallest number in the natural numbers, ( y N) ( x N) (y x). Write a statement that

More information

ISyE 6644 Fall 2015 Test #1 Solutions (revised 10/5/16)

ISyE 6644 Fall 2015 Test #1 Solutions (revised 10/5/16) 1 NAME ISyE 6644 Fall 2015 Test #1 Solutions (revised 10/5/16) You have 85 minutes. You get one cheat sheet. Put your succinct answers below. All questions are 3 points, unless indicated. You get 1 point

More information

Math 407: Probability Theory 5/10/ Final exam (11am - 1pm)

Math 407: Probability Theory 5/10/ Final exam (11am - 1pm) Math 407: Probability Theory 5/10/2013 - Final exam (11am - 1pm) Name: USC ID: Signature: 1. Write your name and ID number in the spaces above. 2. Show all your work and circle your final answer. Simplify

More information

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables CDA6530: Performance Models of Computers and Networks Chapter 2: Review of Practical Random Variables Two Classes of R.V. Discrete R.V. Bernoulli Binomial Geometric Poisson Continuous R.V. Uniform Exponential,

More information

Disjointness and Additivity

Disjointness and Additivity Midterm 2: Format Midterm 2 Review CS70 Summer 2016 - Lecture 6D David Dinh 28 July 2016 UC Berkeley 8 questions, 190 points, 110 minutes (same as MT1). Two pages (one double-sided sheet) of handwritten

More information

2. Suppose (X, Y ) is a pair of random variables uniformly distributed over the triangle with vertices (0, 0), (2, 0), (2, 1).

2. Suppose (X, Y ) is a pair of random variables uniformly distributed over the triangle with vertices (0, 0), (2, 0), (2, 1). Name M362K Final Exam Instructions: Show all of your work. You do not have to simplify your answers. No calculators allowed. There is a table of formulae on the last page. 1. Suppose X 1,..., X 1 are independent

More information

CS 70 Discrete Mathematics and Probability Theory Summer 2016 Dinh, Psomas, and Ye Final Exam

CS 70 Discrete Mathematics and Probability Theory Summer 2016 Dinh, Psomas, and Ye Final Exam CS 70 Discrete Mathematics and Probability Theory Summer 2016 Dinh, Psomas, and Ye Final Exam PRINT Your Name:, (last) By signing below, I agree that (a) I will not give or receive help from others during

More information

6.041/6.431 Fall 2010 Final Exam Solutions Wednesday, December 15, 9:00AM - 12:00noon.

6.041/6.431 Fall 2010 Final Exam Solutions Wednesday, December 15, 9:00AM - 12:00noon. 604/643 Fall 200 Final Exam Solutions Wednesday, December 5, 9:00AM - 2:00noon Problem (32 points) Consider a Markov chain {X n ; n 0,, }, specified by the following transition diagram 06 05 09 04 03 2

More information

Midterm 2 Review. CS70 Summer Lecture 6D. David Dinh 28 July UC Berkeley

Midterm 2 Review. CS70 Summer Lecture 6D. David Dinh 28 July UC Berkeley Midterm 2 Review CS70 Summer 2016 - Lecture 6D David Dinh 28 July 2016 UC Berkeley Midterm 2: Format 8 questions, 190 points, 110 minutes (same as MT1). Two pages (one double-sided sheet) of handwritten

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 271E Probability and Statistics Spring 2011 Instructor : Class Meets : Office Hours : Textbook : Supp. Text : İlker Bayram EEB 1103 ibayram@itu.edu.tr 13.30 16.30, Wednesday EEB? 10.00 12.00, Wednesday

More information

This exam contains 13 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 13 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability and Statistics FS 2017 Session Exam 22.08.2017 Time Limit: 180 Minutes Name: Student ID: This exam contains 13 pages (including this cover page) and 10 questions. A Formulae sheet is provided

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.262 Discrete Stochastic Processes Midterm Quiz April 6, 2010 There are 5 questions, each with several parts.

More information

Math 447. Introduction to Probability and Statistics I. Fall 1998.

Math 447. Introduction to Probability and Statistics I. Fall 1998. Math 447. Introduction to Probability and Statistics I. Fall 1998. Schedule: M. W. F.: 08:00-09:30 am. SW 323 Textbook: Introduction to Mathematical Statistics by R. V. Hogg and A. T. Craig, 1995, Fifth

More information

COMPSCI 240: Reasoning Under Uncertainty

COMPSCI 240: Reasoning Under Uncertainty COMPSCI 240: Reasoning Under Uncertainty Andrew Lan and Nic Herndon University of Massachusetts at Amherst Spring 2019 Lecture 20: Central limit theorem & The strong law of large numbers Markov and Chebyshev

More information

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu Home Work: 1 1. Describe the sample space when a coin is tossed (a) once, (b) three times, (c) n times, (d) an infinite number of times. 2. A coin is tossed until for the first time the same result appear

More information

STAT 3128 HW # 4 Solutions Spring 2013 Instr. Sonin

STAT 3128 HW # 4 Solutions Spring 2013 Instr. Sonin STAT 28 HW 4 Solutions Spring 2 Instr. Sonin Due Wednesday, March 2 NAME (25 + 5 points) Show all work on problems! (5). p. [5] 58. Please read subsection 6.6, pp. 6 6. Change:...select components...to:

More information

6.1 Moment Generating and Characteristic Functions

6.1 Moment Generating and Characteristic Functions Chapter 6 Limit Theorems The power statistics can mostly be seen when there is a large collection of data points and we are interested in understanding the macro state of the system, e.g., the average,

More information

STAT 414: Introduction to Probability Theory

STAT 414: Introduction to Probability Theory STAT 414: Introduction to Probability Theory Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical Exercises

More information

1 Basic continuous random variable problems

1 Basic continuous random variable problems Name M362K Final Here are problems concerning material from Chapters 5 and 6. To review the other chapters, look over previous practice sheets for the two exams, previous quizzes, previous homeworks and

More information

CSE 312 Foundations, II Final Exam

CSE 312 Foundations, II Final Exam CSE 312 Foundations, II Final Exam 1 Anna Karlin June 11, 2014 DIRECTIONS: Closed book, closed notes except for one 8.5 11 sheet. Time limit 110 minutes. Calculators allowed. Grading will emphasize problem

More information

CS 70 Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Final

CS 70 Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Final CS 70 Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Final PRINT Your Name:, (Last) (First) READ AND SIGN The Honor Code: As a member of the UC Berkeley community, I act with

More information

ISyE 3044 Fall 2017 Test #1a Solutions

ISyE 3044 Fall 2017 Test #1a Solutions 1 NAME ISyE 344 Fall 217 Test #1a Solutions This test is 75 minutes. You re allowed one cheat sheet. Good luck! 1. Suppose X has p.d.f. f(x) = 4x 3, < x < 1. Find E[ 2 X 2 3]. Solution: By LOTUS, we have

More information

Spring 2016 Network Science. Solution of Quiz I

Spring 2016 Network Science. Solution of Quiz I Spring 2016 Network Science Department of Electrical and Computer Engineering National Chiao Tung University Solution of Quiz I Problem Points Your Score 1 5 2 20 25 20 Total 100 Read all of the following

More information

Probability Models. 4. What is the definition of the expectation of a discrete random variable?

Probability Models. 4. What is the definition of the expectation of a discrete random variable? 1 Probability Models The list of questions below is provided in order to help you to prepare for the test and exam. It reflects only the theoretical part of the course. You should expect the questions

More information

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random CDA6530: Performance Models of Computers and Networks Chapter 2: Review of Practical Random Variables Definition Random variable (RV)X (R.V.) X: A function on sample space X: S R Cumulative distribution

More information

Final Exam: Probability Theory (ANSWERS)

Final Exam: Probability Theory (ANSWERS) Final Exam: Probability Theory ANSWERS) IST Austria February 015 10:00-1:30) Instructions: i) This is a closed book exam ii) You have to justify your answers Unjustified results even if correct will not

More information

ECEn 370 Introduction to Probability

ECEn 370 Introduction to Probability ECEn 370 Introduction to Probability Section 001 Midterm Winter, 2014 Instructor Professor Brian Mazzeo Closed Book - You can bring one 8.5 X 11 sheet of handwritten notes on both sides. Graphing or Scientic

More information

18.05 Practice Final Exam

18.05 Practice Final Exam No calculators. 18.05 Practice Final Exam Number of problems 16 concept questions, 16 problems. Simplifying expressions Unless asked to explicitly, you don t need to simplify complicated expressions. For

More information

You have 3 hours to complete the exam. Some questions are harder than others, so don t spend too long on any one question.

You have 3 hours to complete the exam. Some questions are harder than others, so don t spend too long on any one question. Data 8 Fall 2017 Foundations of Data Science Final INSTRUCTIONS You have 3 hours to complete the exam. Some questions are harder than others, so don t spend too long on any one question. The exam is closed

More information

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO QUESTION BOOKLET EE 26 Spring 2006 Final Exam Wednesday, May 7, 8am am DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO You have 80 minutes to complete the final. The final consists of five

More information

3. Poisson Processes (12/09/12, see Adult and Baby Ross)

3. Poisson Processes (12/09/12, see Adult and Baby Ross) 3. Poisson Processes (12/09/12, see Adult and Baby Ross) Exponential Distribution Poisson Processes Poisson and Exponential Relationship Generalizations 1 Exponential Distribution Definition: The continuous

More information

Discrete Mathematics and Probability Theory Summer 2017 Hongling Lu, Vrettos Moulos, and Allen Tang HW 6

Discrete Mathematics and Probability Theory Summer 2017 Hongling Lu, Vrettos Moulos, and Allen Tang HW 6 CS 70 Discrete Mathematics and Probability Theory Summer 017 Hongling Lu, Vrettos Moulos, and Allen Tang HW 6 Sundry Before you start your homework, write down your team. Who else did you work with on

More information

18.05 Final Exam. Good luck! Name. No calculators. Number of problems 16 concept questions, 16 problems, 21 pages

18.05 Final Exam. Good luck! Name. No calculators. Number of problems 16 concept questions, 16 problems, 21 pages Name No calculators. 18.05 Final Exam Number of problems 16 concept questions, 16 problems, 21 pages Extra paper If you need more space we will provide some blank paper. Indicate clearly that your solution

More information

Business Statistics Midterm Exam Fall 2015 Russell. Please sign here to acknowledge

Business Statistics Midterm Exam Fall 2015 Russell. Please sign here to acknowledge Business Statistics Midterm Exam Fall 5 Russell Name Do not turn over this page until you are told to do so. You will have hour and 3 minutes to complete the exam. There are a total of points divided into

More information

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators.

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. IE 230 Seat # Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. Score Exam #3a, Spring 2002 Schmeiser Closed book and notes. 60 minutes. 1. True or false. (for each,

More information

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009.

ECE 302 Division 2 Exam 2 Solutions, 11/4/2009. NAME: ECE 32 Division 2 Exam 2 Solutions, /4/29. You will be required to show your student ID during the exam. This is a closed-book exam. A formula sheet is provided. No calculators are allowed. Total

More information

Tail Inequalities. The Chernoff bound works for random variables that are a sum of indicator variables with the same distribution (Bernoulli trials).

Tail Inequalities. The Chernoff bound works for random variables that are a sum of indicator variables with the same distribution (Bernoulli trials). Tail Inequalities William Hunt Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV William.Hunt@mail.wvu.edu Introduction In this chapter, we are interested

More information

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO

DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO QUESTION BOOKLET EE 126 Spring 26 Midterm #2 Thursday, April 13, 11:1-12:3pm DO NOT OPEN THIS QUESTION BOOKLET UNTIL YOU ARE TOLD TO DO SO You have 8 minutes to complete the midterm. The midterm consists

More information

EE126: Probability and Random Processes

EE126: Probability and Random Processes EE126: Probability and Random Processes Lecture 18: Poisson Process Abhay Parekh UC Berkeley March 17, 2011 1 1 Review 2 Poisson Process 2 Bernoulli Process An arrival process comprised of a sequence of

More information

Q = (c) Assuming that Ricoh has been working continuously for 7 days, what is the probability that it will remain working at least 8 more days?

Q = (c) Assuming that Ricoh has been working continuously for 7 days, what is the probability that it will remain working at least 8 more days? IEOR 4106: Introduction to Operations Research: Stochastic Models Spring 2005, Professor Whitt, Second Midterm Exam Chapters 5-6 in Ross, Thursday, March 31, 11:00am-1:00pm Open Book: but only the Ross

More information

Randomized algorithm

Randomized algorithm Tutorial 4 Joyce 2009-11-24 Outline Solution to Midterm Question 1 Question 2 Question 1 Question 2 Question 3 Question 4 Question 5 Solution to Midterm Solution to Midterm Solution to Midterm Question

More information

ECEN 5612, Fall 2007 Noise and Random Processes Prof. Timothy X Brown NAME: CUID:

ECEN 5612, Fall 2007 Noise and Random Processes Prof. Timothy X Brown NAME: CUID: Midterm ECE ECEN 562, Fall 2007 Noise and Random Processes Prof. Timothy X Brown October 23 CU Boulder NAME: CUID: You have 20 minutes to complete this test. Closed books and notes. No calculators. If

More information

Math 218 Supplemental Instruction Spring 2008 Final Review Part A

Math 218 Supplemental Instruction Spring 2008 Final Review Part A Spring 2008 Final Review Part A SI leaders: Mario Panak, Jackie Hu, Christina Tasooji Chapters 3, 4, and 5 Topics Covered: General probability (probability laws, conditional, joint probabilities, independence)

More information

Midterm 2. Your Exam Room: Name of Person Sitting on Your Left: Name of Person Sitting on Your Right: Name of Person Sitting in Front of You:

Midterm 2. Your Exam Room: Name of Person Sitting on Your Left: Name of Person Sitting on Your Right: Name of Person Sitting in Front of You: CS70 Discrete Mathematics and Probability Theory, Fall 2018 Midterm 2 8:00-10:00pm, 31 October Your First Name: SIGN Your Name: Your Last Name: Your SID Number: Your Exam Room: Name of Person Sitting on

More information

University of Illinois ECE 313: Final Exam Fall 2014

University of Illinois ECE 313: Final Exam Fall 2014 University of Illinois ECE 313: Final Exam Fall 2014 Monday, December 15, 2014, 7:00 p.m. 10:00 p.m. Sect. B, names A-O, 1013 ECE, names P-Z, 1015 ECE; Section C, names A-L, 1015 ECE; all others 112 Gregory

More information

ECE 302 Division 1 MWF 10:30-11:20 (Prof. Pollak) Final Exam Solutions, 5/3/2004. Please read the instructions carefully before proceeding.

ECE 302 Division 1 MWF 10:30-11:20 (Prof. Pollak) Final Exam Solutions, 5/3/2004. Please read the instructions carefully before proceeding. NAME: ECE 302 Division MWF 0:30-:20 (Prof. Pollak) Final Exam Solutions, 5/3/2004. Please read the instructions carefully before proceeding. If you are not in Prof. Pollak s section, you may not take this

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

Birth-Death Processes

Birth-Death Processes Birth-Death Processes Birth-Death Processes: Transient Solution Poisson Process: State Distribution Poisson Process: Inter-arrival Times Dr Conor McArdle EE414 - Birth-Death Processes 1/17 Birth-Death

More information

The first bound is the strongest, the other two bounds are often easier to state and compute. Proof: Applying Markov's inequality, for any >0 we have

The first bound is the strongest, the other two bounds are often easier to state and compute. Proof: Applying Markov's inequality, for any >0 we have The first bound is the strongest, the other two bounds are often easier to state and compute Proof: Applying Markov's inequality, for any >0 we have Pr (1 + ) = Pr For any >0, we can set = ln 1+ (4.4.1):

More information

Eleventh Problem Assignment

Eleventh Problem Assignment EECS April, 27 PROBLEM (2 points) The outcomes of successive flips of a particular coin are dependent and are found to be described fully by the conditional probabilities P(H n+ H n ) = P(T n+ T n ) =

More information

Continuous-time Markov Chains

Continuous-time Markov Chains Continuous-time Markov Chains Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ October 23, 2017

More information

FINAL EXAM: 3:30-5:30pm

FINAL EXAM: 3:30-5:30pm ECE 30: Probabilistic Methods in Electrical and Computer Engineering Spring 016 Instructor: Prof. A. R. Reibman FINAL EXAM: 3:30-5:30pm Spring 016, MWF 1:30-1:0pm (May 6, 016) This is a closed book exam.

More information

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks Recap Probability, stochastic processes, Markov chains ELEC-C7210 Modeling and analysis of communication networks 1 Recap: Probability theory important distributions Discrete distributions Geometric distribution

More information

ISyE 6644 Fall 2016 Test #1 Solutions

ISyE 6644 Fall 2016 Test #1 Solutions 1 NAME ISyE 6644 Fall 2016 Test #1 Solutions This test is 85 minutes. You re allowed one cheat sheet. Good luck! 1. Suppose X has p.d.f. f(x) = 3x 2, 0 < x < 1. Find E[3X + 2]. Solution: E[X] = 1 0 x 3x2

More information

MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM

MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM YOUR NAME: KEY: Answers in blue Show all your work. Answers out of the blue and without any supporting work may receive no credit even if they are

More information

Problem Points S C O R E Total: 120

Problem Points S C O R E Total: 120 PSTAT 160 A Final Exam December 10, 2015 Name Student ID # Problem Points S C O R E 1 10 2 10 3 10 4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 10 Total: 120 1. (10 points) Take a Markov chain with the

More information

STAT 516 Midterm Exam 2 Friday, March 7, 2008

STAT 516 Midterm Exam 2 Friday, March 7, 2008 STAT 516 Midterm Exam 2 Friday, March 7, 2008 Name Purdue student ID (10 digits) 1. The testing booklet contains 8 questions. 2. Permitted Texas Instruments calculators: BA-35 BA II Plus BA II Plus Professional

More information

Coding for Digital Communication and Beyond Fall 2013 Anant Sahai MT 1

Coding for Digital Communication and Beyond Fall 2013 Anant Sahai MT 1 EECS 121 Coding for Digital Communication and Beyond Fall 2013 Anant Sahai MT 1 PRINT your student ID: PRINT AND SIGN your name:, (last) (first) (signature) PRINT your Unix account login: ee121- Prob.

More information

STAT 418: Probability and Stochastic Processes

STAT 418: Probability and Stochastic Processes STAT 418: Probability and Stochastic Processes Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

UC Berkeley, CS 174: Combinatorics and Discrete Probability (Fall 2008) Midterm 1. October 7, 2008

UC Berkeley, CS 174: Combinatorics and Discrete Probability (Fall 2008) Midterm 1. October 7, 2008 UC Berkeley, CS 74: Combinatorics and Discrete Probability (Fall 2008) Midterm Instructor: Prof. Yun S. Song October 7, 2008 Your Name : Student ID# : Read these instructions carefully:. This is a closed-book

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Fall 2018 Introduction to Artificial Intelligence Practice Final You have approximately 2 hours 50 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib

More information

Name: Math 29 Probability. Practice Final Exam. 1. Show all work. You may receive partial credit for partially completed problems.

Name: Math 29 Probability. Practice Final Exam. 1. Show all work. You may receive partial credit for partially completed problems. Name: Math 29 Probability Practice Final Exam Instructions: 1. Show all work. You may receive partial credit for partially completed problems. 2. You may use calculators and a two-sided sheet of reference

More information

Exam III #1 Solutions

Exam III #1 Solutions Department of Mathematics University of Notre Dame Math 10120 Finite Math Fall 2017 Name: Instructors: Basit & Migliore Exam III #1 Solutions November 14, 2017 This exam is in two parts on 11 pages and

More information

Designing Information Devices and Systems I Spring 2018 Midterm 1. Exam Location: 155 Dwinelle Last Name: Cheng - Lazich

Designing Information Devices and Systems I Spring 2018 Midterm 1. Exam Location: 155 Dwinelle Last Name: Cheng - Lazich EECS 16A Designing Information Devices and Systems I Spring 2018 Midterm 1 Exam Location: 155 Dwinelle Last Name: Cheng - Lazich PRINT your student ID: PRINT AND SIGN your name:, (last name) (first name)

More information

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM. SOLUTIONS

6.041/6.431 Spring 2009 Quiz 1 Wednesday, March 11, 7:30-9:30 PM. SOLUTIONS 6.0/6.3 Spring 009 Quiz Wednesday, March, 7:30-9:30 PM. SOLUTIONS Name: Recitation Instructor: Question Part Score Out of 0 all 0 a 5 b c 5 d 5 e 5 f 5 3 a b c d 5 e 5 f 5 g 5 h 5 Total 00 Write your solutions

More information

Designing Information Devices and Systems I Fall 2017 Midterm 2. Exam Location: 150 Wheeler, Last Name: Nguyen - ZZZ

Designing Information Devices and Systems I Fall 2017 Midterm 2. Exam Location: 150 Wheeler, Last Name: Nguyen - ZZZ EECS 16A Designing Information Devices and Systems I Fall 2017 Midterm 2 Exam Location: 150 Wheeler, Last Name: Nguyen - ZZZ PINT your student ID: PINT AND SIGN your name:, (last name) (first name) (signature)

More information

18.175: Lecture 17 Poisson random variables

18.175: Lecture 17 Poisson random variables 18.175: Lecture 17 Poisson random variables Scott Sheffield MIT 1 Outline More on random walks and local CLT Poisson random variable convergence Extend CLT idea to stable random variables 2 Outline More

More information

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example

Example continued. Math 425 Intro to Probability Lecture 37. Example continued. Example continued : Coin tossing Math 425 Intro to Probability Lecture 37 Kenneth Harris kaharri@umich.edu Department of Mathematics University of Michigan April 8, 2009 Consider a Bernoulli trials process with

More information

MARKOV PROCESSES. Valerio Di Valerio

MARKOV PROCESSES. Valerio Di Valerio MARKOV PROCESSES Valerio Di Valerio Stochastic Process Definition: a stochastic process is a collection of random variables {X(t)} indexed by time t T Each X(t) X is a random variable that satisfy some

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 7E Probability and Statistics Spring 6 Instructor : Class Meets : Office Hours : Textbook : İlker Bayram EEB 3 ibayram@itu.edu.tr 3.3 6.3, Wednesday EEB 6.., Monday D. B. Bertsekas, J. N. Tsitsiklis,

More information

EECS 123 Digital Signal Processing University of California, Berkeley: Fall 2007 Gastpar November 7, Exam 2

EECS 123 Digital Signal Processing University of California, Berkeley: Fall 2007 Gastpar November 7, Exam 2 EECS 3 Digital Signal Processing University of California, Berkeley: Fall 7 Gastpar November 7, 7 Exam Last name First name SID You have hour and 45 minutes to complete this exam. he exam is closed-book

More information

Class 26: review for final exam 18.05, Spring 2014

Class 26: review for final exam 18.05, Spring 2014 Probability Class 26: review for final eam 8.05, Spring 204 Counting Sets Inclusion-eclusion principle Rule of product (multiplication rule) Permutation and combinations Basics Outcome, sample space, event

More information

Page 0 of 5 Final Examination Name. Closed book. 120 minutes. Cover page plus five pages of exam.

Page 0 of 5 Final Examination Name. Closed book. 120 minutes. Cover page plus five pages of exam. Final Examination Closed book. 120 minutes. Cover page plus five pages of exam. To receive full credit, show enough work to indicate your logic. Do not spend time calculating. You will receive full credit

More information

MA 320 Introductory Probability, Section 1 Spring 2017 Final Exam Practice May. 1, Exam Scores. Question Score Total. Name:

MA 320 Introductory Probability, Section 1 Spring 2017 Final Exam Practice May. 1, Exam Scores. Question Score Total. Name: MA 320 Introductory Probability, Section 1 Spring 2017 Final Exam Practice May. 1, 2017 Exam Scores Question Score Total 1 10 Name: Last 4 digits of student ID #: No books or notes may be used. Turn off

More information

Part I Stochastic variables and Markov chains

Part I Stochastic variables and Markov chains Part I Stochastic variables and Markov chains Random variables describe the behaviour of a phenomenon independent of any specific sample space Distribution function (cdf, cumulative distribution function)

More information

HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, , , (extra credit) A fashionable country club has 100 members, 30 of whom are

HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, , , (extra credit) A fashionable country club has 100 members, 30 of whom are HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, 1.2.11, 1.2.12, 1.2.16 (extra credit) A fashionable country club has 100 members, 30 of whom are lawyers. Rumor has it that 25 of the club members are liars

More information

Applied Stochastic Processes

Applied Stochastic Processes STAT455/855 Fall 26 Applied Stochastic Processes Final Exam, Brief Solutions 1 (15 marks (a (7 marks For 3 j n, starting at the jth best point we condition on the rank R of the point we jump to next By

More information

MATH 180A - INTRODUCTION TO PROBABILITY PRACTICE MIDTERM #2 FALL 2018

MATH 180A - INTRODUCTION TO PROBABILITY PRACTICE MIDTERM #2 FALL 2018 MATH 8A - INTRODUCTION TO PROBABILITY PRACTICE MIDTERM # FALL 8 Name (Last, First): Student ID: TA: SO AS TO NOT DISTURB OTHER STUDENTS, EVERY- ONE MUST STAY UNTIL THE EXAM IS COMPLETE. ANSWERS TO THE

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.262 Discrete Stochastic Processes Midterm Quiz April 6, 2010 There are 5 questions, each with several parts.

More information

Stochastic Processes

Stochastic Processes Stochastic Processes 8.445 MIT, fall 20 Mid Term Exam Solutions October 27, 20 Your Name: Alberto De Sole Exercise Max Grade Grade 5 5 2 5 5 3 5 5 4 5 5 5 5 5 6 5 5 Total 30 30 Problem :. True / False

More information

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text.

This exam is closed book and closed notes. (You will have access to a copy of the Table of Common Distributions given in the back of the text. TEST #3 STA 536 December, 00 Name: Please read the following directions. DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO Directions This exam is closed book and closed notes. You will have access to a copy

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables Joint Probability Density Let X and Y be two random variables. Their joint distribution function is F ( XY x, y) P X x Y y. F XY ( ) 1, < x

More information