Cosmological and astrophysical probes of dark matter annihilation

Size: px
Start display at page:

Download "Cosmological and astrophysical probes of dark matter annihilation"

Transcription

1 Cosmological and astrophysical probes of dark matter annihilation Institute for Cosmic Ray Research, University of Tokyo Kazunori Nakayama J.Hisano, M.Kawasaki, K.Kohri and KN, Phys.Rev.D79,063514(2009)[ ] J.Hisano, M.Kawasaki, K.Kohri and KN, Phys.Rev.D79,043516(2009)[ ] M.Kawasaki, K.Kohri and KN, to appear in Phys.Rev.D [ ] J.Hisano, KN, and M.J.S.Yang, Phys.Lett.B678,101(2009)[ ] ACP IPMU (2009/07/02)

2 Contents First part PAMELA/Fermi results & constraints on DM annihilation scenario Second part Neutrino signals from GC Diffuse gamma-ray background

3 First Part : Quick Summary

4 Energy content of the Universe after WMAP What is the dark matter? Can it be detected? Collider Direct detection Indirect detection DM-nucleon Scattering DM annihilation Cosmic Ray Signals

5 Detecting dark matter signal DM + DM e ±, γ, p, ν,... e ± γ ν We are here

6 PAMELA observation )) - )+!(e + ) / (!(e !(e Positron fraction Muller & Tang 1987 MASS 1989 TS93 HEAT94+95 CAPRICE94 AMS98 HEAT00 Clem & Evenson 2007 excess in cosmic-ray positron flux PAMELA Energy (GeV) Adriani et al.,arxiv:

7 ATIC/PPB-BETS observations 1,000 excess in electron+positron flux E e 3.0 dn/dee (m 2 s 1 sr 1 GeV 2 ) ATIC BETS, PPB-BETS HEAT AMS ,000 Energy (GeV) J.Chang et al. Nature (2008)

8 Fermi LAT collaboration, Fermi observation Inconsistent with ATIC results. Still there may be excess.

9 HESS observation sr -1 ) 2 m -2 s -1 dn/de (GeV 3 E 10 2! E ± 15% ATIC PPB-BETS Kobayashi H.E.S.S. H.E.S.S. - low-energy analysis Systematic error Systematic error - low-energy analysis Broken power-law fit Consistent with Fermi results Energy (GeV) HESS collaboration,

10 Dark Matter : Decay or Annihilate Decaying DM DM need not be completely stable. DM lifetime with can explain PAMELA. Annihilating DM τ sec Flux n DM τ cm 3 s 1 DM may have weak scale annihilation cross section. Cross section with σv cm 3 s 1 can explain PAMELA. Flux n 2 DM σv cm 3 s 1

11 Positron fraction Total flux [GeV 2 m 2 s 1 sr 1 ] χχ µ + µ : m χ = 1.2TeV, σv = cm 3 s 1

12 Positron fraction Total flux [GeV 2 m 2 s 1 sr 1 ] χχ τ + τ : m χ = 1.5TeV, σv = cm 3 s 1

13 It is important to investigate Relation to other signals Gamma-rays from Galactic center Diffuse extragalactic gamma-rays Anti-protons Synchrotron radiation Neutrinos from Galactic center γ ν e ±

14 Σv in cm 3 sec Σv in cm 3 sec Μ Μ GC VLT GC radio GC radio PAMELA DM mass in GeV Μ Μ Sgr dsph Γ GC Γ GR Γ Σv in cm 3 sec ρ DM (r) 1/r PAMELA DM mass in GeV GR Γ Sgr dsph Γ Σv in cm 3 sec ρ DM (r) 1/(1 + r 2 ) GC VLT GC radio Τ Τ PAMELA DM mass in GeV GC radio Sgr dsph Γ DM mass in GeV GC Γ GR Γ DM DM Τ Τ, isothermal profile PAMELA GC Γ GR Γ Sgr dsph Γ Constraints on DM ann models. Sensitively depends on DM halo profile. G.Bertone et al.,

15 What we have done : Neutrino-induced muon flux from Galactic center Diffuse extragalactic gamma-rays from dark matter annihilation Both give useful constraints on DM models, rather insensitive to DM halo profile J.Hisano, M.Kawasaki, K.Kohri and KN, arxiv: M.Kawasaki, K.Kohri and KN, arxiv: J.Hisano, KN, and M.J.S.Yang, arxiv:

16 Μ Μ Τ Τ GC VLT GC VLT Σv in cm 3 sec PAMELA Sgr dsph Γ GC Γ GR Γ Σv in cm 3 sec PAMELA Sgr dsph Γ GC Γ GR Γ Σv in cm 3 sec GC radio DM mass in GeV GC radio Μ Μ GR Γ PAMELA Sgr dsph Γ Σv in cm 3 sec GC radio DM mass in GeV GC radio DM DM Τ Τ, isothermal profile PAMELA GC Γ GR Γ Sgr dsph Γ DM mass in GeV DM mass in GeV G.Bertone et al.,

17 Μ Μ Τ Τ Σv in cm 3 sec GC VLT PAMELA Sgr dsph Γ GC Γ GR Γ ν Σv in cm 3 sec GC VLT PAMELA Sgr dsph Γ GC Γ GR Γ Σv in cm 3 sec GC radio DM mass in GeV GC radio Μ Μ GR Γ PAMELA Sgr dsph Γ Σv in cm 3 sec GC radio DM mass in GeV GC radio DM DM Τ Τ, isothermal profile PAMELA GC Γ GR Γ Sgr dsph Γ DM mass in GeV DM mass in GeV G.Bertone et al.,

18 Σv in cm 3 sec GC VLT Μ Μ PAMELA Sgr dsph Γ GC Γ GR Γ ν Σv in cm 3 sec GC VLT Τ Τ PAMELA Sgr dsph Γ GC Γ GR Γ diffuse γ Σv in cm 3 sec GC radio DM mass in GeV GC radio Μ Μ GR Γ PAMELA Sgr dsph Γ Σv in cm 3 sec GC radio DM mass in GeV GC radio DM DM Τ Τ, isothermal profile PAMELA GC Γ GR Γ Sgr dsph Γ DM mass in GeV DM mass in GeV G.Bertone et al.,

19 Second part : Neutrino Flux J.Hisano, M.Kawasaki, K.Kohri and KN, Phys.Rev.D79,043516(2009)[ ] J.Hisano, KN, and M.J.S.Yang, Phys.Lett.B678,101(2009)[ ]

20 Neutrino Signal from DM Annihilation χχ W + W, b b, l + l,... e ±, γ, p, ν,... Ritz, Seckel (88),Kamionkowski (90),... Bertone,Nezri,Orloff,Silk (04), Yuksel,Horiuchi,Beacom,Ando(07) Interaction inside the Earth ν detector µ from GC Earth Search for up-going muons Limits from Super-K

21 SK limit on upward muon flux from GC direction x Flux Limit (cm -2 sec -1 ) Baksan Limit IMB Limit Kamiokande Limit MACRO Limits Super-K Limits Cone Half Angle From Galactic Center (Degrees) S.Desai et al., Phys.Rev.D70, (2004)

22 Muon flux from DM N µ = de νµ df νµ de νµ f(e νµ ) (a) Neutrino flux from DM: µ df νµ de νµ SK detector (b) Probability of ν µ µ f(e νµ ) : ν Rock

23 (a) Neutrino flux from GC df νµ de νµ = R ρ 2 8πm 2 ( F dn (ν µ) F σv F de νµ ) J Ω Neutrino spectra : dn (ν µ) F de νµ = i ( dn (ν i) F P νi ν µ de νi ) E νi =E ν µ DM halo profile dependent part : J Ω = dω Ω l.o.s. Neutrino oscillation ( ) 2 dl(ψ) ρ(l) R ρ Typical value of J Ω J 2 Ω Ω NFW isothermal

24 (b) Probability of ν µ µ f(e νµ ) de µ dσ νµ p µx de µ n (rock) p R(E µ ) Cross section : Number density of proton in the rock : n (rock) p G2 F s π E ν µ = 1.3N A cm 3 ν µ µ W N N Muon range : R(E µ )

25 Energy loss of muon in matter Dutta, Reno, Sarcevic, Seckel, Phys.Rev.D63, (2001) de µ dx = α(e µ) β(e µ )E µ Ionization loss : α(e µ ) 2 MeVcm 2 g 1 Radiative loss : (Brems, pair creation,...) β(e µ ) 10 6 cm 2 g 1 Typical propagation distance : R µ E µ α(e µ )ρ rock 1 km(e µ /1TeV)

26 Muon range in the rock Propagation distance [km] 10 1 all loss ionization loss E Muon energy [GeV] E µ 1 TeV E µ 1 TeV R µ 1 km(e µ /1TeV) deviation from linearity

27 Probability of ν µ µ f(e νµ ) f(e νµ ) E 2 ν µ de µ dσ νµ p µx de µ n (rock) p R(E µ ) G2 F s π E ν µ E µ Higher energy neutrinos are more likely converted into muon Monochromatic neutrino : χχ ν ν is constrained more severely than secondary neutrino : χχ µ + µ, µ ν µ ν e e

28 Limits from SK : Annihilation into left-handed leptons is not favored. Annihilate into left handed leptons Annihilate into right handed leptons (ν ν + l L l+ R ) (l R l+ L ) J.Hisano, M.Kawasaki, K.Kohri, KN (2008)

29 ν µ ν µ Contour : Muon flux ( cm 2 s 1 ) σv J Ω [cm 3 s 1 ] Gray : current SK bound (for θ = 5 ) µ + µ Total muon flux N µ = de νµ df νµ de νµ f(e νµ ) σv J Ω [cm 3 s 1 ] m 2 χ N µ const.

30 ν µ ν µ Contour : Muon flux ( cm 2 s 1 ) σv J Ω [cm 3 s 1 ] PAMELA & Fermi Gray : current SK bound (for θ = 5 ) σv J Ω [cm 3 s 1 ] µ + µ PAMELA & Fermi Total muon flux N µ = de νµ df νµ de νµ f(e νµ ) m 2 χ N µ const.

31 Lesson from neutrino Construct a DM model which fits PAMELA/Fermi data (either ann or decay) Check if your model produce monochromatic neutrinos with similar rate or not If yes, your model may conflict with SK bound irrespective of DM density profile Check carefully the SK bound!

32 Τ Τ Σv in cm 3 sec PAMELA GR Γ Sgr dsph Γ DM mass in GeV G.Bertone et al.,

33 Τ Τ Σv in cm 3 sec PAMELA GR Γ Sgr dsph Γ DM mass in GeV G.Bertone et al., P.Maede et al.,

34 Τ Τ Σv in cm 3 sec PAMELA GR Γ Sgr dsph Γ DM mass in GeV G.Bertone et al., P.Maede et al., Neutrino constraint becomes standard.

35 Τ Τ Σv in cm 3 sec PAMELA GR Γ Sgr dsph Γ Caution : This figure considers only secondary neutrino from tau decay. If DM annihilates into line neutrino, constraint becomes DM mass more in GeVstringent G.Bertone et al., P.Maede et al., Neutrino constraint becomes standard.

36 Possible improvement at SK High-energy neutrino-induced muons are detected through Cherenkov light Energy of each muon is not measured However, SK can distinguish muon events by event shape : shower and non-shower Higher energy muons more likely observed as showering muon DM-originated neutrinos more likely produce shower events than atmospheric neutrinos

37 Simulation 3 kind of muon events : Showering Through-going shower mu dn/d(loge) 5000 Non-showering Stopping Through-going nonshower mu Stopping mu Probability for shower E! (GeV) S.Desai et al., Astropart.Phys.29,42 (2008)

38 Flux [GeV -1 cm -2 s -1 sr -1 ] atmos : Honda et al.,2005 DM atmos BG E ν [GeV]

39 atmos : Honda et al.,2005 Flux [GeV -1 cm -2 s -1 sr -1 ] Non-shower muon DM atmos BG Shower muon E ν [GeV]

40 atmos : Honda et al.,2005 Flux [GeV -1 cm -2 s -1 sr -1 ] Non-shower muon DM atmos BG Shower muon E ν [GeV] Shower muon events contain relatively large contribution from DM-produced neutrino

41 Ratio between Shower muon and Total muon atmospheric : N shower µ /N total µ 0.12

42 ν µ ν µ Contour : Muon flux ( cm 2 s 1 ) σv J Ω [cm 3 s 1 ] Gray : current SK bound (for θ = 5 ) µ + µ A factor improvement is expected on the annihilation cross section σv J Ω [cm 3 s 1 ] May soon reach to PAMELA/Fermi region? Hisano, KN, Yang

43 ν µ ν µ Contour : Muon flux ( cm 2 s 1 ) σv J Ω [cm 3 s 1 ] PAMELA & Fermi Gray : current SK bound (for θ = 5 ) σv J Ω [cm 3 s 1 ] µ + µ PAMELA & Fermi A factor improvement is expected on the annihilation cross section May soon reach to PAMELA/Fermi region? Hisano, KN, Yang

44 Comments on IceCube Huge detector High statistics Located at South Pole cannot see Galactic center through upward muons Use downward muons? Atmospheric muon BG is 10^6 larger than DM signal

45 A planned extension : DeepCore Primary purpose : better sensitivity on low-energy neutrino Inner detector with denser instrumentation Use original detector as muon veto Remove atmospheric muon BG S.Seo, Talk at Dark2009

46 Expected sensitivity of DeepCore (5yr) 5000 Μ Μ Boost Σ Limit PAMELA M Χ GeV Spolyar, Buckley, Freese, Hooper, Murayama,

47 Summary DM interpretation of PAMELA/Fermi Confirm/constrain by other signals Neutrino-induced muon Flux Useful constraints on annihilating/decaying DM. Shower/non-shower separation may be a useful way to extract DM information. SK III, DeepCore, KM3NeT

48 Second Part II : Diffuse gamma-rays M.Kawasaki, K.Kohri and KN, to appear in Phys.Rev.D [ ]

49 Gamma-Ray Flux

50 Gamma-Ray Flux Galactic center

51 Gamma-Ray Flux Galactic center Extra Galactic diffuse

52 Continuum Gamma-Rays from DM ann. Internal Brems. Final state charged particle always emit photon. χχ l + l χχ l + l γ χ χ e + e γ Cascade decay χχ τ + τ, W + W hadrons(π ±, π 0, ρ,... ) 2γ

53 Extra-Galactic component Ullio, Bergstrom, Edsjo, Lacey (2002) Dominant contribution is summation over the DM ann. in external clustering objects γ We are here

54 . [ dφγ de ] ext = σv 8π ρ 2 m m 2 χ dz(1 + z) 3 H(z) dn γ de 2 (z) 2 (z) : Enhancement factor ( 2 (z) = 1 : homogeneous DM) 2 (z) dmm dn(z) dm drρ 2 M (r) Number of clustering objects : Press-Schechter theory Press, Schechter (1974) Sheth, Mo, Tormen (2001) Universal DM halo profile (Moore, NFW,...)

55 Enhancement factor 2 (z) Moore! 2 (z) Moore NFW Burkert ρ(r) 1 r 1.5 (1 + r 1.5 ) NFW ρ(r) 1 r(1 + r) z ρ(r) Burkert 1 (1 + r)(1 + r 2 ) About 10^5-10^6 enhancement for DM annihilation rate

56 Gamma-rays from 10 < b < 90 Extragalactic component is comparable to Galactic component

57 e ± µ ± M.Kawasaki, K.Kohri, KN, τ ± W ±

58 Constraints on annihilation cross section Cuspy profile : extragalactic is weaker than GC bound Cored profile : extragalactic is stronger than GC bound Fermi will soon make the bound stronger

59 Effects of Inverse Compton scattering CMB photon e ± + γ CMB e ± + γ Profumo, Jeltema, Belikov, Hooper, τ + τ Second peak around E (IC) γ γ 2 ee CMB 0.1 GeV ( mdm 1 TeV ) 2 More stringent constraint

60 Summary DM interpretation of PAMELA/Fermi Confirm/constrain by other signals, as Neutrino-induced muon Flux Useful constraints on annihilating/decaying DM. SK III, DeepCore, KM3NeT Gamma-ray Flux Both Galactic and extra-galactic gamma-rays may be significant in DM ann scenario. Fermi

61 Back-up Slides

62 Astrophysical source Pulsar (single or sum) Gamma-ray burst Sum of all pulsars Hooper, Blasi, Serpico, arxiv: Profumo, arxiv: K.Ioka, arxiv: Geminga pulsar Hooper, Blasi, Serpico, arxiv:

63 DM or Astrophysics? Anisotropy in CR flux I min I max Point source δ = I max I min I max + I min K(E) Rc 0.01% ( 1 kpc R ) ( E ) GeV

64 Anisotropy from nearby Pulsar Fermi 5yr Hooper, Blasi, Serpico, arxiv:

65 !=2, MED diffusion setup, ST model B Vela Monogem (B ) Loop I Positron Fraction 0.1 Geminga Cygnus L Energy [GeV] S.Profumo, arxiv:

66 Press-Schechter theory dn dm = 2 π ρ m δ c M [ 1 dσ(m) σ(m) 2 dm ] exp [ ] δ2 c 2σ 2. (M) fraction of mass in halos heavier than M fraction of mass in each mass interval M : halo mass σ(m) : dispersion of density field δ c : critical overdensity σ 2 (M) = 1 2π 2 W 2 (k M )P (k)k 2 dk 10-2 z = 0 z = 2 z = Ullio et al. (2002) log 10 (M / M!! ) Predict number of collapsed objects with mass M

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis Institute for Cosmic Ray Research, University of Tokyo Kazunori Nakayama J.Hisano, M.Kawasaki, K.Kohri and KN, arxiv:0810.1892 J.Hisano,

More information

Constraints on dark matter annihilation and decay from ν e cascades

Constraints on dark matter annihilation and decay from ν e cascades Constraints on dark matter annihilation and decay from ν e cascades Sourav Mandal (w/ Hitoshi Murayama) IPMU/UC-Berkeley sourav.mandal@berkeley.edu 2009/7/15 Cosmic rays observed by PAMELA/Fermi Figure:

More information

Dark Matter in the Universe

Dark Matter in the Universe Dark Matter in the Universe NTNU Trondheim [] Experimental anomalies: WMAP haze: synchrotron radiation from the GC Experimental anomalies: WMAP haze: synchrotron radiation from the GC Integral: positron

More information

Cosmic Positron Signature from Dark Matter Annihilation and Big-Bang Nucleosynthesis

Cosmic Positron Signature from Dark Matter Annihilation and Big-Bang Nucleosynthesis Cosmic Positron Signature from Dark Matter Annihilation and Big-Bang Nucleosynthesis Institute for Cosmic Ray Research, University of Tokyo Kazunori Nakayama J.Hisano, M.Kawasaki, K.Kohri and KN, arxiv:0810.1892

More information

Neutrinos and DM (Galactic)

Neutrinos and DM (Galactic) Neutrinos and DM (Galactic) ArXiv:0905.4764 ArXiv:0907.238 ArXiv: 0911.5188 ArXiv:0912.0512 Matt Buckley, Katherine Freese, Dan Hooper, Sourav K. Mandal, Hitoshi Murayama, and Pearl Sandick Basic Result

More information

Neutrino Signals from Dark Matter Decay

Neutrino Signals from Dark Matter Decay Neutrino Signals from Dark Matter Decay Michael Grefe Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany COSMO/CosPA 2010 The University of Tokyo 27 September 2010 Based on work in collaboration with

More information

Testing a DM explanation of the positron excess with the Inverse Compton scattering

Testing a DM explanation of the positron excess with the Inverse Compton scattering Testing a DM explanation of the positron excess with the Inverse Compton scattering Gabrijela Zaharijaš Oskar Klein Center, Stockholm University Work with A. Sellerholm, L. Bergstrom, J. Edsjo on behalf

More information

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009 M. Lattanzi ICRA and Dip. di Fisica - Università di Roma La Sapienza In collaboration with L. Pieri (IAP, Paris) and J. Silk (Oxford) Based on ML, Silk, PRD 79, 083523 (2009) and Pieri, ML, Silk, MNRAS

More information

Indirect Dark Matter Detection

Indirect Dark Matter Detection Indirect Dark Matter Detection Martin Stüer 11.06.2010 Contents 1. Theoretical Considerations 2. PAMELA 3. Fermi Large Area Telescope 4. IceCube 5. Summary Indirect Dark Matter Detection 1 1. Theoretical

More information

Dark Matter Models. Stephen West. and. Fellow\Lecturer. RHUL and RAL

Dark Matter Models. Stephen West. and. Fellow\Lecturer. RHUL and RAL Dark Matter Models Stephen West and Fellow\Lecturer RHUL and RAL Introduction Research Interests Important Experiments Dark Matter - explaining PAMELA and ATIC Some models to explain data Freeze out Sommerfeld

More information

Probing Dark Matter in Galaxy Clusters using Neutrinos

Probing Dark Matter in Galaxy Clusters using Neutrinos Indirect Detection - Parallel Session I IDM 2012, Chicago Probing Dark Matter in Galaxy Clusters using Neutrinos In Collaboration with Ranjan Laha, arxiv/1206.1322 + PRD Basudeb Dasgupta CCAPP, Ohio State

More information

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.:

PHY326/426 Dark Matter and the Universe. Dr. Vitaly Kudryavtsev F9b, Tel.: PHY326/426 Dark Matter and the Universe Dr. Vitaly Kudryavtsev F9b, Tel.: 0114 2224531 v.kudryavtsev@sheffield.ac.uk Indirect searches for dark matter WIMPs Dr. Vitaly Kudryavtsev Dark Matter and the Universe

More information

Fundamental Physics with GeV Gamma Rays

Fundamental Physics with GeV Gamma Rays Stefano Profumo UC Santa Cruz Santa Cruz Institute for Particle Physics T.A.S.C. [Theoretical Astrophysics, Santa Cruz] Fundamental Physics with GeV Gamma Rays Based on: Kamionkowski & SP, 0810.3233 (subm.

More information

DeepCore and Galactic Center Dark Matter

DeepCore and Galactic Center Dark Matter 2nd Low-Energy Neutrino Workshop (PSU July 1-2, 2010) DeepCore and Galactic Center Dark Matter Carsten Rott carott @ mps. ohio-state.nospamedu Center for Cosmology and AstroParticle Physics The Ohio State

More information

Preliminary lecture programme:

Preliminary lecture programme: Preliminary lecture programme: 1. The particle universe: introduction, cosmological parameters 2. Basic cross sections for neutrinos and gamma-rays; IceCube 3. Density of relic particles from the early

More information

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B. GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS Jongkuk Kim (SKKU) Based on Physics Letters B. 752 (2016) 59-65 In collaboration with Jong Chul Park, Seong Chan Park The

More information

Indirect detection of decaying dark matter

Indirect detection of decaying dark matter Indirect detection of decaying dark matter Alejandro Ibarra Technical University of Munich Many thanks to Chiara Arina, Wilfried Buchmüller, Gianfranco Bertone, Laura Covi, Mathias Garny, Michael Grefe,

More information

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET)

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) Dark Matter Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET) 1 Dark Matter 1933 r. - Fritz Zwicky, COMA cluster. Rotation

More information

Indirect Dark Matter constraints with radio observations

Indirect Dark Matter constraints with radio observations Indirect Dark Matter constraints with radio observations In collaboration with E.Borriello and G.Miele, University of Naples Federico II Alessandro Cuoco, Institute for Physics and Astronomy University

More information

arxiv: v1 [astro-ph.he] 29 Jan 2015

arxiv: v1 [astro-ph.he] 29 Jan 2015 arxiv:1501.07485v1 [astro-ph.he] 29 Jan 2015 Fitting the Fermi-LAT GeV excess: on the importance of the propagation of electrons from dark matter UPMC-CNRS, UMR7095, Institut d Astrophysique de Paris,

More information

Dark Matter Electron Anisotropy: A universal upper limit

Dark Matter Electron Anisotropy: A universal upper limit Seminari teorici del venerdì Enrico Borriello Università degli Studi di Napoli Federico II & INFN Sezione di Napoli Dark Matter Electron Anisotropy: A universal upper limit Based on Borriello, Maccione,

More information

Indirect Searches for Gravitino Dark Matter

Indirect Searches for Gravitino Dark Matter Indirect Searches for Gravitino Dark Matter Michael Grefe Departamento de Física Teórica Instituto de Física Teórica UAM/CSIC Universidad Autónoma de Madrid PLANCK 202 From the Planck Scale to the Electroweak

More information

Update on Dark Matter and Dark Forces

Update on Dark Matter and Dark Forces Update on Dark Matter and Dark Forces Natalia Toro Perimeter Institute for Theoretical Physics (thanks to Rouven Essig, Matt Graham, Tracy Slatyer, Neal Weiner) 1 Rouven s Talk: what s new? Is Dark Matter

More information

Prospects for indirect dark matter detection with Fermi and IACTs

Prospects for indirect dark matter detection with Fermi and IACTs Prospects for indirect dark matter detection with Fermi and IACTs Francesc Ferrer Washington University in St. Louis TeV Particle Astrophysics, SLAC, July 2009 Signals of Dark Matter (DM) at γ ray telescopes

More information

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV (with spatial dependent CR transport) D. Grasso (INFN, Pisa) with D. Gaggero, A. Marinelli, A. Urbano, M. Valli IceCube recent results

More information

Cosmological dark matter annihilation

Cosmological dark matter annihilation Cosmological dark matter annihilation Alexander Belikov Department of Physics University of Chicago November 1, 2010 A.Belikov, D. Hooper, Phys.Rev.D 80, 035007 (2009) A.Belikov, D. Hooper, Phys.Rev.D

More information

Latest Results on Dark Matter and New Physics Searches with Fermi. Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration

Latest Results on Dark Matter and New Physics Searches with Fermi. Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration Latest Results on Dark Matter and New Physics Searches with Fermi Simona Murgia, SLAC-KIPAC on behalf of the Fermi-LAT Collaboration TeV Particle Astrophysics 2009 SLAC, July 13-16 2009 DM and New Physics

More information

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande

Search for Astrophysical Neutrino Point Sources at Super-Kamiokande Search for Astrophysical Neutrino Point Sources at Super-Kamiokande Yusuke Koshio for Super-K collaboration Kamioka, ICRR, Univ. of Tokyo LNGS, INFN Super-Kamiokande detector Recent results of search for

More information

Detecting or Limiting Dark Matter through Gamma-Ray Telescopes

Detecting or Limiting Dark Matter through Gamma-Ray Telescopes Detecting or Limiting Dark Matter through Gamma-Ray Telescopes Lars Bergström The Oskar Klein Centre for Cosmoparticle Physics Dept. of Physics Stockholm University lbe@physto.se Firenze, February 9, 2009

More information

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars

Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars Astro2020 Science White Paper Prospects for the detection of synchrotron halos around middle-age pulsars Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects

More information

Quest for New Physics

Quest for New Physics Stefano Profumo UC Santa Cruz Santa Cruz Institute for Particle Physics T.A.S.C. [Theoretical Astrophysics in Santa Cruz] Cosmic Rays and the Quest for New Physics Scineghe 2010, Trieste, Italy Thursday,

More information

arxiv: v1 [astro-ph.he] 28 Jun 2016

arxiv: v1 [astro-ph.he] 28 Jun 2016 Revisiting the constraints on annihilating dark matter by radio observational data of M31 Man Ho Chan The Education University of Hong Kong arxiv:1606.08537v1 [astro-ph.he] 28 Jun 2016 (Dated: October

More information

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation

Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Using the Fermi-LAT to Search for Indirect Signals from Dark Matter Annihilation Tim Linden UC - Santa Cruz Representing the Fermi-LAT Collaboration with acknowledgements to: Brandon Anderson, Elliott

More information

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope

A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope A-Exam: e + e Cosmic Rays and the Fermi Large Array Telescope Walter Hopkins Physics Department, Cornell University. The Fermi Large Area Telescope is a particle detector in space with an effective collecting

More information

Dark Matter in the Galactic Center

Dark Matter in the Galactic Center Dark Matter in the Galactic Center Tim Linden University of Chicago along with: Eric Carlson, Ilias Cholis, Dan Hooper, Manoj Kaplinghat, Stefano Profumo, Jennifer Siegal-Gaskins, Tracy Slatyer, Hai-Bo

More information

Implication of AMS-02 positron fraction measurement. Qiang Yuan

Implication of AMS-02 positron fraction measurement. Qiang Yuan Implication of AMS-02 positron fraction measurement Qiang Yuan (yuanq@ihep.ac.cn) Institute of High Energy Physics, Chinese Academy of Sciences Collaborated with Xiaojun Bi, Guo-Ming Chen, Yi-Qing Guo,

More information

Indirect dark matter detection and the Galactic Center GeV Excess

Indirect dark matter detection and the Galactic Center GeV Excess Image Credit: Springel et al. 2008 Indirect dark matter detection and the Galactic Center GeV Excess Jennifer Siegal-Gaskins Caltech Image Credit: Springel et al. 2008 Jennifer Siegal-Gaskins Caltech Image

More information

White dwarf pulsar as Possible Cosmic Ray Electron-Positron Factories

White dwarf pulsar as Possible Cosmic Ray Electron-Positron Factories White dwarf pulsar as Possible Cosmic Ray Electron-Positron Factories 2010 7/9 Kazumi Kashiyama (Kyoto University) Kunihito Ioka & Norita Kawanaka (KEK) arxiv:1009.1141 (submitted to PRD) http://www.nasa.gov/centers/goddard/news/topstory/2007/whitedwarf_pulsar.html

More information

Search for Dark Matter from the Galactic Halo with the IceCube Neutrino Observatory Paper Review

Search for Dark Matter from the Galactic Halo with the IceCube Neutrino Observatory Paper Review Search for Dark Matter from the Galactic Halo with the IceCube Neutrino Observatory Paper Review Stephen Portillo Review of R. Abbasi et al. (IceCube Collaboration), Phys. Rev. D 84, 022004 (2011). Introduction

More information

arxiv: v2 [hep-ph] 1 Nov 2012

arxiv: v2 [hep-ph] 1 Nov 2012 Neutrinos in IceCube/KM3NeT as probes of Dark Matter Substructures in Galaxy Clusters arxiv:1206.1322v2 [hep-ph] 1 Nov 2012 Basudeb Dasgupta 1, 1, 2, and Ranjan Laha 1 Center for Cosmology and AstroParticle

More information

MACRO Atmospheric Neutrinos

MACRO Atmospheric Neutrinos MACRO Atmospheric Neutrinos 1. Neutrino oscillations 2. WIMPs 3. Astrophysical point sources Barry Barish 5 May 00 µ Neutrino induced upward-travelling muons are identified by the time-of-fligth

More information

Dark Matter Decay and Cosmic Rays

Dark Matter Decay and Cosmic Rays Dark Matter Decay and Cosmic Rays Christoph Weniger Deutsches Elektronen Synchrotron DESY in collaboration with A. Ibarra, A. Ringwald and D. Tran see arxiv:0903.3625 (accepted by JCAP) and arxiv:0906.1571

More information

Cosmic ray electrons from here and there (the Galactic scale)

Cosmic ray electrons from here and there (the Galactic scale) Cosmic ray electrons from here and there (the Galactic scale) Julien Lavalle Department of Theoretical Physics Torino University and INFN Outline: (i) local electrons (ii) comments on synchrotron [based

More information

Dark Matter searches with astrophysics

Dark Matter searches with astrophysics Marco Taoso IPhT CEA-Saclay Dark Matter searches with astrophysics IAP 24 February 2013 The cosmological pie Non baryonic Dark Matter dominates the matter content of the Universe Motivation to search for

More information

Structure of Dark Matter Halos

Structure of Dark Matter Halos Structure of Dark Matter Halos Dark matter halos profiles: DM only: NFW vs. Einasto Halo concentration: evolution with time Dark matter halos profiles: Effects of baryons Adiabatic contraction Cusps and

More information

IceCube & DeepCore Overview and Dark Matter Searches. Matthias Danninger for the IceCube collaboration

IceCube & DeepCore Overview and Dark Matter Searches. Matthias Danninger for the IceCube collaboration IceCube & DeepCore Overview and Dark Matter Searches for the IceCube collaboration Content Overview: IceCube DeepCore (DOMs, geometry, deep ice properties, trigger & filter) Dark Matter searches: (current

More information

Spectra of Cosmic Rays

Spectra of Cosmic Rays Spectra of Cosmic Rays Flux of relativistic charged particles [nearly exactly isotropic] Particle density Power-Law Energy spectra Exponent (p, Nuclei) : Why power laws? (constraint on the dynamics of

More information

Subir Sarkar

Subir Sarkar Trinity 2016 Oxford ² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical observations ² Dark matter: relic particles

More information

Dark matter annihilations and decays after the AMS-02 positron measurements

Dark matter annihilations and decays after the AMS-02 positron measurements Dark matter annihilations and decays after the AMS-02 positron measurements Anna S. Lamperstorfer Technische Universität München SISSA - International School for Advanced Studies of Trieste Workshop The

More information

High energy events in IceCube: hints of decaying leptophilic Dark Matter?

High energy events in IceCube: hints of decaying leptophilic Dark Matter? High energy events in IceCube: hints of decaying leptophilic Dark Matter? 33rd IMPRS Workshop Max Planck Institute for Physics (Main Auditorium), Munich 26/10/2015 Messengers from space Messengers from

More information

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics

Tesla Jeltema. Assistant Professor, Department of Physics. Observational Cosmology and Astroparticle Physics Tesla Jeltema Assistant Professor, Department of Physics Observational Cosmology and Astroparticle Physics Research Program Research theme: using the evolution of large-scale structure to reveal the fundamental

More information

High Energy Neutrino Astronomy

High Energy Neutrino Astronomy High Energy Neutrino Astronomy VII International Pontecorvo School Prague, August 2017 Christian Spiering, DESY Zeuthen Content Lecture 1 Scientific context Operation principles The detectors Atmospheric

More information

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

A New View of the High-Energy γ-ray Sky with the Fermi Telescope A New View of the High-Energy γ-ray Sky with the Fermi Telescope Aurelien Bouvier KIPAC/SLAC, Stanford University On behalf of the Fermi collaboration SNOWPAC, 2010 The Fermi observatory Launch: June 11

More information

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics

Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics Constraining Galactic dark matter in the Fermi-LAT sky with photon counts statistics Moriond Cosmology 2018 Silvia Manconi (University of Turin & INFN) March 20, 2018 In collaboration with: Hannes Zechlin,

More information

Cosmic Ray Excess From Multi-Component Dark Matter

Cosmic Ray Excess From Multi-Component Dark Matter Cosmic Ray Excess From Multi-Component Dark Matter Da Huang Physics Department, NTHU @ LeCosPA PRD89, 055021(2014) [arxiv: 1312.0366] PRD91, 095006 (2015) [arxiv: 1411.4450] Mod. Phys. Lett. A 30 (2015)

More information

Searches for annihilating dark matter in the Milky Way halo with IceCube

Searches for annihilating dark matter in the Milky Way halo with IceCube Searches for annihilating dark matter in the Milky Way halo with IceCube The IceCube Collaboration http://icecube.wisc.edu/collaboration/authors/icrc17_icecube E-mail: samuel.d.flis@gmail.com We present

More information

Fundamental Physics from the Sky

Fundamental Physics from the Sky Fundamental Physics from the Sky Based on: SP, 0812.4457 (PRD) Kamionkowski & SP, 0810.3233 (PRL) Jeltema & SP, 0808.2641 (JCAP) Jeltema & SP, 0805.1054 (ApJ) SP, 0801.0740 (PRD) Colafrancesco, SP & Ullio,

More information

Lessons from Neutrinos in the IceCube Deep Core Array

Lessons from Neutrinos in the IceCube Deep Core Array Lessons from Neutrinos in the IceCube Deep Core Array Irina Mocioiu Penn State TeV 2009, July 15 2009 Point sources Diffuse fluxes from astrophysical objects from cosmic ray interactions from dark matter

More information

IceCube Results & PINGU Perspectives

IceCube Results & PINGU Perspectives 1 IceCube Results & PINGU Perspectives D. Jason Koskinen for the IceCube-PINGU Collaboration koskinen@nbi.ku.dk September 2014 Neutrino Oscillation Workshop Otranto, Lecce, Italy 2 IceCube Detector ~1km

More information

CMB constraints on dark matter annihilation

CMB constraints on dark matter annihilation CMB constraints on dark matter annihilation Tracy Slatyer, Harvard University NEPPSR 12 August 2009 arxiv:0906.1197 with Nikhil Padmanabhan & Douglas Finkbeiner Dark matter!standard cosmological model:

More information

The VERITAS Dark M atter and Astroparticle Programs. Benjamin Zitzer For The VERITAS Collaboration

The VERITAS Dark M atter and Astroparticle Programs. Benjamin Zitzer For The VERITAS Collaboration The VERITAS Dark M atter and Astroparticle Programs Benjamin Zitzer For The VERITAS Collaboration Introduction to VERITAS Array of four IACTs in Southern AZ, USA Employs ~100 Scientists in five countries

More information

Conservative Constraints on Dark Matter Self Annihilation Rate

Conservative Constraints on Dark Matter Self Annihilation Rate Conservative Constraints on Dark Matter Self Annihilation Rate Thomas Jacques 2009-07-13, TeVPA 2009 Indirect Detection Indirect detection often focuses on choosing a model, and comparing predicted flux

More information

Searches for Dark Matter Annihilations in the Sun and Earth with IceCube and DeepCore. Matthias Danninger for the IceCube collaboration

Searches for Dark Matter Annihilations in the Sun and Earth with IceCube and DeepCore. Matthias Danninger for the IceCube collaboration Searches for Dark Matter Annihilations in the Sun and Earth with IceCube and DeepCore for the IceCube collaboration Content Overview: IceCube (see IceCube status plenary talk by D. Williams ) DeepCore

More information

Cosmic Ray Anomalies from the MSSM?

Cosmic Ray Anomalies from the MSSM? Cosmic Ray Anomalies from the MSSM? Randy Cotta (Stanford/SLAC) In collaboration with: J.A. Conley (Bonn) J.S. Gainer (ANL/NU) J.L. Hewett (SLAC) T.G. Rizzo (SLAC) Based on: 0812.0980 0903.4409 1007.5520

More information

Cosmological Constraints on high energy neutrino injection. KEKPH07 March 1-3, 2007

Cosmological Constraints on high energy neutrino injection. KEKPH07 March 1-3, 2007 Cosmological Constraints on high energy neutrino injection KEKPH07 March 1-3, 2007 Toru Kanzaki, Masahiro Kawasaki, Kazunori Kohri and Takeo Moroi Institute for Cosmic Ray Research Introduction physics

More information

Indirect dark matter searches with the Cherenkov Telescope Array

Indirect dark matter searches with the Cherenkov Telescope Array Indirect dark matter searches with the Cherenkov Telescope Array Jennifer Gaskins GRAPPA, University of Amsterdam for the CTA Consortium For more details, please see: arxiv:1508.06128 Carr et al. 2015

More information

Wino dark matter breaks the siege

Wino dark matter breaks the siege Wino dark matter breaks the siege Shigeki Matsumoto (Kavli IPMU) In collaboration with M. Ibe, K. Ichikawa, and T. Morishita 1. Wino dark matter (Motivation & Present limits) 2. Wino dark matter is really

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 1. Selecting electrons in ATIC ATIC is a calorimetric instrument and, as such, relies upon the difference in the development of the cascades (showers) initiated by protons and electrons. Moreover, the

More information

Enhancement of Antimatter Signals from Dark Matter Annihilation

Enhancement of Antimatter Signals from Dark Matter Annihilation Enhancement of Antimatter Signals from Dark Matter Annihilation around Intermediate Mass Black Holes Pierre Brun Laboratoire d Annecy-le-vieux de Physique des Particules CNRS/IN2P3/Université de Savoie

More information

Detectors for astroparticle physics

Detectors for astroparticle physics Detectors for astroparticle physics Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Universität Zürich Kern und Teilchenphysik II, Zürich 07.05.2010 Teresa Marrodán Undagoitia (UZH) Detectors for astroparticle

More information

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges

Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Searching for Dark Matter in the Galactic Center with Fermi LAT: Challenges Simona Murgia University of California, Irvine Debates on the Nature of Dark Matter Sackler 2014 19-22 May 2014 arxiv:0908.0195

More information

The electron spectrum from annihilation of Kaluza-Klein dark matter in the Galactic halo

The electron spectrum from annihilation of Kaluza-Klein dark matter in the Galactic halo The electron spectrum from annihilation of Kaluza-Klein dark matter in the Galactic halo Satoshi Tsuchida Affiliation: Department of Physical Sciences, Ritsumeikan University E-mail: rp005076@ed.ritsumei.ac.jp

More information

LATE DECAYING TWO-COMPONENT DARK MATTER (LD2DM) CAN EXPLAIN THE AMS-02 POSITRON EXCESS

LATE DECAYING TWO-COMPONENT DARK MATTER (LD2DM) CAN EXPLAIN THE AMS-02 POSITRON EXCESS LATE DECAYING TWO-COMPONENT DARK MATTER (LD2DM) CAN EXPLAIN THE AMS-02 POSITRON EXCESS (WITH A FEW BONUS FEATURES!) (BASED ON 1609.04821 W/ P. RALEGANKAR AND V. RENTALA) JATAN BUCH (BROWN U.) 1 THE DARK

More information

Antimatter from Supernova Remnants

Antimatter from Supernova Remnants Antimatter from Supernova Remnants Michael Kachelrieß NTNU, Trondheim with S. Ostapchenko, R. Tomàs - PAMELA anomaly )) )+ φ(e + ) / (φ(e + 0.4 0.3 0.2 Positron fraction φ(e 0.1 0.02 Muller & Tang 1987

More information

Dynamical Dark Matter and the Positron Excess in Light of AMS

Dynamical Dark Matter and the Positron Excess in Light of AMS Dynamical Dark Matter and the Positron Excess in Light of AMS Brooks Thomas (University of Hawaii) K. R. Dienes, J. Kumar, BT [arxiv:1306.2959] The Positron Puzzle Positron Fraction PAMELA, AMS-02, and

More information

Dark Matter - II. Workshop Freudenstadt shedding (Cherenkov) light on dark matter. September 30, 2015

Dark Matter - II. Workshop Freudenstadt shedding (Cherenkov) light on dark matter. September 30, 2015 Dark Matter - II GRK 1694: Elementarteilchenphysik bei höchster Energie und höchster Präzision Workshop Freudenstadt 2015 September 30, 2015 Guido Guido Drexlin, Drexlin, Institut Institut für für für

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration UCLA Dark Matter 2012 Marina del Rey 22-24 February 2012 arxiv:0908.0195 Gamma

More information

neutrino astronomy francis halzen university of wisconsin

neutrino astronomy francis halzen university of wisconsin neutrino astronomy francis halzen university of wisconsin http://icecube.wisc.edu 50,000 year old sterile ice instead of water we built a km 3 neutrino detector 3 challenges: drilling optics of ice atmospheric

More information

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS STATUS OF ULTRA HIGH ENERGY COSMIC RAYS Esteban Roulet (Bariloche) COSMO / CosPA 2010, Tokyo Power law flux stochastic (Fermi) acceleration in shocks cosmic ray flux Small fractional energy gain after

More information

UHE NEUTRINOS AND THE GLASHOW RESONANCE

UHE NEUTRINOS AND THE GLASHOW RESONANCE UHE NEUTRINOS AND THE GLASHOW RESONANCE Raj Gandhi Harish Chandra Research Institute Allahabad (Work in progress with Atri Bhattacharya, Werner Rodejohann and Atsushi Watanabe) NuSKY, ICTP, June 25, 2011

More information

DM subhalos: The obser vational challenge

DM subhalos: The obser vational challenge DM subhalos: The obser vational challenge Hannes-S. Zechlin and Dieter Horns Inst. f. Experimentalphysik, Universität Hamburg, Germany July 26th, 2012 DM subhalos in the Milky Way concordance cosmology

More information

Dark Matter searches with radio observations

Dark Matter searches with radio observations Marco Taoso Dpt. of Physics and Astronomy UBC Vancouver Dark Matter searches with radio observations IDM 2012 Chicago, 23-27 July Search for DM with astrophysical observations Gamma- rays Microwave Radio

More information

Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT

Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT Hunting for Dark Matter in Anisotropies of Gamma-ray Sky: Theory and First Observational Results from Fermi-LAT Eiichiro Komatsu (Texas Cosmology Center, Univ. of Texas at Austin) MPA Seminar, September

More information

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation?

Astrophysical issues in the cosmic ray e spectra: Have we seen dark matter annihilation? Astrophysical issues +/ in the cosmic ray e spectra: Have we seen dark matter annihilation? Julien Lavalle Department of Theoretical Physics University of Torino and INFN Collab: Torino: R. Lineros, F.

More information

Indirect searches for dark matter particles with the Super-Kamiokande detector

Indirect searches for dark matter particles with the Super-Kamiokande detector Les Rencontres de Physique de la Vallée d'aoste, 1-7 III 2015 Indirect searches for dark matter particles with the Super-Kamiokande detector Katarzyna Frankiewicz National Center For Nuclear Research Indirect

More information

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV Mount Rainier by Will Christiansen Silvia Vernetto & Paolo Lipari 35th ICRC 12-20 July 2017 - Busan - South Korea Gamma ray astronomy

More information

Dept. of Physics and Astronomy, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA

Dept. of Physics and Astronomy, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA EPJ Web of Conferences 116, 11004 (2016) DOI: 10.1051/epjconf/201611611004 C Owned by the authors, published by EDP Sciences, 2016 Results from IceCube Tyce DeYoung a for the IceCube Collaboration Dept.

More information

Sep. 13, JPS meeting

Sep. 13, JPS meeting Recent Results on Cosmic-Rays by Fermi-LAT Sep. 13, 2010 @ JPS meeting Tsunefumi Mizuno (Hiroshima Univ.) On behalf of the Fermi-LAT collaboration 1 Outline Introduction Direct measurement of CRs CRs in

More information

Observability of gamma-ray spectral feature from Kaluza-Klein dark matter

Observability of gamma-ray spectral feature from Kaluza-Klein dark matter Observability of gamma-ray spectral feature from Kaluza-Klein dark matter Satoshi Tsuchida 1 and Masaki Mori 2,a) 1 Department of Physics, Osaka City University, Osaka 558-8585, Japan 2 Department of Physical

More information

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays

The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays The Inner Region of the Milky Way Galaxy in High Energy Gamma Rays Simona Murgia, SLAC-KIPAC for the Fermi LAT Collaboration Dark Matter Signatures in the Gamma-ray Sky Austin, Texas 7-8 May 2012 arxiv:0908.0195

More information

Ruling out thermal dark matter with a black hole induced spiky profile in the M87 galaxy

Ruling out thermal dark matter with a black hole induced spiky profile in the M87 galaxy Ruling out thermal dark matter with a black hole induced spiky profile in the M87 galaxy Based on arxiv:1505.00785 (IAP, Paris) in collaboration with Joseph Silk (IAP) & Céline Bœhm (IPPP, Durham) PACIFIC

More information

Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission

Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission Constraints on Light WIMPs from Isotropic Diffuse γ-ray Emission Michel H.G. Tytgat Université Libre de Bruxelles Belgium Rencontres de Moriond: EW Interactions and Unified Theories March 2011 There are

More information

Current Status on Dark Matter Motivation for Heavy Photons

Current Status on Dark Matter Motivation for Heavy Photons Current Status on Dark Matter Motivation for Heavy Photons Tracy Slatyer Institute for Advanced Study HPS Collaboration Meeting Jefferson Lab, Newport News, VA 6/4/2013 Outline Cosmic rays: the positron

More information

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere

On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere On the scientific motivation for a wide field-of-view TeV gamma-ray observatory in the Southern Hemisphere for the HAWC collaboration E-mail: miguel@psu.edu Observations of high energy gamma rays are an

More information

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity Masaki Asano The Graduate University for Advanced Studies Collaborated with Shigeki Matsumoto Nobuchika Okada Yasuhiro

More information

Neutrino Astronomy fast-forward

Neutrino Astronomy fast-forward Neutrino Astronomy fast-forward Marek Kowalski (DESY & Humboldt University Berlin) TeVPA 2017, Columbus, Ohio Credit: M. Wolf/NSF The promised land The Universe is opaque to EM radiation for ¼ of the spectrum,

More information

arxiv: v1 [hep-ph] 10 Sep 2014

arxiv: v1 [hep-ph] 10 Sep 2014 Probing the coupling of heavy dark matter to nucleons by detecting neutrino signature from the Earth s core Guey-Lin Lin, Yen-Hsun Lin and Fei-Fan Lee Institute of Physics, National Chiao Tung University,

More information

Antiproton Limits on Decaying Gravitino Dark Matter

Antiproton Limits on Decaying Gravitino Dark Matter Antiproton Limits on Decaying Gravitino Dark Matter Michael Grefe Departamento de Física Teórica Instituto de Física Teórica UAM/CSIC Universidad Autónoma de Madrid Particle Theory Journal Club Rudolf

More information

THE WMAP HAZE: PARTICLE PHYSICS ASTROPHYSICS VERSUS. Greg Dobler. Harvard/CfA July 14 th, TeV09

THE WMAP HAZE: PARTICLE PHYSICS ASTROPHYSICS VERSUS. Greg Dobler. Harvard/CfA July 14 th, TeV09 THE WMAP HAZE: PARTICLE PHYSICS VERSUS ASTROPHYSICS Greg Dobler Harvard/CfA July 14 th, 2009 - TeV09 THE WMAP HAZE: PARTICLE PHYSICS VERSUS ASTROPHYSICS Doug Finkbeiner (CfA) Dan Hooper (FNAL) Gabrijela

More information

Solar-Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches

Solar-Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches Solar-Atmospheric Neutrinos and the Sensitivity Floor for Solar Dark Matter Annihilation Searches Carlos Argüelles in collaboration with Gwen de Wasseige, Anatoli Fedynitch, and Ben Jones Based on JCAP07

More information