The FLUKA study of the secondary particles fluence in the AD-Antiproton Decelerator target area.

Size: px
Start display at page:

Download "The FLUKA study of the secondary particles fluence in the AD-Antiproton Decelerator target area."

Transcription

1 The FLUKA study of the secondary particles fluence in the AD-Antiproton Decelerator target area. M. Calviani and E. Nowak EN/STI CERN, Geneva, Switzerland Keywords: CERN AD, antiproton production, dog-leg magnets, FLUKA Abstract In this paper we present Monte Carlo FLUKA simulations [1, 2] carried out to investigate the secondary particles fluence emerging from the antiproton production target and their spatial distribution in the AD target area. The detailed quantitative analysis has been performed for different positions along the magnet dog-leg as well as after the main collimator. These results allow tuning the position of the new beam current transformers (BCT) in the target area, in order to have a precise pulse-by-pulse evaluation of the intensity of negative particles injected in the AD-ring before the deceleration phase. This is an internal CERN publication and does not necessarily reflect the views of the CERN management.

2

3 Contents 1 Introduction The ADT FLUKA geometry and BCT positions The FLUKA simulation results of the particles fluence in the ADT Conclusion References... 11

4

5 1 Introduction The AD (Antiproton Decelerator) target area is the source of low-energy antiprotons for the antimatter experiments at CERN. In order to guarantee the reliable production of antiprotons for the AD physics program in the ELENA-era, an ambitious consolidation program has been launched in the AD target area. In order to support specific requirements of the upgrade project, a set of FLUKA simulations have been already carried out. The presented studies are the continuation of the extensive work on antiproton production described in CERN-ATS-Note TECH [3]. This note extends the study with a more detailed evaluation of particle fluence in various areas of the dog-leg. 2 The ADT FLUKA geometry and BCT positions The antiproton production assembly together with the focusing horn, collimators, beam dump and bending/focusing magnets present in the AD-target area are shown in Fig. 1. [7]. Based on the detailed FLUKA model of the AD-target area (Fig. 2.) described in ref. [3], further extensive investigation on the particles fluence distribution in the AD-target zone have been carried out. Fig. 1: The AD-target area technical drawing with the antiproton beam production and bending/focusing elements [7]. Fig. 2: The AD-target area FLUKA model. The existing BCT positions (downstream the QFO9052 magnet and the COL6005 collimator) and the considered for future installation ones (along the dog-leg) are indicated in red. 1

6 Antiprotons emerge from the target along with many other particles such as: secondary protons, electrons, positrons, neutrons and positive and negative pions, kaons and muons, hence the knowledge about their spatial distribution in the ADT zone and their respective contribution to the overall fluence is of interest for different considerations. The main aim of this work was to support the new beam current transformer (BCT) installation in the AD target area. The BCTs at future location should measure the overall fluence of antiprotons accompanied by remaining negatively charged particles of the momentum required by the AD ring, which are produced in the AD target zone and transferred to the AD machine. As presently the intensity of antiprotons is measured in the AD-ring after the first stochastic cooling deceleration phase, the intensity measurement in the dog-leg would allow measuring directly the production from the target area, without additional perturbations. In addition, the existing beam transformer present in the AD-target area (TFA6006), which is installed right after the main collimator, does not provide useful information on pbar production, as it is primarily detecting the high intensity primary proton beam (partially attenuated going through the target but still several orders of magnitude more intense than secondary beams). 3 The FLUKA simulation results of the particles fluence in the ADT For the FLUKA analysis we have chosen the following positions, all of them technically exploitable for the BCT installation: 1) after the main collimator (COL6005), 2) after BHZ6025, 3) after BHZ6035 and 4) after BHZ6045 (i.e. the last magnet of the AD-target dog-leg). The fluence of various particle species in the different locations as obtained from the simulations are presented in figures [3-6]. The results are then summarized in Table 1, where the integral values in the energy range from 100 MeV to 26 GeV as well as the fluence ratio with respect to pbar are indicated. Fig. 3: The figure shows the proton, negative pion and antiproton fluence after the main collimator. One can see the large proton contribution (integrated fluence per pulse of ) peaking at 23 GeV (green points), which originates from the primary proton beam ( protons per pulse) only partially attenuated by the 2

7 primary target. Three orders of magnitude of difference is expected between protons and antiprotons fluence (pink points) at this position. Significant fluence component originates also from negative pions, which represent the main component of the particles fluence emerging after the dog-leg (blue points). Fig. 4: The figure shows the particles fluence after the BHZ6025 magnet (the second dipole of the dog-leg, which initiate separation of the negative particles from the primary proton beam directed towards the dump. The figure reveals the dominating negative pion component accompanied by other negative particles such as electrons, muons and kaons. The reduction of the proton contribution compared to the spectrum after the main collimator can be observed. 3

8 Fig. 5: The figure shows the particles fluence after the QFO6035 magnet (the middle dog-leg dipole). This figure shows the negative particles spectra which start to peak according to the momentum selection. Fig. 6: The figure shows the particle fluence after the BHZ6045 dipole (the last magnet of the dog-leg) featured by the spectrometer momentum selection. For negative pions and muons the maximum of fluence is observed at around 3.4 GeV kinetic energy, for kaons at around 3.1 GeV while for antiprotons at around 2.75 GeV consistently with 3.57 GeV/c momentum and different rest masses (E k = p 2 c 2 + m 0 2 c 4 - m 0 c 2 ). 4

9 Table 1. The table presents particles fluence at different positions along the dog-leg magnets and the ratio to the antiproton fluence for the respective positions. The fluence is integrated over the energy range between [0.1, 26] GeV per one pulse of protons. particle p e- e+ K- K+ Pi- Pi+ mumu+ pbar After the collimator After the BHZ6025 After the BHZ6035 After the BHZ6045 p/cm 2 /pulse R p/cm 2 /pulse R p/cm 2 /pulse R p/cm 2 /pulse R 1.27 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x The results clearly indicate that the position after the dog-leg (after the BHZ6045) is the optimal one to measure the negatively charged particles with the right momentum required by the AD ring acceptance. Among the considered BCT locations only this one can provide a very narrow antiproton spectrum fully contained in the energy range of [2, 3] GeV. The particles spectra after the dog-leg are dominated by the negative pion contribution (see Table 1). The antiproton fluence at this location is two orders of magnitude lower, while non-negligible contribution from neagtive kaons, muons and electrons components is expected. The positive particles contribution (in particular protons) to the overall particle fluence is negligible. Negative pions of 3.57 GeV/c momentum (corresponding to a kinetic energy of 3.43 GeV) are transported together with the antiproton beam in the AD ring where mainly decay after few turns. We can anticipate that electrons injected at the same time lose their energy by synchrotron radiation, spiral towards the central orbits and are lost on the various shutters belonging to injection and cooling devices [4], [5]. As expected, at the TFA6006 position, the antiproton fluence is more than three orders of magnitude lower than the proton one (Table 1). Fluence maps have also been produced (see Figures [7-16]) averaged over a vertical range of ±20 cm centered on the beam axis, for each of the species listed in Table 1. Due to the specific shape of the QDE6030 quadrupole (see Ref. [3]) a sizeable particles fraction, for most of the considered particle species, is deflected towards the target area lateral shielding. 5

10 Fig. 7: The figure shows the negative pion fluence spatial distribution in the AD target area averaged ±20 cm around the beam line. The significant pion fraction is guided along the magnet spectrometer towards the extraction line. Fig. 8: The figure shows the negative muon fluence spatial distribution in the AD target area averaged ±20 cm around the beam line. 6

11 Fig. 9: The figure shows the electron fluence spatial distribution in the AD target area averaged over ±20 cm around the beam line. Fig. 10: The figure shows the antiproton fluence spatial distribution in the ADT area averaged over ±20 cm around the beam line. The small antiproton production against other emerging particles can be appreciated. 7

12 Fig. 11: The figure shows the negative kaon fluence spatial distribution in the AD target area averaged over ±20 cm around the beam line. Fig. 12: The figure presents the positron fluence spatial distribution in the AD target area averaged over ±20 cm around the beam line. 8

13 Fig. 13: The figure presents the proton fluence spatial distribution in the AD target area averaged over ±20 cm around the beam line. Protons are mainly distributed between the target station and the dump, due to the effect of the BHZ6024/6025 bending dipoles. Further details about the role of these magnets in bending negative and positive particles can be found in ref. [6]. Fig. 14: The figure shows the positive pion fluence spatial distribution in the AD target area averaged over ±20 cm around the beam line. 9

14 Fig. 15: The figure shows the positive muon fluence spatial distribution in the AD target area averaged over ±20 cm around the beam line. Fig. 16: The figure shows the positive kaon fluence spatial distribution in the AD target area averaged over ±20 cm around the beam line. 4 Conclusion The aim of this study is to further support the consolidation work which is presently ongoing in the Antiproton Decelerator target area. In view of BCT upgrading and additional installation, it became important to quantitatively asses the particles population in various locations of the target area. The 10

15 position after BHZ6045 appears to be the most convenient one, as the contribution of the antiproton current to the measured value is the highest one and corresponds to negative particles in the energy range of interest. 5 References [1] G. Battistoni, S. Muraro, P. R. Sala, F. Cerutti, A. Ferrari, S. Roesler, A. Fass`o, J. Ranft, The FLUKA code: Description and benchmarking, Proc. of the Hadronic Shower Simulation Workshop 2006, Fermilab 6 8 September 2006, M. Albrow, R. Raja eds., AIP Conference Proceeding 896, 31-49, (2007) [2] A. Fass`o, A. Ferrari, J. Ranft, and P. R. Sala, FLUKA: a multi-particle transport code, CERN (2005), INFN/TC 05/11, SLAC-R-773 [3] M. Calviani, E. Nowak, FLUKA implementation and preliminary studies of the AD-target area, CERN-ATS-Note TECH (2012), [4] A.H. Sullivan, Shielding for ACOL CERN/PS/AA/ACOL Note ( ) [5] E. Johnes, Antiproton production and collection CERN Accelerator School Antiproton for colliding beam facilities, CERN-84-15, p [6] M. Calviani, Memorandum - Justification for the removal of the AD anti-proton production target position as external condition for the definition of the operational mode of AD CERN- EN-STI/ , EDMS/ , [7] EDMS document

European Organisation for Nuclear Research European Laboratory for Particle Physics

European Organisation for Nuclear Research European Laboratory for Particle Physics European Organisation for Nuclear Research European Laboratory for Particle Physics TECHNICAL NOTE CERN-DGS-XXXX Radiological assessment of the Tungsten Powder Test (HRM10) at HiRadMat Nikolaos Charitonidis

More information

Shielding calculations for the design of new Beamlines at ALBA Synchrotron

Shielding calculations for the design of new Beamlines at ALBA Synchrotron Shielding calculations for the design of new Beamlines at ALBA Synchrotron A. Devienne 1, M.J. García-Fusté 1 1 Health & Safety Department, ALBA Synchrotron, Carrer de la Llum -6, 0890 Cerdanyola del Vallès,

More information

Radiation Safety Assessment of the CLS Beamlines Using FLUKA Monte-Carlo Code

Radiation Safety Assessment of the CLS Beamlines Using FLUKA Monte-Carlo Code Radiation Safety Assessment of the CLS Beamlines Using FLUKA Monte-Carlo Code Mo Benmerrouche Fluka Advanced Workshop - Oct 07, 2010 Ericeira, Portugal M. Benmerrouche, HSE Manager http://www.lightsource.ca

More information

ATLAS NOTE. July 15, TGC Background Hit Rate: Comparison Between 2012 Data and Simulation. Abstract

ATLAS NOTE. July 15, TGC Background Hit Rate: Comparison Between 2012 Data and Simulation. Abstract Draft version.1 ATLAS NOTE July 15, 15 1 TGC Background Hit Rate: Comparison Between 1 Data and Simulation 3 4 5 6 Y. Chan a, T. Koi b, I. Ravinovich c, C. Young b a The Chinese University of Hong Kong,

More information

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets at LCLS MEC Instrument

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets at LCLS MEC Instrument Measurements of Radiation Doses Induced by High Intensity Laser between 10 16 and 10 21 W/cm 2 onto Solid Targets at LCLS MEC Instrument T. Liang 1,2, J. Bauer 1, M. Cimeno 1, A. Ferrari 3, E. Galtier

More information

Radiation Protection Considerations *

Radiation Protection Considerations * Chapter 11 Radiation Protection Considerations * C. Adorisio 1, S. Roesler 1, C. Urscheler 2 and H. Vincke 1 1 CERN, TE Department, Genève 23, CH-1211, Switzerland 2 Bundesamt fuer Gesundheit, Direktionsbereich

More information

Dosimetric Quantities and Neutron Spectra Outside the Shielding of Electron Accelerators

Dosimetric Quantities and Neutron Spectra Outside the Shielding of Electron Accelerators SLAC-PUB-15257 Dosimetric Quantities and Neutron Spectra Outside the Shielding of Electron Accelerators Alberto Fassò a,b, James C. Liu a and Sayed H. Rokni a* a SLAC National Accelerator Laboratory, 2575

More information

Calculation of the Dose Equivalent Rate from Induced Radioactivity Around the CNGS Target and Magnetic Horn

Calculation of the Dose Equivalent Rate from Induced Radioactivity Around the CNGS Target and Magnetic Horn The CERN Neutrino Beam to Gran Sasso Project EDMS Document No. 599104 CERN Div./Group: 1 AB/ATB, 2 SC/RP Date: 5/15/2005 Calculation of the Dose Equivalent Rate from Induced Radioactivity Around the CNGS

More information

Why do we accelerate particles?

Why do we accelerate particles? Why do we accelerate particles? (1) To take existing objects apart 1803 J. Dalton s indivisible atom atoms of one element can combine with atoms of other element to make compounds, e.g. water is made of

More information

Study on collimation and shielding of the back-streaming neutrons at the CSNS target

Study on collimation and shielding of the back-streaming neutrons at the CSNS target Study on collimation and shielding of the back-streaming neutrons at the CSNS target JING Han-Tao, TANG Jing-Yu, YANG Zheng Institute of High Energy Physics, Chinese Academy of Sciences Abstract: The back-streaming

More information

SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ

SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ SLAC-PUB-14159 SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ SLAC National Accelerator Laboratory: 2575 Sand Hill Road, Menlo

More information

New irradiation zones at the CERN-PS

New irradiation zones at the CERN-PS Nuclear Instruments and Methods in Physics Research A 426 (1999) 72 77 New irradiation zones at the CERN-PS M. Glaser, L. Durieu, F. Lemeilleur *, M. Tavlet, C. Leroy, P. Roy ROSE/RD48 Collaboration CERN,

More information

HSE Occupational Health & Safety and Environmental Protection. Test run for the HRMT-15 (RPINST) experiment

HSE Occupational Health & Safety and Environmental Protection. Test run for the HRMT-15 (RPINST) experiment ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Laboratoire Européen pour la Physique des Particules European Laboratory for Particle Physics HSE Occupational

More information

Code inter-comparison and benchmark for muon fluence and absorbed dose induced by an 18 GeV electron beam after massive iron shielding

Code inter-comparison and benchmark for muon fluence and absorbed dose induced by an 18 GeV electron beam after massive iron shielding Code inter-comparison and benchmark for muon fluence and absorbed dose induced by an 18 GeV electron beam after massive iron shielding Alberto Fassò 1, Alfredo Ferrari 2, Anna Ferrari 3, Nikolai V. Mokhov

More information

Radiation background simulation and verification at the LHC: Examples from the ATLAS experiment and its upgrades

Radiation background simulation and verification at the LHC: Examples from the ATLAS experiment and its upgrades at the LHC: Examples from the ATLAS experiment and its upgrades On behalf of the ATLAS Inner Detector University of Sheffield E-mail: Ian.Dawson@cern.ch The high collision rates at the new energy and luminosity

More information

Processing of incident-neutron sub-library from ENDF/B-VII.1, JENDL-4.0 and JEFF-3.1.1

Processing of incident-neutron sub-library from ENDF/B-VII.1, JENDL-4.0 and JEFF-3.1.1 Processing of incident-neutron sub-library from ENDF/B-VII.1, JENDL-4. and JEFF-3.1.1 M.P.W. Chin, A. Ferrari, V. Vlachoudis CERN (European Organization for Nuclear Research), CH-1211 Geneva, Switzerland

More information

FLUKA calculations for the beam dump system of the LHC : Energy deposition in the dump core and particle spectra in the beam loss monitors

FLUKA calculations for the beam dump system of the LHC : Energy deposition in the dump core and particle spectra in the beam loss monitors EDMS Document Number: 880178 ORGANISATION EUROPENNE POUR LA RECHERCHE NUCLEAIRE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Laboratoire Européen pour la Physique des Particules European Laboratory for Particle

More information

The achievements of the CERN proton antiproton collider

The achievements of the CERN proton antiproton collider The achievements of the CERN proton antiproton collider Luigi DiLella Scuola Normale Superiore, Pisa, Italy Motivation of the project The proton antiproton collider UA1 and UA2 detectors Discovery of the

More information

A beam line for schools

A beam line for schools A beam line for schools Great things can happen when high schools get involved with cutting edge science, and that s exactly what CERN is proposing with its new beam line for schools competition, which

More information

Christian Theis, Stefan Roesler and Helmut Vincke. Abstract

Christian Theis, Stefan Roesler and Helmut Vincke. Abstract ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH Laboratoire Européen pour la Physique des Particules European Laboratory for Particle Phy sics TECHNICAL NOTE

More information

Accelerator Details: the Antiproton Source

Accelerator Details: the Antiproton Source 1 di 6 10/05/2006 9.23 Return to Fermilab's Chain of Accelerators (movie clip) Fermilab's Chain of Accelerators Return to Accelerator Details Main Page Why use antiprotons? A collider has an enormous advantage

More information

FLUKA Calculations for the Shielding Design of the SPPS Project at SLAC*

FLUKA Calculations for the Shielding Design of the SPPS Project at SLAC* SLAC PUB 10010 December 2003 FLUKA Calculations for the Shielding Design of the SPPS Project at SLAC* Heinz Vincke, Stan Mao and Sayed Rokni Stanford Linear Accelerator Center, Stanford University, Stanford,

More information

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system.

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system. Introduction One of the main events in the field of particle physics at the beginning of the next century will be the construction of the Large Hadron Collider (LHC). This machine will be installed into

More information

Physics sources of noise in ring imaging Cherenkov detectors

Physics sources of noise in ring imaging Cherenkov detectors Nuclear Instruments and Methods in Physics Research A 433 (1999) 235}239 Physics sources of noise in ring imaging Cherenkov detectors For the ALICE HMPID Group Andreas Morsch EP Division, CERN, CH-1211

More information

Tertiary particle production and target optimization of the H2 beam line in

Tertiary particle production and target optimization of the H2 beam line in CERN-ACC-NOTE-2016-0060 2016-10-27 Tertiary particle production and target optimization of the H2 beam line in the SPS North Area F. Tellander 1, 2,* and N. Charitonidis 2 1 Departement of Astronomy and

More information

E. EROGLU, E. PILICER, I. TAPAN Department of Physics, Faculty of Arts and Sciences, Uludag University, Gorukle, Bursa, TURKEY.

E. EROGLU, E. PILICER, I. TAPAN Department of Physics, Faculty of Arts and Sciences, Uludag University, Gorukle, Bursa, TURKEY. BALKAN PHYSICS LETTERS c Bogazici University Press 10 February 2010 BPL, 18, 181010, pp. 73-78 (2010) POSITRON PRODUCTION AND ENERGY DEPOSITION STUDIES WITH FLUKA E. EROGLU, E. PILICER, I. TAPAN Department

More information

Constraining the T2K Neutrino Flux Prediction with 2009 NA61/SHINE Replica-Target Data arxiv: v1 [physics.ins-det] 1 Apr 2018

Constraining the T2K Neutrino Flux Prediction with 2009 NA61/SHINE Replica-Target Data arxiv: v1 [physics.ins-det] 1 Apr 2018 SNSN-323-63 April 3, 2018 Constraining the T2K Neutrino Flux Prediction with 2009 NA61/SHINE Replica-Target Data arxiv:1804.00272v1 [physics.ins-det] 1 Apr 2018 Tomislav Vladisavljevic 1 University of

More information

Measurement of the photodissociation of the deuteron at energies relevant to Big Bang nucleosynthesis

Measurement of the photodissociation of the deuteron at energies relevant to Big Bang nucleosynthesis Journal of Physics: Conference Series PAPER OPEN ACCESS Measurement of the photodissociation of the deuteron at energies relevant to Big Bang nucleosynthesis To cite this article: R Hannaske et al 2016

More information

A Segmented Beam Dump for

A Segmented Beam Dump for A Segmented Beam Dump for thects Lineat CTF3 M. Olvegård, W. Andreazza, E. Bravin, N. Chritin, A. Dabrowski, M. Duraffourg, T. Lefèvre May10, 2012 Abstract We propose a new segmented beam dump to be installed

More information

Examples for experiments that can be done at the T9 beam line

Examples for experiments that can be done at the T9 beam line Examples for experiments that can be done at the T9 beam line Example 1: Use muon tomography to look for hidden chambers in pyramids (2016 winning proposal, Pyramid hunters) You may know computer tomography

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2018/225 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 27 September 2018 (v2, 19 November

More information

Nuclear Instruments and Methods in Physics Research A

Nuclear Instruments and Methods in Physics Research A Nuclear Instruments and Methods in Physics Research A 684 (2012) 109 116 Contents lists available at SciVerse ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima

More information

Overview of validations at LHC

Overview of validations at LHC G4 Workshop, Bordeaux, 8 November 2005 Overview of validations at LHC Alberto Ribon CERN PH/SFT http://lcgapp.cern.ch/project/simu/validation/ Physics Validation First cycle of electromagnetic physics

More information

Update on MOMENT s Target Station Studies

Update on MOMENT s Target Station Studies Update on MOMENT s Target Station Studies Institute of High Energy Physics, CAS, Beijing 100049, China E-mail: vassilopoulos@ihep.ac.cn Han-Jie Cai Institute of Modern Physics, CAS, Lanzhou 730000, China

More information

The photoneutron yield predictions by PICA and comparison with the measurements

The photoneutron yield predictions by PICA and comparison with the measurements The photoneutron yield predictions by PICA and comparison with the measurements P. K. Job Advanced Photon Source Argonne National Laboratory Argonne, IL 60349 T. G Gabriel OakRidge Detector Center OakRidge

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History -

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History - Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics - Accelerator Techniques: Introduction and History - Karsten Heeger heeger@wisc.edu Homework #8 Karsten Heeger, Univ. of Wisconsin

More information

SLAC-PUB Submitted to Radiation Protection and Dosimetry. Work supported by Department of Energy contract DE-AC02-76SF00515

SLAC-PUB Submitted to Radiation Protection and Dosimetry. Work supported by Department of Energy contract DE-AC02-76SF00515 SLAC-PUB-11088 CALCULATIONS OF NEUTRON AND PHOTON SOURCE TERMS AND ATTENUATION PROFILES FOR THE GENERIC DESIGN OF THE SPEAR3 STORAGE RING SHIELD S. H. Rokni, H. Khater, J. C. Liu, S. Mao and H. Vincke

More information

Exam Results. Force between charges. Electric field lines. Other particles and fields

Exam Results. Force between charges. Electric field lines. Other particles and fields Exam: Exam scores posted on Learn@UW No homework due next week Exam Results F D C BC B AB A Phy107 Fall 2006 1 Particles and fields We have talked about several particles Electron,, proton, neutron, quark

More information

Induced Activity Calculations in View of the Large Electron Positron Collider Decommissioning

Induced Activity Calculations in View of the Large Electron Positron Collider Decommissioning SLAC-PUB-8214 August 1999 Induced Activity Calculations in View of the Large Electron Positron Collider Decommissioning A. Fasso et al. Contributed to the Ninth International Conference on Radiation Shielding,

More information

The CNGS neutrino beam

The CNGS neutrino beam 10th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD06) 1-5 October 2006 Siena, Italy ν The CNGS neutrino beam G. Sirri INFN Bologna CNGS (CERN Neutrinos to Gran Sasso) The project

More information

PoS(NuFact2017)088. EMuS in CSNS. Guang Zhao 1. Institute of High Energy Physics Beijing, China

PoS(NuFact2017)088. EMuS in CSNS. Guang Zhao 1. Institute of High Energy Physics Beijing, China 1 Institute of High Energy Physics Beijing, China E-mail: zhaog@ihep.ac.cn In this presentation, we report the recent progress in EMuS at CSNS. The following topics will be discussed: a) the base design

More information

Information about the T9 beam line and experimental facilities

Information about the T9 beam line and experimental facilities Information about the T9 beam line and experimental facilities The incoming proton beam from the PS accelerator impinges on the North target and thus produces the particles for the T9 beam line. The collisions

More information

2.24 Simulation Study of K L Beam: K L Rates and Background Ilya Larin Department of Physics Old Dominion University Norfolk, VA 23529, U.S.A.

2.24 Simulation Study of K L Beam: K L Rates and Background Ilya Larin Department of Physics Old Dominion University Norfolk, VA 23529, U.S.A. 2.24 Simulation Study of K L Beam: K L Rates and Background Ilya Larin Department of Physics Old Dominion University Norfolk, VA 23529, U.S.A. Abstract We report our simulation results for K L -beam and

More information

Colliders and the Machine Detector Interface

Colliders and the Machine Detector Interface Colliders and the Machine Detector Interface M. Sullivan SLAC National Accelerator Laboratory for the Hong Kong University of Science and Technology Jockey Club Institute for Advanced Study High Energy

More information

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.)

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) Physics 557 Lecture 7 A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) First came the study of the debris from cosmic rays (the God-given particle

More information

IPBI-TN June 30, 2004

IPBI-TN June 30, 2004 Spray Electron Beam for Tests of Linear Collider Forward Calorimeter Detectors in SLAC End Station A R. Arnold UMass Amherst, Amherst MA 01003 T. Fieguth Stanford Linear Accelerator Center Menlo Park,

More information

Theoretical Assessment of Aircrew Exposure to Galactic Cosmic Radiation Using the FLUKA Monte Carlo Code

Theoretical Assessment of Aircrew Exposure to Galactic Cosmic Radiation Using the FLUKA Monte Carlo Code Theoretical Assessment of Aircrew Exposure to Galactic Cosmic Radiation Using the FLUKA Monte Carlo Code R. Ashkenazi 1, 2, J. Koch 1 and I. Orion 2 1 Radiation Safety Division, Soreq Nuclear Research

More information

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Deliverable Report SIMULATION MODELS FOR ENERGY DEPOSITION

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Deliverable Report SIMULATION MODELS FOR ENERGY DEPOSITION CERN-ACC-2013-011 HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study Deliverable Report SIMULATION MODELS FOR ENERGY Redaelli, Stefano (CERN) 20 November 2012 The HiLumi LHC Design Study

More information

MESON AREA 1000 GeV STUDY. C. N. Brown, A. L. Read, A. A. Wehmann Fermi National Accelerator Laboratory

MESON AREA 1000 GeV STUDY. C. N. Brown, A. L. Read, A. A. Wehmann Fermi National Accelerator Laboratory -375 MESON AREA 1000 GeV STUDY C. N. Brown, A. L. Read, A. A. Wehmann Fermi National Accelerator Laboratory This report attempts to collect together preliminary thoughts on how protons from the Energy

More information

PoS(KAON)059. Giuseppe Ruggiero. Scuola Normale Superiore and INFN, Pisa, Italy

PoS(KAON)059. Giuseppe Ruggiero. Scuola Normale Superiore and INFN, Pisa, Italy The π ν ν experiment at CERN Scuola Normale Superiore and INFN, Pisa, Italy E-mail: giuseppe.ruggiero@cern.ch The P326 proposal for an experiment to measure the branching ratio of the very rare kaon decay

More information

Particles and Universe: Particle accelerators

Particles and Universe: Particle accelerators Particles and Universe: Particle accelerators Maria Krawczyk, Aleksander Filip Żarnecki March 24, 2015 M.Krawczyk, A.F.Żarnecki Particles and Universe 4 March 24, 2015 1 / 37 Lecture 4 1 Introduction 2

More information

Theory of electron cooling

Theory of electron cooling Theory of electron cooling Daria Astapovych 03/12/2014 HSC Meeting Outline Motivation and idea of the particle beam cooling Cooler Low energy, high energy beam Electron beam Kinetics of electron cooling

More information

C A SPECTROMETER FOR MEASURING INELASTIC SECONDARIES FROM 200 GeV Ie, p-p COLLISIONS. T. O. White National Accelerator Laboratory

C A SPECTROMETER FOR MEASURING INELASTIC SECONDARIES FROM 200 GeV Ie, p-p COLLISIONS. T. O. White National Accelerator Laboratory C.2-68-99 A SPECTROMETER FOR MEASURING INELASTIC SECONDARIES FROM 200 GeV Ie, p-p COLLISIONS T. O. White National Accelerator Laboratory One experiment which will no doubt be a part of the early experimental

More information

Tools of Particle Physics I Accelerators

Tools of Particle Physics I Accelerators Tools of Particle Physics I Accelerators W.S. Graves July, 2011 MIT W.S. Graves July, 2011 1.Introduction to Accelerator Physics 2.Three Big Machines Large Hadron Collider (LHC) International Linear Collider

More information

Review of Recent Applications of the FLUKA MC in High Energy and Accelerator Physics

Review of Recent Applications of the FLUKA MC in High Energy and Accelerator Physics Review of Recent Applications of the FLUKA MC in High Energy and Accelerator Physics, F. Cerutti, E. Gadioli, M.V. Garzelli, S.Muraro, T. Rancati, P. Sala (INFN and Univ. Milano) A. Ferrari, K. Tsoulou,

More information

Accelerators. Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of

Accelerators. Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of Accelerators Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of e - : Always ultra-relativistic, therefore constant speed

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

arxiv: v1 [hep-ex] 27 Dec 2015

arxiv: v1 [hep-ex] 27 Dec 2015 NuFact15 - Rio de Janeiro, Brazil - August 2015 A non-conventional neutrino beamline for the measurement of the electron neutrino cross section A. Berra, M. Prest Dep. of Physics, Univ. of Insubria and

More information

Design of back-streaming white neutron beam line at CSNS

Design of back-streaming white neutron beam line at CSNS Design of back-streaming white neutron beam line at CSNS L.Y. Zhang a,b,c, H.T. Jing b,c*, J.Y. Tang b,c,a, Q. Li b,c, X. C. Ruan d, J. Ren d, C. J. Ning b,c, Y. J. Yu b,c, Z. X. Tan b,c, P. C. Wang b,c,

More information

Search for Dark Matter with LHC proton Beam Dump

Search for Dark Matter with LHC proton Beam Dump Search for Dark Matter with LHC proton Beam Dump Ashok Kumar a, Archana Sharma b* a Delhi University, Delhi, India b CERN, Geneva, Switzerland Abstract Dark Matter (DM) comprising particles in the mass

More information

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Appendix A. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Prepared by: Arash Akbari-Sharbaf Why Build Accelerators? Probe deeper From

More information

Radiation shielding for undulator beamline in Indus-2 synchrotron radiation source

Radiation shielding for undulator beamline in Indus-2 synchrotron radiation source Radiation shielding for undulator beamline in Indus-2 synchrotron radiation source P. K. Sahani 1,5, A. K. Das 2, Haridas G. 3, A. K. Sinha 4,5, B. N. Rajasekhar 2,5, T. A. Puntambekar 1 and N K Sahoo

More information

Optimization of n_tof-ear2 using FLUKA

Optimization of n_tof-ear2 using FLUKA Journal of Instrumentation OPEN ACCESS Optimization of n_tof-ear2 using FLUKA To cite this article: S. Barros et al View the article online for updates and enhancements. Related content - Forthcoming (n,

More information

Hadron Production Experiments and Neutrino Beams

Hadron Production Experiments and Neutrino Beams Hadron Production Experiments and Neutrino Beams LIONeutrino2012 Oct 22 nd 12 Alessandro Bravar Why hadro-production measurements Understand the neutrino source solar neutrinos ν flux predictions based

More information

CEPC Detector and Physics Studies

CEPC Detector and Physics Studies CEPC Detector and Physics Studies Hongbo Zhu (IHEP) On Behalf of the CEPC-SppC Study Group FCC Week 2015, 23-27 March, Washington DC Outline Project overview Higgs Physics @ CEPC The CEPC detector Machine-Detector

More information

Radiation Safety Considerations for the TPS Accelerators

Radiation Safety Considerations for the TPS Accelerators Radiation Safety Considerations for the TPS Accelerators R.J. Sheu, J. Liu, and J.P. Wang National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, TAIWAN

More information

Accuracy of LHC proton loss rate determination by the BLM system

Accuracy of LHC proton loss rate determination by the BLM system Accuracy of LHC loss rate determination by the BLM system Eva Barbara Holzer, Bernd Dehning, Christian W. Fabjan, Daniel Kramer, Mariusz Sapinski, and Markus Stockner Abstract Most of the monitors of the

More information

REPORT OF THE NEUTRINO AREA STUDY GROUP

REPORT OF THE NEUTRINO AREA STUDY GROUP REPORT OF THE NEUTRINO AREA STUDY GROUP J. Allaby, C. Baltay, D. Cline, W. Fowler, F. Huson, W. Ko, P. Limon, S. Loken, A. Melissinos, J. Peoples, R. Singer, A. Skuja, R. Stefanski, D. Theriot, T. Toohig,

More information

Status Report on the Survey and Alignment Activities at Fermilab

Status Report on the Survey and Alignment Activities at Fermilab Status Report on the Survey and Alignment Activities at Fermilab Babatunde O Sheg Oshinowo, Ph.D, FRICS Alignment and Metrology Fermi National Accelerator Laboratory Batavia, IL 60510 ABSTRACT This report

More information

Marcos Dracos IPHC, Université de Strasbourg, CNRS/IN2P3, F Strasbourg, France

Marcos Dracos IPHC, Université de Strasbourg, CNRS/IN2P3, F Strasbourg, France Neutrino CP Violation with the ESSνSB project IPHC, Université de Strasbourg, CNRS/INP3, F-603 Strasbourg, France E-mail: marcos.dracos@inp3.fr After measuring in 01 a relatively large value of the neutrino

More information

Beam-induced radiation in the compact muon solenoid tracker at the Large Hadron Collider

Beam-induced radiation in the compact muon solenoid tracker at the Large Hadron Collider PRAMANA c Indian Academy of Sciences Vol. 74, No. 5 journal of May 2010 physics pp. 719 729 Beam-induced radiation in the compact muon solenoid tracker at the Large Hadron Collider A P SINGH 1,, P C BHAT

More information

Comparison with simulations to experimental data for photoneutron reactions using SPring-8 Injector

Comparison with simulations to experimental data for photoneutron reactions using SPring-8 Injector Comparison with simulations to experimental data for photoneutron reactions using SPring-8 Injector Yoshihiro Asano 1,* 1 XFEL/SPring-8 Center, RIKEN 1-1 Koto Sayo Hyogo 679-5148, Japan Abstract. Simulations

More information

Particle Acceleration

Particle Acceleration Nuclear and Particle Physics Junior Honours: Particle Physics Lecture 4: Accelerators and Detectors February 19th 2007 Particle Beams and Accelerators Particle Physics Labs Accelerators Synchrotron Radiation

More information

Monte Carlo Simulations of Beam Losses in the Test Beam Line of CTF3

Monte Carlo Simulations of Beam Losses in the Test Beam Line of CTF3 CERN-ACC-2013-0297 Author: Eduardo.Nebot.del.Busto@cern.ch Monte Carlo Simulations of Beam Losses in the Test Beam Line of CTF3 E. Nebot Del Busto; E. Branger; S. Doebert; E.B. Holzer; R.L. Lillestol;

More information

Modern Accelerators for High Energy Physics

Modern Accelerators for High Energy Physics Modern Accelerators for High Energy Physics 1. Types of collider beams 2. The Tevatron 3. HERA electron proton collider 4. The physics from colliders 5. Large Hadron Collider 6. Electron Colliders A.V.

More information

Bulk shielding design for the MAX IV facility

Bulk shielding design for the MAX IV facility Bulk shielding design for the MAX IV facility Magnus Lundin 1, Lennart Isaksson 1, Bent Schröder 1 1 Lund University, MAX-lab, P.O. Box 118, SE-221 Lund, Sweden Abstract This paper reports on the design

More information

The discovery of W ± and Z 0 vector-bosons

The discovery of W ± and Z 0 vector-bosons The discovery of W ± and Z 0 vector-bosons Giulia De Zordo April 15, 2014 Abstract This article is about the discovery of the W ± and Z 0 vector-bosons, the carriers of weak interaction. The discovery

More information

Particle Physics with Electronic Detectors

Particle Physics with Electronic Detectors Particle Physics with Electronic Detectors This experiment performed by the Oxford group on the 7 GeV proton synchrotron, NIMROD, at the Rutherford Laboratory in 1967 gave the first usefully accurate measurement

More information

1. RADIOACTIVITY AND RADIATION PROTECTION

1. RADIOACTIVITY AND RADIATION PROTECTION 1. Radioactivity and radiation protection 1 1. RADIOACTIVITY AND RADIATION PROTECTION Revised August 2011 by S. Roesler and M. Silari (CERN). 1.1. Definitions [1,2] 1.1.1. Physical quantities: Fluence,

More information

Neutrino beamline prospects, concepts Milorad Popovic

Neutrino beamline prospects, concepts Milorad Popovic NuFact 2016 Neutrino beamline prospects, concepts Milorad Popovic APC- Fermilab, Batavia, IL 60510, USA August, 21, 2016 1 M. Popovic Conventional Neutrino Beamline 2 M. Popovic Conventional Neutrino Beamline

More information

RUN II LUMINOSITY PROGRESS*

RUN II LUMINOSITY PROGRESS* RUN II LUMINOSITY PROGRESS* K. Gollwitzer, Fermilab, Batavia, IL 60510, U.S.A. Abstract The Fermilab Collider Run II program continues at the energy and luminosity frontier of high energy particle physics.

More information

V0 cross-section measurement at LHCb. RIVET analysis module for Z boson decay to di-electron

V0 cross-section measurement at LHCb. RIVET analysis module for Z boson decay to di-electron V0 cross-section measurement at LHCb. RIVET analysis module for Z boson decay to di-electron Outline of the presentation: 1. Introduction to LHCb physics and LHCb detector 2. RIVET plug-in for Z e+e- channel

More information

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

Proton and neutron radiation facilities in the PS East hall at CERN

Proton and neutron radiation facilities in the PS East hall at CERN Proton and neutron radiation facilities in the PS East hall at CERN http://www.cern.ch/irradiation M. Glaser, CERN Division EP-TA1-SD Introduction CERN Accelerators CERN-PS East Hall Proton irradiation

More information

Comparison of FLUKA and STAC8 for shielding calculations of the hard X-ray line of the LCLS

Comparison of FLUKA and STAC8 for shielding calculations of the hard X-ray line of the LCLS SLAC RADIATION PHYSICS NOTE RP-08-11 September 23, 2008 Comparison of FLUKA and STAC8 for shielding calculations of the hard X-ray line of the LCLS J. Vollaire, A. Prinz Radiation Protection Department,

More information

Occupational Radiation Protection at Accelerator Facilities: Challenges

Occupational Radiation Protection at Accelerator Facilities: Challenges Occupational Radiation Protection at Accelerator Facilities: Challenges Haridas.G Health Physics Division Bhabha Atomic Research Centre INDIA Int. Conf. on Occupational Radiation Protection: Enhancing

More information

Advanced Design of the FAIR Storage Ring Complex

Advanced Design of the FAIR Storage Ring Complex Advanced Design of the FAIR Storage Ring Complex M. Steck for the FAIR Technical Division and the Accelerator Division of GSI The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC

More information

PHYS 3446 Lecture #15

PHYS 3446 Lecture #15 PHYS 3446 Lecture #15 Monday, Oct. 30, 2006 Dr. 1. Particle Accelerators Electro-static Accelerators Cyclotron Accelerators Synchrotron Accelerators 2. Elementary Particle Properties Forces and their relative

More information

Particle Detectors. How to See the Invisible

Particle Detectors. How to See the Invisible Particle Detectors How to See the Invisible Which Subatomic Particles are Seen? Which particles live long enough to be visible in a detector? 2 Which Subatomic Particles are Seen? Protons Which particles

More information

Radiation protection considerations along a radioactive ion beam transport line

Radiation protection considerations along a radioactive ion beam transport line Applications of Nuclear Techniques (CRETE15) International Journal of Modern Physics: Conference Series Vol. 44 (2016) 1660238 (7 pages) The Author(s) DOI: 10.1142/S2010194516602386 Radiation protection

More information

Prompt Radiation Fields at Accelerators

Prompt Radiation Fields at Accelerators Prompt Radiation Fields at Accelerators Vashek Vylet, TJNAF HPS Professional Development School, Oakland, CA January 31 February 2, 2008 1 Overview Introduction ti Prompt Fields at Electron Accelerators

More information

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer

Dark Matter Searches with AMS-02. AMS: Alpha Magnetic Spectrometer Dark Matter Searches with AMS-02 AMS: Alpha Magnetic Spectrometer 2007/2008 Wim de Boer on behalf of the AMS collaboration University of Karlsruhe July, 20. 2004 COSPAR, Paris, W. de Boer, Univ. Karlsruhe

More information

Simulation of the radiation levels and shielding studies at the BDI positions in IR4

Simulation of the radiation levels and shielding studies at the BDI positions in IR4 EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics LHC Project Note 367 2005-05-10 Ekaterini.Tsoulou@cern.ch Simulation of the radiation levels and shielding studies at

More information

Particle physics experiments

Particle physics experiments Particle physics experiments Particle physics experiments: collide particles to produce new particles reveal their internal structure and laws of their interactions by observing regularities, measuring

More information

Advanced Storage Photon Ring Source Upgrade Project:

Advanced Storage Photon Ring Source Upgrade Project: Advanced Storage Photon Ring Source Upgrade Project: The Shielding World s for Leading the Hard X-ray Light Source Advanced Photon Source - Upgrade Bradley J. Micklich Radiation Physicist Argonne National

More information

Present and Future of Fission at n_tof

Present and Future of Fission at n_tof 16th ASRC International Workshop " Nuclear Fission and Structure of Exotic Nuclei " Present and Future of Fission at n_tof Christina Weiss, CERN, Geneva/Switzerland 20.03.2014 Present and Future of Fission

More information

Chapter test: Probing the Heart of Matter

Chapter test: Probing the Heart of Matter PRO dditional sheet 5 Chapter test: Probing the Heart of Matter 40 marks total nswer LL the questions. Write your answers in the spaces provided in this question paper. The marks for individual questions

More information

SSA Measurements with Primary Beam at J-PARC

SSA Measurements with Primary Beam at J-PARC SSA Measurements with Primary Beam at J-PARC Joint UNM/RBRC Workshop on Orbital Angular Momentum in Albuquerque February 25 th, 2006 Yuji Goto (RIKEN/RBRC) February 25, 2006 Yuji Goto (RIKEN/RBRC) 2 Introduction

More information

Status and Results of the UA9 Crystal Collimation Experiment at the CERN-SPS

Status and Results of the UA9 Crystal Collimation Experiment at the CERN-SPS HB2012 - Beijing - 18 September 2012 Status and Results of the UA9 Crystal Collimation Experiment at the CERN-SPS Simone Montesano (CERN) for the UA9 collaboration Silicon strip crystal Outline Crystal

More information

A Beam Dump Facility (BDF) at CERN - The Concept and a First Radiological Assessment

A Beam Dump Facility (BDF) at CERN - The Concept and a First Radiological Assessment A Beam Dump Facility (BDF) at CERN - The Concept and a First Radiological Assessment M. Calviani 1, M. Casolino 1, R. Jacobsson 1, M. Lamont 1, S. Roesler 1, H. Vincke 1, C. Ahdida 2 1 CERN, 2 PSI AccApp

More information