CDDfill18HMR OfibeJlMHeHH OrO MHCTM TYTa RJle phblx MCCneAOaaHMM. AY6 Ha. Ngu yen Oinh Vin h

Size: px
Start display at page:

Download "CDDfill18HMR OfibeJlMHeHH OrO MHCTM TYTa RJle phblx MCCneAOaaHMM. AY6 Ha. Ngu yen Oinh Vin h"

Transcription

1 CDDfill8HMR OfibeJlMHeHH OrO MHCTM TYTa RJle phblx MCCneAOaaHMM AY6 Ha E'l Ngu yen Oinh Vin h lla," PI l'c OF SPHERI CA L ~ U8S Il El.LS IN Til E 3 9 lj ANn :l 7NI' l\ UCLEI 985

2 In recent years a great attention has been paid to the study o f the f ragmentation of the simplest nuclear exci t ati ons over many nuclear levels at intermediate and high excitation energies. It is well-known that the fragmentation of fe\~quasipar t icle states plays an important role in t he def i ning many physicall y observabl. quantities such as the spreading wi dth o f giant resonances, the El - nnd Ml - radiative strength func t i ons, the neutron s trenrlh (ufwtions, etc. Thi'lt is why the study of this phenomenon hn~ rly~d much interes t of both experimenters and t heoreticians. Till ' [eclive tool for the experimental investigat ion of tilt' nn( -quasiparticle state fragmentation i n odd-mass nuclei. i s till om'- nucicon transfer r eaction. In the stripping reactions of llw (d.p) -type the particle states are popul ated, and i n the pick-up f"( nctions of the ( d.t ) - t ype one can observe t h e hole strenalhs. During tl'" lop.! lime the f r agmen t ation o f few- quasipartic components of lll(' W::JV(> function s of nuc l ei is extensively studied in the f rarne- wnrk o f the quasipar ticle-phonon nuclear model / To de scribe lilt' process o f f ragmenta t ion th is model suggesls t o emp l oy t he mech3nism uf the i nter ac tion of quasipa r t i ces wi t h phonons which an' Vf'ry i mportant i n t he s tudy of the structure of l ow-lying liournl (Il ional s t a tes of atomi c nucl ei. Within the model, i n re f. 3' Ll e r e have been e stabl ished the genera] regulari t ies of llll' j ragmcnt a tion o f s ingl e-partic l e s tates in d e formed nuc l ei which s how that the fra gmentat i on essentiall y depends on tll(> PO g i lion, quantum numbe r s of t he s ingle-part i cle state and on the c ha r act erist i cs of c o l lect i ve excitations. I n / 4 ref. t he Jl'p~ndcn c e of fragmen tat i on upon the nuclear shapes is investigattd. It i s s hown t hat, as a r esult, s uhs llf..' l!-> wilh orbital momenta f::. i n deformed nuclei a r e fragmented stronge r t han in spherical one s. I n ref. 5' t he fragmentation of var i ous subsho l Is i n t he rar e-earth nuclei i s {~. J l cul.,tcd. Th e calcu l a ted p i ctur e o f the stre ng th d i s tributions i s i n sati s f act ory agreeme n t with t he typi cal be haviour of the ('ross section of nucleon transf er reac t ions for this region of nucle i. I n r e f. ' 6 t he fragme ntation of low-spin single- particle negat i ve parity states in the i s o topes o f tungslen are i nve s t i gated. The mod e l describes r ather we ll s ome observed a noma l y i n the cross sections o f ( d. p ) r eac t ions in t hcs(> nuc l ei u s i ng a futher small limitati on on the s i ze of the hexadecapol e de f ormation of both tile neutron and proton s chemes.

3 In the lying and and g 7 mentation nucleus. present paper we s tudy the damping of several highl ow- lying neutron subshells such as 3 р 3, i, j 5 in the 39 U. We also calculate the fragof а large number of proton subshells in the 3 7Np The model and methods for solving its main equations were described in ref.' 3. In this paper we write out onl y the formulae rej:uired for the understanding of the obtained results. In ref. 3 it was shown that the fragment ation of one-quasiparticle states in deformed nuclei may Ье studied within а simplified model. The wave function of the nonrotational state with the angular momentum projection into t he nucleus symmetry axis К and parity " of an odd-a deformed nucleus has the form: i + i ++ Ч'. (К ) = -~!~Срара + ~D (aq) }'' 0,,[ а Р g g g where '' 0 is the wave function of the ground state of а douьly even nucleus having one nucleon less than the studied one; i is the number of the state, g : vл~j, j being the number of the root of the secuar equation for. the one-phonon state of multipolarity Л~. The set of quantum numbers for any single-particle state is denoted Ьу (va) and for states with fixed К" Ьу (ра) with а=+. The wave function () is normalized to unity. The structure of one-phonon states is calculated in the RPA. The quantity (С~) is de termined f r om the wave function normalization (). The secular equation for defining the energies 77i symbolically can Ье written as F (77. ) ~ О. р ( ) () Ср(77) = ~. ( С~) p ( 77 i -77) averaged with t he weight ~ р ( 7) -7)) = с 77. _ 77 ) +(М ) The energy interval of averaging ~ specifies the type of representation of calculational results. The сюiсе of ~ is discussed in ref J 3 ; here we take ~ = 0.4 MeV. One can write (3) in the form '3/ : с~ (77) =... Im! J. " Fp(7J + im) In the simplified model te function C (r ) - р has the following form: ~ Г(77) с (7)) = Р w ( f(p)- у(77) -.,.,) + (М) Г(.,.,) were f (р) г (7)) = + ~ g s the ener gy of the one-quasiparticlc s tate г Е_! (p(g)-.,.,) +(i\/ ) у(.,.,) = ~ Гpg(p(g) -) g (р (g) -.,., ) - ( м ) Р (3) (4) (5) (6) and (7) (8) То descri be highly excited states within the model.the phonons of multipole-type with Л =,..., 7 as well as а large number of phonons of each multipolarity are taken into account. Alongside with the known low-lying collective quadrupole and octupole phonons we consider таnу weakly collectivized phonons as well as high-lying phonons like the giant resonances. The phonon space of the model is large enough and the good description of the density of highly excited states 7 proves its completeness. We determine the single-particle fragmentation in deformed nuclei using the direct calculational method of averaged characteristics without а detailed calculation of each individual state. Following refs. 3, we construct the s~rength function of the energy distribution of the one-quasiparticle state р in the form "" "' Here p(g) = с ( ') + w л~j is tle cncr gy of thc phonon state, Грg defines the iпt e r ac ti on of s t ates р and v through phonon Л~j With the str cngth di s tribution of the single-partic l e state с: (77) we can now cal culate the fragmentation of the spherical subshell denoted Ьу the quantum numbers nfj over many nuclear levels in а deformed nuc l eu s. It is known that the static deformation resul ts in а splitting of the subshell nfj on j + / suьlevels with the momentum projections into the nuclear symmetry axis К= /, 3/,..., j. The subshell strength is spread over many single-particle states with different К. Every single-particle state р comes in this distribution with the weight determined Ьу the expansion coefficient ар~ of the single-particle state wave function Фрк of the naxial-symmetric ~ - " 3 у

4 Saxon-Woods potential in the shell functions Фn~ symmetric potential ф рк Р К= nj.а nfj ф nfj of spherical- Thus, the subshell nfj strength comprises all these state strengths taking into account their fragmentation due to the nteraction with phonons. The subshell strength function has the form 4 : snf/77) = Jк <<~ ) С~(77) (0) with the normalization condition of type ~ ( рк.., а f ) = J + - рк n J То compare with the spectroscopic data obtained in experiments in spite of Snf/77) one must use for the reactions of (d,t)- type рк S nfj (7) = k (anfj ) vp С Р (7) рк and for the reactions of (d,p)-type (9) ( ) () 0.6. sg7,.}~) меv SзPJ;}~)MeVo~ 0. Or== ~ MeV Fig.l~ Fragment ation of the g7; - and 3р 3 ; -subsheu s in the 3 9u nuc'leus. n.t Sjst/~)Mev n of,, ". 0.8 Si (?) меv 0.6 n 0. Fig.. Fragmentation of the lj 5 ; - and li ; -sub- ~ О ~ sheus in the 39 U nuc'leus. 4 6?MeV S nfj (7) k (ар К рк nfj) upcp(7), (3) where Up and vp are the Bogolubov transformati on coefficients. It is obvious that - = Snfj (77) = S nfj (77) +Snfj (77). (4) In numerical calculations we use the single-particle energies and wave functions of the axial-symmetric Saxon-\voods potential. The potential parameters, pairing the multipole-multipole interaction constants, and phonon number are taken from refs. /,3/ We have calculated the fragmentations of the li ; -, lj 5 ; -, 3р ; ja - 3 and g 7 ; -neutron subshells in the 39 tt nucleus. We investgated the same proьlem for several proton subshells in the 37 Np nucleus. The particle and the hole strength functions are obtained for some of these subshells. We show the strength functions S nfj (7) for the high-lying neutron subshells g 7 and 3р 3 ; in fig. and the strength functions Snfj (7) for the low-lying neutron subshells i ; 4 ]: EMeV о Р n -3 f7~ - 'Лn g~ hg; =-=-= ~5/ Лр Зs/~g dз;-- h; - L Зр~ Fig.J. The r e'lative posit ions of suъshe'l'ls in the neutron and the proton schemes of the region of А = 39. The Л n and Л р are the Fermi surface in the neutron and the proton schemes. 5

5 and lj5; in fig.. Figure shows that the strength distribution of g 7 ; - and 3р 3 ; -subshells inside their strength location regions is rather uniform, i.e., the distribution is characterised Ьу а large second moment. The strength location region of g7/ -subshell amounts to 7 MeV whereas such а quantity for the 3р 3 ; - subshell has the range of - 9 MeV. Thus, the 3р 3 ; -subshell is said to Ье fragmented stronger than the g 7 ; -subshell. In fig. it is easily s een that the ; - subshell fragments stronger than the lj 6 ; one (the location region of strength for li ; -subshell amounts to 8 MeV, and for the j 5 ; to -б MeV only). Figure shows an interacting feature: the strength distribution of these subshells is charact e rised Ьу а big concentration of strength in the low region of t he excitation ener gies. Thus, almost 40% of the total strength of li / -subshell and up to 50% of the total lj 5/ -strength are exhausted in the region of :S: MeV of exci tat.ion energies, whereas, it is clear from fig., only - 0% of the total s trength f or the 3р 3 ; - and up to 30% for the g 7 ; -subshells is in the same region of excitation energies. Such а behaviour of the distribution of high- lying and lowl ying subshells strength may Ье easily understood on the bases of the general regularities of fragmentation of single-particle s tates in deformed nuclei. In fig.3, we present t!e calculated relative positions of subshells to the Fermi level in the 39 u nucleus (in the right-hand side of energy axis) and in the 37 Np nucleus (in the left part of fig.3). Our calculations show that, as а result, t!e hig-lying subshells, such as g, 3р of the neutron scheme and r 7 ;, d 3 ;, lh,' of the proton scheme, concentrate their strength mainly in some ( or 3) singl e-particle states lying far from the f e rmi level. At the same time the low-lying subshells sucl as lj 5 i, li of the neutron scheme and h 9 : of the proton scleme lave their str ength concentrating in several (4 or 5) stat es lying close to the Fermi level. According to the ge neral r egularit i es o f fragmentation of single-particle states in deformed nuclei, the farther the state is from the Fermi level the stronger it fragmeпts. That is why such а behaviour of subshell strengtl distributions is observed in figs. and. We present in figs.4 and 5 the str e ngth functions S 0 ~(~ for the lh 9 ; - and f 7 / - subshe s i n the 3 7 Np nuc l eus. The f 7 ; -subshell is the high-ly ing and the h 9 ; -subshel l is the l ow-lying ones. It is c lear that the f 7 / -subshell is fragmented stronger than the lh 9/ At the end we show our calculated r esul t s for the spectroscopic factors Snfj (7) for several sbshells in the 39U and 37 Np nuclei in the taьle. These spectroscopic factors may Ье experimentally obtained in the nucleon transfer reactions of (d, t) -type. We should like to note that, as it is easily seen 6 The spectroscopic factors 8 0 ~ Nucleus nfj. g 7 / 3!J 3 Рз : lj 5/ li / Зs / 37Np d3/ lh /.4, s,h9/ ( ~) меv р о о ~--~~--~--~-~-~-~-- Fig.4. The fragmentation of the lh 9 ; -subshell in the 37 Np nucl-eus о for subshells ile х, MeV 478 о о о t7. (?)MeV У 4 р Tab l-e о Fig.Б. The fragmentation of the f 7 ; -suьsheu in the 3 7Np nucleus. from (), factor vp leads up to excludin$ the contributithe fмnction S nfj (7). These ons of the particle states in states manif~ st themselves in the Snfj (7) -functions. Thus, to observe the total strength of the nfj -subshell it is 7

6 necessary to use not only the the ( d,p ) -reaction. ( d,t ) - reaction but a l so HryeH AiHb BliHb E aTyxaHt-le cmepnljeckhx no,[logonoqek B a.u;pax U H Np The author is deeply i ndeb ted t o Prof. V. C. Soloviev and Dr. L.A.Malov for useful discussion and help. REFERENCES. Soloviev V. G. Elem. Part. and Atom.Nucl., 978, v.9, p.580. Sol oviev V.C. Nucleonica, 978, v.3, p.49.. Malov L.A., Soloviev V.C. Elem. Part. and Atom. Nucl., 980, v., p Ha l ov L. A., Soloviev V.C. Nucl.Pbys., 9 76, A 70, p.87. Ma l ov L. A., Soloviev V. C. Yad. Fiz., 977, v. 6, p Vdov i n A.I. et a l. JINR, P , Dubna, Nguyen Dinh Vinh. JINR, P , Uubna, Nguyen Dinh Vi nh, Sol oviev V. G..TINR, E , Dubna, Vdovi n A.I. et al. Elem.Part. and Atom.Nutl., 976, v.7, p.95. H P<l~l(,'IK KH:I'lt lcl:nj'lno-t!i"!icjihll(' ~0HeJH flapa pac~hitaha!jjpar ~JeHTal{I{ psl,[la aej!'i'pohiibix Ii npotolihblx BblcoKonelKallUi'X H HH3KonelKatlIRX nogo50no'iek 6 flgpax 3\lU H 37Np. PaCC4.li'l'aHbl cnektpo C.<OflJflIeCKRe tjjaktopbl lui" 3'LX no,[lo50no'lek, J(OTopble MorYT 5blTb nony4.eflbl peaklllul "YKJIOIllMX nepcab'i THTIa (d, t ) Pa~o'ra nhm')[lir~ II:J II Jl'::U"hpn'l'OPlfH 'Teope'li4ecKol I}!H9KH OHID!.. Coo6~eHKe 06~CWIHeHHoro HKCTHTYTa R~ep~x Hccne~oBaBHA. Dy6HB 985 Nguyen Dinh Vinl! E Damping of Sphericn.! SlIhf;hells in the 39 U and 87Np Nuclei The fragment<)!: i Oil of sc'vcra l neutron and protod high-lying and low-lying SUhHhcl Is in the 39U and e37 Np nuclei is calculated within the 'lllilsipartide-pbonon nuclear model. The speclroscopic factor rur Liles!! subshel ls are obtained. They may be observed in till! nuc'll'(l transfer reactions of the (d.t) type. The inv~sligatiol lios bc! per formed al the Laboratory of Theoretical Physics, JINR. Received by Publishing Departme nt on June 3, 985. Communication of the Joint Institute for Nuclear Research. Oubna 985 8

3 /,,,:;. c E THE LEVEL DENSITY OF NUCLEI IN THE REGION 230 ~ A < 254. A.L.Komov, L.A.Malov, V.G.Soloviev, V.V.Voronov.

3 /,,,:;. c E THE LEVEL DENSITY OF NUCLEI IN THE REGION 230 ~ A < 254. A.L.Komov, L.A.Malov, V.G.Soloviev, V.V.Voronov. ~ - t-1 'I I 3 /,,,:;. c E4-9236 A.L.Komov, L.A.Malov, V.G.Soloviev, V.V.Voronov THE LEVEL DENSITY OF NUCLEI IN THE REGION 230 ~ A < 254 1975 E4-9236 AX.Komov, L.A.Malov, V.G.SoIoviev, V.V.Voronov THE

More information

Structure of the Low-Lying States in the Odd-Mass Nuclei with Z 100

Structure of the Low-Lying States in the Odd-Mass Nuclei with Z 100 Structure of the Low-Lying States in the Odd-Mass Nuclei with Z 100 R.V.Jolos, L.A.Malov, N.Yu.Shirikova and A.V.Sushkov JINR, Dubna, June 15-19 Introduction In recent years an experimental program has

More information

14. Structure of Nuclei

14. Structure of Nuclei 14. Structure of Nuclei Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 14. Structure of Nuclei 1 In this section... Magic Numbers The Nuclear Shell Model Excited States Dr. Tina Potter 14.

More information

Magnetic rotation past, present and future

Magnetic rotation past, present and future PRAMANA c Indian Academy of Sciences Vol. 75, No. 1 journal of July 2010 physics pp. 51 62 Magnetic rotation past, present and future A K JAIN and DEEPIKA CHOUDHURY Department of Physics, Indian Institute

More information

Observables predicted by HF theory

Observables predicted by HF theory Observables predicted by HF theory Total binding energy of the nucleus in its ground state separation energies for p / n (= BE differences) Ground state density distribution of protons and neutrons mean

More information

Nuclear vibrations and rotations

Nuclear vibrations and rotations Nuclear vibrations and rotations Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 2, 2011 NUCS 342 (Lecture 9) February 2, 2011 1 / 29 Outline 1 Significance of collective

More information

Lecture 4: Nuclear Energy Generation

Lecture 4: Nuclear Energy Generation Lecture 4: Nuclear Energy Generation Literature: Prialnik chapter 4.1 & 4.2!" 1 a) Some properties of atomic nuclei Let: Z = atomic number = # of protons in nucleus A = atomic mass number = # of nucleons

More information

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 709 718 c International Academic Publishers Vol. 43, No. 4, April 15, 005 Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

More information

Lesson 5 The Shell Model

Lesson 5 The Shell Model Lesson 5 The Shell Model Why models? Nuclear force not known! What do we know about the nuclear force? (chapter 5) It is an exchange force, mediated by the virtual exchange of gluons or mesons. Electromagnetic

More information

RFSS: Lecture 6 Gamma Decay

RFSS: Lecture 6 Gamma Decay RFSS: Lecture 6 Gamma Decay Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3 Energetics Decay Types Transition Probabilities Internal Conversion Angular Correlations Moessbauer

More information

Projected shell model analysis of tilted rotation

Projected shell model analysis of tilted rotation PHYSICAL REVIEW C VOLUME 57, NUMBER 1 JANUARY 1998 Projected shell model analysis of tilted rotation J. A. Sheikh, 1.2 Y. Sun, 3,4,5 and P. M. Walker 1 1 Department of Physics, University of Surrey, Surrey,

More information

In this lecture, we will go through the hyperfine structure of atoms. The coupling of nuclear and electronic total angular momentum is explained.

In this lecture, we will go through the hyperfine structure of atoms. The coupling of nuclear and electronic total angular momentum is explained. Lecture : Hyperfine Structure of Spectral Lines: Page- In this lecture, we will go through the hyperfine structure of atoms. Various origins of the hyperfine structure are discussed The coupling of nuclear

More information

Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca

Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca Commun. Theor. Phys. (Beijing, China) 43 (2005) pp. 509 514 c International Academic Publishers Vol. 43, No. 3, March 15, 2005 Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca DONG

More information

arxiv: v2 [nucl-th] 8 May 2014

arxiv: v2 [nucl-th] 8 May 2014 Oblate deformation of light neutron-rich even-even nuclei Ikuko Hamamoto 1,2 1 Riken Nishina Center, Wako, Saitama 351-0198, Japan 2 Division of Mathematical Physics, Lund Institute of Technology at the

More information

c E If photon Mass particle 8-1

c E If photon Mass particle 8-1 Nuclear Force, Structure and Models Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear Structure) Characterization

More information

STRUCTURE FEATURES REVEALED FROM THE TWO NEUTRON SEPARATION ENERGIES

STRUCTURE FEATURES REVEALED FROM THE TWO NEUTRON SEPARATION ENERGIES NUCLEAR PHYSICS STRUCTURE FEATURES REVEALED FROM THE TWO NEUTRON SEPARATION ENERGIES SABINA ANGHEL 1, GHEORGHE CATA-DANIL 1,2, NICOLAE VICTOR AMFIR 2 1 University POLITEHNICA of Bucharest, 313 Splaiul

More information

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry: RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature143 1. Supplementary Methods A. Details on the experimental setup Five 3 3 LaBr 3 :Ce-detectors were positioned 22 cm away from a 13 Cs gamma-ray source, which

More information

Shells Orthogonality. Wave functions

Shells Orthogonality. Wave functions Shells Orthogonality Wave functions Effect of other electrons in neutral atoms Consider effect of electrons in closed shells for neutral Na large distances: nuclear charge screened to 1 close to the nucleus:

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nuclear and Particle Physics (5110) March 13, 009 Nuclear Shell Model continued 3/13/009 1 Atomic Physics Nuclear Physics V = V r f r L r S r Tot Spin-Orbit Interaction ( ) ( ) Spin of e magnetic

More information

arxiv: v1 [nucl-th] 8 Sep 2011

arxiv: v1 [nucl-th] 8 Sep 2011 Tidal Waves a non-adiabatic microscopic description of the yrast states in near-spherical nuclei S. Frauendorf, Y. Gu, and J. Sun Department of Physics, University of Notre Dame, Notre Dame, IN 6556, USA

More information

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar vretenar@phy.hr 1. Evolution of shell structure with N and Z A. Modification of the effective single-nucleon potential Relativistic

More information

Chapter 6. Summary and Conclusions

Chapter 6. Summary and Conclusions Chapter 6 Summary and Conclusions The basic aim of the present thesis was to understand the interplay between single particle and collective degrees of freedom and underlying nuclear phenomenon in mass

More information

Laser Spectroscopy on Bunched Radioactive Ion Beams

Laser Spectroscopy on Bunched Radioactive Ion Beams Laser Spectroscopy on Bunched Radioactive Ion Beams Jon Billowes University of Manchester Balkan School on Nuclear Physics, Bodrum 2004 Lecture 1. 1.1 Nuclear moments 1.2 Hyperfine interaction in free

More information

Nilsson Model. Anisotropic Harmonic Oscillator. Spherical Shell Model Deformed Shell Model. Nilsson Model. o Matrix Elements and Diagonalization

Nilsson Model. Anisotropic Harmonic Oscillator. Spherical Shell Model Deformed Shell Model. Nilsson Model. o Matrix Elements and Diagonalization Nilsson Model Spherical Shell Model Deformed Shell Model Anisotropic Harmonic Oscillator Nilsson Model o Nilsson Hamiltonian o Choice of Basis o Matrix Elements and Diagonaliation o Examples. Nilsson diagrams

More information

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain Mean field studies of odd mass nuclei and quasiparticle excitations Luis M. Robledo Universidad Autónoma de Madrid Spain Odd nuclei and multiquasiparticle excitations(motivation) Nuclei with odd number

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU Nuclear structure aspects of Schiff Moments N.Auerbach Tel Aviv University and MSU T-P-odd electromagnetic moments In the absence of parity (P) and time (T) reversal violation the T P-odd moments for a

More information

Sub-barrier fusion enhancement due to neutron transfer

Sub-barrier fusion enhancement due to neutron transfer Sub-barrier fusion enhancement due to neutron transfer V. I. Zagrebaev Flerov Laboratory of Nuclear Reaction, JINR, Dubna, Moscow Region, Russia Received 6 March 2003; published 25 June 2003 From the analysis

More information

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model Ground state properties of finite nuclei in the relativistic mean field model Lisheng Geng Research Center for Nuclear Physics, Osaka University School of Physics, Beijing University Long-time collaborators

More information

Lecture 4. Magic Numbers

Lecture 4. Magic Numbers Lecture 4 In last lecture we discussed how one can solve the Schroedinger equation to determine the allowed energies of a particle trapped in a spherically symmetric potential. We will apply these methods

More information

Projected shell model for nuclear structure and weak interaction rates

Projected shell model for nuclear structure and weak interaction rates for nuclear structure and weak interaction rates Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China E-mail: sunyang@sjtu.edu.cn The knowledge on stellar weak interaction processes

More information

RFSS: Lecture 2 Nuclear Properties

RFSS: Lecture 2 Nuclear Properties RFSS: Lecture 2 Nuclear Properties Readings: Modern Nuclear Chemistry: Chapter 2 Nuclear Properties Nuclear and Radiochemistry: Chapter 1 Introduction, Chapter 2 Atomic Nuclei Nuclear properties Masses

More information

The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada

The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada TU DARMSTADT The 2010 US National Nuclear Physics Summer School and the TRIUMF Summer Institute, NNPSS-TSI June 21 July 02, 2010, Vancouver, BC, Canada Achim Richter ECT* Trento/Italy and TU Darmstadt/Germany

More information

TWO CENTER SHELL MODEL WITH WOODS-SAXON POTENTIALS

TWO CENTER SHELL MODEL WITH WOODS-SAXON POTENTIALS Romanian Reports in Physics, Vol. 59, No. 2, P. 523 531, 2007 Dedicated to Prof. Dorin N. Poenaru s 70th Anniversary TWO CENTER SHELL MODEL WITH WOODS-SAXON POTENTIALS M. MIREA Horia Hulubei National Institute

More information

Properties of Some Superdeformed Bands in Hg-Tl-Pb Nuclei Using Nuclear Softness Model with Weaken Parameter

Properties of Some Superdeformed Bands in Hg-Tl-Pb Nuclei Using Nuclear Softness Model with Weaken Parameter IOSR Journal of Applied Physics (IOSR-JAP e-issn: 78-4861.Volume 7, Issue 5 Ver. I (Sep. - Oct. 015, PP 011 www.iosrjournals Properties of Some Superdeformed Bands in Hg-Tl-Pb Nuclei Using Nuclear Softness

More information

QUANTUM CHAOS IN NUCLEAR PHYSICS

QUANTUM CHAOS IN NUCLEAR PHYSICS QUANTUM CHAOS IN NUCLEAR PHYSICS Investigation of quantum chaos in nuclear physics is strongly hampered by the absence of even the definition of quantum chaos, not to mention the numerical criterion of

More information

Other electrons. ε 2s < ε 2p ε 3s < ε 3p < ε 3d

Other electrons. ε 2s < ε 2p ε 3s < ε 3p < ε 3d Other electrons Consider effect of electrons in closed shells for neutral Na large distances: nuclear charge screened to 1 close to the nucleus: electron sees all 11 protons approximately:!!&! " # $ %

More information

Introduction to NUSHELLX and transitions

Introduction to NUSHELLX and transitions Introduction to NUSHELLX and transitions Angelo Signoracci CEA/Saclay Lecture 4, 14 May 213 Outline 1 Introduction 2 β decay 3 Electromagnetic transitions 4 Spectroscopic factors 5 Two-nucleon transfer/

More information

Nuclear Shell model. C. Prediction of spins and Parities: GROUND RULES 1. Even-Even Nuclei. I π = 0 +

Nuclear Shell model. C. Prediction of spins and Parities: GROUND RULES 1. Even-Even Nuclei. I π = 0 + Nuclear Shell model C. Prediction of spins and Parities: GOUND ULES 1. Even-Even Nuclei I π = 0 + ULE: ll nucleon orbitals are filled pairwise, i.e., ν,l, j, m j state followed by ν, l, j, m j state NO

More information

B. PHENOMENOLOGICAL NUCLEAR MODELS

B. PHENOMENOLOGICAL NUCLEAR MODELS B. PHENOMENOLOGICAL NUCLEAR MODELS B.0. Basic concepts of nuclear physics B.0. Binding energy B.03. Liquid drop model B.04. Spherical operators B.05. Bohr-Mottelson model B.06. Intrinsic system of coordinates

More information

Deformed (Nilsson) shell model

Deformed (Nilsson) shell model Deformed (Nilsson) shell model Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 31, 2011 NUCS 342 (Lecture 9) January 31, 2011 1 / 35 Outline 1 Infinitely deep potential

More information

An Introduction to. Nuclear Physics. Yatramohan Jana. Alpha Science International Ltd. Oxford, U.K.

An Introduction to. Nuclear Physics. Yatramohan Jana. Alpha Science International Ltd. Oxford, U.K. An Introduction to Nuclear Physics Yatramohan Jana Alpha Science International Ltd. Oxford, U.K. Contents Preface Acknowledgement Part-1 Introduction vii ix Chapter-1 General Survey of Nuclear Properties

More information

The Proper)es of Nuclei. Nucleons

The Proper)es of Nuclei. Nucleons The Proper)es of Nuclei Z N Nucleons The nucleus is made of neutrons and protons. The nucleons have spin ½ and (individually) obey the Pauli exclusion principle. Protons p 938.3 MeV 2.79µ N Neutrons n

More information

Nuclear Shell Model. P461 - Nuclei II 1

Nuclear Shell Model. P461 - Nuclei II 1 Nuclear Shell Model Potential between nucleons can be studied by studying bound states (pn, ppn, pnn, ppnn) or by scattering cross sections: np -> np pp -> pp nd -> nd pd -> pd If had potential could solve

More information

Nuclear models: Collective Nuclear Models (part 2)

Nuclear models: Collective Nuclear Models (part 2) Lecture 4 Nuclear models: Collective Nuclear Models (part 2) WS2012/13: Introduction to Nuclear and Particle Physics,, Part I 1 Reminder : cf. Lecture 3 Collective excitations of nuclei The single-particle

More information

Exploring the Structure of Cold and Warm Nuclei Using Particle Accelerators in India

Exploring the Structure of Cold and Warm Nuclei Using Particle Accelerators in India Exploring the Structure of Cold and Warm Nuclei Using Particle Accelerators in India GOPAL MUKHERJEE VARIABLE ENERGY CYCLOTRON CENTRE, KOLKATA ABSTRACT The Indian National Gamma Array (INGA) and the VECC

More information

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar PHL424: Nuclear Shell Model Themes and challenges in modern science Complexity out of simplicity Microscopic How the world, with all its apparent complexity and diversity can be constructed out of a few

More information

13. Basic Nuclear Properties

13. Basic Nuclear Properties 13. Basic Nuclear Properties Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 13. Basic Nuclear Properties 1 In this section... Motivation for study The strong nuclear force Stable nuclei Binding

More information

Calculating β Decay for the r Process

Calculating β Decay for the r Process Calculating β Decay for the r Process J. Engel with M. Mustonen, T. Shafer C. Fröhlich, G. McLaughlin, M. Mumpower, R. Surman D. Gambacurta, M. Grasso June 3, 26 Nuclear Landscape To convincingly locate

More information

Compound and heavy-ion reactions

Compound and heavy-ion reactions Compound and heavy-ion reactions Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 March 23, 2011 NUCS 342 (Lecture 24) March 23, 2011 1 / 32 Outline 1 Density of states in a

More information

Lecture 3. Solving the Non-Relativistic Schroedinger Equation for a spherically symmetric potential

Lecture 3. Solving the Non-Relativistic Schroedinger Equation for a spherically symmetric potential Lecture 3 Last lecture we were in the middle of deriving the energies of the bound states of the Λ in the nucleus. We will continue with solving the non-relativistic Schroedinger equation for a spherically

More information

Ground State Correlations and Structure of Odd Spherical Nuclei

Ground State Correlations and Structure of Odd Spherical Nuclei Ground State Correlations and Structure of Odd Spherical Nuclei S. Mishev 12 and V. V. Voronov 1 1 Bogoliubov Laboratory of Theoretical Physics Joint Institute for Nuclear Research Dubna 141980 Russian

More information

Stability of heavy elements against alpha and cluster radioactivity

Stability of heavy elements against alpha and cluster radioactivity CHAPTER III Stability of heavy elements against alpha and cluster radioactivity The stability of heavy and super heavy elements via alpha and cluster decay for the isotopes in the heavy region is discussed

More information

Gamma-ray spectroscopy I

Gamma-ray spectroscopy I Gamma-ray spectroscopy I Andreas Görgen DAPNIA/SPhN, CEA Saclay F-91191 Gif-sur-Yvette France agoergen@cea.fr Lectures presented at the IoP Nuclear Physics Summer School September 4 17, 2005 Chester, UK

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory. C. R. Praharaj Institute of Physics Bhubaneswar.

Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory. C. R. Praharaj Institute of Physics Bhubaneswar. Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory C. R. Praharaj Institute of Physics. India INT Workshop Nov 2007 1 Outline of talk Motivation Formalism HF calculation

More information

Radiative-capture reactions

Radiative-capture reactions Radiative-capture reactions P. Descouvemont Physique Nucléaire Théorique et Physique Mathématique, CP229, Université Libre de Bruxelles, B1050 Bruxelles - Belgium 1. Introduction, definitions 2. Electromagnetic

More information

RADIATIVE NEUTRON CAPTURE ON 9 Be, 14 C, 14 N, 15 N AND 16 O AT THERMAL AND ASTROPHYSICAL ENERGIES

RADIATIVE NEUTRON CAPTURE ON 9 Be, 14 C, 14 N, 15 N AND 16 O AT THERMAL AND ASTROPHYSICAL ENERGIES RADIATIVE NEUTRON CAPTURE ON 9 Be, 14 C, 14 N, 15 N AND 16 O AT THERMAL AND ASTROPHYSICAL ENERGIES SERGEY DUBOVICHENKO 1,,*, ALBERT DZHAZAIROV- KAKHRAMANOV 1,, and NADEZHDA AFANASYEVA 1,3, 1 V. G. Fessenkov

More information

Theoretical Nuclear Physics

Theoretical Nuclear Physics Theoretical Nuclear Physics (SH2011, Second cycle, 6.0cr) Comments and corrections are welcome! Chong Qi, chongq@kth.se The course contains 12 sections 1-4 Introduction Basic Quantum Mechanics concepts

More information

Summary Int n ro r d o u d c u tion o Th T e h o e r o e r t e ical a fra r m a ew e o w r o k r Re R s e ul u ts Co C n o c n lus u ion o s n

Summary Int n ro r d o u d c u tion o Th T e h o e r o e r t e ical a fra r m a ew e o w r o k r Re R s e ul u ts Co C n o c n lus u ion o s n Isospin mixing and parity- violating electron scattering O. Moreno, P. Sarriguren, E. Moya de Guerra and J. M. Udías (IEM-CSIC Madrid and UCM Madrid) T. W. Donnelly (M.I.T.),.), I. Sick (Univ. Basel) Summary

More information

Nucleon Pairing in Atomic Nuclei

Nucleon Pairing in Atomic Nuclei ISSN 7-39, Moscow University Physics Bulletin,, Vol. 69, No., pp.. Allerton Press, Inc.,. Original Russian Text B.S. Ishkhanov, M.E. Stepanov, T.Yu. Tretyakova,, published in Vestnik Moskovskogo Universiteta.

More information

Nuclear Level Density with Non-zero Angular Momentum

Nuclear Level Density with Non-zero Angular Momentum Commun. Theor. Phys. (Beijing, China) 46 (2006) pp. 514 520 c International Academic Publishers Vol. 46, No. 3, September 15, 2006 Nuclear Level Density with Non-zero Angular Momentum A.N. Behami, 1 M.

More information

Nuclear Structure Study of Two-Proton Halo-Nucleus 17 Ne

Nuclear Structure Study of Two-Proton Halo-Nucleus 17 Ne Nuclear Structure Study of Two-Proton Halo-Nucleus Ne Leave one blank line F. H. M. Salih 1, Y. M. I. Perama 1, S. Radiman 1, K. K. Siong 1* Leave one blank line 1 School of Applied Physics, Faculty of

More information

Proton-neutron asymmetry in exotic nuclei

Proton-neutron asymmetry in exotic nuclei Proton-neutron asymmetry in exotic nuclei M. A. Caprio Center for Theoretical Physics, Yale University, New Haven, CT RIA Theory Meeting Argonne, IL April 4 7, 2006 Collective properties of exotic nuclei

More information

(b) The wavelength of the radiation that corresponds to this energy is 6

(b) The wavelength of the radiation that corresponds to this energy is 6 Chapter 7 Problem Solutions 1. A beam of electrons enters a uniform 1.0-T magnetic field. (a) Find the energy difference between electrons whose spins are parallel and antiparallel to the field. (b) Find

More information

Lecture 4: Nuclear Energy Generation

Lecture 4: Nuclear Energy Generation Lecture 4: Nuclear Energy Generation Literature: Prialnik chapter 4.1 & 4.2!" 1 a) Some properties of atomic nuclei Let: Z = atomic number = # of protons in nucleus A = atomic mass number = # of nucleons

More information

arxiv:nucl-ex/ v1 27 May 2002

arxiv:nucl-ex/ v1 27 May 2002 1 MEASUREMENTS OF NUCLEAR LEVEL DENSITIES AND γ-ray STRENGTH FUNCTIONS AND THEIR INTERPRETATIONS M. Guttormsen, M. Hjorth-Jensen, J. Rekstad and S. Siem Department of Physics, University of Oslo, Box 1048

More information

~ I. L.A.Malov, V.G.Soloviev FRAGMENTATION OF SINGLE-PARTICLE STATES IN DEFORMED NUCLEI

~ I. L.A.Malov, V.G.Soloviev FRAGMENTATION OF SINGLE-PARTICLE STATES IN DEFORMED NUCLEI ~ I f L.A.Malov, V.G.Soloviev FRAGMENTATION OF SINGLE-PARTICLE STATES IN DEFORMED NUCLEI 1975 E4-8558 L.A.Malov. V.G.Soloviev FRAGMENTATION OF SINGLE-PA»?TICLE STATES IN DEFORMED NUCLEI Submitted to ЯФ

More information

Krane Enge Cohen Willaims NUCLEAR PROPERTIES 1 Binding energy and stability Semi-empirical mass formula Ch 4

Krane Enge Cohen Willaims NUCLEAR PROPERTIES 1 Binding energy and stability Semi-empirical mass formula Ch 4 Lecture 3 Krane Enge Cohen Willaims NUCLER PROPERTIES 1 Binding energy and stability Semi-empirical mass formula 3.3 4.6 7. Ch 4 Nuclear Spin 3.4 1.5 1.6 8.6 3 Magnetic dipole moment 3.5 1.7 1.6 8.7 4

More information

Electric and magnetic multipoles

Electric and magnetic multipoles Electric and magnetic multipoles Trond Saue Trond Saue (LCPQ, Toulouse) Electric and magnetic multipoles Virginia Tech 2017 1 / 22 Multipole expansions In multipolar gauge the expectation value of the

More information

Schiff Moments. J. Engel. May 9, 2017

Schiff Moments. J. Engel. May 9, 2017 Schiff Moments J. Engel May 9, 2017 Connection Between EDMs and T Violation Consider non-degenerate ground state g.s. : J, M. Symmetry under rotations R y (π) for vector operator like d i e i r i implies:

More information

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540 Central density Consider nuclear charge density Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) Central density (A/Z* charge density) about the same for nuclei heavier than 16 O, corresponding

More information

Band crossing and signature splitting in odd mass fp shell nuclei

Band crossing and signature splitting in odd mass fp shell nuclei Nuclear Physics A 686 (001) 19 140 www.elsevier.nl/locate/npe Band crossing and signature splitting in odd mass fp shell nuclei Victor Velázquez a, Jorge G. Hirsch b,,yangsun c,d a Institute de Recherches

More information

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate PHY49: Nuclear & Particle Physics Lecture 4 Nature of the nuclear force Reminder: Investigate www.nndc.bnl.gov Topics to be covered size and shape mass and binding energy charge distribution angular momentum

More information

arxiv:nucl-th/ v1 19 May 2004

arxiv:nucl-th/ v1 19 May 2004 1 arxiv:nucl-th/0405051v1 19 May 2004 Nuclear structure of 178 Hf related to the spin-16, 31-year isomer Yang Sun, a b Xian-Rong Zhou c, Gui-Lu Long, c En-Guang Zhao, d Philip M. Walker 1e a Department

More information

Nuclear Spin and Stability. PHY 3101 D. Acosta

Nuclear Spin and Stability. PHY 3101 D. Acosta Nuclear Spin and Stability PHY 3101 D. Acosta Nuclear Spin neutrons and protons have s = ½ (m s = ± ½) so they are fermions and obey the Pauli- Exclusion Principle The nuclear magneton is eh m µ e eh 1

More information

Direct reactions methodologies for use at fragmentation beam energies

Direct reactions methodologies for use at fragmentation beam energies 1 Direct reactions methodologies for use at fragmentation beam energies TU Munich, February 14 th 2008 Jeff Tostevin, Department of Physics Faculty of Engineering and Physical Sciences University of Surrey,

More information

Nuclear Spectroscopy I

Nuclear Spectroscopy I Nuclear Spectroscopy I Augusto O. Macchiavelli Nuclear Science Division Lawrence Berkeley National Laboratory Many thanks to Rod Clark, I.Y. Lee, and Dirk Weisshaar Work supported under contract number

More information

arxiv: v2 [nucl-th] 28 Aug 2014

arxiv: v2 [nucl-th] 28 Aug 2014 Pigmy resonance in monopole response of neutron-rich Ni isotopes? Ikuko Hamamoto 1,2 and Hiroyuki Sagawa 1,3 1 Riken Nishina Center, Wako, Saitama 351-0198, Japan 2 Division of Mathematical Physics, arxiv:1408.6007v2

More information

Beta and gamma decays

Beta and gamma decays Beta and gamma decays April 9, 2002 Simple Fermi theory of beta decay ² Beta decay is one of the most easily found kinds of radioactivity. As we have seen, this result of the weak interaction leads to

More information

Mass and energy dependence of nuclear spin distributions

Mass and energy dependence of nuclear spin distributions Mass and energy dependence of nuclear spin distributions Till von Egidy Physik-Department, Technische Universität München, Germany Dorel Bucurescu National Institute of Physics and Nuclear Engineering,

More information

Candidate multiple chiral doublet bands in A 100 mass region

Candidate multiple chiral doublet bands in A 100 mass region Candidate multiple chiral doublet bands in A 100 mass region Bin Qi (R) School of Space Science and Physics, Shandong University, Weihai Seventh International Symposium on Chiral Symmetry in Hadrons and

More information

Nuclear Shape Dynamics at Different Energy Scales

Nuclear Shape Dynamics at Different Energy Scales Bulg. J. Phys. 44 (207) 434 442 Nuclear Shape Dynamics at Different Energy Scales N. Minkov Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Tzarigrad Road 72, BG-784 Sofia,

More information

Some (more) High(ish)-Spin Nuclear Structure. Lecture 2 Low-energy Collective Modes and Electromagnetic Decays in Nuclei

Some (more) High(ish)-Spin Nuclear Structure. Lecture 2 Low-energy Collective Modes and Electromagnetic Decays in Nuclei Some (more) High(ish)-Spin Nuclear Structure Lecture 2 Low-energy Collective Modes and Electromagnetic Decays in Nuclei Paddy Regan Department of Physics Univesity of Surrey Guildford, UK p.regan@surrey.ac.uk

More information

Neutron Halo in Deformed Nuclei

Neutron Halo in Deformed Nuclei Advances in Nuclear Many-Body Theory June 7-1, 211, Primosten, Croatia Neutron Halo in Deformed Nuclei Ó Li, Lulu Ò School of Physics, Peking University June 8, 211 Collaborators: Jie Meng (PKU) Peter

More information

Microscopic description of fission in the neutron-deficient Pb region

Microscopic description of fission in the neutron-deficient Pb region Microscopic description of fission in the neutron-deficient Pb region Micha l Warda Maria Curie-Sk lodowska University, Lublin, Poland INT Seattle, 1-1-213 Fr 87 At 85 Rn 86 Po 84 Bi 83 Pb 82 Tl 81 Pb

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

Renormalization Group Methods for the Nuclear Many-Body Problem

Renormalization Group Methods for the Nuclear Many-Body Problem Renormalization Group Methods for the Nuclear Many-Body Problem A. Schwenk a,b.friman b and G.E. Brown c a Department of Physics, The Ohio State University, Columbus, OH 41 b Gesellschaft für Schwerionenforschung,

More information

Nuclear Shell Model. Experimental evidences for the existence of magic numbers;

Nuclear Shell Model. Experimental evidences for the existence of magic numbers; Nuclear Shell Model It has been found that the nuclei with proton number or neutron number equal to certain numbers 2,8,20,28,50,82 and 126 behave in a different manner when compared to other nuclei having

More information

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron.

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron. 1 Lecture 3 Nuclear Decay modes, Nuclear Sizes, shapes, and the Liquid drop model Introduction to Decay modes (continued) Gamma Decay Electromagnetic radiation corresponding to transition of nucleus from

More information

Antimagnetic rotation in 108,110 In with tilted axis cranking relativistic mean-field approach *

Antimagnetic rotation in 108,110 In with tilted axis cranking relativistic mean-field approach * Antimagnetic rotation in 108,110 In with tilted axis cranking relativistic mean-field approach * Wu-Ji Sun( ) Hai-Dan Xu( ) Jian Li( ) 1) Yong-Hao Liu( ) Ke-Yan Ma( ) Dong Yang( ) Jing-Bing Lu( ) Ying-Jun

More information

Statistical properties of nuclei by the shell model Monte Carlo method

Statistical properties of nuclei by the shell model Monte Carlo method Statistical properties of nuclei by the shell model Monte Carlo method Introduction Yoram Alhassid (Yale University) Shell model Monte Carlo (SMMC) method Circumventing the odd particle-number sign problem

More information

MOMENTUM OF INERTIA FOR THE 240 Pu ALPHA DECAY

MOMENTUM OF INERTIA FOR THE 240 Pu ALPHA DECAY MOMENTUM OF INERTIA FOR THE 240 Pu ALPHA DECAY M. MIREA Horia Hulubei National Institute for Physics and Nuclear Engineering, Department of Teoretical Physics, Reactorului 30, RO-077125, POB-MG6, Măgurele-Bucharest,

More information

The Shell Model: An Unified Description of the Structure of th

The Shell Model: An Unified Description of the Structure of th The Shell Model: An Unified Description of the Structure of the Nucleus (I) ALFREDO POVES Departamento de Física Teórica and IFT, UAM-CSIC Universidad Autónoma de Madrid (Spain) TSI2015 Triumf, July 2015

More information

X. Chen, Y. -W. Lui, H. L. Clark, Y. Tokimoto, and D. H. Youngblood

X. Chen, Y. -W. Lui, H. L. Clark, Y. Tokimoto, and D. H. Youngblood Folding model analysis for 240MeV 6 Li elastic scattering on 28 Si and 24 Mg X. Chen, Y. -W. Lui, H. L. Clark, Y. Tokimoto, and D. H. Youngblood In order to study giant resonance induced by 6 Li scattering,

More information

1 Introduction. 2 The hadronic many body problem

1 Introduction. 2 The hadronic many body problem Models Lecture 18 1 Introduction In the next series of lectures we discuss various models, in particluar models that are used to describe strong interaction problems. We introduce this by discussing the

More information

The interacting boson model

The interacting boson model The interacting boson model P. Van Isacker, GANIL, France Dynamical symmetries of the IBM Neutrons, protons and F-spin (IBM-2) T=0 and T=1 bosons: IBM-3 and IBM-4 The interacting boson model Nuclear collective

More information

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism Periodic Properties Atomic & Ionic Radius Energy Electron Affinity We want to understand the variations in these properties in terms of electron configurations. The Periodic Table Elements in a column

More information