The effects of stellar rotation and magnetism on oscillation frequencies

Size: px
Start display at page:

Download "The effects of stellar rotation and magnetism on oscillation frequencies"

Transcription

1 The effects of stellar rotation and magnetism on oscillation frequencies Daniel Reese Joint HELAS and CoRoT/ESTA Workshop November 2006, CAUP, Porto - Portugal

2 Introduction traditionally, stellar pulsations are calculated assuming spherical symmetry however, neither stellar rotation nor stellar magnetism respect this symmetry Oscillation modes are no longer described by a single spherical harmonic No longer 1D calculations, but 2D or 3D 1/28

3 Outline 1. The effects of stellar rotation 2. The effects of stellar magnetism 3. Conclusion 2/28

4 Incidence of stellar rotation A few statistics : β Cephei (Stankov & Breger, 2005) δ Scuti (Rodríguez et al., 2000) ζ Oph stars(based on Balona & Dziembowski, 1999) 3/28

5 Targets for space missions Identification Name Type v sin i (in km s 1 ) Mission HD Altair δ Scuti 230 WIRE HD ζ Oph ζ Oph 380 MOST HD δ Scuti 170 CoRoT HD γ Doradus 90 CoRoT HD γ Doradus 72 CoRoT HD δ Scuti 198 CoRoT HD δ Scuti > 200 CoRoT HD δ Scuti > 200 CoRoT 4/28

6 Effects of rotation Two forces appear because of rotation centrifugal force : stellar deformation and modification of equilibrium quantities Coriolis force : intervenes in all dynamical processes Fig. 2. V Domiciano de Souza et al. (2003) 5/28

7 Models of rapidly rotating stars A few references : Meynet and Maeder ( ) Roxburgh (2004, 2006) Jackson et al. (2005), MacGregor et al. (2006) ESTER (Rieutord et al., 2005, Rieutord, 2006) 1032 M. Rieutord: The dynamics of the radiative envelope of rapidly rotating stars. I. Fig. 4. Left: the meridional circulation of the baroclinic flow generated by the Brunt-Väisälä frequency profile in Fig. 1b (solid curve) for a fluid with constant viscosity. Right: the associated differential rotation showing the fast rotating pole and slow equator (solid lines are for positive contours, dotted lines for negative ones). Roxburgh (2004) Rieutord (2006) 6/28

8 Rotation and oscillations Two basic approaches to take the effects of rotation into account : Perturbative approach the rotation rate Ω is considered to be small equilibrium model and oscillation modes : v = v 0 + v 1 Ω + v 2 Ω O ( Ω n+1) ω = ω 0 + ω 1 Ω + ω 2 Ω O ( Ω n+1) Complete approach the rotation rate Ω is not considered small equilibrium model and oscillation modes = a solution to a 2D problem which fully includes the effects of rotation 7/28

9 A few references... Perturbative approach 2 nd order methods : Saio (1981) Gough & Thompson (1990) Dziembowski & Goode (1992) 3 rd order methods : Soufi et al. (1998) Karami et al. (2005) Complete approach Clement ( ) Dintrans et al. (1999), Dintrans & Rieutord (2000) Espinosa et al. (2004) Lignières et al. (2006), Reese et al. (2006) 8/28

10 Slow rotation rates Perturbative expression of pulsation frequencies : ω = ω 0 m(1 C)Ω + ( D 1 + D 2 m 2) Ω 2 + m ( T 1 + T 2 m 2) Ω 3 + O ( Ω 4) 9/28

11 Slow rotation rates Perturbative expression of pulsation frequencies : ω = ω 0 m(1 C)Ω + ( D 1 + D 2 m 2) Ω 2 + m ( T 1 + T 2 m 2) Ω 3 + O ( Ω 4) 9/28

12 Slow rotation rates Perturbative expression of pulsation frequencies : ω = ω 0 m(1 C)Ω + ( D 1 + D 2 m 2) Ω 2 + m ( T 1 + T 2 m 2) Ω 3 + O ( Ω 4) 9/28

13 Solar rotation profile use of 1 st order methods inversion techniques Schou et al. (1998), Thompson et al. (2003) 10/28

14 High rotation rates A multiplet : 11/28

15 High rotation rates Modes : n = 1 to 6 l = 0 to 3 m = l to l 12/28

16 High rotation rates Validity domain for 150 days of observation ( ω = 0.08 µhz) - 1 st order - 2 nd order - 3 rd order (see Reese et al., 2006) 13/28

17 Organisation of frequency spectrum f n l m = f 0 n l m + f 1 n l mω + f 2 n l mω 2 + f 3 n l mω 3 + O(Ω 4 ) 14/28

18 Organisation of frequency spectrum f n l m n n + l l + m m + α ± 14/28 (see Lignières et al., 2006, and Reese, 2006)

19 Avoided crossings 15/28

20 Mode identification n =? l =? 16/28

21 Outline 1. The effects of stellar rotation 2. The effects of stellar magnetism 3. Conclusion 17/28

22 roap stars Discovered by Kurtz in 1978 Characteristics : peculiar chemical composition, strong dipolar magnetic field, Pulsation modes : luminosity variations with periods ranging from 5 to 15 min. well described by the oblique pulsator model (e.g. Kurtz, 1990) 18/28

23 Magnetism and oscillations A few references : Roberts & Soward (1983), Campbell & Papaloizou (1986) Dziembowski & Goode (1996), Bigot et al. (2000), Bigot & Dziembowski (2002) Cunha & Gough (2000), Cunha (2006) Balmforth et al. (2001), Théado et al. (2005) Rincon & Rieutord (2003), Reese et al. (2004) Saio & Gautschy (2004), Saio (2005) Effects of magnetism : suppression of convection near magnetic poles diffusion cyclic behaviour of frequency shifts self-similar structure in frequency spectrum magnetic shear layers magnetic oscillations and different frequency spectrum structure 19/28

24 Magnetism, convection and diffusion Balmforth et al. (2001) : convection suppressed in polar regions due to vertical B chemical diffusion in polar regions enable κ mechanism in the hydrogen ionisation zone operating in polar regions 20/28

25 Trapping of magnetic waves coupling of acoustic and magnetic waves in outer region, and decoupling below v A c dissipation of slow magnetic waves below high damping rate when wave has an antinode near v A c low damping rate when wave has a node near v A c Saio & Gautschy (2004), see also Cunha & Gough (2000) 21/28

26 Self similarity of frequency shifts ω = f(ω 0 B α p ) (e.g. Cunha & Gough, 2000, Saio & Gautschy, 2004) α = 1/(1 + N) for polytropes Saio (2004) 22/28

27 Axis of pulsation Bigot & Dziembowski (2002) predict that the pulsation axis is located somewhere between the magnetic axis and the rotation axis. z Ω B Mode plane Z n β Dipole axis ξ r δ Extrema of pulsation and magnetic field in phase. y X 23/28

28 Magnetic shear layers include viscosity and/or magnetic diffusivity magnetic shear layers may intervene in mode selection (Rincon & Rieutord, 2003) 24/28

29 Alfvén waves different frequency spectrum different structure to pulsation modes certain types become singular in the ideal (inviscid) limit (Reese et al., 2004) 25/28

30 Latitudinal structure and quantification 26/28

31 Outline 1. The effects of stellar rotation 2. The effects of stellar magnetism 3. Conclusion 27/28

32 Conclusion stellar rotation and magnetism introduce many new phenomena increased difficulty for calculating pulsation modes need for powerful numerical and theoretical methods in order to interpret observed pulsations exciting prospects for stellar physics 28/28

33 Radial structure 29/28

34 Radial structure 29/28

35 Radial structure 29/28

36 Radial structure 29/28

37 Latitudinal structure 30/28

38 Latitudinal structure 30/28

39 Latitudinal structure 30/28

40 Latitudinal structure 30/28

41 Effects of viscosity and magnetic diffusivity Empirical law (for E = E m ) : 31/28 position E 1/4 thickness E 1/4

42 Asymptotic formulas Analytical solutions for small diffusivities : Form of solutions : E = Kε, E m = K m ε, ε 0 b(r, ν) = b n (r)f n,q (ε 1/4 ν) + O(ε 1/2 ) v(r, ν) = v n (r)f n,q (ε 1/4 ν) + O(ε 1/2 ) λ n,q = λ 0 n + ε 1/2 λ 1 n,q + O(ε) Zeroth order : radial structure (b n, v n ) and mode quantification (n) Next order : latitudinal structure (f n,q ) and mode quantification (q) use of adjoint system to obtain f n,q 32/28

43 Non-axisymmetric modes poloidal and toroidal components are now coupled 33/28

44 Comparison with axisymmetric modes Poloidal m = 1 34/28

45 Comparison with axisymmetric modes Toroidal m = 1 35/28

46 Conclusion Toroidal modes : singular Non-axisymmetric modes : poloidal or toroidal characteristics Prospects study of magneto-acoustic waves study of magneto-inertial waves understanding/constraining the interior of planets such as Jupiter 36/28

47 Asymptotic developments Change of variables (r, ν = sin θ r, ϕ) Scale change E 1/4 = (K ε) 1/4 and E 1/4 m = (K m ε) 1/4 where ε 0 λb = λv = where Θ[b] = 2 b ˆν 2 + 1ˆν b ˆν bˆν 2 ( ε1/2 rˆν 2 )[ 1 r 3 v ( ε1/2 rˆν 2 )[ 1 r 3 b r + 3b 2r 4 r 3v ] 2r 4 + ε1/2 K m r 3 Θ[b] ] + ε1/2 K r 3 Θ[v] 37/28

48 Asymptotic developments at zeroth order, we have : λ 0 b = 1 v r 3 r 3 2r 4v, λ 0 v = 1 b r 3 r + 3 2r 4b, v(η) = 0, b(1) = 0. at next order, we get : b(r, ν) = b n (r)f(ˆν) + O(ε 1/2 ) v(r, ν) = v n (r)f(ˆν) + O(ε 1/2 ) λ = λ 0 n + O(ε 1/2 ) λ 0 nb 1 1 v 1 r 3 r + 3v1 2r 4 = λ 1 b 0 nf λ 0 n rˆν2 b 0 n f λ 0 nv 1 1 b 1 r 3 r 3b1 2r 4 = λ 1 vnf 0 λ 0 n rˆν2 vn 0 f b 1 (r = 1, ˆν) = 0, v 1 (r = η, ˆν) = b0 n Θ[f], r v0 n Θ[f], r 3 This is of the form L 0 Ψ 1 = L 1 Ψ 0 : solution of adjoint problem 38/28 { f(ˆν) = fn,q (ˆν) λ = λ 0 n + ε 1/2 λ 1 n + O(ε 1/2 )

Solar-like oscillations in intermediate mass stars

Solar-like oscillations in intermediate mass stars Solar-like oscillations in intermediate mass stars Victoria Antoci SAC (Stellar Astrophysics Centre), Aarhus University, Denmark Why are intermediate mass stars so important? Credit: Kupka & Weiss1999

More information

Improved pulsating models of magnetic Ap stars I. Exploring different magnetic field configurations

Improved pulsating models of magnetic Ap stars I. Exploring different magnetic field configurations Mon. Not. R. Astron. Soc. 365, 153 164 (2006) doi:10.1111/j.1365-2966.2005.09674.x Improved pulsating models of magnetic Ap stars I. Exploring different magnetic field configurations M. S. Cunha Centro

More information

Solar surface rotation

Solar surface rotation Stellar rotation Solar surface rotation Solar nearsurface rotation Surface Doppler Schou et al. (1998; ApJ 505, 390) Rotational splitting Inferred solar internal rotation Near solidbody rotation of interior

More information

2D Computations of g-modes in Fast Rotating Stars

2D Computations of g-modes in Fast Rotating Stars The 61st Fujihara Seminar: Progress in Solar/ Stellar Physics with Helio- and Asteroseismology ASP Conference Series, Vol. 462 H. Shibahashi, M. Takata, and A. E. Lynas-Gray, eds. c 212 Astronomical Society

More information

arxiv: v1 [astro-ph.sr] 27 Dec 2011

arxiv: v1 [astro-ph.sr] 27 Dec 2011 **Volume Title** ASP Conference Series, Vol. **Volume Number** **Author** c **Copyright Year** Astronomical Society of the Pacific Hybrid pulsators among A/F-type stars arxiv:1112.5981v1 [astro-ph.sr]

More information

Asteroseismology of β Cephei stars. Anne Thoul Chercheur FNRS Université de Liège, Belgium and KITP, Santa Barbara, CA

Asteroseismology of β Cephei stars. Anne Thoul Chercheur FNRS Université de Liège, Belgium and KITP, Santa Barbara, CA Asteroseismology of β Cephei stars Anne Thoul Chercheur FNRS Université de Liège, Belgium and KITP, Santa Barbara, CA This is an informal talk! Only β Cephei stars today Not an exhaustive review Not a

More information

The Pulsation-Rotation Interaction: Greatest Hits and the B-Side

The Pulsation-Rotation Interaction: Greatest Hits and the B-Side Precision Asteroseismology Proceedings IAU Symposium No. 301, 2013 W. Chaplin, J. Guzik, G. Handler & A. Pigulski c 2013 International Astronomical Union DOI: 00.0000/X000000000000000X The Pulsation-Rotation

More information

We just finished talking about the classical, spherically symmetric, (quasi) time-steady solar interior.

We just finished talking about the classical, spherically symmetric, (quasi) time-steady solar interior. We just finished talking about the classical, spherically symmetric, (quasi) time-steady solar interior. In reality, it s not any of those things: Helioseismology: the Sun pulsates & jiggles like a big

More information

It is advisable to refer to the publisher s version if you intend to cite from the work.

It is advisable to refer to the publisher s version if you intend to cite from the work. Article Theoretical light curves of dipole oscillations in roap stars Bigot, L. and Kurtz, D. W. Available at http://clok.uclan.ac.uk/4588/ Bigot, L. and Kurtz, D. W. (011) Theoretical light curves of

More information

Seminar: Measurement of Stellar Parameters with Asteroseismology

Seminar: Measurement of Stellar Parameters with Asteroseismology Seminar: Measurement of Stellar Parameters with Asteroseismology Author: Gal Kranjc Kušlan Mentor: dr. Andrej Prša Ljubljana, December 2017 Abstract In this seminar I introduce asteroseismology, which

More information

The physics of red-giant oscillations

The physics of red-giant oscillations The physics of red-giant oscillations Marc-Antoine Dupret University of Liège, Belgium The impact of asteroseismology across stellar astrophysics Santa Barbara, 24-28 oct 2011 Plan of the presentation

More information

Abstract. Introduction. A. Miglio, J. Montalbán, P. Eggenberger and A. Noels

Abstract. Introduction. A. Miglio, J. Montalbán, P. Eggenberger and A. Noels Comm. in Asteroseismology Contribution to the Proceedings of the 38 th LIAC/HELAS-ESTA /BAG, 2008 Discriminating between overshooting and rotational mixing in massive stars: any help from asteroseismology?

More information

4 Oscillations of stars: asteroseismology

4 Oscillations of stars: asteroseismology 4 Oscillations of stars: asteroseismology The HR diagram below shows a whole variety of different classes of variable or pulsating/oscillating stars. The study of these various classes constitutes the

More information

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 311-0102, Japan 1) University

More information

Seismology and wave chaos in rapidly rotating stars

Seismology and wave chaos in rapidly rotating stars Seismology and wave chaos in rapidly rotating stars F. Lignières Institut de Recherche en Astrophysique et Planétologie - Toulouse In collaboration with B. Georgeot - LPT, M. Pasek -LPT/IRAP, D. Reese

More information

DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL

DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL MAGNETIC FIELD OF THE EARTH DIPOLE Field Structure Permanent magnetization of Core? 80% of field is dipole 20 % is non dipole 2)

More information

Oscillations in g-mode period spacings in red giants as a way to determine their state of evolution

Oscillations in g-mode period spacings in red giants as a way to determine their state of evolution EPJ Web of Conferences 101, 01 014 ( 2015) DOI: 10.1051/ epjconf/ 201510101014 C Owned by the authors, published by EDP Sciences, 2015 Oscillations in g-mode period spacings in red giants as a way to determine

More information

arxiv: v2 [astro-ph.sr] 14 Dec 2016

arxiv: v2 [astro-ph.sr] 14 Dec 2016 Astronomy & Astrophysics manuscript no. article c ESO 18 March 5, 18 Period spacing of gravity modes strongly affected by rotation Going beyond the traditional approximation V. Prat 1,, S. Mathis 1, F.

More information

TESS Proposal on behalf of TASC WG 4 Cadence: 2-min sampling

TESS Proposal on behalf of TASC WG 4 Cadence: 2-min sampling TESS Proposal on behalf of TASC WG 4 Cadence: 2-min sampling Title: A survey of rapidly oscillating Ap stars Abstract: The magnetic, and chemically peculiar nature of the rapidly oscillating Ap (roap)

More information

Kepler observations of rapidly oscillating Ap, δ Scuti and γ Doradus pulsations in Ap stars

Kepler observations of rapidly oscillating Ap, δ Scuti and γ Doradus pulsations in Ap stars Mon. Not. R. Astron. Soc. 4, 57 524 (2) doi:./j.365-2966.2.746.x Kepler observations of rapidly oscillating Ap, δ Scuti and γ Doradus pulsations in Ap stars L. A. Balona, M. S. Cunha, 2 D. W. Kurtz, 3

More information

Turbulent three-dimensional MHD dynamo model in spherical shells: Regular oscillations of the dipolar field

Turbulent three-dimensional MHD dynamo model in spherical shells: Regular oscillations of the dipolar field Center for Turbulence Research Proceedings of the Summer Program 2010 475 Turbulent three-dimensional MHD dynamo model in spherical shells: Regular oscillations of the dipolar field By R. D. Simitev, F.

More information

Parity of solar global magnetic field determined by turbulent diffusivity

Parity of solar global magnetic field determined by turbulent diffusivity First Asia-Pacific Solar Physics Meeting ASI Conference Series, 2011, Vol. 1, pp 117 122 Edited by Arnab Rai Choudhuri & Dipankar Banerjee Parity of solar global magnetic field determined by turbulent

More information

A numerical MHD model for the solar tachocline with meridional flow

A numerical MHD model for the solar tachocline with meridional flow Astronomy & Astrophysics manuscript no. aniket March 9, 2005 (DOI: will be inserted by hand later) A numerical MHD model for the solar tachocline with meridional flow A. Sule, G. Rüdiger, and R. Arlt Astrophysikalisches

More information

Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions

Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions Theoretical Foundation of 3D Alfvén Resonances: Time Dependent Solutions Tom Elsden 1 Andrew Wright 1 1 Dept Maths & Stats, University of St Andrews DAMTP Seminar - 8th May 2017 Outline Introduction Coordinates

More information

A new asteroseismic diagnostic for internal rotation in γ Doradus stars

A new asteroseismic diagnostic for internal rotation in γ Doradus stars Advance Access publication 2016 October 23 doi:10.1093/mnras/stw2717 A new asteroseismic diagnostic for internal rotation in γ Doradus stars Rhita-Maria Ouazzani, 1 S. J. A. J. Salmon, 2,3 V. Antoci, 1

More information

Variability of β Cephei and SPB stars

Variability of β Cephei and SPB stars Variability of β Cephei and SPB stars GAIA Variable Stars Working Group C. Neiner & P. De Cat In this manuscript, we briefly characterize the β Cephei and SPB stars, two classes of hot pulsating stars

More information

Pulsations and Magnetic Fields in Massive Stars. Matteo Cantiello KITP Fellow Kavli Institute for Theoretical Physics, UCSB

Pulsations and Magnetic Fields in Massive Stars. Matteo Cantiello KITP Fellow Kavli Institute for Theoretical Physics, UCSB Pulsations and Magnetic Fields in Massive Stars Matteo Cantiello KITP Fellow Kavli Institute for Theoretical Physics, UCSB Massive stars Energy / Momentum in ISM Stellar Winds, SNe Nucleosynthesis Remnants:

More information

Rosette modes of oscillations of rotating stars caused by close degeneracies. III. JWKB analysis

Rosette modes of oscillations of rotating stars caused by close degeneracies. III. JWKB analysis Publ. Astron. Soc. Japan 4 66 4), 8 4) doi:.9/pas/psu55 Advance Access Publication Date: 4 July 8- Rosette modes of oscillations of rotating stars caused by close degeneracies. III. JWKB analysis Masao

More information

arxiv: v1 [astro-ph] 29 Jan 2008

arxiv: v1 [astro-ph] 29 Jan 2008 Contrib. Astron. Obs. Skalnaté Pleso?, 1 6, (2018) Non-dipolar magnetic fields in Ap stars arxiv:0801.4562v1 [astro-ph] 29 Jan 2008 J.Braithwaite 1 Canadian Institute for Theoretical Astrophysics 60 St.

More information

RADIAL AND NONRADIAL OSCILLATION MODES IN RAPIDLY ROTATING STARS

RADIAL AND NONRADIAL OSCILLATION MODES IN RAPIDLY ROTATING STARS The Astrophysical Journal, 679:1499Y1508, 2008 June 1 # 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A. RADIAL AND NONRADIAL OSCILLATION MODES IN RAPIDLY ROTATING STARS

More information

Asteroseismology of δ Scuti Stars: Problems and Prospects

Asteroseismology of δ Scuti Stars: Problems and Prospects J. Astrophys. Astr. (2005) 26, 249 259 Asteroseismology of δ Scuti Stars: Problems and Prospects M.-J. Goupil 1, M. A. Dupret 1, R. Samadi 1, T. Boehm 2, E. Alecian 1, J. C. Suarez 3, Y. Lebreton 4 & C.

More information

Equations of linear stellar oscillations

Equations of linear stellar oscillations Chapter 4 Equations of linear stellar oscillations In the present chapter the equations governing small oscillations around a spherical equilibrium state are derived. The general equations were presented

More information

Dynamo-generated magnetic fields at the surface of a massive star

Dynamo-generated magnetic fields at the surface of a massive star Mon. Not. R. Astron. Soc. 356, 1139 1148 (2005) doi:10.1111/j.1365-2966.2004.08544.x Dynamo-generated magnetic fields at the surface of a massive star D. J. Mullan 1 and James MacDonald 2 1 Bartol Research

More information

Coversheet. Publication metadata

Coversheet. Publication metadata Coversheet This is the publisher s PDF (Version of Record) of the article. This is the final published version of the article. How to cite this publication: Rhita-Maria Ouazzani, S. J. A. J. Salmon, V.

More information

Vortices in accretion discs: formation process and dynamical evolution

Vortices in accretion discs: formation process and dynamical evolution Vortices in accretion discs: formation process and dynamical evolution Geoffroy Lesur DAMTP (Cambridge UK) LAOG (Grenoble) John Papaloizou Sijme-Jan Paardekooper Giant vortex in Naruto straight (Japan)

More information

Probing Stellar Structure with Pressure & Gravity modes the Sun and Red Giants. Yvonne Elsworth. Science on the Sphere 14/15 July 2014

Probing Stellar Structure with Pressure & Gravity modes the Sun and Red Giants. Yvonne Elsworth. Science on the Sphere 14/15 July 2014 Probing Stellar Structure with Pressure & Gravity modes the Sun and Red Giants Yvonne Elsworth Science on the Sphere 14/15 July 2014 Evolving stars are building blocks of the galaxy and their cores are

More information

The first evidence for multiple pulsation axes: a new rapidly oscillating Ap star in the Kepler field, KIC

The first evidence for multiple pulsation axes: a new rapidly oscillating Ap star in the Kepler field, KIC Mon. Not. R. Astron. Soc. 414, 2550 2566 (2011) doi:10.1111/j.1365-2966.2011.18572.x The first evidence for multiple pulsation axes: a new rapidly oscillating Ap star in the Kepler field, KIC 10195926

More information

The Sun s Internal Magnetic Field

The Sun s Internal Magnetic Field The Sun s Internal Magnetic Field... and Rotation and Stratification Toby Wood & Michael McIntyre DAMTP, University of Cambridge Toby Wood & Michael McIntyre (DAMTP) The Sun s Internal Magnetic Field 1

More information

Stellar models for a wide range of initial chemical compositions until helium burning

Stellar models for a wide range of initial chemical compositions until helium burning ASTRONOMY & ASTROPHYSICS NOVEMBER I 1997, PAGE 439 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 125, 439-443 (1997) Stellar models for a wide range of initial chemical compositions until helium burning

More information

Planetary Interiors. Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism

Planetary Interiors. Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism Planetary Interiors Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism Hydrostatic Equilibrium First order for a spherical body: Internal

More information

Turbulence models and excitation of solar oscillation modes

Turbulence models and excitation of solar oscillation modes Center for Turbulence Research Annual Research Briefs Turbulence models and excitation of solar oscillation modes By L. Jacoutot, A. Wray, A. G. Kosovichev AND N. N. Mansour. Motivation and objectives

More information

Rømer Science Mission Plan

Rømer Science Mission Plan Institute of Physics and Astronomy, University of Aarhus Rømer Science Mission Plan Danish Small Satellite Programme Document No.(issue): MONS/IFA/MAN/PLN/0001(1) Date: 2001-05-29 Prepared by: Jørgen Christensen-Dalsgaard,

More information

Centrifugal forces. Equipotential surfaces. Critical rotation velocity ROTATION AND STELLAR STRUCTURE. STELLAR ROTATION and EVOLUTION.

Centrifugal forces. Equipotential surfaces. Critical rotation velocity ROTATION AND STELLAR STRUCTURE. STELLAR ROTATION and EVOLUTION. STELLAR ROTATION and EVOLUTION Henny J.G.L.M. Lamers Astronomical Institute, Utrecht University 22/09/09 Lect 1: Rotation and stellar structure 22/09/09 Lect 2: Rotation and stellar winds 24/09/09 Lect

More information

RELATION FOR δ Sct STARS USING ECLIPSING BINARIES AND SPACE PHOTOMETRY

RELATION FOR δ Sct STARS USING ECLIPSING BINARIES AND SPACE PHOTOMETRY 2015. The American Astronomical Society. All rights reserved. doi:10.1088/2041-8205/811/2/l29 OBSERVATIONAL Dn r RELATION FOR δ Sct STARS USING ECLIPSING BINARIES AND SPACE PHOTOMETRY A. García Hernández

More information

Meridional Flow, Torsional Oscillations, and the Solar Magnetic Cycle

Meridional Flow, Torsional Oscillations, and the Solar Magnetic Cycle Meridional Flow, Torsional Oscillations, and the Solar Magnetic Cycle David H. Hathaway NASA/MSFC National Space Science and Technology Center Outline 1. Key observational components of the solar magnetic

More information

Stellar Pulsations and Variability

Stellar Pulsations and Variability Chapter 15 Stellar Pulsations and Variability One commonplace of modern astronomy that would have been highly perplexing for ancient astronomers is that many stars vary their light output by detectable

More information

Energetic properties of stellar pulsations across the Hertzsprung-Russell diagram

Energetic properties of stellar pulsations across the Hertzsprung-Russell diagram EPJ Web of Conferences 101, 01002 ( 2015) DOI: 10.1051/ epjconf/ 201510101002 C Owned by the authors, published by EDP Sciences, 2015 Energetic properties of stellar pulsations across the Hertzsprung-Russell

More information

Stability of toroidal magnetic fields in rotating stellar radiation zones ABSTRACT

Stability of toroidal magnetic fields in rotating stellar radiation zones ABSTRACT A&A 478, 1 8 (008 DOI: 10.1051/0004-6361:007717 c ESO 008 Astronomy & Astrophysics Stability of toroidal magnetic fields in rotating stellar radiation zones L. L. Kitchatinov 1, and G. Rüdiger 1 1 Astrophysikalisches

More information

Convection-driven dynamos in the limit of rapid rotation

Convection-driven dynamos in the limit of rapid rotation Convection-driven dynamos in the limit of rapid rotation Michael A. Calkins Jonathan M. Aurnou (UCLA), Keith Julien (CU), Louie Long (CU), Philippe Marti (CU), Steven M. Tobias (Leeds) *Department of Physics,

More information

arxiv:astro-ph/ v2 5 Aug 1997

arxiv:astro-ph/ v2 5 Aug 1997 Dissipation of a tide in a differentially rotating star Suzanne Talon Observatoire de Paris, Section de Meudon, 92195 Meudon, France and arxiv:astro-ph/9707309v2 5 Aug 1997 Pawan Kumar Institute for Advanced

More information

A theory for localized low-frequency ideal MHD modes in axisymmetric toroidal systems is generalized to take into account both toroidal and poloidal

A theory for localized low-frequency ideal MHD modes in axisymmetric toroidal systems is generalized to take into account both toroidal and poloidal MHD spectra pre-history (selected results I MHD spectra pre-history (selected results II Abstract A theory for localized low-frequency ideal MHD modes in axisymmetric toroidal systems is generalized to

More information

Global magnetorotational instability with inflow The non-linear regime

Global magnetorotational instability with inflow The non-linear regime Global magnetorotational instability with inflow The non-linear regime Evy Kersalé PPARC Postdoctoral Research Associate Dept. of Appl. Math. University of Leeds Collaboration: D. Hughes & S. Tobias (Dept.

More information

Asymptotic theory for torsional convection in rotating fluid spheres

Asymptotic theory for torsional convection in rotating fluid spheres Under consideration for publication in J. Fluid Mech. 1 Asymptotic theory for torsional convection in rotating fluid spheres By KEKE Z H A N G 1, KAMENG L A M A N D DALI K O N G 3 1,3 College of Engineering,

More information

Observational aspects of asteroseismology

Observational aspects of asteroseismology Observational aspects of asteroseismology G. Handler Institut für Astronomie, Türkenschanzstrasse 17, 1180 Vienna, Austria Abstract: We review past and present efforts to perform asteroseismic studies

More information

Instabilities in neutron stars and gravitational waves

Instabilities in neutron stars and gravitational waves Instabilities in neutron stars and gravitational waves Andrea Passamonti INAF-Osservatorio di Roma AstroGR@Rome 2014 Rotational instabilities Non-axisymmetric instabilities of a rotating fluid star What

More information

Creation and destruction of magnetic fields

Creation and destruction of magnetic fields HAO/NCAR July 30 2007 Magnetic fields in the Universe Earth Magnetic field present for 3.5 10 9 years, much longer than Ohmic decay time ( 10 4 years) Strong variability on shorter time scales (10 3 years)

More information

arxiv: v1 [astro-ph.sr] 5 Jun 2018

arxiv: v1 [astro-ph.sr] 5 Jun 2018 Breaking Taylor-Proudman balance by magnetic field in stellar convection zone H. Hotta arxiv:1806.01452v1 [astro-ph.sr] 5 Jun 2018 Department of Physics, Graduate School of Science, Chiba university, 1-33

More information

Momentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi

Momentum transport from magnetic reconnection in laboratory an. plasmas. Fatima Ebrahimi Momentum transport from magnetic reconnection in laboratory and astrophysical plasmas Space Science Center - University of New Hampshire collaborators : V. Mirnov, S. Prager, D. Schnack, C. Sovinec Center

More information

The Magnetorotational Instability

The Magnetorotational Instability The Magnetorotational Instability Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics March 10, 2014 These slides are based off of Balbus & Hawley (1991), Hawley

More information

where G is Newton s gravitational constant, M is the mass internal to radius r, and Ω 0 is the

where G is Newton s gravitational constant, M is the mass internal to radius r, and Ω 0 is the Homework Exercise Solar Convection and the Solar Dynamo Mark Miesch (HAO/NCAR) NASA Heliophysics Summer School Boulder, Colorado, July 27 - August 3, 2011 PROBLEM 1: THERMAL WIND BALANCE We begin with

More information

On the interaction of internal gravity waves with a magnetic field I. Artificial wave forcing

On the interaction of internal gravity waves with a magnetic field I. Artificial wave forcing Mon. Not. R. Astron. Soc. 401, 191 196 (2010) doi:10.1111/j.1365-2966.2009.15618.x On the interaction of internal gravity waves with a magnetic field I. Artificial wave forcing T. M. Rogers 1 and K. B.

More information

The roap phenomenon many unsolved issues

The roap phenomenon many unsolved issues Contrib. Astron. Obs. Skalnaté Pleso 38, 301 310, (2008) The roap phenomenon many unsolved issues H. Shibahashi Department of Astronomy, University of Tokyo, Tokyo 113-0033, Japan (E-mail: shibahashi@astron.s.u-tokyo.ac.jp)

More information

Asteroseismology with WFIRST

Asteroseismology with WFIRST Asteroseismology with WFIRST Daniel Huber Institute for Astronomy University of Hawaii Sagan Workshop August 2017 Crash Course in Asteroseismology Crash Course in Asteroseismology? unnamed author, sometime

More information

Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus. K. C. Shaing

Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus. K. C. Shaing Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus K. C. Shaing Plasma and Space Science Center, and ISAPS, National Cheng Kung University, Tainan, Taiwan 70101, Republic

More information

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability V.V.Mirnov, C.C.Hegna, S.C.Prager APS DPP Meeting, October 27-31, 2003, Albuquerque NM Abstract In the most general case,

More information

arxiv:astro-ph/ v1 30 Aug 2002

arxiv:astro-ph/ v1 30 Aug 2002 Astronomy & Astrophysics manuscript no. October 18, 2018 (DOI: will be inserted by hand later) Solar-like oscillations in δ Scuti stars Samadi R. 1,2, Goupil M.-J. 2, and Houdek G. 3 1 Astronomy Unit,

More information

Ultra-Cold Plasma: Ion Motion

Ultra-Cold Plasma: Ion Motion Ultra-Cold Plasma: Ion Motion F. Robicheaux Physics Department, Auburn University Collaborator: James D. Hanson This work supported by the DOE. Discussion w/ experimentalists: Rolston, Roberts, Killian,

More information

1. INTRODUCTION 2. METHOD OF SOLUTION

1. INTRODUCTION 2. METHOD OF SOLUTION THE ASTOPHYSICAL JOUNAL, 557:311È319, 1 August 1 ( 1. The American Astronomical Society. All rights rerved. Printed in U.S.A. PULSATIONAL STABILITY OF g-modes IN SLOWLY PULSATING B STAS UMIN LEE1 Institute

More information

The Solar Interior and Helioseismology

The Solar Interior and Helioseismology The Solar Interior and Helioseismology Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK STFC Advanced Summer School, 2016 Sep 6 University of Sheffield http://solarscience.msfc.nasa.gov/predict.shtml

More information

Scope of this lecture ASTR 7500: Solar & Stellar Magnetism. Lecture 9 Tues 19 Feb Magnetic fields in the Universe. Geomagnetism.

Scope of this lecture ASTR 7500: Solar & Stellar Magnetism. Lecture 9 Tues 19 Feb Magnetic fields in the Universe. Geomagnetism. Scope of this lecture ASTR 7500: Solar & Stellar Magnetism Hale CGEG Solar & Space Physics Processes of magnetic field generation and destruction in turbulent plasma flows Introduction to general concepts

More information

Asteroseismology of Red Giants. Josefina Montalbán Université de Liège

Asteroseismology of Red Giants. Josefina Montalbán Université de Liège Asteroseismology of Red Giants Josefina Montalbán Université de Liège Stellar oscillations Oscillation mode Variations of v r : spectroscopy Variations of luminosity: photometry Basic properties Lamb Frequency:

More information

arxiv: v1 [astro-ph.sr] 14 Sep 2011

arxiv: v1 [astro-ph.sr] 14 Sep 2011 Astronomy & Astrophysics manuscript no. espinosa c ESO 08 October 4, 08 Gravity darkening in rotating stars F. Espinosa ara, and M. Rieutord, Université de Toulouse; UPS-OMP; IRAP; Toulouse, France CNRS;

More information

Lecture 7.1: Pulsating Stars

Lecture 7.1: Pulsating Stars Lecture 7.1: Pulsating Stars Literature: KWW chapter 41!" 1 a) Classes of pulsating stars Many stars Intrinsically variable Subset: regular pulsation Type Period (d) RR Lyrae 0.3-0.9 Cepheids 1-50 W Virginis

More information

Determination of intrinsic mode amplitudes of the δ Scuti stars FG Vir and 44 Tau

Determination of intrinsic mode amplitudes of the δ Scuti stars FG Vir and 44 Tau Comm. in Asteroseismology Vol. 153, 2008 Determination of intrinsic mode amplitudes of the δ Scuti stars FG Vir and 44 Tau P. Lenz 1, J. Daszyńska-Daszkiewicz 2, A. A. Pamyatnykh 1,3,4, and M. Breger 1

More information

Status of solar and stellar modelling. Jørgen Christensen-Dalsgaard Stellar Astrophysics Centre Aarhus University

Status of solar and stellar modelling. Jørgen Christensen-Dalsgaard Stellar Astrophysics Centre Aarhus University Status of solar and stellar modelling Jørgen Christensen-Dalsgaard Stellar Astrophysics Centre Aarhus University Excellent? Excellent? Probably poor! What kind of models? Model of eclipsing-binary system

More information

The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere. Cary Forest Department of Physics University of Wisconsin

The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere. Cary Forest Department of Physics University of Wisconsin The Madison Dynamo Experiment: magnetic instabilities driven by sheared flow in a sphere Cary Forest Department of Physics University of Wisconsin February 28, 2001 Planets, stars and perhaps the galaxy

More information

What the seismology of red giants is teaching us about stellar physics S. Deheuvels

What the seismology of red giants is teaching us about stellar physics S. Deheuvels KASC9 Azores 07/2016 What the seismology of red giants is teaching us about stellar physics S. Deheuvels Introduction Red giant phase is a tumultuous stage of stellar evolution evolution of red giants

More information

Meridional Flow, Differential Rotation, and the Solar Dynamo

Meridional Flow, Differential Rotation, and the Solar Dynamo Meridional Flow, Differential Rotation, and the Solar Dynamo Manfred Küker 1 1 Leibniz Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany Abstract. Mean field models of rotating

More information

Planet disk interaction

Planet disk interaction Planet disk interaction Wilhelm Kley Institut für Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tübingen March 2015 4. Planet-Disk: Organisation Lecture overview: 4.1 Introduction

More information

THEORETICAL ASPECTS OF ASTEROSEISMOLOGY: SMALL STEPS TOWARDS A GOLDEN FUTURE

THEORETICAL ASPECTS OF ASTEROSEISMOLOGY: SMALL STEPS TOWARDS A GOLDEN FUTURE 1 THEORETICAL ASPECTS OF ASTEROSEISMOLOGY: SMALL STEPS TOWARDS A GOLDEN FUTURE Maria Pia Di Mauro INAF- Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy ABSTRACT The current status

More information

文德华 Department of Physics, South China Univ. of Tech. ( 华南理工大学物理系 )

文德华 Department of Physics, South China Univ. of Tech. ( 华南理工大学物理系 ) Investigation on the oscillation modes of neutron stars 文德华 Department of Physics, South China Univ. of Tech. ( 华南理工大学物理系 ) collaborators Bao-An Li, William Newton, Plamen Krastev Department of Physics

More information

PHAS3135 The Physics of Stars

PHAS3135 The Physics of Stars PHAS3135 The Physics of Stars Exam 2013 (Zane/Howarth) Answer ALL SIX questions from Section A, and ANY TWO questions from Section B The numbers in square brackets in the right-hand margin indicate the

More information

PHYS 432 Physics of Fluids: Instabilities

PHYS 432 Physics of Fluids: Instabilities PHYS 432 Physics of Fluids: Instabilities 1. Internal gravity waves Background state being perturbed: A stratified fluid in hydrostatic balance. It can be constant density like the ocean or compressible

More information

The BRITE satellite and Delta Scuti Stars: The Magnificent Seven

The BRITE satellite and Delta Scuti Stars: The Magnificent Seven Comm. in Asteroseismology Vol. 152, 2008 The BRITE satellite and Delta Scuti Stars: The Magnificent Seven M. Breger Institut für Astronomie, Türkenschanzstrasse 17, 1180 Vienna, Austria Abstract This paper

More information

Problem Set SOLUTIONS: Heliophysics Textbook III: Chapter 5

Problem Set SOLUTIONS: Heliophysics Textbook III: Chapter 5 SOLUTIONS Homework Exercise Solar Convection and the Solar Dynamo Mark Miesch (HAO/NCAR) NASA Heliophysics Summer School Boulder, Colorado, July 7 August 3, 011 Equation numbers in the Homework set are

More information

Asteroseismic Study of Red Giant ɛ Ophiuchi

Asteroseismic Study of Red Giant ɛ Ophiuchi Research in Astron. Astrophys. 2010 Vol. XX No. XX, 000 000 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics Asteroseismic Study of Red Giant ɛ Ophiuchi

More information

Fluctuation dynamo amplified by intermittent shear bursts

Fluctuation dynamo amplified by intermittent shear bursts by intermittent Thanks to my collaborators: A. Busse (U. Glasgow), W.-C. Müller (TU Berlin) Dynamics Days Europe 8-12 September 2014 Mini-symposium on Nonlinear Problems in Plasma Astrophysics Introduction

More information

arxiv: v1 [astro-ph.sr] 9 Sep 2010

arxiv: v1 [astro-ph.sr] 9 Sep 2010 Seismic diagnostics of red giants: first comparison with stellar models J. Montalbán and A. Miglio 1 and A. Noels and R. Scuflaire arxiv:1009.1754v1 [astro-ph.sr] 9 Sep 2010 Institut d Astrophysique et

More information

Transport by gravito-inertial waves in differentially rotating stellar radiation zones. I - Theoretical formulation. S. Mathis 1,2 ABSTRACT

Transport by gravito-inertial waves in differentially rotating stellar radiation zones. I - Theoretical formulation. S. Mathis 1,2 ABSTRACT A&A 506, 8 88 009 DOI: 0.05/0004-636/0080544 c ESO 009 Astronomy & Astrophysics Transport by gravito-inertial waves in differentially rotating stellar radiation zones I - Theoretical formulation S. Mathis,

More information

Project title: "Magnetic activities of the Sun and the stars probed by the newgeneration

Project title: Magnetic activities of the Sun and the stars probed by the newgeneration JSPS Joint Project Professor Donald Kurtz Jeremiah Horrocks Institute University of Central Lancashire Project title: "Magnetic activities of the Sun and the stars probed by the newgeneration oscillation

More information

An accurate numerical approach for the kinematic dynamo problem

An accurate numerical approach for the kinematic dynamo problem Mem. S.A.It. Suppl. Vol. 4, 17 c SAIt 2004 Memorie della Supplementi An accurate numerical approach for the kinematic dynamo problem A. Bonanno INAF- Osservatorio Astrofisico di Catania, Via S.Sofia 78,

More information

Stellar Astrophysics: Pulsating Stars. Stellar Pulsation

Stellar Astrophysics: Pulsating Stars. Stellar Pulsation Stellar Astrophysics: Stellar Pulsation Pulsating Stars The first pulsating star observation documented was by the German pastor David Fabricius in 1596 in the constellation Cetus The star o Ceti, later

More information

Stellar Astrophysics: Stellar Pulsation

Stellar Astrophysics: Stellar Pulsation Stellar Astrophysics: Stellar Pulsation Pulsating Stars The first pulsating star observation documented was by the German pastor David Fabricius in 1596 in the constellation Cetus The star o Ceti, later

More information

Observations of Red Giants in the NGC 6633 cluster by the Space Mission CoRoT

Observations of Red Giants in the NGC 6633 cluster by the Space Mission CoRoT Observations of Red Giants in the NGC 6633 cluster by the Space Mission CoRoT C. Barban 1 F. Baudin 2, E. Poretti 3, B. Mosser 1, S. Hekker 4, Th. Kallinger 5, A. Miglio 6, J. Montalban 7, T. Morel 7,

More information

DISSERTATION. Titel der Dissertation. Pulsation models of selected δ Scuti stars. Verfasser. Mag. rer. nat. Patrick Lenz

DISSERTATION. Titel der Dissertation. Pulsation models of selected δ Scuti stars. Verfasser. Mag. rer. nat. Patrick Lenz DISSERTATION Titel der Dissertation Pulsation models of selected δ Scuti stars Verfasser Mag. rer. nat. Patrick Lenz angestrebter akademischer Grad Doktor der Naturwissenschaften (Dr. rer. nat.) Wien,

More information

Asteroseismology in Action: Probing the interiors of EHB stars

Asteroseismology in Action: Probing the interiors of EHB stars Asteroseismology in Action: Probing the interiors of EHB stars Suzanna Randall, ESO Garching Betsy Green, University of Arizona Gilles Fontaine, Université de Montréal Stéphane Charpinet, Observatoire

More information

Creation and destruction of magnetic fields

Creation and destruction of magnetic fields HAO/NCAR July 20 2011 Magnetic fields in the Universe Earth Magnetic field present for 3.5 10 9 years, much longer than Ohmic decay time ( 10 4 years) Strong variability on shorter time scales (10 3 years)

More information

The stability of magnetic fields in massive stars

The stability of magnetic fields in massive stars Contrib. Astron. Obs. Skalnaté Pleso 48, 154 161, (2018) The stability of magnetic fields in massive stars A. Bonanno Osservatorio Astrofisico di Catania, Via S.Sofia 78, 95123, Catania, Italy (E-mail:

More information

22. Kinematic Dynamo Theory; Mean Field Theory. We seek solutions to the Induction (dynamo) equation

22. Kinematic Dynamo Theory; Mean Field Theory. We seek solutions to the Induction (dynamo) equation 238 22. Kinematic Dynamo Theory; Mean Field Theory Dynamo Solutions We seek solutions to the Induction (dynamo) equation B/ t = λ 2B + x (u x B) (22.1) that do not decay with time and have no external

More information

Gravitational Wave emission mechanisms in accreting systems. Brynmor Haskell INAF-Milano 26/11/2009

Gravitational Wave emission mechanisms in accreting systems. Brynmor Haskell INAF-Milano 26/11/2009 Gravitational Wave emission mechanisms in accreting systems INAF-Milano 26/11/2009 GWs from rotating neutron stars LMXBs and accretion models Emission mechanisms Crustal and core mountains Magnetic mountains

More information