STENTOR PLASMA PROPULSION SYSTEM EXPERIENCE

Size: px
Start display at page:

Download "STENTOR PLASMA PROPULSION SYSTEM EXPERIENCE"

Transcription

1 STENTOR PLASMA PROPULSION SYSTEM EXPERIENCE Pascal GARNERO, Thierry GRASSIN ALCATEL SPACE, 100 Bd du Midi, Cannes, France Contact: Franck DARNON, Luc PETITJEAN CNES, Centre Spatial de Toulouse, 18 av. E. Belin, Toulouse, France Contact: IEPC Abstract With lost of STENTOR spacecraft due to launcher failure in December 2002, in-flight results related to plasma propulsion system could unfortunately not be processed and presented. Nevertheless, successful development of the plasma propulsion system, to be used for north/south station keeping of geostationary spacecraft, provides to industry and CNES a strong experience that will support use of plasma propulsion onto European spacecraft. This paper describes the main experience and achievements obtained during the program. INTRODUCTION Purpose of the STENTOR Spacecraft was in particular to provide on-ground qualification and inflight demonstration of plasma propulsion onto European spacecraft. In-flight return of experience will not be possible due to launcher failure on December However, on-ground qualification was achieved and experience accumulated during this program is rich up to the level of the technical challenge and complexity of industrial organization. The main achievements are presented with an overview of the propulsion system design, equipment and system development and test results achieved during spacecraft Assembly, Integration and Tests. Figure 1.: STENTOR Spacecraft Copyright 2003 by Alcatel. 1

2 PROPULSION SYSTEM DESIGN The propulsion system was designed by ALCATEL SPACE with a main requirement of compatibility with the SPACEBUS Family platform. GAS MODULE FD Xenon Storage Tank HPT P NC FD Abbreviations LPT Is Is FD FD : Fill and Drain P : Pyro-Valve NC: Normally Closed Is : Isolation Valve HPT : High Pressure Transducer LPT : Low Pressure Transducer PPU : Power Processing Unit TSU : Thruster Selection Unit FU : Filter Unit XFC : Xenon Flow Controller TOM : Thruster Orientation Mechanism SPT : Stationary Plasma Thruster bus 1553 bus 50V ELECTRICAL MODULE Redundant PPU & TSU ELECTRICAL MODULE Nominal PPU & TSU bus 1553 bus 50V DTC/DTM DTC/DTM THRUSTER MODULE North FU FU FU FU THRUSTER MODULE South XFC XFC XFC XFC PPS-1350 TOM TOM PPS-1350 SPT-100 SPT-100 Figure 2.: Plasma Propulsion System architecture Function of the Plasma Propulsion System is to provide inclination and eccentricity control for north/south station keeping. The system is a plasma propulsion system using Xenon as propellant. It includes a Gas Module in order to store and supply Xenon to two Thruster Modules, one for the north maneuvers and one for the south maneuvers. Each Thruster Module is composed of two stationary plasma thrusters ( one nominal and one redundant ) mounted onto an orientation mechanism and of Xenon Flow Controllers (XFC) associated to each thruster. Thruster and XFC are powered and controlled by Electrical Modules. Each Electrical Module includes one Power Processing Unit (PPU) including Thruster Selection Unit, a filter unit (FU) upstream each Thruster. One Electrical module is dedicated to the two nominal thrusters, the other one is redundant, associated to redundant thrusters. Two types of thrusters are be used: SPT-100 thrusters, manufactured by Fakel in Russia and PPS thruster manufactured by SNECMA in France. 2

3 DEVELOPMENT AT EQUIPMENT LEVEL The following equipment were fully developed and qualified in the frame of the STENTOR program. Equipment Xenon storage tank Pressure regulator Power Processing Unit Filter Unit PPS-1350 and XFC Thruster Orientation Mechanism Supplier EADS STANDFORD MU ALCATEL ETCA EREMS SNECMA ALCATEL SPACE It shall be also noted that SPT-100 thruster was delta-qualified to meet higher mechanical environmental requirements. Development and qualification of the Xenon storage tank and PPS-1350 thruster were directly supported by the CNES Agency. Photo Alcatel Figure 3.: PPS-1350 thruster Photo EADS Figure 5.: Xenon storage tank Photo Alcatel ETCA Figure 6.: Power Processing unit Photo Alcatel Figure 4.: Thruster Orientation Mechanism Photo µspace Figure 7.: Pressure Regulator Detailed information onto those development could be found in dedicated papers. 3

4 DEVELOPMENT AT PROPULSION SYSTEM LEVEL During the development, a strong effort was dedicated to interactions between equipment and coupled tests in order to guarantee performances at propulsion system level. Therefore the following main analysis and tests were conducted : Assembly Gas module integrated onto a JIG Gas module Electrical Module Test / analysis. high pressure proof pressure. external leakage. pressure regulation. cleanliness control. thermodynamic analysis of Xenon storage tank fill and drain. performance and EMC test with thruster dynamic simulator. performance/emc test with SPT-100 and PPS-1350 Thruster Module. vibration test. thermal test with thruster firings Thruster and Electrical Modules PPU-XFC- Thruster PPU-FU-Thruster. performance test on each thruster and cathode with electrical module. margin analysis of the control loop and sensitivity to perturbations. Monte Carlo / WCA analysis of the electrical network All analysis and test results provided strong experience and confidence in overall performances of the propulsion system. 4

5 SYSTEM LEVEL Satellite Assembly Integration and Tests Flow chart The following flow chart provides the test sequence performed onto the plasma propulsion system during the spacecraft Assembly Integration and Test ( AIT ) campaign. It is the first plasma propulsion system to be tested at spacecraft level in Europe. Therefore it allowed to validate all the new procedures and innovative ground equipment. GAZ MODULE PPU THRUSTER MODULE SYSTEM PERFORMANCE TEST 1 A THERMAL BALANCE AND CYCLING THERMAL INSTRUMENTATION TESTS SM INTEGRATION ASSY FINAL INTEG.. PPU PERFORMANCES ASSY. PPU PERFORMANCES SYSTEM PERFORMANCE TEST 1 B MECHANICAL INSTRUMENTATION MECHANICAL ENVIRONMENTAL TESTS. ELECTRICAL END-TO-END TEST. GAZ MODULE PERFORMANCES. XFC ADRESSING. INTERNAL LEAK TEST. CLEANLINESS CHECK ASSY TANK FILLING WITH XENON SINE VIBRATIONS ACOUSTIC NOISE TEST SEPARATION SHOCK TEST VISUAL INSPEC. TANK DRAINING TOM PYRO- RELEASE SYSTEM PERFORMANCE TEST 2. PPU PERFORMANCES. CLEANLINESS CHECK EMC/ESD ESD. GAZ MODULE PERFORMANCES RE/RS. XFC ADRESSING. ELECTRICAL END-TO-END TEST. INTERNAL LEAK TEST CATR TANK FILLING WITH XENON SATELLITE PREPARATION FOR FLIGHT TO LAUNCH. GLOBAL LEAK TEST FLIGHT SITE. PRESSURE TRANSDUCER CAILBRATION CONFIGURATION. INTERNAL LEAKAGE F&D Figure 8.: AIT Flow chart Specific Ground equipment Three ground equipment dedicated to plasma propulsion were developed and validated during the spacecraft AIT: - Xenon Ground Support Equipment (XeGSE) for Xenon filling/draining and test onto the propulsion system, Figure 9.: Xenon ground Support Equipment - Thruster simulator: representative of the static and dynamic load of a thruster, this equipment is used during PPU performances test and during EMC test, - Thruster test cap: this cap is connected directly to the thruster electrodes and allows to perform electrical end-to-end test. Figure 10.: Test cap mounted onto thruster 5

6 Main performances and achievements during AIT: - Tank filling with Xenon: It was for the first time performed into the tank equipped with its thermal insulation and mounted into the spacecraft. Use of thermal compressors has been optimized according to xenon temperatures and pressures in order to reduce tank filling duration down to 5h30 for the 72.5 kg to be loaded. Achieved accuracy onto loaded mass was 0.3 kg for a 0.5 kg expected. 100 Masse chargée Pression Réservoir, Bar Masse (Kg) M sat 2 M sat 3 M C1 M C2 M sat :36 10:48 12:00 13:12 14:24 15:36 16:48 18: :48:00 11:02:24 11:16:48 11:31:12 11:45:36 12:00:00 12:14:24 12:28:48 12:43:12 12:57:36 13:12:00 13:26:24 13:40:48 13:55:12 14:09:36 14:24:00 14:38:24 14:52:48 15:07:12 15:21:36 15:36:00 15:50:24 16:04:48 16:19:12 16:33:36 16:48:00 17:02:24 17:16:48 17:31:12 17:45:36 Heure Figure 11.: Pressure and mass evolution during tank filling - Global leak: Such a test is usually performed with Helium. In order to save manipulations ( drain Xenon used for vibrations, load Helium and after test, drain Helium to fill with Xenon ) and time, we did it directly with the propulsion system in launch configuration i.e. with flight Xenon loaded. Measurement was performed with the procedure used for Helium, except that the spectrometer was calibrated onto Xenon instead of Helium. Such a test demonstrated that we could actually full-load the propulsion system with Xenon only once during the integration and test campaign. - Validation of cleanliness procedures: Particular and molecular cleanliness control was performed after the mechanical environmental tests directly onto the Xenon that was drained from the spacecraft. Such a control showed no degradation of the Xenon cleanliness validating thus all the cleanliness control plan defined from the equipment integration up to Xenon filling for flight. - Pressure regulation: Choice was made during the design phase to perform Xenon pressure regulation with a mechanical series redundant regulator. This equipment being the heart of the gas module, performance trend analysis was performed during all the equipment life. Pressure regulation accuracy and internal leakage were not degraded after all the operations and tests, in particular after the proto-flight mechanical environmental tests. 2,8 Internal leakage, scc/s regulated pressure, bar 2,75 2,7 2,65 2,6 2,55 2, propulsion system level spacecraft level equipment level 1,00E-02 1,00E-03 1,00E-04 equipment level propulsion system level spacecraft level inlet pressure, bar 1,00E-05 Figure 12.: Regulated pressure and leak rate trend analysis - Electrical auto-compatibility Test: Simulation of a thruster firing was performed with Power Processing Unit loaded onto a representative dynamic simulator in order to check that inrush on the power bus ( at switch ON and OFF ) are identical 6

7 to the inrush measured during qualification and that inrush do not perturb the spacecraft functions ( status transitions, FDIR mechanism, susceptibility ). Test results demonstrated such a compatibility. Thruster ON Figure 13.: Bus current and voltage Inrush at thruster start up Photo Alcatel Figure 14.: STENTOR Spacecraft - Electrical end to end tests: Use of a test cap directly mounted onto the thruster was decided early during the design phase. This test cap allows to demonstrate during AIT that thruster electrodes are correctly fed when PPU is ON and that the addressing is correct. Such a test cap is necessary as thruster firing once integrated onto spacecraft is not possible onto large commercial spacecraft. - Vibration tests: - Acoustic test: responses at interface but also onto the critical items of the thrusters ( cathodes, central and external magnets ) were monitored and comparison with qualification results were made. The main result is that actual inputs coming from the acoustic noise test are much lower that levels required into the equipment test specification. This point will be considered for the future programs. SPPS189X 22B SPT100 PPS1350 SPPS198Z 22B SPT100 PPS g² /Hz 0.1 g² /Hz Hz I/F SPT100 (blades HTM3) SPPS189X Hz I/F PPS1350 (blades LTM2) SPPS198Z Figure 15.: Acoustic noise at thruster interface - Sinus test : the input levels were driven by responses measured at thruster interfaces in order not to exceed equipment qualification levels. The thruster module had higher responses than it was foreseen in the mathematical model, due to higher amplification factor (low damping) and more important coupling of the local mode with the first longitudinal mode. Qualification for Ariane 4 and Ariane 5 vibrations environment was achieved. Performances of the thruster module after this test did not reveal any damage. 7

8 - Thruster Orientation Mechanism Performances: Commandability over the operational domain of about +/-8, observability and alignments with regards to the spacecraft have been performed: - before, during and after thermal test, - before and after vibrations and pyro-release test, - during final spacecraft preparation with flight thermal insulation. All the results demonstrated that the TOM meet its performances after exposure to thermal and mechanical environmental tests. This test campaign provided a constructive return of experience that is already fruitfull TetaX ACT2 : ACT1 : V2 V1 ACT2 : ACT1 : 0 TetaZ ACT2 : ACT1 : V0 V V3 Domaine défini par les butées logicielles (+/ pas) Figure 16.: TOM orientation domain IN-FLIGHT ACCEPTANCE TEST AND EXPERIMENTATION The following experiments associated to the plasma propulsion system were foreseen: - RF impact of ion beam with TTC omni-directional antenna, - Characterization of thrust magnitude and orientation by successive firings for different solar arrays positions and coupled to a fine satellite localization system, - Characterization of thruster performances over its working range and during its aging, - Thruster plasma plume characterization with langmuir probe and retarding potential analyzer, - Characterization of erosion and deposition effects with micro-balances mounted onto the solar array, - Characterization of solar cells working point and degradation over lifetime. Unfortunately, this chapter has to be written some later on Figure 17.: Thruster firing 8

9 CONCLUSION Development of the plasma propulsion system in the frame of the STENTOR program was a great challenge for all the partners involved in. Six completely new equipment were developed and we succeeded in making them working together as a system integrated onto the spacecraft. Moreover, the in-orbit operational procedures of the subsystem have been validated successfully with the satellite simulator. Launch failure and lost of the spacecraft was a great deception as we were not able to conclude by an in-flight demonstration of the plasma propulsion performances. However, despite this lost, results of all the effort of development already is profitable to the European industry and will be undoubtedly fruitful in the future. Completion of the on-ground qualification of the plasma propulsion system provides a strong background and allows ALCATEL SPACE to offer benefits of this technology to its customers with use onto its SPACEBUS spacecraft family but also onto other applications. ACKNOWLEDGEMENTS The authors thank all the subcontractors and partners for their deep involvement that was needed for the completion of this program and a special mention to the memories of two colleagues and friends, Roland Salomé and Cécile Gélas, who shared with us unforgettable instants during this challenging program. REFERENCES [1] "An Overview of the CNES Electric Propulsion Program", A. Cadiou, C. Gelas, F. Darnon, L. Jolivet, N. Pillet, 27 th International Electric Propulsion Conference, paper , Pasadena, USA. [2] G. Saccoccia Overview of European Electric Propulsion Activities, 37 th AIAA Joint Propulsion Conference, Salt Lake City, July 2001 [3] H. Declercq, J.J.Digoin, «Power Processing Unit for Stationary Plasma Thruster», IEPC , 26th International Electric Propulsion Conference, Japan, [3] P. Bravais, T. Grassin, «Xenon Ground Support Equipment for Plasmic Propulsion System», IEPC , 26th International Electric Propulsion Conference, Japan, [4] "Plasmic Propulsion System on S.T.E.N.T.O.R. Program", Th. Grassin, L. Petitjean, 26 th International Electric Propulsion Conference, paper , Kitakyushu, Japan. [5] P. Garnero, «Satellite Propulsion Systems Needs in the Field of Equipment», AAAF, Aerospace energetic equipment, Avignon, France, November

ALCATEL SPACE PLASMA PROPULSION SUBSYSTEM QUALIFICATION STATUS

ALCATEL SPACE PLASMA PROPULSION SUBSYSTEM QUALIFICATION STATUS ALCATEL SPACE PLASMA PROPULSION SUBSYSTEM QUALIFICATION STATUS Pascal GARNERO, Olivier DULAU ALCATEL SPACE 100, Bd. du Midi, BP 99 06156 CANNES LA BOCCA Cedex FRANCE Contact : pascal.garnero@space.alcatel.fr,

More information

The Thruster Module Assembly (Hall Effect Thruster) design, qualification and flight

The Thruster Module Assembly (Hall Effect Thruster) design, qualification and flight The Thruster Module Assembly (Hall Effect Thruster) design, qualification and flight IEPC-2005-213 Presented at the 29 th International Electric Propulsion Conference, Princeton University, Joël BIRON,

More information

Development and qualification of Hall thruster KM-60 and the flow control unit

Development and qualification of Hall thruster KM-60 and the flow control unit Development and qualification of Hall thruster KM-60 and the flow control unit IEPC-2013-055 Presented at the 33rd International Electric Propulsion Conference, The George Washington University Washington,

More information

Development of Microwave Engine

Development of Microwave Engine Development of Microwave Engine IEPC-01-224 Shin SATORI*, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI #, Atsushi NAGATA #, Yasumasa ITO** and Takayoshi KIZAKI # * Hokkaido Institute of Technology

More information

PPS 1350-G Qualification status h

PPS 1350-G Qualification status h PPS 1350-G Qualification status 10500 h IEPC-2007-164 Presented at the 30 th International Electric Propulsion Conference, Florence, Italy Frédéric Marchandise * and Nicolas Cornu Snecma Safran Group,

More information

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity

Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Flight Demonstration of Electrostatic Thruster Under Micro-Gravity Shin SATORI*, Hiroyuki MAE**, Hiroyuki OKAMOTO**, Ted Mitsuteru SUGIKI**, Yoshinori AOKI # and Atsushi NAGATA # * Hokkaido Institute of

More information

Space mission environments: sources for loading and structural requirements

Space mission environments: sources for loading and structural requirements Space structures Space mission environments: sources for loading and structural requirements Prof. P. Gaudenzi Università di Roma La Sapienza, Rome Italy paolo.gaudenzi@uniroma1.it 1 THE STRUCTURAL SYSTEM

More information

Cold Gas Thruster Qualification for FORMOSAT 5

Cold Gas Thruster Qualification for FORMOSAT 5 Cold Gas Thruster Qualification for FORMOSAT 5 By Hans-Peter HARMANN 1), Tammo ROMBACH 2) and Heiko DARTSCH 1) 1) AST Advanced Space Technologies GmbH, Stuhr, Germany 2) SpaceTech GmbH, Immenstaad, Germany

More information

High-impulse SPT-100D thruster with discharge power of kw

High-impulse SPT-100D thruster with discharge power of kw High-impulse SPT-D thruster with discharge power of 1.0 3.0 kw IEPC-2017-40 Presented at the 35th International Electric Propulsion Conference Georgia Institute of Technology Atlanta, Georgia USA R. Gnizdor

More information

An Overview of the CNES Electric Propulsion Program

An Overview of the CNES Electric Propulsion Program An Overview of the CNES Electric Propulsion Program Anne Cadiou, Cécile Gelas, Franck Darnon, Laurent Jolivet, Nicolas Pillet CNES 18 Avenue Edouard Belin 31401 TOULOUSE CEDEX 4 phone 33 5 61 28 26 32

More information

HEMP Thruster Assembly Performance with increased Gas Tubing Lengths of Flow Control Unit

HEMP Thruster Assembly Performance with increased Gas Tubing Lengths of Flow Control Unit HEMP Thruster Assembly Performance with increased Gas Tubing Lengths of Flow Control Unit IEPC-2015-346 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th

More information

AN OVERVIEW OF THE CNES ELECTRIC PROPULSION PROGRAM

AN OVERVIEW OF THE CNES ELECTRIC PROPULSION PROGRAM AN OVERVIEW OF THE CNES ELECTRIC PROPULSION PROGRAM Anne Cadiou, Franck Darnon, Laurent Jolivet CNES 18 Avenue Edouard Belin 31401 TOULOUSE CEDEX 4 phone 33 5 61 28 26 32 fax 33 5 61 28 29 92 email anne.cadiou@cnes.fr

More information

EQUIPMENT INTERFACE LOAD CHARACTERIZATION IN ACOUSTICS

EQUIPMENT INTERFACE LOAD CHARACTERIZATION IN ACOUSTICS 1 EQUIPMENT INTERFACE LOAD CHARACTERIZATION IN ACOUSTICS Nicolas Ludovic LARUE (1), Jean Marie LOME (2), Alice PRADINES (3) (1) Mechanical analysis and test engineer, EADS Astrium - 31 avenue des Cosmonautes,

More information

Inmarsat 4F1 Plasma Propulsion System Initial Flight Operations

Inmarsat 4F1 Plasma Propulsion System Initial Flight Operations Inmarsat 4F1 Plasma Propulsion System Initial Flight Operations IEPC-2-82 Presented at the 29 th International Electric Propulsion Conference, Princeton University, Howard Gray 1 EADS Astrium Ltd, Portsmouth,

More information

End of Life Re-orbiting The Meteosat-5 Experience

End of Life Re-orbiting The Meteosat-5 Experience End of Life Re-orbiting The Meteosat-5 Experience Milan EUMETSAT, Darmstadt, Germany This article illustrates the orbit maneuver sequence performed during Meteosat- 5 End of Life (EOL) re-orbiting operations

More information

CALIBRATION MECHANISM FOR INFRARED SPACE TELESCOPE. Patrice Kerhousse

CALIBRATION MECHANISM FOR INFRARED SPACE TELESCOPE. Patrice Kerhousse CALIBRATION MECHANISM FOR INFRARED SPACE TELESCOPE Patrice Kerhousse Alcatel space industries Boulevard du Midi, BP 99-06156 Cannes la Bocca Cedex Telephone : 33-(0)4-92-92-72-38 / Fax : 33-(0)4-92-92--20

More information

Progress in Testing of QM and FM HEMP Thruster Modules

Progress in Testing of QM and FM HEMP Thruster Modules Progress in Testing of QM and FM HEMP Thruster Modules IEPC-2013-274 Presented at the 33rd International Electric Propulsion Conference, The George Washington University Washington, D.C. USA A. Lazurenko

More information

Commissioning of the Aerospazio s vacuum facilities with Safran s Hall Effect Thruster

Commissioning of the Aerospazio s vacuum facilities with Safran s Hall Effect Thruster Commissioning of the Aerospazio s vacuum facilities with Safran s Hall Effect Thruster IEPC-2017-414 Presented at the 35th International Electric Propulsion Conference Georgia Institute of Technology Atlanta,

More information

ELECTRIC EFFECTS OF PLASMA PROPULSION ON SATELLITES

ELECTRIC EFFECTS OF PLASMA PROPULSION ON SATELLITES ELECTRIC EFFECTS OF PLASMA PROPULSION ON SATELLITES Brosse, S *; Chanrion, O. * ; Perrin, V. * * Alcatel Space, 100 Bd du Midi, 06156 Cannes La Bocca, France Phone : 33 (0)4 92 92 64 83, Fax : 33 (0)4

More information

THE PPS 1350 PROGRAM

THE PPS 1350 PROGRAM EPC-97-134 855 THE PPS 1350 PROGRAM D. Valentian *, N. Maslennikov ** * SEP, Groupe Petite Propulsion et Equipements, Melun Villaroche, FRANCE, ** FAKEL, Kaliningrad, RUSSA ABSTRACT A new SPT thruster

More information

Development of stationary plasma thruster SPT-230 with discharge power of kw

Development of stationary plasma thruster SPT-230 with discharge power of kw Development of stationary plasma thruster SPT-230 with discharge power of 10...15 kw IEPC-2017-548 Presented at the 35th International Electric Propulsion Conference Georgia Institute of Technology Atlanta,

More information

ETS-Ⅷ Ion Engine and its Operation on Orbit

ETS-Ⅷ Ion Engine and its Operation on Orbit ETS-Ⅷ Ion Engine and its Operation on Orbit IEPC-2009-048 Presented at the 31st International Electric Propulsion Conference, University of Michigan Ann Arbor, Michigan USA Kenichi Kajiwara 1, Masafumi

More information

Multiple Thruster Propulsion Systems Integration Study. Rusakol, A.V..Kocherpin A.V..Semenkm A.V.. Tverdokhlebov S.O. Garkusha V.I.

Multiple Thruster Propulsion Systems Integration Study. Rusakol, A.V..Kocherpin A.V..Semenkm A.V.. Tverdokhlebov S.O. Garkusha V.I. IEPC-97-130 826 Multiple Thruster Propulsion Systems Integration Study Rusakol, A.V..Kocherpin A.V..Semenkm A.V.. Tverdokhlebov S.O. Garkusha V.I. Central Research Institute of Machine Building (TsNIIMASH)

More information

High Power Electric Propulsion Pointing Mechanisms (HP EPPM) Technical Development Activities (TDA s) strategy, status and planning

High Power Electric Propulsion Pointing Mechanisms (HP EPPM) Technical Development Activities (TDA s) strategy, status and planning High Power Electric Propulsion Pointing Mechanisms (HP EPPM) Technical Development Activities (TDA s) strategy, status and planning Objectives of this presentation are: To provide primes with: ESA preliminary

More information

MISSION ENGINEERING SPACECRAFT DESIGN

MISSION ENGINEERING SPACECRAFT DESIGN MISSION ENGINEERING & SPACECRAFT DESIGN Alpbach 2007 - D.J.P. Moura - CNES MISSION ENGINEERING (1) OVERALL MISSION ENGINEERING IS A COMPLEX TASK SINCE AT THE BEGINNING THE PROBLEM IS GENERALLY BADLY EXPRESSED

More information

Low Complexity and Low Cost Electric Propulsion System for Telecom Satellites Based on HEMP Thruster Assembly

Low Complexity and Low Cost Electric Propulsion System for Telecom Satellites Based on HEMP Thruster Assembly Low Complexity and Low Cost Electric Propulsion System for Telecom Satellites Based on HEMP Thruster Assembly IEPC-2007-114 Presented at the 30 th International Electric Propulsion Conference, Florence,

More information

PlaS-40 Development Status: New Results

PlaS-40 Development Status: New Results PlaS-40 Development Status: New Results IEPC-2015-99/ISTS-2015-b-9 Presented at Joint Conference of 30 th International Symposium on Space Technology and Science 34 th International Electric Propulsion

More information

PPS 1350-G Performance assessment with permanent magnets

PPS 1350-G Performance assessment with permanent magnets PPS 1350-G Performance assessment with permanent magnets IEPC-2011-119 Presented at the 32nd International Electric Propulsion Conference, Wiesbaden Germany V. Vial *, L. Godard and N. Cornu Snecma, Safran

More information

INVESTIGATION OF THE POSSIBILITY TO REDUCE SPT PLUME DIVERGENCE BY OPTIMIZATION OF THE MAGNETIC FIELD TOPOLOGY IN THE ACCELERATING CHANNEL

INVESTIGATION OF THE POSSIBILITY TO REDUCE SPT PLUME DIVERGENCE BY OPTIMIZATION OF THE MAGNETIC FIELD TOPOLOGY IN THE ACCELERATING CHANNEL IEPC-97-154 945 INVESTIGATION OF THE POSSIBILITY TO REDUCE SPT PLUME DIVERGENCE BY OPTIMIZATION OF THE MAGNETIC FIELD TOPOLOGY IN THE ACCELERATING CHANNEL Michael Day, international Space Technology, Inc.,

More information

Development and Test of XR-150, a New High-Thrust 100 W Resistojet

Development and Test of XR-150, a New High-Thrust 100 W Resistojet Development and Test of XR-150, a New High-Thrust 100 W Resistojet IEPC-2013-219 Presented at the 33rd International Electric Propulsion Conference, The George Washington University Washington, D.C. USA

More information

XENON RESISTOJETS AS SECONDARY PROPULSION ON EP SPACECRAFTS AND PERFORMANCE RESULTS OF RESISTOJETS USING XENON

XENON RESISTOJETS AS SECONDARY PROPULSION ON EP SPACECRAFTS AND PERFORMANCE RESULTS OF RESISTOJETS USING XENON XENON RESISTOJETS AS SECONDARY PROPULSION ON EP SPACECRAFTS AND PERFORMANCE RESULTS OF RESISTOJETS USING XENON D. Nicolini (a), D. Robertson (a), E. Chesta (a), G. Saccoccia (a), D. Gibbon (b), A. Baker

More information

Miniature Vacuum Arc Thruster with Controlled Cathode Feeding

Miniature Vacuum Arc Thruster with Controlled Cathode Feeding Miniature Vacuum Arc Thruster with Controlled Cathode Feeding Igal Kronhaus and Matteo Laterza Aerospace Plasma Laboratory, Faculty of Aerospace Engineering, Technion - Israel Institute of Technology,

More information

Figure 1. View of ALSAT-2A spacecraft

Figure 1. View of ALSAT-2A spacecraft ALSAT-2A TRANSFER AND FIRST YEAR OPERATIONS M. Kameche (1), A.H. Gicquel (2), D. Joalland (3) (1) CTS/ASAL, 1 Avenue de la Palestine, BP 13, Arzew 31200 Oran, Algérie, email:mo_kameche@netcourrier.com

More information

Evaluation of Pulsed Plasma Thruster System for µ-lab Sat II *

Evaluation of Pulsed Plasma Thruster System for µ-lab Sat II * Evaluation of Pulsed Plasma Thruster System for µ-lab Sat II * Haruki TAKEGAHARA, Miwa IGARASHI, Naoki KUMAGAI, Kensuke SATO, and Kouji TAMURA Tokyo Metropolitan Institute of Technology, Dept. of Aerospace

More information

Alta FT-150: The Thruster for LISA Pathfinder and LISA/NGO Missions

Alta FT-150: The Thruster for LISA Pathfinder and LISA/NGO Missions 9 th LISA Symposium, Paris ASP Conference Series, Vol. 467 G. Auger, P. Binétruy and E. Plagnol, eds. c 2012 Astronomical Society of the Pacific Alta FT-150: The Thruster for LISA Pathfinder and LISA/NGO

More information

EUROSTAR 3000 INCLINED ORBIT MISSION : LIFETIME OPTIMISATION IN CASE OF INJECTION WITH A LOW INCLINATION

EUROSTAR 3000 INCLINED ORBIT MISSION : LIFETIME OPTIMISATION IN CASE OF INJECTION WITH A LOW INCLINATION EUROSTAR 3000 INCLINED ORBIT MISSION : LIFETIME OPTIMISATION IN CASE OF INJECTION WITH A LOW INCLINATION Franck Raballand (1), Julie De Lamarzelle (2), François Bonaventure (3), Anne-Hélène Gicquel (4)

More information

Low Cost Helicon Propulsion System for CubeSat future mission scenarios. T4i - University of Padova D.Pavarin

Low Cost Helicon Propulsion System for CubeSat future mission scenarios. T4i - University of Padova D.Pavarin Low Cost Helicon Propulsion System for CubeSat future mission scenarios T4i - University of Padova D.Pavarin Centro di Ateneo Studi e Attività Spaziali University of Padova Padova, Italy Technology for

More information

Gaussian and Quadratic Polynomial Equation For THAICHOTE Satellite Propellant Re-Check

Gaussian and Quadratic Polynomial Equation For THAICHOTE Satellite Propellant Re-Check Gaussian and Quadratic Polynomial Equation For THAICHOTE Satellite Propellant Re-Check AMMARIN PIMNOO THEOS-Flight Dynamics Engineer Orbit and Space Object Analysis Division (OSpA) / THEOS Operation Center

More information

Investigation of SPT Performance and Particularities of it s Operation with Kr and Kr/Xe Mixtures *+

Investigation of SPT Performance and Particularities of it s Operation with Kr and Kr/Xe Mixtures *+ Investigation of SPT Performance and Particularities of it s Operation with Kr and Kr/Xe Mixtures *+ Vladimir Kim, Garry Popov, Vyacheslav Kozlov, Alexander Skrylnikov, Dmitry Grdlichko Research Institute

More information

Electric Propulsion System using a Helicon Plasma Thruster (2015-b/IEPC-415)

Electric Propulsion System using a Helicon Plasma Thruster (2015-b/IEPC-415) Electric Propulsion System using a Helicon Plasma Thruster (2015-b/IEPC-415) Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion

More information

The development of a family of Resistojet Thruster Propulsion Systems for Small Spacecraft

The development of a family of Resistojet Thruster Propulsion Systems for Small Spacecraft The development of a family of Resistojet Thruster Propulsion Systems for Small Spacecraft D.Gibbon, I.Coxhill, A.Baker, M.Sweeting Surrey Satellite Technology Ltd, University of Surrey, Guildford, England

More information

Electric Rocket Engine System R&D

Electric Rocket Engine System R&D Electric Rocket Engine System R&D In PROITERES, a powered flight by an electric rocket engine is planed; that is, orbital transfer will be carried out with a pulsed plasma thruster (PPT). We introduce

More information

BepiColombo. Project and MPO Status. Comprehensive Explora1on of Planet Mercury

BepiColombo. Project and MPO Status. Comprehensive Explora1on of Planet Mercury BepiColombo Project and MPO Status Comprehensive Explora1on of Planet Mercury Joe Zender BepiColombo Deputy PS, ESA/ESTEC BepiColombo Previously: Ø Proba2 Science Coordinator, until 12/2013 Ø ProbaV, Project

More information

OVERVIEW OF ASTRIUM EROSION / CONTAMINATION MODELLING TOOL AND VALIDATION ON ONERA EXPERIMENTAL RESULTS

OVERVIEW OF ASTRIUM EROSION / CONTAMINATION MODELLING TOOL AND VALIDATION ON ONERA EXPERIMENTAL RESULTS OVERVIEW OF ASTRIUM EROSION / CONTAMINATION MODELLING TOOL AND VALIDATION ON ONERA EXPERIMENTAL RESULTS S. Provost, C. Theroude, P. Chèoux-Damas ASTRIUM SAS, 31 avenue des Cosmonautes, 31402 Toulouse Cedex

More information

Development and Qualification Status of the Electric Propulsion System for the BepiColombo Mission

Development and Qualification Status of the Electric Propulsion System for the BepiColombo Mission Development and Qualification Status of the Electric Propulsion System for the BepiColombo Mission IEPC-2013-114 Presented at the 33rd International Electric Propulsion Conference, The George Washington

More information

New 2d Far Field Beam Scanning Device at DLR s Electric Propulsion Test Facility

New 2d Far Field Beam Scanning Device at DLR s Electric Propulsion Test Facility New 2d Far Field Beam Scanning Device at DLR s Electric Propulsion Test Facility IEPC-2015-b/IEPC-388 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th

More information

Characterization of an adjustable magnetic field, low-power Hall Effect Thruster

Characterization of an adjustable magnetic field, low-power Hall Effect Thruster Characterization of an adjustable magnetic field, low-power Hall Effect Thruster IEPC-2011-143 Presented at the 32nd International Electric Propulsion Conference, Wiesbaden Germany S. Oslyak 1, C. Ducci

More information

Experimental study of a high specific impulse plasma thruster PlaS-120

Experimental study of a high specific impulse plasma thruster PlaS-120 Experimental study of a high specific impulse plasma thruster PlaS-120 IEPC-2015-154 /ISTS-2015-b-154 Presented at Joint Conference of 30 th International Symposium on Space Technology and Science 34 th

More information

Parametric family of the PlaS-type thrusters: development status and future activities

Parametric family of the PlaS-type thrusters: development status and future activities Parametric family of the PlaS-type thrusters: development status and future activities IEPC-2017-39 Presented at the 35th International Electric Propulsion Conference Georgia Institute of Technology Atlanta,

More information

FLIGHT TESTING OF VOLUME-IONIZATION ION THRUSTERS ON METEOR SATELLITE

FLIGHT TESTING OF VOLUME-IONIZATION ION THRUSTERS ON METEOR SATELLITE FLIGHT TESTING OF VOLUME-IONIZATION ION THRUSTERS ON METEOR SATELLITE Vladimir P. Khodnenko NPP Russian scientific and Research Institute of Electromechanics Moscow 101000, P.O. Box 496, Russia Phone:

More information

COUPLED OPTIMIZATION OF LAUNCHER AND ALL-ELECTRIC SATELLITE TRAJECTORIES

COUPLED OPTIMIZATION OF LAUNCHER AND ALL-ELECTRIC SATELLITE TRAJECTORIES COUPLED OPTIMIZATION OF LAUNCHER AND ALL-ELECTRIC SATELLITE TRAJECTORIES M. Verlet (1), B. Slama (1), S. Reynaud (1), and M. Cerf (1) (1) Airbus Defence and Space, 66 Route de Verneuil, 78133 Les Mureaux,

More information

Thrust Balance Characterization of a 200W Quad Confinement Thruster for High Thrust Regimes

Thrust Balance Characterization of a 200W Quad Confinement Thruster for High Thrust Regimes Thrust Balance Characterization of a 200W Quad Confinement Thruster for High Thrust Regimes IEPC-2013-155 Presented at the 33rd International Electric Propulsion Conference, The George Washington University

More information

PRACTICE NO. PD-AP-1309 PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS CAUSED BY SPACE CHARGING

PRACTICE NO. PD-AP-1309 PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS CAUSED BY SPACE CHARGING PREFERRED PAGE 1 OF 5 RELIABILITY PRACTICES ANALYSIS OF RADIATED EMI FROM ESD EVENTS Practice: Modeling is utilized for the analysis of conducted and radiated electromagnetic interference (EMI) caused

More information

RESEARCH ON TWO-STAGE ENGINE SPT-MAG

RESEARCH ON TWO-STAGE ENGINE SPT-MAG RESEARCH ON TWO-STAGE ENGINE SPT-MAG A.I. Morozov a, A.I. Bugrova b, A.D. Desiatskov b, V.K. Kharchevnikov b, M. Prioul c, L. Jolivet d a Kurchatov s Russia Research Center, Moscow, Russia 123098 b Moscow

More information

Spacecraft/thrusters interaction analysis for Smart-1 IEPC

Spacecraft/thrusters interaction analysis for Smart-1 IEPC Spacecraft/thrusters interaction analysis for Smart-1 IEPC-2005-003 Presented at the 29 th International Electric Propulsion Conference, Princeton University, J. Gonzalez del Amo * and D. Estublier. ESA

More information

OPERATIONAL CHARACTERISTICS OF CYLINDRICAL HALL THRUSTERS

OPERATIONAL CHARACTERISTICS OF CYLINDRICAL HALL THRUSTERS OPERATIONAL CHARACTERISTICS OF CYLINDRICAL HALL THRUSTERS Atsushi Shirasaki, Hirokazu Tahara and Takao Yoshikawa Graduate School of Engineering Science, Osaka University -, Machikaneyama, Toyonaka, Osaka

More information

PPS Effexts on Satellites Analyses and Tools in Alcatel Space Industries

PPS Effexts on Satellites Analyses and Tools in Alcatel Space Industries PPS Effexts on Satellites Analyses and Tools in Alcatel Space Industries V. Perrin, D. Pogarieloff, P. Métois, S. Brosse (Alcatel Space Industries, Cannes) Alcatel Space Industries 100 Bd du Midi 06156

More information

Measurements of plasma parameters in the plume of electric propulsion devices Recent works performed at the ESA Propulsion Laboratory

Measurements of plasma parameters in the plume of electric propulsion devices Recent works performed at the ESA Propulsion Laboratory Measurements of plasma parameters in the plume of electric propulsion devices Recent works performed at the ESA Propulsion Laboratory IEPC-2015-90161 Presented at Joint Conference of 30th International

More information

DARE Mission and Spacecraft Overview

DARE Mission and Spacecraft Overview DARE Mission and Spacecraft Overview October 6, 2010 Lisa Hardaway, PhD Mike Weiss, Scott Mitchell, Susan Borutzki, John Iacometti, Grant Helling The information contained herein is the private property

More information

The division of energy sources and the working substance in electric propulsioncan determines the range of applicability of electro jet propulsion sys

The division of energy sources and the working substance in electric propulsioncan determines the range of applicability of electro jet propulsion sys Vacuum Arc thruster development for Horyu-4 satellite KaterynaAheieva, Shingo Fuchikami, Hiroshi Fukuda, Tatsuo Shimizu, Kazuhiro Toyoda, Mengu Cho Kyushu Institute of Technology1 N589502a@mail.kyutech.jp

More information

EUROPE ARIANE 1 ARIANE 1

EUROPE ARIANE 1 ARIANE 1 . IDENTIFICATION. Name ARIANE.2 Classification Family : ARIANE Series : Version : ARIANE Category : SPACE LAUNCH VEHICLE Class : Medium Launch Vehicle (MLV) Type : Expendable Launch Vehicle (ELV).3 Manufacturer

More information

RECENT SPACE DEBRIS MITIGATION ACTIVITIES IN FRANCE F.ALBY

RECENT SPACE DEBRIS MITIGATION ACTIVITIES IN FRANCE F.ALBY RECENT SPACE DEBRIS MITIGATION ACTIVITIES IN FRANCE F.ALBY GEO END OF LIFE WORKSHOP BACKGROUND Particularity of the GEO orbit: unique resource Need to protect and to keep available orbital positions Mitigation

More information

Effect of Plasma Plume on CubeSat Structures as a Function of Thrust Vectoring

Effect of Plasma Plume on CubeSat Structures as a Function of Thrust Vectoring Effect of Plasma Plume on CubeSat Structures as a Function of Thrust Vectoring IEPC-2015-157 /ISTS-2015-b-157 Presented at Joint Conference of 30th International Symposium on Space Technology and Science

More information

DISTRIBUTION LIST. Others original copies Name amount. Lens Research & Development 1x Uittenhout, J.M.M. 1x DOCUMENT CHANGE RECORD

DISTRIBUTION LIST. Others original copies Name amount. Lens Research & Development 1x Uittenhout, J.M.M. 1x DOCUMENT CHANGE RECORD 2 of 15 DISTRIBUTION LIST Others original copies Name amount Lens Research & Development 1x Uittenhout, J.M.M. 1x DOCUMENT CHANGE RECORD Issue Date Total pages Pages affected Brief description of change

More information

Development Status of 200mN class Xenon Hall Thruster of MELCO

Development Status of 200mN class Xenon Hall Thruster of MELCO Development Status of 2mN class Xenon Hall Thruster of MELCO IEPC2564 Presented at the 29 th International Electric Propulsion Conference, Princeton University, Toshiyuki Ozaki * Mitsubishi Electric Corporation,

More information

Research and Development of High-Power, High-Specific-Impulse Magnetic-Layer-Type Hall Thrusters for Manned Mars Exploration

Research and Development of High-Power, High-Specific-Impulse Magnetic-Layer-Type Hall Thrusters for Manned Mars Exploration Research and Development of High-Power, High-Specific-Impulse Magnetic-Layer-Type Hall Thrusters for Manned Mars Exploration IEPC-2015-151 /ISTS-2015-b-151 Presented at Joint Conference of 30th International

More information

Your Partner in Environment Monitoring

Your Partner in Environment Monitoring Your Partner in Environment Monitoring Radiation Environment in Space The ionizing radiation in space represents one of the most severe environmental loads to space hardware and can cause a large number

More information

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil)

BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN. Jose Sergio Almeida INPE (Brazil) BUILDING LOW-COST NANO-SATELLITES: THE IMPORTANCE OF A PROPER ENVIRONMENTAL TESTS CAMPAIGN Jose Sergio Almeida INPE (Brazil) 1 st International Academy of Astronautics Latin American Symposium on Small

More information

Overview, Qualification and Delivery Status of the HEMPT based Ion Propulsion System for SmallGEO

Overview, Qualification and Delivery Status of the HEMPT based Ion Propulsion System for SmallGEO Overview, Qualification and Delivery Status of the HEMPT based Ion Propulsion System for SmallGEO IEPC-2015-345 Presented at the 34rd International Electric Propulsion Conference, Kobe International Conference

More information

Electric Propulsion Research and Development at NASA-MSFC

Electric Propulsion Research and Development at NASA-MSFC Electric Propulsion Research and Development at NASA-MSFC November 2014 Early NEP concept for JIMO mission Dr. Kurt Polzin (kurt.a.polzin@nasa.gov) Propulsion Research and Development Laboratory NASA -

More information

Launch Environment. Phase C. Date : 06/03/2008 Issue : 1 Rev : 6 Page : 1 of 23. Prepared by: Guillaume Roethlisberger. Checked by: Approved by:

Launch Environment. Phase C. Date : 06/03/2008 Issue : 1 Rev : 6 Page : 1 of 23. Prepared by: Guillaume Roethlisberger. Checked by: Approved by: Page : 1 of 23 Phase C Launch Environment Prepared by: Guillaume Roethlisberger Checked by: Approved by: EPFL Lausanne Switzerland 06/03/2008 Page : 2 of 23 RECORD OF REVISIONS ISS/REV Date Modifications

More information

11.1 Survey of Spacecraft Propulsion Systems

11.1 Survey of Spacecraft Propulsion Systems 11.1 Survey of Spacecraft Propulsion Systems 11.1 Survey of Spacecraft Propulsion Systems In the progressing Space Age, spacecrafts such as satellites and space probes are the key to space exploration,

More information

Development and Research of the Plasma Thruster with a hollow magnet Anode PlaS-40

Development and Research of the Plasma Thruster with a hollow magnet Anode PlaS-40 Development and Research of the Plasma Thruster with a hollow magnet Anode PlaS-40 IEPC-2013-52 Presented at the 33rd International Electric Propulsion Conference, The George Washington University Washington,

More information

STRUCTURAL MODELS AND MECHANICAL TESTS IN THE DEVELOPMENT OF A COMMUNICATIONS SPACECRAFT

STRUCTURAL MODELS AND MECHANICAL TESTS IN THE DEVELOPMENT OF A COMMUNICATIONS SPACECRAFT First Pan American Congress on Computational Mechanics PANACM 2015 April 27-29, 2015, Buenos Aires, Argentina STRUCTURAL MODELS AND MECHANICAL TESTS IN THE DEVELOPMENT OF A COMMUNICATIONS SPACECRAFT Santiago

More information

Number Density Measurement of Neutral Particles in a Miniature Microwave Discharge Ion Thruster

Number Density Measurement of Neutral Particles in a Miniature Microwave Discharge Ion Thruster Trans. JSASS Aerospace Tech. Japan Vol. 12, No. ists29, pp. Tb_31-Tb_35, 2014 Topics Number Density Measurement of Neutral Particles in a Miniature Microwave Discharge Ion Thruster By Yuto SUGITA 1), Hiroyuki

More information

Micro-Cathode Arc Thruster Development and Characterization

Micro-Cathode Arc Thruster Development and Characterization Micro-Cathode Arc Thruster Development and Characterization IEPC--66 Presented at the nd International Electric Propulsion Conference, Wiesbaden, Germany September 5, Taisen Zhuang, Alexey Shashurin, Dereck

More information

ATK P/N Qualification History ATK Space Commerce. An advanced weapon and space systems company

ATK P/N Qualification History ATK Space Commerce. An advanced weapon and space systems company ATK P/N 80446 Qualification History ATK Space Commerce 80446 Generic Description 80446-1 Dimension MEOP 41 cm x 66 cm long 310 bar (4500 psi) Volume @ MEOP 67.3 liter (4105 in 3 ) Actual burst Weight of

More information

Electric Propulsion Activity in Russia *

Electric Propulsion Activity in Russia * Electric Propulsion Activity in Russia * Vladimir Kim, Garri Popov Research Institute of Applied Mechanics and Electrodynamics of Moscow Aviation Institute (RIAME MAI) 5, Leningradskoye shosse, P.O.box

More information

Some remarks about published data concerning the SPT-100 jet parameters distribution

Some remarks about published data concerning the SPT-100 jet parameters distribution IEPC-97-152 937 Some remarks about published data concerning the SPT-1 jet parameters distribution Sergey A. Khartov, Andrey B. Nadiradze, A&met M. Yakubov, Yulia V. Zikeeva Moscow State Aviation Institute

More information

OPERATION PECULIARITIES OF HALL THRUSTER WITH POWER kw AT HIGH DISCHARGE VOLTAGES

OPERATION PECULIARITIES OF HALL THRUSTER WITH POWER kw AT HIGH DISCHARGE VOLTAGES OPERATION PECULIARITIES OF HALL THRUSTER WITH POWER 1.5 2.0 kw AT HIGH DISCHARGE VOLTAGES M.B. Belikov, N.V. Blinov, O.A. Gorshkov, R.N. Rizakhanov, A.A. Shagayda Keldysh Research Center 125438, Moscow,

More information

A VEGA Dedicated Electric Propulsion Transfer Module To The Moon

A VEGA Dedicated Electric Propulsion Transfer Module To The Moon A VEGA Dedicated Electric Propulsion Transfer Module To The Moon IEPC-2007-306 Presented at the 30 th International Electric Propulsion Conference, Florence, Italy C. Casaregola, K. Geurts, P.Pergola,

More information

Sitael Low Power Hall Effect Thrusters for Small Satellites

Sitael Low Power Hall Effect Thrusters for Small Satellites Sitael Low Power Hall Effect Thrusters for Small Satellites IEPC-2015-102/ISTS-2015-b-102 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International

More information

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture

A Regional Microsatellite Constellation with Electric Propulsion In Support of Tuscan Agriculture Berlin, 20 th - 24 th 2015 University of Pisa 10 th IAA Symposium on Small Satellites for Earth Observation Student Conference A Regional Microsatellite Constellation with Electric Propulsion In Support

More information

Investigation of a 5 kw class Hall-effect thruster operating with different xenon-krypton mixtures

Investigation of a 5 kw class Hall-effect thruster operating with different xenon-krypton mixtures Investigation of a 5 kw class Hall-effect thruster operating with different xenon-krypton mixtures IEPC-2015-126 /ISTS-2015-b-126 Presented at Joint Conference of 30th International Symposium on Space

More information

Overview, Qualification and Delivery Status of the HEMP- Thruster based Ion Propulsion System for SmallGEO

Overview, Qualification and Delivery Status of the HEMP- Thruster based Ion Propulsion System for SmallGEO Overview, Qualification and Delivery Status of the HEMP- Thruster based Ion Propulsion System for SmallGEO IEPC-2017-197 Presented at the 35th International Electric Propulsion Conference, Georgia Institute

More information

LRO/CRaTER. Technical Interchange Meeting. LRO Mechanical Systems. Giulio Rosanova / /

LRO/CRaTER. Technical Interchange Meeting. LRO Mechanical Systems. Giulio Rosanova / / LRO/CRaTER Technical Interchange Meeting LRO Mechanical Systems Giulio Rosanova / 543 301-286-5907 / Giulio.G.Rosanova@nasa.gov 1 LRO Baseline (Deployed 0n Orbit) High Gain Antenna IM Optical Bench /Radiator

More information

PPT development for Nanosatellites applications: experimental results

PPT development for Nanosatellites applications: experimental results PPT development for Nanosatellites applications: experimental results IEPC-213-198 Presented at the 33rd International Electric Propulsion Conference, The George Washington University Washington, D.C.

More information

Alta s FT-150 FEEP Microthruster: Development and Qualification Status

Alta s FT-150 FEEP Microthruster: Development and Qualification Status Alta s FT-150 FEEP Microthruster: Development and Qualification Status IEPC-2009-186 Presented at the 31st International Electric Propulsion Conference, University of Michigan Ann Arbor, Michigan USA L.

More information

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 About DSI A space technology and resources company Vision to enable the human space development by harvesting asteroid materials

More information

ADM-Aeolus Science and Cal/Val Workshop

ADM-Aeolus Science and Cal/Val Workshop ADM-Aeolus Science and Cal/Val Workshop ESA ESRIN, Frascati, ITALY 10 13 February 2015 THE ALADIN INSTRUMENT AND ITS ON-GROUND CHARACTERISATION O. Lecrenier, F. Fabre, J. Lochard Airbus Defense & Space

More information

ADVANTAGES OF A CONTINUOUS THRUST STRATEGY FROM A GEOSYNCHRONOUS TRANSFER ORBIT, USING HIGH SPECIFIC IMPULSE THRUSTERS

ADVANTAGES OF A CONTINUOUS THRUST STRATEGY FROM A GEOSYNCHRONOUS TRANSFER ORBIT, USING HIGH SPECIFIC IMPULSE THRUSTERS 1 ADVANTAGES OF A CONTINUOUS THRUST STRATEGY FROM A GEOSYNCHRONOUS TRANSFER ORBIT, USING HIGH SPECIFIC IMPULSE THRUSTERS Christophe R. Koppel SEP, division de SNECMA - Aérodrome de Melun-Villaroche 77550

More information

Performance characteristics are based on customer requirements. As such, they are not representative of component capabilities or limitations.

Performance characteristics are based on customer requirements. As such, they are not representative of component capabilities or limitations. ADN Micro Propulsion System 13066300-01 The VACCO / ECAPS CubeSat ADN Delta-V Propulsion System is a high performance micro propulsion system (MiPS) specifically designed for CubeSats. The ADN Delta-V

More information

Full Electric Mission to Moon (SMART-1) and Technologies: Electric propulsion, rendez-vous, formation flying

Full Electric Mission to Moon (SMART-1) and Technologies: Electric propulsion, rendez-vous, formation flying The Space Congress Proceedings 2016 (44th) The Journey: Further Exploration for Universal Opportunities May 25th, 10:45 AM Full Electric Mission to Moon (SMART-1) and Technologies: Electric propulsion,

More information

AN OVERVIEW OF THE E.C.S.S. HANDBOOK FOR SPACECRAFT LOADS ANALYSIS

AN OVERVIEW OF THE E.C.S.S. HANDBOOK FOR SPACECRAFT LOADS ANALYSIS COMPDYN 2011 III ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.) Corfu, Greece, 25 28 May 2011

More information

The µnrit-4 Ion Engine: a first step towards a European mini-ion Engine System development.

The µnrit-4 Ion Engine: a first step towards a European mini-ion Engine System development. The µnrit-4 Ion Engine: a first step towards a European mini-ion Engine System development. IEPC-2007-218 Presented at the 30 th International Electric Propulsion Conference, Florence, Italy D. Feili*

More information

Improvement of Propulsion Performance by Gas Injection and External Magnetic Field in Electrodeless Plasma Thrusters

Improvement of Propulsion Performance by Gas Injection and External Magnetic Field in Electrodeless Plasma Thrusters Improvement of Propulsion Performance by Gas Injection and External Magnetic Field in Electrodeless Plasma Thrusters IEPC-217-249 Presented at the th International Electric Propulsion Conference Georgia

More information

John Dankanich NASA s In-Space Propulsion Technology Project November 18, 2009

John Dankanich NASA s In-Space Propulsion Technology Project November 18, 2009 Electric Propulsion Options for Small Body Missions John Dankanich NASA s In-Space Propulsion Technology Project November 18, 2009 1 How is EP Relevant to Small Body Missions? Nearly all small body missions

More information

High-frequency Instabilities in Hall-effect Thrusters: Correlation with the Discharge Current and Thruster Scale Impact

High-frequency Instabilities in Hall-effect Thrusters: Correlation with the Discharge Current and Thruster Scale Impact High-frequency Instabilities in Hall-effect Thrusters: Correlation with the Discharge Current and Thruster Scale Impact IEPC-5- Presented at the 9 th International Electric Propulsion Conference, Princeton

More information

3 A NEW FRENCH FACILITY FOR ION PROPULSION RESEARCH

3 A NEW FRENCH FACILITY FOR ION PROPULSION RESEARCH - 567-3 EPC-95-86 3 A NEW FRENCH FACLTY FOR ON PROPULSON RESEARCH P. Lasgorceix, M. Raffin, J.C. Lengrand, M. Dudeck Laboratoire d'airothermique du CNRS - Meudon (France). Gbkalp Laboratoire de Combustion

More information

Satellite Components & Systems. Dr. Ugur GUVEN Aerospace Engineer (P.hD) Nuclear Science & Technology Engineer (M.Sc)

Satellite Components & Systems. Dr. Ugur GUVEN Aerospace Engineer (P.hD) Nuclear Science & Technology Engineer (M.Sc) Satellite Components & Systems Dr. Ugur GUVEN Aerospace Engineer (P.hD) Nuclear Science & Technology Engineer (M.Sc) Definitions Attitude: The way the satellite is inclined toward Earth at a certain inclination

More information