Iris: Higher-Order Concurrent Separation Logic. Lecture 4: Basic Separation Logic: Proving Pointer Programs

Size: px
Start display at page:

Download "Iris: Higher-Order Concurrent Separation Logic. Lecture 4: Basic Separation Logic: Proving Pointer Programs"

Transcription

1 1 Iris: Higher-Order Concurrent Separation Logic Lecture 4: Basic Separation Logic: Proving Pointer Programs Lars Birkedal Aarhus University, Denmark November 10, 2017

2 2 Overview Earlier: Operational Semantics of λ ref,conc e, (h, e) (h, e ), and (h, E) (h, E ) Basic Logic of Resources l v, P Q, P Q, Γ P Q Basic Separation Logic: Hoare Triples Today: {P} e {v.q} : Prop Basic Separation Logic: Proving Pointer Programs Key Points Reasoning about mutable shared data structures by relating them to mathematical models islist l xs

3 Derivable Rules Last time we saw rules for basic language constructs (expressions that may reduce in one step) And the Bind rule for reasoning about more complex expressions. It is possible to derive other rules that can be used to simplify reasoning. Example Ht-Pre-Eq Γ S {P[v/x]} e[v/x] {u.q[v/x]} Γ, x : Val S {x = v P} e {u.q} This rule is derivable, which means that if we assume the antecedent (the formula above the line), then we can use the logical rules (both basic logical entailments and rules for Hoare triples) to prove the conclusion (the formula below the line). Several such are mentioned in the exercises. Do those to get familiar with how the logic works. 3

4 4 Example: let expressions Let expressions let x = e in e 2 are definable in λ ref,conc : Derivable rule let x = e in e 2 (λx. e 2 ) e Ht-let-det S {P} e 1 {x.x = v Q} (rec f (x) = e 2 ) e S {P} let x = e 1 in e 2 {u.r} S {Q[v/x]} e 2 [v/x] {u.r}

5 5 Sequencing Sequencing e1; e 2 is also definable (using let). Derivable rule Ht-seq S {P} e 1 {v.q} S {P} e 1 {.Q} S {P} e 1 ; e 2 {u.r} S {P} e 1 ; e 2 {u.r} S { x. Q} e 2 {u.r} S {Q} e 2 {u.r} where.q means that Q does not mention the return value.

6 6 Application and Deterministic Bind Ht-beta S {P} e [v/x] {u.q} S {P} (λx.e)v {u.q} Ht-bind-det E is an eval. context S {P} e {x.x = u Q} S {Q[u/x]} E[u] {w. R} S {P} E[e] {w. R}

7 7 Example: swap (finally!) Implementation swap = λx y.let z =! x in x! y; y z Possible Specification {l 1 v 1 l 2 v 2 } swap l 1 l 2 {v.v = () l 1 v 2 l 2 v 1 }. Proof: By Rule Ht-let-det SFTS the following two triples {l 1 v 1 l 2 v 2 }! l 1 {v.v = v 1 l 1 v 1 l 2 v 2 } {l 1 v 1 l 2 v 2 } l 1!l 2 ; l 2 v 1 {v.v = () l 1 v 2 l 2 v 1 }

8 8 Example: swap Consider the first triple: {l 1 v 1 l 2 v 2 }! l 1 {v.v = v 1 l 1 v 1 l 2 v 2 } To show this, use Ht-load and Ht-frame.

9 9 Example: swap Consider the second triple: {l 1 v 1 l 2 v 2 } l 1!l 2 ; l 2 v 1 {v.v = () l 1 v 2 l 2 v 1 } By sequencing rule Ht-seq, SFTS: {l1 v 1 l 2 v 2 } l 1! l 2 {.l 1 v 2 l 2 v 2 } {l1 v 2 l 2 v 2 } l 2 v 1 {v.v = () l 1 v 2 l 2 v 1 } For the second, recall that l 2 v 2 implies l 2. Hence we can use Ht-csq and Ht-store followed by Ht-frame. For the first, use deterministic bind, and then proceed with Ht-store, etc.

10 Proof Outlines In the literature, you will often see proof outlines, which sketch how proofs of programs are done. Tricky to make precise, so not used in the Iris Lecture Notes. Possible proof outline for above proof for swap: {l 1 v 1 l 2 v 2 } swap l 1 l 2 {l 1 v 1 l 2 v 2 } let z =! l 1 in {l 1 v 1 l 2 v 2 z = v 1 } l 1! l 2 ; {l 1 v 2 l 2 v 2 z = v 1 } l 2 z {l 1 v 2 l 2 v 1 z = v 1 } {l 1 v 2 l 2 v 1 } 10

11 11 Mutable Shared Data Structures: Linked Lists Key Point: We reason about mutable shared data structures by relating them to mathematical models. Today: Mutable Shared Data Structure = linked lists Mathematical Model = sequences (aka functional lists) islist l xs relates value l to sequence xs Defined by induction on xs islist l [] l = inj 1 () islist l (x : xs) hd, l. l = inj 2 (hd) hd (x, l ) islist l xs Exercise: Draw the linked list corresponding to mathematical sequence [1, 2, 3]. Why do we use above?

12 12 Example: inc on linked lists Incrementing all values in a linked list of integers. Implementation rec inc(l) = match l with Specification inj 1 x 1 () inj 2 x 2 let h = π 1! x 2 in end let t = π 2! x 2 in x 2 (h + 1, t); inc t xs. l.{islist l xs} inc l {v.v = () islist l (map(1+)xs)}

13 13 Example: inc on linked lists Proof Proceed by the recursion rule. When considering the body of inc, proceed by case analysis of xs. Case xs = []: TS l.{islist l[]} match l with... {v.v = () islist l(map(1+)[])} Case xs = x : xs : TS x, xs. l.{islist l(x : xs )} match l with... {v.v = () islist l(map(1+)(x : xs ))} In both cases, we proceed by the match rule (the islist predicate will tell us which branch is chosen).

14 14 Case xs = [] To show l.{islist l[]} match l with... {v.v = () islist l(map(1+)[])} Note: islist l[] l = inj 1 (). Thus SFTS {islist l[]} l {v.v = inj 1 () islist l[]} which we do by Ht-frame and Ht-Pre-Eq followed by Ht-ret.

15 15 Case xs = x : xs To show x, xs. l.{islist l(x : xs )} match l with... {v.v = () islist l(map(1+)(x : xs ))} Note: islist l(x : xs) hd, l.l = inj 2 hd hd (x, l ) islist l xs. Thus we have {l = inj 2 hd hd (x, l ) islist l xs } l {r.r = inj 2 hd l = inj 2 hd hd (x, l ) islist l xs } for some l and hd, using the rule Ht-exist, the frame rule, the Ht-Pre-Eq rule, and the Ht-ret rule. Hence, the second branch will be taken and by the match rule it suffices to verify the body of the second branch.

16 Case xs = x : xs, continued Using Ht-let-det and Ht-Proj repeatedly we quickly prove {l = inj 2 hd hd (x, l ) islist l xs } let h = π 1!hd in let t = π 2!hd in hd (h + 1, t) {l = inj 2 hd hd (x + 1, l ) islist l xs t = l h = x} Now, by Ht-seq and Ht-csq, we are left with proving {l = inj 2 hd hd (x + 1, l ) islist txs } f t {r.r = () islist l(map(+1)(x : xs ))} which follows from assumption (cf. recursion rule) and definition of the islist predicate. 16

Iris: Higher-Order Concurrent Separation Logic. Lecture 9: Concurrency Intro and Invariants

Iris: Higher-Order Concurrent Separation Logic. Lecture 9: Concurrency Intro and Invariants 1 Iris: Higher-Order Concurrent Separation Logic Lecture 9: Concurrency Intro and Invariants Lars Birkedal Aarhus University, Denmark November 21, 2017 Overview Earlier: Operational Semantics of λ ref,conc

More information

Iris: Higher-Order Concurrent Separation Logic. Lecture 6: Case Study: foldr

Iris: Higher-Order Concurrent Separation Logic. Lecture 6: Case Study: foldr 1 Iris: Higher-Order Concurrent Separation Logic Lecture 6: Case Study: foldr Lars Birkedal Aarhus University, Denmark November 10, 2017 2 Overview Earlier: Operational Semantics of λ ref,conc e, (h, e)

More information

Hoare Examples & Proof Theory. COS 441 Slides 11

Hoare Examples & Proof Theory. COS 441 Slides 11 Hoare Examples & Proof Theory COS 441 Slides 11 The last several lectures: Agenda Denotational semantics of formulae in Haskell Reasoning using Hoare Logic This lecture: Exercises A further introduction

More information

A Short Introduction to Hoare Logic

A Short Introduction to Hoare Logic A Short Introduction to Hoare Logic Supratik Chakraborty I.I.T. Bombay June 23, 2008 Supratik Chakraborty (I.I.T. Bombay) A Short Introduction to Hoare Logic June 23, 2008 1 / 34 Motivation Assertion checking

More information

CSE 505, Fall 2005, Midterm Examination 8 November Please do not turn the page until everyone is ready.

CSE 505, Fall 2005, Midterm Examination 8 November Please do not turn the page until everyone is ready. CSE 505, Fall 2005, Midterm Examination 8 November 2005 Please do not turn the page until everyone is ready. Rules: The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

More information

FORMALIZING CONCURRENT STACKS WITH HELPING: A CASE STUDY IN IRIS

FORMALIZING CONCURRENT STACKS WITH HELPING: A CASE STUDY IN IRIS FORMALIZING CONCURRENT STACKS WITH HELPING: A CASE STUDY IN IRIS DANIEL GRATZER, MATHIAS HØIER, ALE S BIZJAK, AND LARS BIRKEDAL Abstract. Iris is an expressive higher-order separation logic designed for

More information

GOTO the past / programs choose their own adventure. CSE 505: Programming Languages

GOTO the past / programs choose their own adventure. CSE 505: Programming Languages GOTO the past / programs choose their own adventure. CSE 505: Programming Languages Lecture 13 Evaluation Contexts First-Class Continuations Continuation-Passing Style Zach Tatlock Fall 2013 Zach Tatlock

More information

Classical Program Logics: Hoare Logic, Weakest Liberal Preconditions

Classical Program Logics: Hoare Logic, Weakest Liberal Preconditions Chapter 1 Classical Program Logics: Hoare Logic, Weakest Liberal Preconditions 1.1 The IMP Language IMP is a programming language with an extensible syntax that was developed in the late 1960s. We will

More information

CS 4110 Programming Languages & Logics. Lecture 16 Programming in the λ-calculus

CS 4110 Programming Languages & Logics. Lecture 16 Programming in the λ-calculus CS 4110 Programming Languages & Logics Lecture 16 Programming in the λ-calculus 30 September 2016 Review: Church Booleans 2 We can encode TRUE, FALSE, and IF, as: TRUE λx. λy. x FALSE λx. λy. y IF λb.

More information

A Logical Relation for Monadic Encapsulation of State

A Logical Relation for Monadic Encapsulation of State A Logical Relation for Monadic Encapsulation of State Proving contextual equivalences in the presence of runst AMIN TIMANY, imec-distrinet, KU Leuven, Belgium LÉO STEFANESCO, IRIF, Université Paris Diderot

More information

CIS (More Propositional Calculus - 6 points)

CIS (More Propositional Calculus - 6 points) 1 CIS6333 Homework 1 (due Friday, February 1) 1. (Propositional Calculus - 10 points) --------------------------------------- Let P, Q, R range over state predicates of some program. Prove or disprove

More information

Program Verification Using Separation Logic

Program Verification Using Separation Logic Program Verification Using Separation Logic Cristiano Calcagno Adapted from material by Dino Distefano Lecture 1 Goal of the course Study Separation Logic having automatic verification in mind Learn how

More information

Propositional Definite Clause Logic: Syntax, Semantics and Bottom-up Proofs

Propositional Definite Clause Logic: Syntax, Semantics and Bottom-up Proofs Propositional Definite Clause Logic: Syntax, Semantics and Bottom-up Proofs Computer Science cpsc322, Lecture 20 (Textbook Chpt 5.1.2-5.2.2 ) June, 6, 2017 CPSC 322, Lecture 20 Slide 1 Lecture Overview

More information

Introduction to Logic in Computer Science: Autumn 2006

Introduction to Logic in Computer Science: Autumn 2006 Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today Today s class will be an introduction

More information

Soundness Theorem for System AS1

Soundness Theorem for System AS1 10 The Soundness Theorem for System AS1 1. Introduction...2 2. Soundness, Completeness, and Mutual Consistency...2 3. The Weak Soundness Theorem...4 4. The Strong Soundness Theorem...6 5. Appendix: Supporting

More information

COMP6463: λ-calculus

COMP6463: λ-calculus COMP6463: λ-calculus 1. Basics Michael Norrish Michael.Norrish@nicta.com.au Canberra Research Lab., NICTA Semester 2, 2015 Outline Introduction Lambda Calculus Terms Alpha Equivalence Substitution Dynamics

More information

Hoare Logic: Reasoning About Imperative Programs

Hoare Logic: Reasoning About Imperative Programs Hoare Logic: Reasoning About Imperative Programs COMP1600 / COMP6260 Dirk Pattinson Australian National University Semester 2, 2018 Programming Paradigms Functional. (Haskell, SML, OCaml,... ) main paradigm:

More information

Lecture Overview. 2 Weak Induction

Lecture Overview. 2 Weak Induction COMPSCI 30: Discrete Mathematics for Computer Science February 18, 019 Lecturer: Debmalya Panigrahi Lecture 11 Scribe: Kevin Sun 1 Overview In this lecture, we study mathematical induction, which we often

More information

Program verification using Hoare Logic¹

Program verification using Hoare Logic¹ Program verification using Hoare Logic¹ Automated Reasoning - Guest Lecture Petros Papapanagiotou Part 2 of 2 ¹Contains material from Mike Gordon s slides: Previously on Hoare Logic A simple while language

More information

Barrier Proof. 1 Code and spec. April 21, 2016

Barrier Proof. 1 Code and spec. April 21, 2016 Barrier Proof April 21, 2016 This document gives the Iris version of the specification and proof of the barrier originally presented in [1]. 1 Code and spec We aim to verify the following piece of code:

More information

Floyd-Hoare Style Program Verification

Floyd-Hoare Style Program Verification Floyd-Hoare Style Program Verification Deepak D Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. 9 Feb 2017 Outline of this talk 1 Overview 2 Hoare Triples 3

More information

Lecture Notes on Call-by-Value and Call-by-Name

Lecture Notes on Call-by-Value and Call-by-Name Lecture Notes on Call-by-Value and Call-by-Name 15-816: Substructural Logics Frank Pfenning Lecture 22 November 16, 2017 In this lecture we consider two different polarization strategies for structural

More information

Homework 5: Parallelism and Control Flow : Types and Programming Languages Fall 2015 TA: Evan Cavallo

Homework 5: Parallelism and Control Flow : Types and Programming Languages Fall 2015 TA: Evan Cavallo Homework 5: Parallelism and Control Flow 15-814: Types and Programming Languages Fall 2015 TA: Evan Cavallo (ecavallo@cs.cmu.edu) Out: 11/5/15 Due: 11/17/15, 10:30am 1 Cost Dynamics In this section, we

More information

Step-Indexed Biorthogonality: a Tutorial Example

Step-Indexed Biorthogonality: a Tutorial Example Step-Indexed Biorthogonality: a Tutorial Example Andrew Pitts University of Cambridge Computer Laboratory 1 Introduction The purpose of this note is to illustrate the use of step-indexing [2] combined

More information

Axiomatic Semantics. Lecture 9 CS 565 2/12/08

Axiomatic Semantics. Lecture 9 CS 565 2/12/08 Axiomatic Semantics Lecture 9 CS 565 2/12/08 Axiomatic Semantics Operational semantics describes the meaning of programs in terms of the execution steps taken by an abstract machine Denotational semantics

More information

In this episode of The Verification Corner, Rustan Leino talks about Loop Invariants. He gives a brief summary of the theoretical foundations and

In this episode of The Verification Corner, Rustan Leino talks about Loop Invariants. He gives a brief summary of the theoretical foundations and In this episode of The Verification Corner, Rustan Leino talks about Loop Invariants. He gives a brief summary of the theoretical foundations and shows how a program can sometimes be systematically constructed

More information

ITI Introduction to Computing II

ITI Introduction to Computing II (with contributions from R. Holte) School of Electrical Engineering and Computer Science University of Ottawa Version of January 9, 2019 Please don t print these lecture notes unless you really need to!

More information

Learning Goals of CS245 Logic and Computation

Learning Goals of CS245 Logic and Computation Learning Goals of CS245 Logic and Computation Alice Gao April 27, 2018 Contents 1 Propositional Logic 2 2 Predicate Logic 4 3 Program Verification 6 4 Undecidability 7 1 1 Propositional Logic Introduction

More information

CSE 505, Fall 2009, Midterm Examination 5 November Please do not turn the page until everyone is ready.

CSE 505, Fall 2009, Midterm Examination 5 November Please do not turn the page until everyone is ready. CSE 505, Fall 2009, Midterm Examination 5 November 2009 Please do not turn the page until everyone is ready Rules: The exam is closed-book, closed-note, except for one side of one 85x11in piece of paper

More information

Lecture Notes: Axiomatic Semantics and Hoare-style Verification

Lecture Notes: Axiomatic Semantics and Hoare-style Verification Lecture Notes: Axiomatic Semantics and Hoare-style Verification 17-355/17-665/17-819O: Program Analysis (Spring 2018) Claire Le Goues and Jonathan Aldrich clegoues@cs.cmu.edu, aldrich@cs.cmu.edu It has

More information

Theories of Programming Languages Assignment 5

Theories of Programming Languages Assignment 5 Theories of Programming Languages Assignment 5 December 17, 2012 1. Lambda-Calculus (see Fig. 1 for initions of = β, normal order evaluation and eager evaluation). (a) Let Ω = ((λx. x x) (λx. x x)), and

More information

Automata-Theoretic Model Checking of Reactive Systems

Automata-Theoretic Model Checking of Reactive Systems Automata-Theoretic Model Checking of Reactive Systems Radu Iosif Verimag/CNRS (Grenoble, France) Thanks to Tom Henzinger (IST, Austria), Barbara Jobstmann (CNRS, Grenoble) and Doron Peled (Bar-Ilan University,

More information

Lecture 2: Axiomatic semantics

Lecture 2: Axiomatic semantics Chair of Software Engineering Trusted Components Prof. Dr. Bertrand Meyer Lecture 2: Axiomatic semantics Reading assignment for next week Ariane paper and response (see course page) Axiomatic semantics

More information

Proof Rules for Correctness Triples

Proof Rules for Correctness Triples Proof Rules for Correctness Triples CS 536: Science of Programming, Fall 2018 A. Why? We can t generally prove that correctness triples are valid using truth tables. We need proof axioms for atomic statements

More information

Outline. 1 Introduction. 3 Quicksort. 4 Analysis. 5 References. Idea. 1 Choose an element x and reorder the array as follows:

Outline. 1 Introduction. 3 Quicksort. 4 Analysis. 5 References. Idea. 1 Choose an element x and reorder the array as follows: Outline Computer Science 331 Quicksort Mike Jacobson Department of Computer Science University of Calgary Lecture #28 1 Introduction 2 Randomized 3 Quicksort Deterministic Quicksort Randomized Quicksort

More information

Coinductive big-step semantics and Hoare logics for nontermination

Coinductive big-step semantics and Hoare logics for nontermination Coinductive big-step semantics and Hoare logics for nontermination Tarmo Uustalu, Inst of Cybernetics, Tallinn joint work with Keiko Nakata COST Rich Models Toolkit meeting, Madrid, 17 18 October 2013

More information

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule

Derivatives in 2D. Outline. James K. Peterson. November 9, Derivatives in 2D! Chain Rule Derivatives in 2D James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 9, 2016 Outline Derivatives in 2D! Chain Rule Let s go back to

More information

CSC236H Lecture 2. Ilir Dema. September 19, 2018

CSC236H Lecture 2. Ilir Dema. September 19, 2018 CSC236H Lecture 2 Ilir Dema September 19, 2018 Simple Induction Useful to prove statements depending on natural numbers Define a predicate P(n) Prove the base case P(b) Prove that for all n b, P(n) P(n

More information

1 Overview. 2 Extreme Points. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Extreme Points. AM 221: Advanced Optimization Spring 2016 AM 22: Advanced Optimization Spring 206 Prof. Yaron Singer Lecture 7 February 7th Overview In the previous lectures we saw applications of duality to game theory and later to learning theory. In this lecture

More information

Functional Programming with F# Overview and Basic Concepts

Functional Programming with F# Overview and Basic Concepts Functional Programming with F# Overview and Basic Concepts Radu Nicolescu Department of Computer Science University of Auckland 27 Sep 2017 1 / 52 1 Background 2 Overview 3 Type System and Type Inference

More information

Reasoning About Imperative Programs. COS 441 Slides 10b

Reasoning About Imperative Programs. COS 441 Slides 10b Reasoning About Imperative Programs COS 441 Slides 10b Last time Hoare Logic: { P } C { Q } Agenda If P is true in the initial state s. And C in state s evaluates to s. Then Q must be true in s. Program

More information

In case (1) 1 = 0. Then using and from the previous lecture,

In case (1) 1 = 0. Then using and from the previous lecture, Math 316, Intro to Analysis The order of the real numbers. The field axioms are not enough to give R, as an extra credit problem will show. Definition 1. An ordered field F is a field together with a nonempty

More information

Type Systems Winter Semester 2006

Type Systems Winter Semester 2006 Type Systems Winter Semester 2006 Week 7 November 29 November 29, 2006 - version 1.0 Plan PREVIOUSLY: 1. type safety as progress and preservation 2. typed arithmetic expressions 3. simply typed lambda

More information

Spring 2015 Program Analysis and Verification. Lecture 4: Axiomatic Semantics I. Roman Manevich Ben-Gurion University

Spring 2015 Program Analysis and Verification. Lecture 4: Axiomatic Semantics I. Roman Manevich Ben-Gurion University Spring 2015 Program Analysis and Verification Lecture 4: Axiomatic Semantics I Roman Manevich Ben-Gurion University Agenda Basic concepts of correctness Axiomatic semantics (pages 175-183) Hoare Logic

More information

Programming Languages

Programming Languages CSE 230: Winter 2008 Principles of Programming Languages Lecture 6: Axiomatic Semantics Deriv. Rules for Hoare Logic `{A} c {B} Rules for each language construct ` {A} c 1 {B} ` {B} c 2 {C} ` {A} skip

More information

Program verification. Hoare triples. Assertional semantics (cont) Example: Semantics of assignment. Assertional semantics of a program

Program verification. Hoare triples. Assertional semantics (cont) Example: Semantics of assignment. Assertional semantics of a program Program verification Assertional semantics of a program Meaning of a program: relation between its inputs and outputs; specified by input assertions (pre-conditions) and output assertions (post-conditions)

More information

First-Order Logic. 1 Syntax. Domain of Discourse. FO Vocabulary. Terms

First-Order Logic. 1 Syntax. Domain of Discourse. FO Vocabulary. Terms First-Order Logic 1 Syntax Domain of Discourse The domain of discourse for first order logic is FO structures or models. A FO structure contains Relations Functions Constants (functions of arity 0) FO

More information

Typing λ-terms. Types. Typed λ-terms. Base Types. The Typing Relation. Advanced Formal Methods. Lecture 3: Simply Typed Lambda calculus

Typing λ-terms. Types. Typed λ-terms. Base Types. The Typing Relation. Advanced Formal Methods. Lecture 3: Simply Typed Lambda calculus Course 2D1453, 200607 Advanced Formal Methods Lecture 3: Simply Typed Lambda calculus Mads Dam KTH/CSC Some material from B. Pierce: TAPL + some from G. Klein, NICTA Typing λterms The uptyped λcalculus

More information

Overview of Today s Lecture

Overview of Today s Lecture Branden Fitelson Philosophy 4515 (Advanced Logic) Notes 1 Overview of Today s Lecture Administrative Stuff HW #1 grades and solutions have been posted Please make sure to work through the solutions HW

More information

Cylindrical Algebraic Decomposition in Coq

Cylindrical Algebraic Decomposition in Coq Cylindrical Algebraic Decomposition in Coq MAP 2010 - Logroño 13-16 November 2010 Assia Mahboubi INRIA Microsoft Research Joint Centre (France) INRIA Saclay Île-de-France École Polytechnique, Palaiseau

More information

Lecture 5 : Proofs DRAFT

Lecture 5 : Proofs DRAFT CS/Math 240: Introduction to Discrete Mathematics 2/3/2011 Lecture 5 : Proofs Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Up until now, we have been introducing mathematical notation

More information

Relational Models and Program Logics: Logical Relations in Iris

Relational Models and Program Logics: Logical Relations in Iris 1 Relational Models and Program Logics: Logical Relations in Iris Lars Birkedal Aaarhus University Joint work with Amin Timany and Robbert Krebbers October 2017, Shonan, Japan 2 Relational Models and Program

More information

LING 501, Fall 2004: Quantification

LING 501, Fall 2004: Quantification LING 501, Fall 2004: Quantification The universal quantifier Ax is conjunctive and the existential quantifier Ex is disjunctive Suppose the domain of quantification (DQ) is {a, b}. Then: (1) Ax Px Pa &

More information

(Inv) Computing Invariant Factors Math 683L (Summer 2003)

(Inv) Computing Invariant Factors Math 683L (Summer 2003) (Inv) Computing Invariant Factors Math 683L (Summer 23) We have two big results (stated in (Can2) and (Can3)) concerning the behaviour of a single linear transformation T of a vector space V In particular,

More information

Special Topics on Applied Mathematical Logic

Special Topics on Applied Mathematical Logic Special Topics on Applied Mathematical Logic Spring 2012 Lecture 04 Jie-Hong Roland Jiang National Taiwan University March 20, 2012 Outline First-Order Logic Truth and Models (Semantics) Logical Implication

More information

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Catie Baker Spring 2015

CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis. Catie Baker Spring 2015 CSE373: Data Structures and Algorithms Lecture 3: Math Review; Algorithm Analysis Catie Baker Spring 2015 Today Registration should be done. Homework 1 due 11:59pm next Wednesday, April 8 th. Review math

More information

a. ~p : if p is T, then ~p is F, and vice versa

a. ~p : if p is T, then ~p is F, and vice versa Lecture 10: Propositional Logic II Philosophy 130 3 & 8 November 2016 O Rourke & Gibson I. Administrative A. Group papers back to you on November 3. B. Questions? II. The Meaning of the Conditional III.

More information

CS522 - Programming Language Semantics

CS522 - Programming Language Semantics 1 CS522 - Programming Language Semantics Simply Typed Lambda Calculus Grigore Roşu Department of Computer Science University of Illinois at Urbana-Champaign 2 We now discuss a non-trivial extension of

More information

Program Verification using Separation Logic Lecture 0 : Course Introduction and Assertion Language. Hongseok Yang (Queen Mary, Univ.

Program Verification using Separation Logic Lecture 0 : Course Introduction and Assertion Language. Hongseok Yang (Queen Mary, Univ. Program Verification using Separation Logic Lecture 0 : Course Introduction and Assertion Language Hongseok Yang (Queen Mary, Univ. of London) Dream Automatically verify the memory safety of systems software,

More information

LING/C SC/PSYC 438/538. Lecture 17 Sandiway Fong

LING/C SC/PSYC 438/538. Lecture 17 Sandiway Fong LING/C SC/PSYC 438/538 Lecture 7 Sandiway Fong Today's Topic Review of ungraded homework Closure properties of FSA Practice! Homework out on Thursday From last time Ungraded Homework 6 apply the set-of-states

More information

Induction and Recursion

Induction and Recursion Induction and Recursion Prof. Clarkson Fall 2016 Today s music: Dream within a Dream from the soundtrack to Inception by Hans Zimmer Review Previously in 3110: Behavioral equivalence Proofs of correctness

More information

Individuals and Relations

Individuals and Relations Individuals and Relations It is useful to view the world as consisting of individuals (objects, things) and relations among individuals. Often features are made from relations among individuals and functions

More information

0.1 Random useful facts. 0.2 Language Definition

0.1 Random useful facts. 0.2 Language Definition 0.1 Random useful facts Lemma double neg : P : Prop, {P} + { P} P P. Lemma leq dec : n m, {n m} + {n > m}. Lemma lt dec : n m, {n < m} + {n m}. 0.2 Language Definition Definition var := nat. Definition

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP Recap: Logic, Sets, Relations, Functions

Finite Automata Theory and Formal Languages TMV027/DIT321 LP Recap: Logic, Sets, Relations, Functions Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2017 Formal proofs; Simple/strong induction; Mutual induction; Inductively defined sets; Recursively defined functions. Lecture 3 Ana Bove

More information

20.1 2SAT. CS125 Lecture 20 Fall 2016

20.1 2SAT. CS125 Lecture 20 Fall 2016 CS125 Lecture 20 Fall 2016 20.1 2SAT We show yet another possible way to solve the 2SAT problem. Recall that the input to 2SAT is a logical expression that is the conunction (AND) of a set of clauses,

More information

ITI Introduction to Computing II

ITI Introduction to Computing II (with contributions from R. Holte) School of Electrical Engineering and Computer Science University of Ottawa Version of January 11, 2015 Please don t print these lecture notes unless you really need to!

More information

20D - Homework Assignment 4

20D - Homework Assignment 4 Brian Bowers (TA for Hui Sun) MATH 0D Homework Assignment November, 03 0D - Homework Assignment First, I will give a brief overview of how to use variation of parameters. () Ensure that the differential

More information

E.g. The set RE of regular expressions is given by the following rules:

E.g. The set RE of regular expressions is given by the following rules: 1 Lecture Summary We gave a brief overview of inductively defined sets, inductively defined functions, and proofs by structural induction We showed how to prove that a machine is correct using induction

More information

Warm-Up Problem. Let be a Predicate logic formula and a term. Using the fact that. (which can be proven by structural induction) show that 1/26

Warm-Up Problem. Let be a Predicate logic formula and a term. Using the fact that. (which can be proven by structural induction) show that 1/26 Warm-Up Problem Let be a Predicate logic formula and a term Using the fact that I I I (which can be proven by structural induction) show that 1/26 Predicate Logic: Natural Deduction Carmen Bruni Lecture

More information

Introduction to Axiomatic Semantics

Introduction to Axiomatic Semantics Introduction to Axiomatic Semantics Meeting 9, CSCI 5535, Spring 2009 Announcements Homework 3 is out, due Mon Feb 16 No domain theory! Homework 1 is graded Feedback attached 14.2 (mean), 13 (median),

More information

Turing machines and linear bounded automata

Turing machines and linear bounded automata and linear bounded automata Informatics 2A: Lecture 30 John Longley School of Informatics University of Edinburgh jrl@inf.ed.ac.uk 25 November 2016 1 / 17 The Chomsky hierarchy: summary Level Language

More information

Inf2D 06: Logical Agents: Knowledge Bases and the Wumpus World

Inf2D 06: Logical Agents: Knowledge Bases and the Wumpus World Inf2D 06: Logical Agents: Knowledge Bases and the Wumpus World School of Informatics, University of Edinburgh 26/01/18 Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann Outline Knowledge-based

More information

G54FOP: Lecture 17 & 18 Denotational Semantics and Domain Theory III & IV

G54FOP: Lecture 17 & 18 Denotational Semantics and Domain Theory III & IV G54FOP: Lecture 17 & 18 Denotational Semantics and Domain Theory III & IV Henrik Nilsson University of Nottingham, UK G54FOP: Lecture 17 & 18 p.1/33 These Two Lectures Revisit attempt to define denotational

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Jeremy Siek Spring 2010 Jeremy Siek Discrete Mathematics 1 / 20 Outline of Lecture 4 1. Overview of First-Order Logic 2. Beyond Booleans: natural numbers, integers, etc. 3. Universal

More information

6.001 Recitation 22: Streams

6.001 Recitation 22: Streams 6.001 Recitation 22: Streams RI: Gerald Dalley, dalleyg@mit.edu, 4 May 2007 http://people.csail.mit.edu/dalleyg/6.001/sp2007/ The three chief virtues of a programmer are: Laziness, Impatience and Hubris

More information

Operational Semantics

Operational Semantics Operational Semantics Semantics and applications to verification Xavier Rival École Normale Supérieure Xavier Rival Operational Semantics 1 / 50 Program of this first lecture Operational semantics Mathematical

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automata Theory and Formal Languages TMV27/DIT32 LP4 28 Lecture 5 Ana Bove March 26th 28 Recap: Inductive sets, (terminating) recursive functions, structural induction To define an inductive set

More information

Types and Programming Languages (15-814), Fall 2018 Assignment 4: Data Representation (Sample Solutions)

Types and Programming Languages (15-814), Fall 2018 Assignment 4: Data Representation (Sample Solutions) Types and Programming Languages (15-814), Fall 2018 Assignment 4: Data Representation (Sample Solutions) Contact: 15-814 Course Staff Due Tuesday, October 16, 2018, 10:30am This assignment is due by 10:30am

More information

The Importance of Being Formal. Martin Henz. February 5, Propositional Logic

The Importance of Being Formal. Martin Henz. February 5, Propositional Logic The Importance of Being Formal Martin Henz February 5, 2014 Propositional Logic 1 Motivation In traditional logic, terms represent sets, and therefore, propositions are limited to stating facts on sets

More information

Introduction to Formal Proof. 5: Theories

Introduction to Formal Proof. 5: Theories Introduction to Formal Proof Bernard Sufrin Trinity Term 2018 5: Theories [05-theories] Theories Theories The subject matter of predicate logic is all models (over all signatures) Mathematical logicians

More information

A Relational Model of Types-and-Effects in Higher-Order Concurrent Separation Logic

A Relational Model of Types-and-Effects in Higher-Order Concurrent Separation Logic A Relational Model of Types-and-Effects in Higher-Order Concurrent Separation Logic Morten Krogh-Jespersen Aarhus University, Denmark mkj@cs.au.dk Kasper Svendsen University of Cambridge, UK ks775@cl.cam.ac.uk

More information

Relational Parametricity and Separation Logic. Hongseok Yang, Queen Mary, Univ. of London Lars Birkedal, IT Univ. of Copenhagen

Relational Parametricity and Separation Logic. Hongseok Yang, Queen Mary, Univ. of London Lars Birkedal, IT Univ. of Copenhagen Relational Parametricity and Separation Logic Hongseok Yang, Queen Mary, Univ. of London Lars Birkedal, IT Univ. of Copenhagen Challenge Develop a theory of data abstraction for pointer programs. When

More information

Realizability Semantics of Parametric Polymorphism, General References, and Recursive Types

Realizability Semantics of Parametric Polymorphism, General References, and Recursive Types Realizability Semantics of Parametric Polymorphism, General References, and Recursive Types Lars Birkedal IT University of Copenhagen Joint work with Kristian Støvring and Jacob Thamsborg Oct, 2008 Lars

More information

CS156: The Calculus of Computation Zohar Manna Autumn 2008

CS156: The Calculus of Computation Zohar Manna Autumn 2008 Page 3 of 52 Page 4 of 52 CS156: The Calculus of Computation Zohar Manna Autumn 2008 Lecturer: Zohar Manna (manna@cs.stanford.edu) Office Hours: MW 12:30-1:00 at Gates 481 TAs: Boyu Wang (wangboyu@stanford.edu)

More information

First-order logic Syntax and semantics

First-order logic Syntax and semantics 1 / 43 First-order logic Syntax and semantics Mario Alviano University of Calabria, Italy A.Y. 2017/2018 Outline 2 / 43 1 Motivation Why more than propositional logic? Intuition 2 Syntax Terms Formulas

More information

Spring 2016 Program Analysis and Verification. Lecture 3: Axiomatic Semantics I. Roman Manevich Ben-Gurion University

Spring 2016 Program Analysis and Verification. Lecture 3: Axiomatic Semantics I. Roman Manevich Ben-Gurion University Spring 2016 Program Analysis and Verification Lecture 3: Axiomatic Semantics I Roman Manevich Ben-Gurion University Warm-up exercises 1. Define program state: 2. Define structural semantics configurations:

More information

Logic I - Session 22. Meta-theory for predicate logic

Logic I - Session 22. Meta-theory for predicate logic Logic I - Session 22 Meta-theory for predicate logic 1 The course so far Syntax and semantics of SL English / SL translations TT tests for semantic properties of SL sentences Derivations in SD Meta-theory:

More information

System F. Proofs and Types. Bow-Yaw Wang. Academia Sinica. Spring 2012

System F. Proofs and Types. Bow-Yaw Wang. Academia Sinica. Spring 2012 Proofs and Types System F Bow-Yaw Wang Academia Sinica Spring 2012 The Calculus Types in System F are defined as follows. type variables: X, Y,.... if U and V are types, then U V is a type. if V is a type

More information

Chapter 3: Propositional Calculus: Deductive Systems. September 19, 2008

Chapter 3: Propositional Calculus: Deductive Systems. September 19, 2008 Chapter 3: Propositional Calculus: Deductive Systems September 19, 2008 Outline 1 3.1 Deductive (Proof) System 2 3.2 Gentzen System G 3 3.3 Hilbert System H 4 3.4 Soundness and Completeness; Consistency

More information

Hoare Logic for Realistically Modelled Machine Code

Hoare Logic for Realistically Modelled Machine Code Hoare Logic for Realistically Modelled Machine Code Magnus O. Myreen, Michael J. C. Gordon TACAS, March 2007 This talk Contribution: A mechanised Hoare logic for machine code with emphasis on resource

More information

Programming with Dependent Types in Coq

Programming with Dependent Types in Coq Programming with Dependent Types in Coq Matthieu Sozeau LRI, Univ. Paris-Sud - Démons Team & INRIA Saclay - ProVal Project PPS Seminar February 26th 2009 Paris, France Coq A higher-order, polymorphic logic:

More information

Quick Sort Notes , Spring 2010

Quick Sort Notes , Spring 2010 Quick Sort Notes 18.310, Spring 2010 0.1 Randomized Median Finding In a previous lecture, we discussed the problem of finding the median of a list of m elements, or more generally the element of rank m.

More information

COMP219: Artificial Intelligence. Lecture 19: Logic for KR

COMP219: Artificial Intelligence. Lecture 19: Logic for KR COMP219: Artificial Intelligence Lecture 19: Logic for KR 1 Overview Last time Expert Systems and Ontologies Today Logic as a knowledge representation scheme Propositional Logic Syntax Semantics Proof

More information

Nested Hoare Triples and Frame Rules for Higher-order Store

Nested Hoare Triples and Frame Rules for Higher-order Store Nested Hoare Triples and Frame Rules for Higher-order Store Jan Schwinghammer 1, Lars Birkedal 2, Bernhard Reus 3, and Hongseok Yang 4 1 Saarland University, Saarbrücken 2 IT University of Copenhagen 3

More information

Lecture Notes on Programs with Arrays

Lecture Notes on Programs with Arrays 15-414: Bug Catching: Automated Program Verification Lecture Notes on Programs with Arrays Matt Fredrikson Ruben Martins Carnegie Mellon University Lecture 6 1 Introduction The previous lecture focused

More information

STEP Support Programme. Pure STEP 1 Questions

STEP Support Programme. Pure STEP 1 Questions STEP Support Programme Pure STEP 1 Questions 2012 S1 Q4 1 Preparation Find the equation of the tangent to the curve y = x at the point where x = 4. Recall that x means the positive square root. Solve the

More information

Nonmonotone Inductive Definitions

Nonmonotone Inductive Definitions Nonmonotone Inductive Definitions Shane Steinert-Threlkeld March 15, 2012 Brief Review of Inductive Definitions Inductive Definitions as Sets of Clauses Definition A set B of clauses (of the form A b)

More information

Simply Typed Lambda-Calculi (II)

Simply Typed Lambda-Calculi (II) THEORY AND PRACTICE OF FUNCTIONAL PROGRAMMING Simply Typed Lambda-Calculi (II) Dr. ZHANG Yu Institute of Software, Chinese Academy of Sciences Fall term, 2011 GUCAS, Beijing Introduction PCF Programming

More information

Computer Algorithms CISC4080 CIS, Fordham Univ. Outline. Last class. Instructor: X. Zhang Lecture 2

Computer Algorithms CISC4080 CIS, Fordham Univ. Outline. Last class. Instructor: X. Zhang Lecture 2 Computer Algorithms CISC4080 CIS, Fordham Univ. Instructor: X. Zhang Lecture 2 Outline Introduction to algorithm analysis: fibonacci seq calculation counting number of computer steps recursive formula

More information

Computer Algorithms CISC4080 CIS, Fordham Univ. Instructor: X. Zhang Lecture 2

Computer Algorithms CISC4080 CIS, Fordham Univ. Instructor: X. Zhang Lecture 2 Computer Algorithms CISC4080 CIS, Fordham Univ. Instructor: X. Zhang Lecture 2 Outline Introduction to algorithm analysis: fibonacci seq calculation counting number of computer steps recursive formula

More information