Tensors and graphical models

Size: px
Start display at page:

Download "Tensors and graphical models"

Transcription

1 Tensors and graphical models Mariya Ishteva with Haesun Park, Le Song Dept. ELEC, VUB Georgia Tech, USA INMA Seminar, May 7, 2013, LLN

2 Outline Tensors Random variables and graphical models Tractable representations Structure learning

3 3 Tensors R M N P

4 Ranks Multilinear rank (R 1, R 2, R 3 ) Rank-R Rank-1 tensor: R = min(r), s.t. A = r {rank-1 tensor} i i=1

5 5 Matrix representations of tensors Mode-1 A = A (1) = Mode-2 Mode-3 Multilinear rank: (rank(a (1) ), rank(a (2) ), rank(a (3) ))

6 6 Tensor-matrix multiplication Tensor-matrix product Contraction A R I J M B R K L M M C = A, B 3 C(i, j, k, l) = a ijm b klm m=1 4 th order tensor C R I J K L

7 Basic decompositions Singular value decomposition (SVD) MLSVD / HOSVD CP / CANDECOMP / PARAFAC

8 8 Outline Tensors Random variables and graphical models Tractable representations Structure learning

9 9 Discrete random variables Random variable X; 1,..., n P x (1),..., P x (n) P x R n, R n +, [0, 1] X 1, X 2 ; P(X 1, X 2 ) 1 n 1 P 12 (1, 1) P 12 (1, n). n P 12 (n, 1) P 12 (n, n) P 12 R n n P(x 1, x 2 ) := P(X 1 = x 1, X 2 = x 2 )

10 10 2 random variables X 1, X 2 ; P(X 1, X 2 ) P 12 R n n X 1 X 2 P(x 1, x 2 ) = P(x 1 )P(x 2 ) rank-1 matrix = H X 1 X 2 P(x 1, x 2 ) = h P(x 1 h)p(x 2 h)p(h) low-rank matrix rank-k matrix, k < n = Conditional probability tables (CPTs) P(X 1 H), P(X 2 H)

11 3 random variables X 1, X 2, X 3 ; P(X 1, X 2, X 3 ) P 123 R n n n X 1, X 2, X 3 independent P(x 1, x 2, x 3 ) = P(x 1 )P(x 2 )P(x 3 ) rank-1 tensor = rank-k tensor, k < n H X 1 X 2 X 3 = = P(x 1, x 2, x 3 ) = h P(x 1 h)p(x 2 h)p(x 3 h)p(h)

12 4 random variables X 1, X 2, X 3, X 4 ; P(X 1, X 2, X 3, X 4 ) P 1234 R n n n n X 1, X 2, X 3, X 4 independent H X 1 X 2 X 3 X 4 P(x 1, x 2, x 3, x 4 ) = h P(x 1 h)p(x 2 h)p(x 3 h)p(x 4 h)p(h) more variables more hidden variables

13 13 Challenges 10 variables, 10 states each entries We need tractable representations Latent variable models / low-rank factors # parameters: exponential polynomial H X 1 X 1 X X 1 X 1 X 1 Challenges: Choose a good representation Learn the correct structure Estimate the parameters

14 Outline Tensors Random variables and graphical models Tractable representations Structure learning

15 15 Tensors and graphical models CP / CANDECOMP / PARAFAC H X 1 X 2 Xn Tensor train H 1 H 2 H 3 Hn X 1 X 2 X 3 Xn HMM Hierarchical Tucker H X 1 X 1 X X 1 X 1 X 1 Latent tree model Tucker / MLSVD Block term decomposition

16 16 Tensor train (TT) decomposition A(i 1,...,i d )= α 0,...,α d G 1 (α 0, i 1,α 1 )G 2 (α 1, i 2,α 2 )...G d (α d 1, i d,α d ) [I. V. Oseledets, SIAM J. Scientific Computing, 2011] Avoids curse of dimensionality Small number of parameters, compared to Tucker model Slightly more parameters than CP but more stable G k (α k 1, n k,α k ) has dimensions r k 1 n k r k, r 0 = r d = 1 r k are called compression ranks: A k = A k (i 1,...,i k ; i k+1,...,i d ), rank(a k ) = r k Computation based on SVD Computation: top bottom H 1 H 2 H 3 Hn X 1 X 2 X 3 Xn

17 Hierarchical Tucker decomposition [L. Grasedyck, SIMAX, 2010] Similar properties as TT decomposition Computation: bottom top H X 1 X 1 X X 1 X 1 X 1

18 18 Potential advantages of tensor approach Real data are often multi-way Provides higher-level view Flexibility: different ranks in each mode: Tucker Uniqueness: CP, Block term decomposition No curse of dimensionality: Tensor train, hierarch. Tucker

19 19 Outline Tensors Random variables and graphical models Tractable representations Structure learning

20 20 Structure learning Given: (samples of) observed variables Assumption: the variables can be connected via hidden variables in a tree structure in a meaningful way Find: the tree / the relationships between the variables Additional difficulty: unknown number of hidden states? H H H X X X X X 3 X 5 X 2 X 1 X X 1 X 1 X 1 X 1 X 1

21 Quartet relationships: topologies X 1 X 3 X 1 X 2 X 1 X 2 H G H G H G X 2 X 4 X 3 X 4 X 4 X 3 P(x 1, x 2, x 3, x 4 ) = h,g P(x 1 h)p(x 2 h)p(h, g)p(x 3 g)p(x 4 g)

22 Building trees based on quartet relationships Choose 3 variables and form a tree Add all other variables, one by one Split the current tree into 3 subtrees Choose 3 variables from different subtrees Resolve the quartet relation with current and chosen variables Insert the current variable in a subtree or connect to the tree [For simplicity, assume each latent variable has 3 neighbors]

23 23 Tensor view of quartets X 1 X 3 H G X 2 X 4 P 1 H P 4 G P(X 1,X 2,X 3,X 4 ) = P 2 H IH PHG IG P 3 G A = reshape(p, n 2, n 2 ); B = reshape(permute(p,[1, 3, 2, 4]), n 2, n 2 ); C = reshape(permute(p,[1, 4, 2, 3]), n 2, n 2 ). Notation: P 1 H, P 2 H, etc. stand for P(X 1 H), P(X 2 H), etc.

24 Rank properties of matrix representations A = B = P 2 H P 1 H P HG P 4 G P 3 G ( ( ( P 3 G P 1 H diag(p HG (:)) P 4 G P 2 H ( ( ( rank(a) = rank(p HG ) = k rank(b) = rank(c) = nnz(p HG ) rank(a) rank(b) = rank(c) Sampling noise ( ( Nuclear norm relaxation A = n 2 i=1 σ i(a)

25 25 Resolving quartet relations Algorithm 1 i = Quartet(X 1, X 2, X 3, X 4 ) 1: Estimate P(X 1, X 2, X 3, X 4 ) from a set of m i.i.d. samples. 2: Unfold P into matrices Â, B and Ĉ, and compute a 1 = Â, a 2 = B and a 3 = Ĉ. 3: Return i = arg min i {1,2,3} a i. Easy to compute Recovery conditions Finite sample guarantees Agnostic to the number of hidden states Compares favorably to alternatives

26 26 Example: stock data Given: stock prices (25 years, discretized into 10 values) Find: relations between stocks Finance: C (Citigroup) JPM (JPMorgan Chase) AXP (American Express) F (Ford Motor: Automotive and Financial Services) Retailers: TGT (Target) WMT (WalMart) RSH (RadioShack)

27 Conclusions Tensor decompositions are related to graphical models A common goal: tractable representations Tensors can be used for structure learning

28 28 Thank you!

Tensor data analysis Part 2

Tensor data analysis Part 2 Tensor data analysis Part 2 Mariya Ishteva Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Outline Last Dme:! MoDvaDon! Basic concepts! Basic tensor decomposidons Today:! Other useful decomposidons!

More information

Unfolding Latent Tree Structures using 4th Order Tensors

Unfolding Latent Tree Structures using 4th Order Tensors Mariya Ishteva mariya.ishteva@vub.ac.be ELEC, Vrije Universiteit Brussel, 10 Brussels, Belgium Haesun Park, Le Song {hpark,lsong}@cc.gatech.edu College of Computing, Georgia Institute of Technology, Atlanta,

More information

arxiv: v1 [cs.lg] 3 Oct 2012

arxiv: v1 [cs.lg] 3 Oct 2012 Unfolding Latent Tree Structures using 4th Order Tensors Mariya Ishteva, Haesun Park, Le Song College of Computing, Georgia Institute of Technology {mishteva,hpark,lsong}@cc.gatech.edu arxiv:1210.1258v1

More information

Unfolding Latent Tree Structures using 4th Order Tensors

Unfolding Latent Tree Structures using 4th Order Tensors Mariya Ishteva mariya.ishteva@vub.ac.be ELEC, Vrije Universiteit Brussel, 1050 Brussels, Belgium Haesun Park, Le Song {hpark,lsong}@cc.gatech.edu College of Computing, Georgia Institute of Technology,

More information

Hierarchical Tensor Decomposition of Latent Tree Graphical Models

Hierarchical Tensor Decomposition of Latent Tree Graphical Models Le Song, Haesun Park {lsong,hpark}@cc.gatech.edu College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA Mariya Ishteva mariya.ishteva@vub.ac.be ELEC, Vrije Universiteit Brussel,

More information

TENSOR APPROXIMATION TOOLS FREE OF THE CURSE OF DIMENSIONALITY

TENSOR APPROXIMATION TOOLS FREE OF THE CURSE OF DIMENSIONALITY TENSOR APPROXIMATION TOOLS FREE OF THE CURSE OF DIMENSIONALITY Eugene Tyrtyshnikov Institute of Numerical Mathematics Russian Academy of Sciences (joint work with Ivan Oseledets) WHAT ARE TENSORS? Tensors

More information

Introduction to the Tensor Train Decomposition and Its Applications in Machine Learning

Introduction to the Tensor Train Decomposition and Its Applications in Machine Learning Introduction to the Tensor Train Decomposition and Its Applications in Machine Learning Anton Rodomanov Higher School of Economics, Russia Bayesian methods research group (http://bayesgroup.ru) 14 March

More information

Matrix-Product-States/ Tensor-Trains

Matrix-Product-States/ Tensor-Trains / Tensor-Trains November 22, 2016 / Tensor-Trains 1 Matrices What Can We Do With Matrices? Tensors What Can We Do With Tensors? Diagrammatic Notation 2 Singular-Value-Decomposition 3 Curse of Dimensionality

More information

26 : Spectral GMs. Lecturer: Eric P. Xing Scribes: Guillermo A Cidre, Abelino Jimenez G.

26 : Spectral GMs. Lecturer: Eric P. Xing Scribes: Guillermo A Cidre, Abelino Jimenez G. 10-708: Probabilistic Graphical Models, Spring 2015 26 : Spectral GMs Lecturer: Eric P. Xing Scribes: Guillermo A Cidre, Abelino Jimenez G. 1 Introduction A common task in machine learning is to work with

More information

A new truncation strategy for the higher-order singular value decomposition

A new truncation strategy for the higher-order singular value decomposition A new truncation strategy for the higher-order singular value decomposition Nick Vannieuwenhoven K.U.Leuven, Belgium Workshop on Matrix Equations and Tensor Techniques RWTH Aachen, Germany November 21,

More information

An Introduction to Hierachical (H ) Rank and TT Rank of Tensors with Examples

An Introduction to Hierachical (H ) Rank and TT Rank of Tensors with Examples An Introduction to Hierachical (H ) Rank and TT Rank of Tensors with Examples Lars Grasedyck and Wolfgang Hackbusch Bericht Nr. 329 August 2011 Key words: MSC: hierarchical Tucker tensor rank tensor approximation

More information

Math 671: Tensor Train decomposition methods

Math 671: Tensor Train decomposition methods Math 671: Eduardo Corona 1 1 University of Michigan at Ann Arbor December 8, 2016 Table of Contents 1 Preliminaries and goal 2 Unfolding matrices for tensorized arrays The Tensor Train decomposition 3

More information

Lecture 4. CP and KSVD Representations. Charles F. Van Loan

Lecture 4. CP and KSVD Representations. Charles F. Van Loan Structured Matrix Computations from Structured Tensors Lecture 4. CP and KSVD Representations Charles F. Van Loan Cornell University CIME-EMS Summer School June 22-26, 2015 Cetraro, Italy Structured Matrix

More information

Tensor networks, TT (Matrix Product States) and Hierarchical Tucker decomposition

Tensor networks, TT (Matrix Product States) and Hierarchical Tucker decomposition Tensor networks, TT (Matrix Product States) and Hierarchical Tucker decomposition R. Schneider (TUB Matheon) John von Neumann Lecture TU Munich, 2012 Setting - Tensors V ν := R n, H d = H := d ν=1 V ν

More information

Lecture 4. Tensor-Related Singular Value Decompositions. Charles F. Van Loan

Lecture 4. Tensor-Related Singular Value Decompositions. Charles F. Van Loan From Matrix to Tensor: The Transition to Numerical Multilinear Algebra Lecture 4. Tensor-Related Singular Value Decompositions Charles F. Van Loan Cornell University The Gene Golub SIAM Summer School 2010

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2018/19 Part 6: Some Other Stuff PD Dr.

More information

Robust Low Rank Kernel Embeddings of Multivariate Distributions

Robust Low Rank Kernel Embeddings of Multivariate Distributions Robust Low Rank Kernel Embeddings of Multivariate Distributions Le Song, Bo Dai College of Computing, Georgia Institute of Technology lsong@cc.gatech.edu, bodai@gatech.edu Abstract Kernel embedding of

More information

/16/$ IEEE 1728

/16/$ IEEE 1728 Extension of the Semi-Algebraic Framework for Approximate CP Decompositions via Simultaneous Matrix Diagonalization to the Efficient Calculation of Coupled CP Decompositions Kristina Naskovska and Martin

More information

TENSORS AND COMPUTATIONS

TENSORS AND COMPUTATIONS Institute of Numerical Mathematics of Russian Academy of Sciences eugene.tyrtyshnikov@gmail.com 11 September 2013 REPRESENTATION PROBLEM FOR MULTI-INDEX ARRAYS Going to consider an array a(i 1,..., i d

More information

From Matrix to Tensor. Charles F. Van Loan

From Matrix to Tensor. Charles F. Van Loan From Matrix to Tensor Charles F. Van Loan Department of Computer Science January 28, 2016 From Matrix to Tensor From Tensor To Matrix 1 / 68 What is a Tensor? Instead of just A(i, j) it s A(i, j, k) or

More information

Tensor networks and deep learning

Tensor networks and deep learning Tensor networks and deep learning I. Oseledets, A. Cichocki Skoltech, Moscow 26 July 2017 What is a tensor Tensor is d-dimensional array: A(i 1,, i d ) Why tensors Many objects in machine learning can

More information

On the convergence of higher-order orthogonality iteration and its extension

On the convergence of higher-order orthogonality iteration and its extension On the convergence of higher-order orthogonality iteration and its extension Yangyang Xu IMA, University of Minnesota SIAM Conference LA15, Atlanta October 27, 2015 Best low-multilinear-rank approximation

More information

Tensor Methods for Feature Learning

Tensor Methods for Feature Learning Tensor Methods for Feature Learning Anima Anandkumar U.C. Irvine Feature Learning For Efficient Classification Find good transformations of input for improved classification Figures used attributed to

More information

CVPR A New Tensor Algebra - Tutorial. July 26, 2017

CVPR A New Tensor Algebra - Tutorial. July 26, 2017 CVPR 2017 A New Tensor Algebra - Tutorial Lior Horesh lhoresh@us.ibm.com Misha Kilmer misha.kilmer@tufts.edu July 26, 2017 Outline Motivation Background and notation New t-product and associated algebraic

More information

Lecture 02 Linear Algebra Basics

Lecture 02 Linear Algebra Basics Introduction to Computational Data Analysis CX4240, 2019 Spring Lecture 02 Linear Algebra Basics Chao Zhang College of Computing Georgia Tech These slides are based on slides from Le Song and Andres Mendez-Vazquez.

More information

Math 671: Tensor Train decomposition methods II

Math 671: Tensor Train decomposition methods II Math 671: Tensor Train decomposition methods II Eduardo Corona 1 1 University of Michigan at Ann Arbor December 13, 2016 Table of Contents 1 What we ve talked about so far: 2 The Tensor Train decomposition

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 432 (2010) 70 88 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa TT-cross approximation for

More information

MATRIX COMPLETION AND TENSOR RANK

MATRIX COMPLETION AND TENSOR RANK MATRIX COMPLETION AND TENSOR RANK HARM DERKSEN Abstract. In this paper, we show that the low rank matrix completion problem can be reduced to the problem of finding the rank of a certain tensor. arxiv:1302.2639v2

More information

NUMERICAL METHODS WITH TENSOR REPRESENTATIONS OF DATA

NUMERICAL METHODS WITH TENSOR REPRESENTATIONS OF DATA NUMERICAL METHODS WITH TENSOR REPRESENTATIONS OF DATA Institute of Numerical Mathematics of Russian Academy of Sciences eugene.tyrtyshnikov@gmail.com 2 June 2012 COLLABORATION MOSCOW: I.Oseledets, D.Savostyanov

More information

The multiple-vector tensor-vector product

The multiple-vector tensor-vector product I TD MTVP C KU Leuven August 29, 2013 In collaboration with: N Vanbaelen, K Meerbergen, and R Vandebril Overview I TD MTVP C 1 Introduction Inspiring example Notation 2 Tensor decompositions The CP decomposition

More information

Dictionary Learning Using Tensor Methods

Dictionary Learning Using Tensor Methods Dictionary Learning Using Tensor Methods Anima Anandkumar U.C. Irvine Joint work with Rong Ge, Majid Janzamin and Furong Huang. Feature learning as cornerstone of ML ML Practice Feature learning as cornerstone

More information

This work has been submitted to ChesterRep the University of Chester s online research repository.

This work has been submitted to ChesterRep the University of Chester s online research repository. This work has been submitted to ChesterRep the University of Chester s online research repository http://chesterrep.openrepository.com Author(s): Daniel Tock Title: Tensor decomposition and its applications

More information

Numerical tensor methods and their applications

Numerical tensor methods and their applications Numerical tensor methods and their applications 14 May 2013 All lectures 4 lectures, 2 May, 08:00-10:00: Introduction: ideas, matrix results, history. 7 May, 08:00-10:00: Novel tensor formats (TT, HT,

More information

Fundamentals of Multilinear Subspace Learning

Fundamentals of Multilinear Subspace Learning Chapter 3 Fundamentals of Multilinear Subspace Learning The previous chapter covered background materials on linear subspace learning. From this chapter on, we shall proceed to multiple dimensions with

More information

CSC 576: Variants of Sparse Learning

CSC 576: Variants of Sparse Learning CSC 576: Variants of Sparse Learning Ji Liu Department of Computer Science, University of Rochester October 27, 205 Introduction Our previous note basically suggests using l norm to enforce sparsity in

More information

Structured tensor missing-trace interpolation in the Hierarchical Tucker format Curt Da Silva and Felix J. Herrmann Sept. 26, 2013

Structured tensor missing-trace interpolation in the Hierarchical Tucker format Curt Da Silva and Felix J. Herrmann Sept. 26, 2013 Structured tensor missing-trace interpolation in the Hierarchical Tucker format Curt Da Silva and Felix J. Herrmann Sept. 6, 13 SLIM University of British Columbia Motivation 3D seismic experiments - 5D

More information

Dynamical low-rank approximation

Dynamical low-rank approximation Dynamical low-rank approximation Christian Lubich Univ. Tübingen Genève, Swiss Numerical Analysis Day, 17 April 2015 Coauthors Othmar Koch 2007, 2010 Achim Nonnenmacher 2008 Dajana Conte 2010 Thorsten

More information

Lecture 1: Introduction to low-rank tensor representation/approximation. Center for Uncertainty Quantification. Alexander Litvinenko

Lecture 1: Introduction to low-rank tensor representation/approximation. Center for Uncertainty Quantification. Alexander Litvinenko tifica Lecture 1: Introduction to low-rank tensor representation/approximation Alexander Litvinenko http://sri-uq.kaust.edu.sa/ KAUST Figure : KAUST campus, 5 years old, approx. 7000 people (include 1400

More information

Dealing with curse and blessing of dimensionality through tensor decompositions

Dealing with curse and blessing of dimensionality through tensor decompositions Dealing with curse and blessing of dimensionality through tensor decompositions Lieven De Lathauwer Joint work with Nico Vervliet, Martijn Boussé and Otto Debals June 26, 2017 2 Overview Curse of dimensionality

More information

NEW TENSOR DECOMPOSITIONS IN NUMERICAL ANALYSIS AND DATA PROCESSING

NEW TENSOR DECOMPOSITIONS IN NUMERICAL ANALYSIS AND DATA PROCESSING NEW TENSOR DECOMPOSITIONS IN NUMERICAL ANALYSIS AND DATA PROCESSING Institute of Numerical Mathematics of Russian Academy of Sciences eugene.tyrtyshnikov@gmail.com 11 October 2012 COLLABORATION MOSCOW:

More information

Low-rank tensor discretization for high-dimensional problems

Low-rank tensor discretization for high-dimensional problems Low-rank tensor discretization for high-dimensional problems Katharina Kormann August 6, 2017 1 Introduction Problems of high-dimensionality appear in many areas of science. High-dimensionality is usually

More information

Low-rank Promoting Transformations and Tensor Interpolation - Applications to Seismic Data Denoising

Low-rank Promoting Transformations and Tensor Interpolation - Applications to Seismic Data Denoising Low-rank Promoting Transformations and Tensor Interpolation - Applications to Seismic Data Denoising Curt Da Silva and Felix J. Herrmann 2 Dept. of Mathematics 2 Dept. of Earth and Ocean Sciences, University

More information

Novel methods for multilinear data completion and de-noising based on tensor-svd

Novel methods for multilinear data completion and de-noising based on tensor-svd Novel methods for multilinear data completion and de-noising based on tensor-svd Zemin Zhang, Gregory Ely, Shuchin Aeron Department of ECE, Tufts University Medford, MA 02155 zemin.zhang@tufts.com gregoryely@gmail.com

More information

Institute for Computational Mathematics Hong Kong Baptist University

Institute for Computational Mathematics Hong Kong Baptist University Institute for Computational Mathematics Hong Kong Baptist University ICM Research Report 09-11 TT-Cross approximation for multidimensional arrays Ivan Oseledets 1, Eugene Tyrtyshnikov 1, Institute of Numerical

More information

Lecture 21: Spectral Learning for Graphical Models

Lecture 21: Spectral Learning for Graphical Models 10-708: Probabilistic Graphical Models 10-708, Spring 2016 Lecture 21: Spectral Learning for Graphical Models Lecturer: Eric P. Xing Scribes: Maruan Al-Shedivat, Wei-Cheng Chang, Frederick Liu 1 Motivation

More information

Truncation Strategy of Tensor Compressive Sensing for Noisy Video Sequences

Truncation Strategy of Tensor Compressive Sensing for Noisy Video Sequences Journal of Information Hiding and Multimedia Signal Processing c 2016 ISSN 207-4212 Ubiquitous International Volume 7, Number 5, September 2016 Truncation Strategy of Tensor Compressive Sensing for Noisy

More information

arxiv: v2 [math.na] 13 Dec 2014

arxiv: v2 [math.na] 13 Dec 2014 Very Large-Scale Singular Value Decomposition Using Tensor Train Networks arxiv:1410.6895v2 [math.na] 13 Dec 2014 Namgil Lee a and Andrzej Cichocki a a Laboratory for Advanced Brain Signal Processing,

More information

A Multi-Affine Model for Tensor Decomposition

A Multi-Affine Model for Tensor Decomposition Yiqing Yang UW Madison breakds@cs.wisc.edu A Multi-Affine Model for Tensor Decomposition Hongrui Jiang UW Madison hongrui@engr.wisc.edu Li Zhang UW Madison lizhang@cs.wisc.edu Chris J. Murphy UC Davis

More information

Multiscale Tensor Decomposition

Multiscale Tensor Decomposition Multiscale Tensor Decomposition Alp Ozdemir 1, Mark A. Iwen 1,2 and Selin Aviyente 1 1 Department of Electrical and Computer Engineering, Michigan State University 2 Deparment of the Mathematics, Michigan

More information

Coprime Coarray Interpolation for DOA Estimation via Nuclear Norm Minimization

Coprime Coarray Interpolation for DOA Estimation via Nuclear Norm Minimization Coprime Coarray Interpolation for DOA Estimation via Nuclear Norm Minimization Chun-Lin Liu 1 P. P. Vaidyanathan 2 Piya Pal 3 1,2 Dept. of Electrical Engineering, MC 136-93 California Institute of Technology,

More information

Tensor Low-Rank Completion and Invariance of the Tucker Core

Tensor Low-Rank Completion and Invariance of the Tucker Core Tensor Low-Rank Completion and Invariance of the Tucker Core Shuzhong Zhang Department of Industrial & Systems Engineering University of Minnesota zhangs@umn.edu Joint work with Bo JIANG, Shiqian MA, and

More information

Kronecker Product Approximation with Multiple Factor Matrices via the Tensor Product Algorithm

Kronecker Product Approximation with Multiple Factor Matrices via the Tensor Product Algorithm Kronecker Product Approximation with Multiple actor Matrices via the Tensor Product Algorithm King Keung Wu, Yeung Yam, Helen Meng and Mehran Mesbahi Department of Mechanical and Automation Engineering,

More information

Sparse and Low-Rank Matrix Decompositions

Sparse and Low-Rank Matrix Decompositions Forty-Seventh Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 30 - October 2, 2009 Sparse and Low-Rank Matrix Decompositions Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Parrilo,

More information

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms Adrien Todeschini Inria Bordeaux JdS 2014, Rennes Aug. 2014 Joint work with François Caron (Univ. Oxford), Marie

More information

High-dimensional Statistics

High-dimensional Statistics High-dimensional Statistics Pradeep Ravikumar UT Austin Outline 1. High Dimensional Data : Large p, small n 2. Sparsity 3. Group Sparsity 4. Low Rank 1 Curse of Dimensionality Statistical Learning: Given

More information

Overview. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Overview. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Overview Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 1/25/2016 Sparsity Denoising Regression Inverse problems Low-rank models Matrix completion

More information

Statistical Performance of Convex Tensor Decomposition

Statistical Performance of Convex Tensor Decomposition Slides available: h-p://www.ibis.t.u tokyo.ac.jp/ryotat/tensor12kyoto.pdf Statistical Performance of Convex Tensor Decomposition Ryota Tomioka 2012/01/26 @ Kyoto University Perspectives in Informatics

More information

A Spectral Algorithm for Latent Junction Trees

A Spectral Algorithm for Latent Junction Trees A Algorithm for Latent Junction Trees Ankur P. Parikh Carnegie Mellon University apparikh@cs.cmu.edu Le Song Georgia Tech lsong@cc.gatech.edu Mariya Ishteva Georgia Tech mariya.ishteva@cc.gatech.edu Gabi

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 22 1 / 21 Overview

More information

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms François Caron Department of Statistics, Oxford STATLEARN 2014, Paris April 7, 2014 Joint work with Adrien Todeschini,

More information

Orthogonal tensor decomposition

Orthogonal tensor decomposition Orthogonal tensor decomposition Daniel Hsu Columbia University Largely based on 2012 arxiv report Tensor decompositions for learning latent variable models, with Anandkumar, Ge, Kakade, and Telgarsky.

More information

TENSOR LAYERS FOR COMPRESSION OF DEEP LEARNING NETWORKS. Cris Cecka Senior Research Scientist, NVIDIA GTC 2018

TENSOR LAYERS FOR COMPRESSION OF DEEP LEARNING NETWORKS. Cris Cecka Senior Research Scientist, NVIDIA GTC 2018 TENSOR LAYERS FOR COMPRESSION OF DEEP LEARNING NETWORKS Cris Cecka Senior Research Scientist, NVIDIA GTC 2018 Tensors Computations and the GPU AGENDA Tensor Networks and Decompositions Tensor Layers in

More information

Numerical tensor methods and their applications

Numerical tensor methods and their applications Numerical tensor methods and their applications 8 May 2013 All lectures 4 lectures, 2 May, 08:00-10:00: Introduction: ideas, matrix results, history. 7 May, 08:00-10:00: Novel tensor formats (TT, HT, QTT).

More information

Sparse factorization using low rank submatrices. Cleve Ashcraft LSTC 2010 MUMPS User Group Meeting April 15-16, 2010 Toulouse, FRANCE

Sparse factorization using low rank submatrices. Cleve Ashcraft LSTC 2010 MUMPS User Group Meeting April 15-16, 2010 Toulouse, FRANCE Sparse factorization using low rank submatrices Cleve Ashcraft LSTC cleve@lstc.com 21 MUMPS User Group Meeting April 15-16, 21 Toulouse, FRANCE ftp.lstc.com:outgoing/cleve/mumps1 Ashcraft.pdf 1 LSTC Livermore

More information

Rank Determination for Low-Rank Data Completion

Rank Determination for Low-Rank Data Completion Journal of Machine Learning Research 18 017) 1-9 Submitted 7/17; Revised 8/17; Published 9/17 Rank Determination for Low-Rank Data Completion Morteza Ashraphijuo Columbia University New York, NY 1007,

More information

Higher-Order Singular Value Decomposition (HOSVD) for structured tensors

Higher-Order Singular Value Decomposition (HOSVD) for structured tensors Higher-Order Singular Value Decomposition (HOSVD) for structured tensors Definition and applications Rémy Boyer Laboratoire des Signaux et Système (L2S) Université Paris-Sud XI GDR ISIS, January 16, 2012

More information

Book of Abstracts - Extract th Annual Meeting. March 23-27, 2015 Lecce, Italy. jahrestagung.gamm-ev.de

Book of Abstracts - Extract th Annual Meeting. March 23-27, 2015 Lecce, Italy. jahrestagung.gamm-ev.de GESELLSCHAFT für ANGEWANDTE MATHEMATIK und MECHANIK e.v. INTERNATIONAL ASSOCIATION of APPLIED MATHEMATICS and MECHANICS 86 th Annual Meeting of the International Association of Applied Mathematics and

More information

Estimating Covariance Using Factorial Hidden Markov Models

Estimating Covariance Using Factorial Hidden Markov Models Estimating Covariance Using Factorial Hidden Markov Models João Sedoc 1,2 with: Jordan Rodu 3, Lyle Ungar 1, Dean Foster 1 and Jean Gallier 1 1 University of Pennsylvania Philadelphia, PA joao@cis.upenn.edu

More information

Available Ph.D position in Big data processing using sparse tensor representations

Available Ph.D position in Big data processing using sparse tensor representations Available Ph.D position in Big data processing using sparse tensor representations Research area: advanced mathematical methods applied to big data processing. Keywords: compressed sensing, tensor models,

More information

Tensor-Based Dictionary Learning for Multidimensional Sparse Recovery. Florian Römer and Giovanni Del Galdo

Tensor-Based Dictionary Learning for Multidimensional Sparse Recovery. Florian Römer and Giovanni Del Galdo Tensor-Based Dictionary Learning for Multidimensional Sparse Recovery Florian Römer and Giovanni Del Galdo 2nd CoSeRa, Bonn, 17-19 Sept. 2013 Ilmenau University of Technology Institute for Information

More information

Adaptive low-rank approximation in hierarchical tensor format using least-squares method

Adaptive low-rank approximation in hierarchical tensor format using least-squares method Workshop on Challenges in HD Analysis and Computation, San Servolo 4/5/2016 Adaptive low-rank approximation in hierarchical tensor format using least-squares method Anthony Nouy Ecole Centrale Nantes,

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Applications of Hidden Markov Models

Applications of Hidden Markov Models 18.417 Introduction to Computational Molecular Biology Lecture 18: November 9, 2004 Scribe: Chris Peikert Lecturer: Ross Lippert Editor: Chris Peikert Applications of Hidden Markov Models Review of Notation

More information

Principal components analysis COMS 4771

Principal components analysis COMS 4771 Principal components analysis COMS 4771 1. Representation learning Useful representations of data Representation learning: Given: raw feature vectors x 1, x 2,..., x n R d. Goal: learn a useful feature

More information

Low Rank Tensor Recovery via Iterative Hard Thresholding

Low Rank Tensor Recovery via Iterative Hard Thresholding Low Rank Tensor Recovery via Iterative Hard Thresholding Holger Rauhut, Reinhold Schneider and Željka Stojanac ebruary 16, 016 Abstract We study extensions of compressive sensing and low rank matrix recovery

More information

Supplemental for Spectral Algorithm For Latent Tree Graphical Models

Supplemental for Spectral Algorithm For Latent Tree Graphical Models Supplemental for Spectral Algorithm For Latent Tree Graphical Models Ankur P. Parikh, Le Song, Eric P. Xing The supplemental contains 3 main things. 1. The first is network plots of the latent variable

More information

Tensor Decompositions for Machine Learning. G. Roeder 1. UBC Machine Learning Reading Group, June University of British Columbia

Tensor Decompositions for Machine Learning. G. Roeder 1. UBC Machine Learning Reading Group, June University of British Columbia Network Feature s Decompositions for Machine Learning 1 1 Department of Computer Science University of British Columbia UBC Machine Learning Group, June 15 2016 1/30 Contact information Network Feature

More information

Krylov subspace methods for linear systems with tensor product structure

Krylov subspace methods for linear systems with tensor product structure Krylov subspace methods for linear systems with tensor product structure Christine Tobler Seminar for Applied Mathematics, ETH Zürich 19. August 2009 Outline 1 Introduction 2 Basic Algorithm 3 Convergence

More information

Learning about State. Geoff Gordon Machine Learning Department Carnegie Mellon University

Learning about State. Geoff Gordon Machine Learning Department Carnegie Mellon University Learning about State Geoff Gordon Machine Learning Department Carnegie Mellon University joint work with Byron Boots, Sajid Siddiqi, Le Song, Alex Smola What s out there?...... ot-2 ot-1 ot ot+1 ot+2 2

More information

Third-Order Tensor Decompositions and Their Application in Quantum Chemistry

Third-Order Tensor Decompositions and Their Application in Quantum Chemistry Third-Order Tensor Decompositions and Their Application in Quantum Chemistry Tyler Ueltschi University of Puget SoundTacoma, Washington, USA tueltschi@pugetsound.edu April 14, 2014 1 Introduction A tensor

More information

MATH 350: Introduction to Computational Mathematics

MATH 350: Introduction to Computational Mathematics MATH 350: Introduction to Computational Mathematics Chapter V: Least Squares Problems Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Spring 2011 fasshauer@iit.edu MATH

More information

Guaranteed Learning of Latent Variable Models through Spectral and Tensor Methods

Guaranteed Learning of Latent Variable Models through Spectral and Tensor Methods Guaranteed Learning of Latent Variable Models through Spectral and Tensor Methods Anima Anandkumar U.C. Irvine Application 1: Clustering Basic operation of grouping data points. Hypothesis: each data point

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

High-dimensional Statistical Models

High-dimensional Statistical Models High-dimensional Statistical Models Pradeep Ravikumar UT Austin MLSS 2014 1 Curse of Dimensionality Statistical Learning: Given n observations from p(x; θ ), where θ R p, recover signal/parameter θ. For

More information

PCA and admixture models

PCA and admixture models PCA and admixture models CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar, Alkes Price PCA and admixture models 1 / 57 Announcements HW1

More information

Tensor Product Approximation

Tensor Product Approximation Tensor Product Approximation R. Schneider (TUB Matheon) Mariapfarr, 2014 Acknowledgment DFG Priority program SPP 1324 Extraction of essential information from complex data Co-workers: T. Rohwedder (HUB),

More information

Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations

Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations TECHNISCHE UNIVERSITÄT BERLIN Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations Markus Bachmayr André Uschmajew Reinhold Schneider Preprint 2015/28

More information

Learning Topic Models and Latent Bayesian Networks Under Expansion Constraints

Learning Topic Models and Latent Bayesian Networks Under Expansion Constraints Learning Topic Models and Latent Bayesian Networks Under Expansion Constraints Animashree Anandkumar 1, Daniel Hsu 2, Adel Javanmard 3, and Sham M. Kakade 2 1 Department of EECS, University of California,

More information

On Tensor Train Rank Minimization: Statistical Efficiency and Scalable Algorithm

On Tensor Train Rank Minimization: Statistical Efficiency and Scalable Algorithm On Tensor Train Ran Minimization: Statistical Efficiency and Scalable Algorithm Masaai Imaizumi Institute of Statistical Mathematics RIKEN Center for Advanced Intelligence Project imaizumi@ism.ac.jp Taanori

More information

Numerical Linear and Multilinear Algebra in Quantum Tensor Networks

Numerical Linear and Multilinear Algebra in Quantum Tensor Networks Numerical Linear and Multilinear Algebra in Quantum Tensor Networks Konrad Waldherr October 20, 2013 Joint work with Thomas Huckle QCCC 2013, Prien, October 20, 2013 1 Outline Numerical (Multi-) Linear

More information

ON MANIFOLDS OF TENSORS OF FIXED TT-RANK

ON MANIFOLDS OF TENSORS OF FIXED TT-RANK ON MANIFOLDS OF TENSORS OF FIXED TT-RANK SEBASTIAN HOLTZ, THORSTEN ROHWEDDER, AND REINHOLD SCHNEIDER Abstract. Recently, the format of TT tensors [19, 38, 34, 39] has turned out to be a promising new format

More information

Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems

Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems Lars Eldén Department of Mathematics, Linköping University 1 April 2005 ERCIM April 2005 Multi-Linear

More information

Using SVD to Recommend Movies

Using SVD to Recommend Movies Michael Percy University of California, Santa Cruz Last update: December 12, 2009 Last update: December 12, 2009 1 / Outline 1 Introduction 2 Singular Value Decomposition 3 Experiments 4 Conclusion Last

More information

FACTORIZATION STRATEGIES FOR THIRD-ORDER TENSORS

FACTORIZATION STRATEGIES FOR THIRD-ORDER TENSORS FACTORIZATION STRATEGIES FOR THIRD-ORDER TENSORS MISHA E. KILMER AND CARLA D. MARTIN Abstract. Operations with tensors, or multiway arrays, have become increasingly prevalent in recent years. Traditionally,

More information

Tensor rank-one decomposition of probability tables

Tensor rank-one decomposition of probability tables Tensor rank-one decomposition of probability tables Petr Savicky Inst. of Comp. Science Academy of Sciences of the Czech Rep. Pod vodárenskou věží 2 82 7 Prague, Czech Rep. http://www.cs.cas.cz/~savicky/

More information

Tensor Network Computations in Quantum Chemistry. Charles F. Van Loan Department of Computer Science Cornell University

Tensor Network Computations in Quantum Chemistry. Charles F. Van Loan Department of Computer Science Cornell University Tensor Network Computations in Quantum Chemistry Charles F. Van Loan Department of Computer Science Cornell University Joint work with Garnet Chan, Department of Chemistry and Chemical Biology, Cornell

More information

Tensor Decompositions for Signal Processing Applications

Tensor Decompositions for Signal Processing Applications Tensor Decompositions for Signal Processing Applications From Two-way to Multiway Component Analysis A. Cichocki, D. Mandic, A-H. Phan, C. Caiafa, G. Zhou, Q. Zhao, and L. De Lathauwer Summary The widespread

More information

Nonparametric Latent Tree Graphical Models: Inference, Estimation, and Structure Learning

Nonparametric Latent Tree Graphical Models: Inference, Estimation, and Structure Learning Journal of Machine Learning Research 12 (2017) 663-707 Submitted 1/10; Revised 10/10; Published 3/11 Nonparametric Latent Tree Graphical Models: Inference, Estimation, and Structure Learning Le Song lsong@cc.gatech.edu

More information

Tensor Decompositions and Applications

Tensor Decompositions and Applications Tamara G. Kolda and Brett W. Bader Part I September 22, 2015 What is tensor? A N-th order tensor is an element of the tensor product of N vector spaces, each of which has its own coordinate system. a =

More information