Entropy of C 1 -diffeomorphisms without dominated splitting

Size: px
Start display at page:

Download "Entropy of C 1 -diffeomorphisms without dominated splitting"

Transcription

1 Entropy of C 1 -diffeomorphisms without dominated splitting Jérôme Buzzi (CNRS & Université Paris-Sud) joint with S. CROVISIER and T. FISHER June 15, 2017 Beyond Uniform Hyperbolicity - Provo, UT

2 Outline Introduction Understanding topological entropy Topological and measured entropies Creating a horseshoe Localized perturbative theorem Ingredients of the proof Dissipative diffeomorphisms Horseshoe entropy Infinitely many homoclinic classes Conservative diffeomorphisms Entropy formulas Instability, continuity,... Borel classification Conclusion

3 Understanding topological entropy f : M M compact, connected, without boundary Topological Entropy (Adler-McAndrew-Konheim 1968) h top : Diff r (M) [0, ) How does it vary? - continuity: Misiurewicz,Katok (low d); Newhouse,Yomdin C - local constancy: stability beyond hyperbolicity (B-Fisher) - robust instability (diffeos not approximated by local constancy)? What are its sources? - homology: Shub s Entropy conjecture - volume growth: Yomdin, Newhouse C - combinatorics through Markov partitions: Bowen - combinatorics through horseshoes: Katok Diff 1+α (M 2 ) How does it classify? - Generators: Jewett-Krieger, Hochman, Burguet-Downarowicz - Almost... conjugacy: Adler-Marcus, Boyle-B-Gomez Which values does it takes?

4 Topological and measure entropies - Definitions f : M M C 0, compact, µ P erg (f ) Topological Entropy (Adler-McAndrew-Konheim 1965; Bowen 1971) h top (f ) = lim ɛ 0+ h top (f, ɛ) h top (f, ɛ) = lim sup n 1 n log r f (ɛ, n, M) Measured Entropy (Kolmogorov-Sinai 1958; Katok 1980) h(f, µ) = lim ɛ 0+ h(f, µ, ɛ) h(f, µ, ɛ) = lim sup n 1 n log r f (ɛ, n, µ) Tail Entropy (Misiurewicz-Bowen 1973) h (f ) = lim ɛ 0+ h (f, ɛ) h 1 (f, ɛ) = sup h top(f, B f (x, ɛ, )) = lim lim sup x M δ 0 n Variational principle (Goodman 1971) h top (f ) = sup{h(f, µ) : µ P erg (f )} Measure maximizing the entropy (mme) n sup x M r f (δ, n, B f (x, ɛ, n)) µ max P erg (f ) with h(f, µ max ) = sup{h(f, µ) : µ P erg (f )} Newhouse: C = existence

5 Main Theorem For µ P erg (f ), f Diff 1 (M), M closed Lyapunov Exponents λ 1 (f, µ) λ 2 (f, µ) λ d (f, µ) Ruelle s inequality: h(f, µ) (f, µ) := min ( i λ i(f, µ) +, i λ i(f, µ) ) Main Theorem (B-Crovisier-Fisher) U a neighborhood of f in Diff 1 (M), Diff 1 vol(m) or Diff 1 ω(m) O periodic orbit with large period and no strong dominated splitting Then, for each U O, there is a horseshoe O K U for g U s.t. h top (g, K) (g, O) = (f, O) Moreover: {g f } U \ O; can preserve a homoclinic relation Remark Optimal : lim sup g f h top (g) sup µ (f, µ) Remark Specific to C 1 -topology: tools; factor 1/r in C r Locally uniform bounds on required period, domination - Newhouse 1978 (d = 2); - Catalan-Tahzibi 2014 (symplectic, entropy min i ( λ i (f, O) )) (see also: Catalan 2016)

6 Tools for localized perturbations - Perturbations of periodic linear cocycles (Bochi-Bonatti, Gourmelon, new for symplectic) - making spectrum simple with rational angles; - mixing the stable (unstable) exponents - creating a small angle - Local support with homoclinic connection, form or symplectic form (Gourmelon): - Franks Lemma with linearization (Avila for volume-preserving) - Homoclinic tangency from lack of domination (Gourmelon) Localized perturbations of conservative C 1 diffeomorphisms, arxiv:1612:06914

7 Proof - Part I: circular permutation f Diff 1 (M) with O(p) a long periodic orbit with weak domination Use previous tools to create, by perturbations: 1. Transverse homoclinic point and locally linear horseshoe K 0 p 2. Point x K 0 with large period and Df π(x) x = Λ s Id E s Λ u Id E u 3. Homoclinic tangency z for O(x) 4. Linearize around O(x) so loc. invariant E 1... E }{{ k } E s 5. With F = T z W s (x) T z W u (x) assumed to be 1-d: T z W s (x) = F F s 1 F s k 1 T z W u (x) = F u 1 F u k d 1 F T z M = F (F s 1 F s k 1 ) G (F u 1 F u k d 1 ) E k+1... E d }{{} E u 6. Using Df π(x) =homothety homothety and F F u 1 F u k d 1 E s : Perturb future of z to get F E 1, Fi s E i+1 and G E k+1, Fj u E k+1+j Similarly in the past Fi s E i, G E k, Fj u E k+j, F E d Conclusion τ Wloc u (x) f m Wloc s (x) s.t. Df m τ.e i = E i+1 (E d+1 = E 1 )

8 Proof - Part II: entropy from exponents Case d = 3, k = 2 (λ 1 < λ 2 < 0 < λ 3 ) g n+m e3 g l+n e1 e2 δ 1 = δ, δ 2 = e nλ1, δ 3 = δe λ3 n Image by f n has height along e 1 : δe (λ1+λ2)n Wiggles (x 1,..., x d ) (x 1,..., x k, x k+1 + H cos(πnx 1 ), x k+2,..., x d ) - to cross: H C(e (λ1+λ2)n + e λ3n )δ - to be C 1 -small: N = o(h 1 ) Entropy log N n max( λ 1 λ 2, λ 3 ) = (f, O(x))

9 Application 1: C 1 horseshoes from LACK of domination Let f Diff 1 (M) be generic (ie, belonging to dense G δ in Diff 1 (M)) Theorem (B-Crovisier-Fisher) For any µ P erg (f ), if suppµ has no dominated splitting, then are horseshoes K n approximating µ: (i) in entropy; (ii) in Hausdorff distance; (iii) in weak-star topology Compare Katok C 1+ ; Gan, Gelfert C 1 + adapted dominated splitting Remark Does not say that K n supp(µ) or homoclinically related Ingredients of the proof: - Ergodic closing lemma with control of exponents - Main theorem

10 Application 2: Infinitely many homoclinic classes Homoclinic relation and classes for hyperbolic periodic orbit O: O O W s (O) W u (O ) et W u (O) W s (O ) HC(O) := O O O compact, invariant, transitive Theorem (B-Crovisier-Fisher) f Diff 1 (M) generic Any HC(O) without dominated splitting is accumulated by infinitely many homoclinic classes with entropy bounded away from zero More precisely, lim inf n h top (HC(O n )) sup O O (f, O ) Remark Newhouse s theorem would suffice (smaller bound) Ingredients: - O O with (O ) > (O), long period, weak domination - Franks Lemma and linear perturbation to make O a sink/source - undo the perturbation inside the basin - Main Theorem

11 Application 3: Entropy formulas in conservative settings M closed manifold with dim d 2, ω volume or symplectic form Let E 1 ω(m) := int({f Diff 1 ω(m) : no domination}) Theorem (B-Crovisier-Fisher) The topological entropy of a generic f E 1 ω(m) is equal to: (1) sup{h top (f, K) : K horseshoe} (2) sup{ (f, O) : O periodic orbit} (3) max 0<k<d lim n 1 n log sup E G k (TM) Jac(f n, E) generalizes, strengthens Catalan-Tahzibi (2014) Ingredients of the proof - sup K h top (K) h top (f ) = sup µ h(µ) sup µ (µ) (always) - erg. measures arb. dense periodic orbits (generic, Abdenur-Bonatti-Crovisier) sup µ (µ) = (f ) := sup O (f, O) - is continuous at generic diffeo - sup K h top (K) > (f ) ɛ open and dense

12 Application 4: Instability of the entropy M closed manifold with dim d 2, ω volume or symplectic form Let E 1 ω(m) := int({f Diff 1 ω(m) : no domination}) Theorem (B-Crovisier-Fisher) The topological entropy of a generic f E 1 ω(m) is equal to: (1) sup{h top (f, K) : K horseshoe} (2) sup{ (f, O) : O periodic orbit} (3) max 0<k<d lim n 1 n log sup E G k (TM) Jac(f n, E) Corollary h top is nowhere locally constant in E 1 ω(m) (robust instability) Corollary For any dense G δ G E 1 ω(m), h top (G) uncountable Corollary Generic f E 1 ω(m) is a continuity point of h top Diff 1 ω(m) Corollary C 1 generically : no domination h (f ) = h top (f )

13 Application 5: No mme and Borel classification M closed manifold with dim d 2, ω volume or symplectic form Theorem (B-Crovisier-Fisher) Generic f E 1 ω(m) has no measure maximizing the entropy Remark The diffeos with m.m.e. are dense (Newhouse theorem for C ) Combining horseshoes, no m.m.e. and Hochman (arxiv 2015): Corollary (B-C-F) There is dense G δ subset of E 1 ω(m) among which the topological entropy is a complete invariant for Borel conjugacy after removing periodic points

14 Proof of no m.m.e. - Concentration phenomenon f E 1 ω(m), dim M 2 Dynamical ball for x M, ɛ > 0: B f (x, ɛ, n) := {y M : 0 k < n d(f k y, f k x) < ɛ} Proposition 0 < ɛ, α < 1, for a dense set of f 0 E 1 ω(m), δ > 0, finite X M s.t. (*) if f close to f 0, µ P erg (f ), and h(f, µ) > h top (f ) δ, then µ( x X B f (x, ɛ, #X )) > 1 α Proof of Theorem. 1) G dense G δ E 1 ω(m) s.t. 0 < ɛ, α < 1 f G δ > 0 X finite satisfying (*) 2) Let f G, µ m.m.e., and ɛ > 0. From Katok s formula, need to bound: r f (µ, ɛ, n) := min{#c : µ( x C B f (x, ɛ, n)) > 1/2} 3) Take 0 < α << 1/ log min{#c : x C B(x, ɛ) = M}. Apply (*)

15 Conclusion Conjecture (higher smoothness) Given a C r -diffeo with hyperbolic periodic point p in a cycle of basic sets (see Gourmelon) with no dominated splitting, there is a C r -perturbation with a horseshoe with entropy (p)/r Question (internal perturbations) For a homoclinic class of a C 1 -generic diffeo, is the topological entropy the supremum of that of the horseshoes it contains? Question (entropy instability) Show that {f Diff 1 (M) : h top not locally constant at f } has non-empty interior Problem (entropy stability) Characterize the locus of entropy stability {U open in Diff 1 ω (M) : h top U = const} (Generically in Diff 1 ω (M): no domination h = h top) arxiv: , arxiv:1612:06914 JB, S. Crovisier, T. Fisher, The entropy of C 1 -diffeomorphisms without a dominated splitting JB, S. Crovisier, T. Fisher, Local perturbations of conservative C 1 diffeomorphisms

arxiv: v1 [math.ds] 6 Jun 2016

arxiv: v1 [math.ds] 6 Jun 2016 The entropy of C 1 -diffeomorphisms without a dominated splitting Jérôme Buzzi, Sylvain Crovisier, Todd Fisher arxiv:1606.01765v1 [math.ds] 6 Jun 2016 Tuesday 7 th June, 2016 Abstract A classical construction

More information

Symbolic extensions for partially hyperbolic diffeomorphisms

Symbolic extensions for partially hyperbolic diffeomorphisms for partially hyperbolic diffeomorphisms Todd Fisher tfisher@math.byu.edu Department of Mathematics Brigham Young University Workshop on Partial Hyperbolicity Entropy Topological entropy measures the exponential

More information

Symbolic extensions for partially hyperbolic diffeomorphisms

Symbolic extensions for partially hyperbolic diffeomorphisms for partially hyperbolic diffeomorphisms Todd Fisher tfisher@math.byu.edu Department of Mathematics Brigham Young University International Workshop on Global Dynamics Beyond Uniform Hyperbolicity Joint

More information

Essential hyperbolicity versus homoclinic bifurcations. Global dynamics beyond uniform hyperbolicity, Beijing 2009 Sylvain Crovisier - Enrique Pujals

Essential hyperbolicity versus homoclinic bifurcations. Global dynamics beyond uniform hyperbolicity, Beijing 2009 Sylvain Crovisier - Enrique Pujals Essential hyperbolicity versus homoclinic bifurcations Global dynamics beyond uniform hyperbolicity, Beijing 2009 Sylvain Crovisier - Enrique Pujals Generic dynamics Consider: M: compact boundaryless manifold,

More information

The Structure of Hyperbolic Sets

The Structure of Hyperbolic Sets The Structure of Hyperbolic Sets p. 1/35 The Structure of Hyperbolic Sets Todd Fisher tfisher@math.umd.edu Department of Mathematics University of Maryland, College Park The Structure of Hyperbolic Sets

More information

Hyperbolic Dynamics. Todd Fisher. Department of Mathematics University of Maryland, College Park. Hyperbolic Dynamics p.

Hyperbolic Dynamics. Todd Fisher. Department of Mathematics University of Maryland, College Park. Hyperbolic Dynamics p. Hyperbolic Dynamics p. 1/36 Hyperbolic Dynamics Todd Fisher tfisher@math.umd.edu Department of Mathematics University of Maryland, College Park Hyperbolic Dynamics p. 2/36 What is a dynamical system? Phase

More information

MARKOV PARTITIONS FOR HYPERBOLIC SETS

MARKOV PARTITIONS FOR HYPERBOLIC SETS MARKOV PARTITIONS FOR HYPERBOLIC SETS TODD FISHER, HIMAL RATHNAKUMARA Abstract. We show that if f is a diffeomorphism of a manifold to itself, Λ is a mixing (or transitive) hyperbolic set, and V is a neighborhood

More information

Nonuniform hyperbolicity for C 1 -generic diffeomorphisms

Nonuniform hyperbolicity for C 1 -generic diffeomorphisms Nonuniform hyperbolicity for C -generic diffeomorphisms Flavio Abdenur, Christian Bonatti, and Sylvain Crovisier September 8, 2008 Abstract We study the ergodic theory of non-conservative C -generic diffeomorphisms.

More information

PATH CONNECTEDNESS AND ENTROPY DENSITY OF THE SPACE OF HYPERBOLIC ERGODIC MEASURES

PATH CONNECTEDNESS AND ENTROPY DENSITY OF THE SPACE OF HYPERBOLIC ERGODIC MEASURES PATH CONNECTEDNESS AND ENTROPY DENSITY OF THE SPACE OF HYPERBOLIC ERGODIC MEASURES ANTON GORODETSKI AND YAKOV PESIN Abstract. We show that the space of hyperbolic ergodic measures of a given index supported

More information

Symbolic dynamics and non-uniform hyperbolicity

Symbolic dynamics and non-uniform hyperbolicity Symbolic dynamics and non-uniform hyperbolicity Yuri Lima UFC and Orsay June, 2017 Yuri Lima (UFC and Orsay) June, 2017 1 / 83 Lecture 1 Yuri Lima (UFC and Orsay) June, 2017 2 / 83 Part 1: Introduction

More information

Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics

Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics CHAPTER 2 Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics Luis Barreira Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa, Portugal E-mail: barreira@math.ist.utl.pt url:

More information

A geometric approach for constructing SRB measures. measures in hyperbolic dynamics

A geometric approach for constructing SRB measures. measures in hyperbolic dynamics A geometric approach for constructing SRB measures in hyperbolic dynamics Pennsylvania State University Conference on Current Trends in Dynamical Systems and the Mathematical Legacy of Rufus Bowen August

More information

HYPERBOLIC SETS WITH NONEMPTY INTERIOR

HYPERBOLIC SETS WITH NONEMPTY INTERIOR HYPERBOLIC SETS WITH NONEMPTY INTERIOR TODD FISHER, UNIVERSITY OF MARYLAND Abstract. In this paper we study hyperbolic sets with nonempty interior. We prove the folklore theorem that every transitive hyperbolic

More information

Equilibrium States for Partially Hyperbolic Horseshoes

Equilibrium States for Partially Hyperbolic Horseshoes Equilibrium States for Partially Hyperbolic Horseshoes R. Leplaideur, K. Oliveira, and I. Rios August 25, 2009 Abstract We study ergodic properties of invariant measures for the partially hyperbolic horseshoes,

More information

TOPOLOGICAL ENTROPY FOR DIFFERENTIABLE MAPS OF INTERVALS

TOPOLOGICAL ENTROPY FOR DIFFERENTIABLE MAPS OF INTERVALS Chung, Y-.M. Osaka J. Math. 38 (200), 2 TOPOLOGICAL ENTROPY FOR DIFFERENTIABLE MAPS OF INTERVALS YONG MOO CHUNG (Received February 9, 998) Let Á be a compact interval of the real line. For a continuous

More information

Homoclinic tangency and variation of entropy

Homoclinic tangency and variation of entropy CADERNOS DE MATEMÁTICA 10, 133 143 May (2009) ARTIGO NÚMERO SMA# 313 Homoclinic tangency and variation of entropy M. Bronzi * Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação,

More information

Super-exponential growth of the number of periodic orbits inside homoclinic classes p. 1/22

Super-exponential growth of the number of periodic orbits inside homoclinic classes p. 1/22 Super-exponential growth of the number of periodic orbits inside homoclinic classes p. 1/22 Super-exponential growth of the number of periodic orbits inside homoclinic classes Todd Fisher tfisher@math.umd.edu

More information

TRIVIAL CENTRALIZERS FOR AXIOM A DIFFEOMORPHISMS

TRIVIAL CENTRALIZERS FOR AXIOM A DIFFEOMORPHISMS TRIVIAL CENTRALIZERS FOR AXIOM A DIFFEOMORPHISMS TODD FISHER Abstract. We show there is a residual set of non-anosov C Axiom A diffeomorphisms with the no cycles property whose elements have trivial centralizer.

More information

arxiv: v1 [math.ds] 16 Nov 2010

arxiv: v1 [math.ds] 16 Nov 2010 Essential hyperbolicity and homoclinic bifurcations: a dichotomy phenomenon/mechanism for diffeomorphisms arxiv:1011.3836v1 [math.ds] 16 Nov 2010 Sylvain Crovisier Enrique R. Pujals October 30, 2018 Abstract

More information

The Existence of Chaos in the Lorenz System

The Existence of Chaos in the Lorenz System The Existence of Chaos in the Lorenz System Sheldon E. Newhouse Mathematics Department Michigan State University E. Lansing, MI 48864 joint with M. Berz, K. Makino, A. Wittig Physics, MSU Y. Zou, Math,

More information

1 Introduction Definitons Markov... 2

1 Introduction Definitons Markov... 2 Compact course notes Dynamic systems Fall 2011 Professor: Y. Kudryashov transcribed by: J. Lazovskis Independent University of Moscow December 23, 2011 Contents 1 Introduction 2 1.1 Definitons...............................................

More information

BOWEN S ENTROPY-CONJUGACY CONJECTURE IS TRUE UP TO FINITE INDEX

BOWEN S ENTROPY-CONJUGACY CONJECTURE IS TRUE UP TO FINITE INDEX BOWEN S ENTROPY-CONJUGACY CONJECTURE IS TRUE UP TO FINITE INDEX MIKE BOYLE, JÉRÔME BUZZI, AND KEVIN MCGOFF Abstract. For a topological dynamical system (X, f), consisting of a continuous map f : X X, and

More information

Entropy in Dynamical Systems

Entropy in Dynamical Systems Entropy in Dynamical Systems Lai-Sang Young In this article, the word entropy is used exclusively to refer to the entropy of a dynamical system, i.e. a map or a flow. It measures the rate of increase in

More information

Physical measures of discretizations of generic diffeomorphisms

Physical measures of discretizations of generic diffeomorphisms Ergod. Th. & Dynam. Sys. (2018), 38, 1422 1458 doi:10.1017/etds.2016.70 c Cambridge University Press, 2016 Physical measures of discretizations of generic diffeomorphisms PIERRE-ANTOINE GUIHÉNEUF Université

More information

Periodic Sinks and Observable Chaos

Periodic Sinks and Observable Chaos Periodic Sinks and Observable Chaos Systems of Study: Let M = S 1 R. T a,b,l : M M is a three-parameter family of maps defined by where θ S 1, r R. θ 1 = a+θ +Lsin2πθ +r r 1 = br +blsin2πθ Outline of Contents:

More information

Problems in hyperbolic dynamics

Problems in hyperbolic dynamics Problems in hyperbolic dynamics Current Trends in Dynamical Systems and the Mathematical Legacy of Rufus Bowen Vancouver july 31st august 4th 2017 Notes by Y. Coudène, S. Crovisier and T. Fisher 1 Zeta

More information

Unique equilibrium states for geodesic flows in nonpositive curvature

Unique equilibrium states for geodesic flows in nonpositive curvature Unique equilibrium states for geodesic flows in nonpositive curvature Todd Fisher Department of Mathematics Brigham Young University Fractal Geometry, Hyperbolic Dynamics and Thermodynamical Formalism

More information

THE ENTROPY CONJECTURE FOR DIFFEOMORPHISMS AWAY FROM TANGENCIES

THE ENTROPY CONJECTURE FOR DIFFEOMORPHISMS AWAY FROM TANGENCIES THE ENTROPY CONJECTURE FOR DIFFEOMORPHISMS AWAY FROM TANGENCIES GANG LIAO, MARCELO VIANA 2, JIAGANG YANG 3 Abstract. We prove that every C diffeomorphism away from homoclinic tangencies is entropy expansive,

More information

Hyperbolic Sets That are Not Locally Maximal

Hyperbolic Sets That are Not Locally Maximal Hyperbolic Sets That are Not Locally Maximal Todd Fisher December 6, 2004 Abstract This papers addresses the following topics relating to the structure of hyperbolic sets: First, hyperbolic sets that are

More information

April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v.

April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v. April 3, 005 - Hyperbolic Sets We now extend the structure of the horseshoe to more general kinds of invariant sets. Let r, and let f D r (M) where M is a Riemannian manifold. A compact f invariant set

More information

HAMILTONIAN ELLIPTIC DYNAMICS ON SYMPLECTIC 4-MANIFOLDS

HAMILTONIAN ELLIPTIC DYNAMICS ON SYMPLECTIC 4-MANIFOLDS HAMILTONIAN ELLIPTIC DYNAMICS ON SYMPLECTIC 4-MANIFOLDS MÁRIO BESSA AND JOÃO LOPES DIAS Abstract. We consider C 2 Hamiltonian functions on compact 4-dimensional symplectic manifolds to study elliptic dynamics

More information

The first half century of entropy: the most glorious number in dynamics

The first half century of entropy: the most glorious number in dynamics The first half century of entropy: the most glorious number in dynamics A. Katok Penn State University This is an expanded version of the invited talk given on June 17, 2003 in Moscow at the conference

More information

Generic family with robustly infinitely many sinks

Generic family with robustly infinitely many sinks Generic family with robustly infinitely many sinks Pierre Berger November 6, 2018 arxiv:1411.6441v2 [math.ds] 10 Mar 2015 Abstract We show, for every r > d 0 or r = d 2, the existence of a Baire generic

More information

Abundance of stable ergodicity

Abundance of stable ergodicity Abundance of stable ergodicity Christian Bonatti, Carlos atheus, arcelo Viana, Amie Wilkinson December 7, 2002 Abstract We consider the set PH ω () of volume preserving partially hyperbolic diffeomorphisms

More information

On the Structure of Hyperbolic Sets

On the Structure of Hyperbolic Sets NORTHWESTERN UNIVERSITY On the Structure of Hyperbolic Sets A DISSERTATION SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS for the degree DOCTOR OF PHILOSOPHY Field of Mathematics

More information

VARIATIONAL PRINCIPLE FOR THE ENTROPY

VARIATIONAL PRINCIPLE FOR THE ENTROPY VARIATIONAL PRINCIPLE FOR THE ENTROPY LUCIAN RADU. Metric entropy Let (X, B, µ a measure space and I a countable family of indices. Definition. We say that ξ = {C i : i I} B is a measurable partition if:

More information

Introduction Hyperbolic systems Beyond hyperbolicity Counter-examples. Physical measures. Marcelo Viana. IMPA - Rio de Janeiro

Introduction Hyperbolic systems Beyond hyperbolicity Counter-examples. Physical measures. Marcelo Viana. IMPA - Rio de Janeiro IMPA - Rio de Janeiro Asymptotic behavior General observations A special case General problem Let us consider smooth transformations f : M M on some (compact) manifold M. Analogous considerations apply

More information

Generic family with robustly infinitely many sinks

Generic family with robustly infinitely many sinks Generic family with robustly infinitely many sinks Pierre Berger February 28, 2019 arxiv:1411.6441v1 [math.ds] 24 Nov 2014 Abstract We show, for every r > d 0 or r = d 2, the existence of a Baire generic

More information

arxiv: v1 [math.ds] 19 Jan 2017

arxiv: v1 [math.ds] 19 Jan 2017 A robustly transitive diffeomorphism of Kan s type CHENG CHENG, SHAOBO GAN AND YI SHI January 2, 217 arxiv:171.5282v1 [math.ds] 19 Jan 217 Abstract We construct a family of partially hyperbolic skew-product

More information

ENTROPY-EXPANSIVENESS FOR PARTIALLY HYPERBOLIC DIFFEOMORPHISMS.

ENTROPY-EXPANSIVENESS FOR PARTIALLY HYPERBOLIC DIFFEOMORPHISMS. ENTROPY-EXPANSIVENESS FOR PARTIALLY HYPERBOLIC DIFFEOMORPHISMS. L. J. DÍAZ, T. FISHER, M. J. PACIFICO, AND J. L. VIEITEZ Abstract. We show that diffeomorphisms with a dominated splitting of the form E

More information

A non-uniform Bowen s equation and connections to multifractal analysis

A non-uniform Bowen s equation and connections to multifractal analysis A non-uniform Bowen s equation and connections to multifractal analysis Vaughn Climenhaga Penn State November 1, 2009 1 Introduction and classical results Hausdorff dimension via local dimensional characteristics

More information

Robustly transitive diffeomorphisms

Robustly transitive diffeomorphisms Robustly transitive diffeomorphisms Todd Fisher tfisher@math.byu.edu Department of Mathematics, Brigham Young University Summer School, Chengdu, China 2009 Dynamical systems The setting for a dynamical

More information

Coexistence of Zero and Nonzero Lyapunov Exponents

Coexistence of Zero and Nonzero Lyapunov Exponents Coexistence of Zero and Nonzero Lyapunov Exponents Jianyu Chen Pennsylvania State University July 13, 2011 Outline Notions and Background Hyperbolicity Coexistence Construction of M 5 Construction of the

More information

SYMBOLIC DYNAMICS FOR HYPERBOLIC SYSTEMS. 1. Introduction (30min) We want to find simple models for uniformly hyperbolic systems, such as for:

SYMBOLIC DYNAMICS FOR HYPERBOLIC SYSTEMS. 1. Introduction (30min) We want to find simple models for uniformly hyperbolic systems, such as for: SYMBOLIC DYNAMICS FOR HYPERBOLIC SYSTEMS YURI LIMA 1. Introduction (30min) We want to find simple models for uniformly hyperbolic systems, such as for: [ ] 2 1 Hyperbolic toral automorphisms, e.g. f A

More information

A FRANKS LEMMA FOR CONVEX PLANAR BILLIARDS

A FRANKS LEMMA FOR CONVEX PLANAR BILLIARDS A FRANKS LEMMA FOR CONVEX PLANAR BILLIARDS DANIEL VISSCHER Abstract Let γ be an orbit of the billiard flow on a convex planar billiard table; then the perpendicular part of the derivative of the billiard

More information

OPEN PROBLEMS IN THE THEORY OF NON-UNIFORM HYPERBOLICITY

OPEN PROBLEMS IN THE THEORY OF NON-UNIFORM HYPERBOLICITY OPEN PROBLEMS IN THE THEORY OF NON-UNIFORM HYPERBOLICITY YAKOV PESIN AND VAUGHN CLIMENHAGA Abstract. This is a survey-type article whose goal is to review some recent developments in studying the genericity

More information

WHAT IS A CHAOTIC ATTRACTOR?

WHAT IS A CHAOTIC ATTRACTOR? WHAT IS A CHAOTIC ATTRACTOR? CLARK ROBINSON Abstract. Devaney gave a mathematical definition of the term chaos, which had earlier been introduced by Yorke. We discuss issues involved in choosing the properties

More information

HYPERBOLICITY AND RECURRENCE IN DYNAMICAL SYSTEMS: A SURVEY OF RECENT RESULTS

HYPERBOLICITY AND RECURRENCE IN DYNAMICAL SYSTEMS: A SURVEY OF RECENT RESULTS HYPERBOLICITY AND RECURRENCE IN DYNAMICAL SYSTEMS: A SURVEY OF RECENT RESULTS LUIS BARREIRA Abstract. We discuss selected topics of current research interest in the theory of dynamical systems, with emphasis

More information

Abundance of stable ergodicity

Abundance of stable ergodicity Abundance of stable ergodicity Christian Bonatti, Carlos Matheus, Marcelo Viana, Amie Wilkinson October 5, 2004 Abstract We consider the set PH ω (M) of volume preserving partially hyperbolic diffeomorphisms

More information

PARTIAL HYPERBOLICITY, LYAPUNOV EXPONENTS AND STABLE ERGODICITY

PARTIAL HYPERBOLICITY, LYAPUNOV EXPONENTS AND STABLE ERGODICITY PARTIAL HYPERBOLICITY, LYAPUNOV EXPONENTS AND STABLE ERGODICITY K. BURNS, D. DOLGOPYAT, YA. PESIN Abstract. We present some results and open problems about stable ergodicity of partially hyperbolic diffeomorphisms

More information

On the smoothness of the conjugacy between circle maps with a break

On the smoothness of the conjugacy between circle maps with a break On the smoothness of the conjugacy between circle maps with a break Konstantin Khanin and Saša Kocić 2 Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4 2 Department of Mathematics,

More information

Adapted metrics for dominated splittings

Adapted metrics for dominated splittings Adapted metrics for dominated splittings Nikolaz Gourmelon January 15, 27 Abstract A Riemannian metric is adapted to an hyperbolic set of a diffeomorphism if, in this metric, the expansion/contraction

More information

Lyapunov optimizing measures for C 1 expanding maps of the circle

Lyapunov optimizing measures for C 1 expanding maps of the circle Lyapunov optimizing measures for C 1 expanding maps of the circle Oliver Jenkinson and Ian D. Morris Abstract. For a generic C 1 expanding map of the circle, the Lyapunov maximizing measure is unique,

More information

University of York. Extremality and dynamically defined measures. David Simmons. Diophantine preliminaries. First results. Main results.

University of York. Extremality and dynamically defined measures. David Simmons. Diophantine preliminaries. First results. Main results. University of York 1 2 3 4 Quasi-decaying References T. Das, L. Fishman, D. S., M. Urbański,, I: properties of quasi-decaying, http://arxiv.org/abs/1504.04778, preprint 2015.,, II: Measures from conformal

More information

GEOMETRIC PRESSURE FOR MULTIMODAL MAPS OF THE INTERVAL

GEOMETRIC PRESSURE FOR MULTIMODAL MAPS OF THE INTERVAL GEOMETRIC PRESSURE FOR MULTIMODAL MAPS OF THE INTERVAL FELIKS PRZYTYCKI AND JUAN RIVERA-LETELIER Abstract. This paper is an interval dynamics counterpart of three theories founded earlier by the authors,

More information

Thermodynamics for discontinuous maps and potentials

Thermodynamics for discontinuous maps and potentials Thermodynamics for discontinuous maps and potentials Vaughn Climenhaga University of Houston July 11, 2013 Plan of talk Dynamical system { X a complete separable metric space f : X X a measurable map Potential

More information

A stochastic view of Dynamical Systems

A stochastic view of Dynamical Systems A stochastic view ofdynamical Systems p. 1/1 A stochastic view of Dynamical Systems Marcelo Viana IMPA - Rio de Janeiro A stochastic view ofdynamical Systems p. 2/1 Dynamical systems Transformations or

More information

A Complex Gap Lemma. Sébastien Biebler

A Complex Gap Lemma. Sébastien Biebler A Complex Gap Lemma Sébastien Biebler arxiv:80.0544v [math.ds] 5 Oct 08 Abstract Inspired by the work of Newhouse in one real variable, we introduce a relevant notion of thickness for dynamical Cantor

More information

STABLE ERGODICITY FOR PARTIALLY HYPERBOLIC ATTRACTORS WITH NEGATIVE CENTRAL EXPONENTS

STABLE ERGODICITY FOR PARTIALLY HYPERBOLIC ATTRACTORS WITH NEGATIVE CENTRAL EXPONENTS STABLE ERGODICITY FOR PARTIALLY HYPERBOLIC ATTRACTORS WITH NEGATIVE CENTRAL EXPONENTS K. BURNS, D. DOLGOPYAT, YA. PESIN, M. POLLICOTT Dedicated to G. A. Margulis on the occasion of his 60th birthday Abstract.

More information

Mañé s Conjecture from the control viewpoint

Mañé s Conjecture from the control viewpoint Mañé s Conjecture from the control viewpoint Université de Nice - Sophia Antipolis Setting Let M be a smooth compact manifold of dimension n 2 be fixed. Let H : T M R be a Hamiltonian of class C k, with

More information

Quantum ergodicity. Nalini Anantharaman. 22 août Université de Strasbourg

Quantum ergodicity. Nalini Anantharaman. 22 août Université de Strasbourg Quantum ergodicity Nalini Anantharaman Université de Strasbourg 22 août 2016 I. Quantum ergodicity on manifolds. II. QE on (discrete) graphs : regular graphs. III. QE on graphs : other models, perspectives.

More information

ON HYPERBOLIC MEASURES AND PERIODIC ORBITS

ON HYPERBOLIC MEASURES AND PERIODIC ORBITS ON HYPERBOLIC MEASURES AND PERIODIC ORBITS ILIE UGARCOVICI Dedicated to Anatole Katok on the occasion of his 60th birthday Abstract. We prove that if a diffeomorphism on a compact manifold preserves a

More information

Lipschitz shadowing implies structural stability

Lipschitz shadowing implies structural stability Lipschitz shadowing implies structural stability Sergei Yu. Pilyugin Sergei B. Tihomirov Abstract We show that the Lipschitz shadowing property of a diffeomorphism is equivalent to structural stability.

More information

Topological Properties of Invariant Sets for Anosov Maps with Holes

Topological Properties of Invariant Sets for Anosov Maps with Holes Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2011-11-10 Topological Properties of Invariant Sets for Anosov Maps with Holes Skyler C. Simmons Brigham Young University - Provo

More information

Lecture 5: Oscillatory motions for the RPE3BP

Lecture 5: Oscillatory motions for the RPE3BP Lecture 5: Oscillatory motions for the RPE3BP Marcel Guardia Universitat Politècnica de Catalunya February 10, 2017 M. Guardia (UPC) Lecture 5 February 10, 2017 1 / 25 Outline Oscillatory motions for the

More information

On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I

On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I IOP PUBLISHING Nonlinearity 2 (28) 923 972 NONLINEARITY doi:.88/95-775/2/5/3 On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I S V Gonchenko, L P Shilnikov and D V Turaev

More information

POINTWISE DIMENSION AND ERGODIC DECOMPOSITIONS

POINTWISE DIMENSION AND ERGODIC DECOMPOSITIONS POINTWISE DIMENSION AND ERGODIC DECOMPOSITIONS LUIS BARREIRA AND CHRISTIAN WOLF Abstract. We study the Hausdorff dimension and the pointwise dimension of measures that are not necessarily ergodic. In particular,

More information

CENTER LYAPUNOV EXPONENTS IN PARTIALLY HYPERBOLIC DYNAMICS

CENTER LYAPUNOV EXPONENTS IN PARTIALLY HYPERBOLIC DYNAMICS CENTER LYAPUNOV EXPONENTS IN PARTIALLY HYPERBOLIC DYNAMICS ANDREY GOGOLEV AND ALI TAHZIBI Contents 1. Introduction 2 2. Abundance of non-zero Lyapunov exponents 3 2.1. Removing zero exponent for smooth

More information

Dynamics of Group Actions and Minimal Sets

Dynamics of Group Actions and Minimal Sets University of Illinois at Chicago www.math.uic.edu/ hurder First Joint Meeting of the Sociedad de Matemática de Chile American Mathematical Society Special Session on Group Actions: Probability and Dynamics

More information

SUPER-EXPONENTIAL GROWTH OF THE NUMBER OF PERIODIC ORBITS INSIDE HOMOCLINIC CLASSES. Aim Sciences. (Communicated by Aim Sciences)

SUPER-EXPONENTIAL GROWTH OF THE NUMBER OF PERIODIC ORBITS INSIDE HOMOCLINIC CLASSES. Aim Sciences. (Communicated by Aim Sciences) Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 200X Website: http://aimsciences.org pp. X XX SUPER-EXPONENTIAL GROWTH OF THE NUMBER OF PERIODIC ORBITS INSIDE HOMOCLINIC CLASSES Aim Sciences

More information

TECHNIQUES FOR ESTABLISHING DOMINATED SPLITTINGS

TECHNIQUES FOR ESTABLISHING DOMINATED SPLITTINGS TECHNIQUES FOR ESTABLISHING DOMINATED SPLITTINGS ANDY HAMMERLINDL ABSTRACT. We give theorems which establish the existence of a dominated splitting and further properties, such as partial hyperbolicity.

More information

LOCAL ENTROPY THEORY

LOCAL ENTROPY THEORY LOCAL ENTROPY THEORY ELI GLASNER AND XIANGDONG YE Abstract. In this survey we offer an overview of the so called local entropy theory, developed since the early 1990s. While doing so we emphasize the connections

More information

DIFFEOMORPHISMS WITH POSITIVE METRIC ENTROPY

DIFFEOMORPHISMS WITH POSITIVE METRIC ENTROPY DIFFEOMORPHISMS WITH POSITIVE METRIC ENTROPY A. AVILA, S. CROVISIER, AND A. WILKINSON Abstract. We obtain a dichotomy for C -generic, volume-preserving diffeomorphisms: either all the Lyapunov exponents

More information

DIMENSION ESTIMATES FOR NON-CONFORMAL REPELLERS AND CONTINUITY OF SUB-ADDITIVE TOPOLOGICAL PRESSURE

DIMENSION ESTIMATES FOR NON-CONFORMAL REPELLERS AND CONTINUITY OF SUB-ADDITIVE TOPOLOGICAL PRESSURE DIMENSION ESTIMATES FOR NON-CONFORMAL REPELLERS AND CONTINUITY OF SUB-ADDITIVE TOPOLOGICAL PRESSURE YONGLUO CAO, YAKOV PESIN, AND YUN ZHAO Abstract. Given a non-conformal repeller Λ of a C +γ map, we study

More information

MINIMAL YET MEASURABLE FOLIATIONS

MINIMAL YET MEASURABLE FOLIATIONS MINIMAL YET MEASURABLE FOLIATIONS G. PONCE, A. TAHZIBI, AND R. VARÃO Abstract. In this paper we mainly address the problem of disintegration of Lebesgue measure along the central foliation of volume preserving

More information

2. Hyperbolic dynamical systems

2. Hyperbolic dynamical systems 2. Hyperbolic dynamical systems The next great era of awakening of human intellect may well produce a method of understanding the qualitative content of equations. Today we cannot. Today we cannot see

More information

UNIQUE EQUILIBRIUM STATES FOR THE ROBUSTLY TRANSITIVE DIFFEOMORPHISMS OF

UNIQUE EQUILIBRIUM STATES FOR THE ROBUSTLY TRANSITIVE DIFFEOMORPHISMS OF UNIQUE EQUILIBRIUM STATES FOR THE ROBUSTLY TRANSITIVE DIFFEOMORPHISMS OF MAÑÉ AND BONATTI VIANA VAUGHN CLIMENHAGA, TODD FISHER, AND DANIEL J. THOMPSON Abstract. We show that the families of robustly transitive

More information

Hausdorff dimension for horseshoes

Hausdorff dimension for horseshoes Ergod. Th. & Dyam. Sys. (1983), 3, 251-260 Printed in Great Britain Hausdorff dimension for horseshoes HEATHER McCLUSKEY AND ANTHONY MANNING Mathematics Institute, University of Warwick, Coventry CVA 1AL,

More information

Persistent Chaos in High-Dimensional Neural Networks

Persistent Chaos in High-Dimensional Neural Networks Persistent Chaos in High-Dimensional Neural Networks D. J. Albers with J. C. Sprott and James P. Crutchfield February 20, 2005 1 Outline: Introduction and motivation Mathematical versus computational dynamics

More information

PHY411 Lecture notes Part 5

PHY411 Lecture notes Part 5 PHY411 Lecture notes Part 5 Alice Quillen January 27, 2016 Contents 0.1 Introduction.................................... 1 1 Symbolic Dynamics 2 1.1 The Shift map.................................. 3 1.2

More information

Introduction to Continuous Dynamical Systems

Introduction to Continuous Dynamical Systems Lecture Notes on Introduction to Continuous Dynamical Systems Fall, 2012 Lee, Keonhee Department of Mathematics Chungnam National Univeristy - 1 - Chap 0. Introduction What is a dynamical system? A dynamical

More information

ABSOLUTE CONTINUITY OF FOLIATIONS

ABSOLUTE CONTINUITY OF FOLIATIONS ABSOLUTE CONTINUITY OF FOLIATIONS C. PUGH, M. VIANA, A. WILKINSON 1. Introduction In what follows, U is an open neighborhood in a compact Riemannian manifold M, and F is a local foliation of U. By this

More information

TOPOLOGICAL STRUCTURE OF PARTIALLY HYPERBOLIC ATTRACTORS. José F. Alves

TOPOLOGICAL STRUCTURE OF PARTIALLY HYPERBOLIC ATTRACTORS. José F. Alves TOPOLOGICAL STRUCTURE OF PARTIALLY HYPERBOLIC ATTRACTORS by José F. Alves Contents Introduction............................................................ 2 1. Partially hyperbolic sets..............................................

More information

Continuum-Wise Expansive and Dominated Splitting

Continuum-Wise Expansive and Dominated Splitting Int. Journal of Math. Analysis, Vol. 7, 2013, no. 23, 1149-1154 HIKARI Ltd, www.m-hikari.com Continuum-Wise Expansive and Dominated Splitting Manseob Lee Department of Mathematics Mokwon University Daejeon,

More information

DYNAMICAL SYSTEMS. I Clark: Robinson. Stability, Symbolic Dynamics, and Chaos. CRC Press Boca Raton Ann Arbor London Tokyo

DYNAMICAL SYSTEMS. I Clark: Robinson. Stability, Symbolic Dynamics, and Chaos. CRC Press Boca Raton Ann Arbor London Tokyo DYNAMICAL SYSTEMS Stability, Symbolic Dynamics, and Chaos I Clark: Robinson CRC Press Boca Raton Ann Arbor London Tokyo Contents Chapter I. Introduction 1 1.1 Population Growth Models, One Population 2

More information

4 Countability axioms

4 Countability axioms 4 COUNTABILITY AXIOMS 4 Countability axioms Definition 4.1. Let X be a topological space X is said to be first countable if for any x X, there is a countable basis for the neighborhoods of x. X is said

More information

The Zorich Kontsevich Conjecture

The Zorich Kontsevich Conjecture The Zorich Kontsevich Conjecture Marcelo Viana (joint with Artur Avila) IMPA - Rio de Janeiro The Zorich Kontsevich Conjecture p.1/27 Translation Surfaces Compact Riemann surface endowed with a non-vanishing

More information

C 1 DENSITY OF AXIOM A FOR 1D DYNAMICS

C 1 DENSITY OF AXIOM A FOR 1D DYNAMICS C 1 DENSITY OF AXIOM A FOR 1D DYNAMICS DAVID DIICA Abstract. We outline a proof of the C 1 unimodal maps of the interval. density of Axiom A systems among the set of 1. Introduction The amazing theory

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

DYNAMICAL SYSTEMS PROBLEMS. asgor/ (1) Which of the following maps are topologically transitive (minimal,

DYNAMICAL SYSTEMS PROBLEMS.  asgor/ (1) Which of the following maps are topologically transitive (minimal, DYNAMICAL SYSTEMS PROBLEMS http://www.math.uci.edu/ asgor/ (1) Which of the following maps are topologically transitive (minimal, topologically mixing)? identity map on a circle; irrational rotation of

More information

The centralizer of a C 1 generic diffeomorphism is trivial

The centralizer of a C 1 generic diffeomorphism is trivial The centralizer of a C 1 generic diffeomorphism is trivial Christian Bonatti, Sylvain Crovisier and Amie Wilkinson April 16, 2008 Abstract Answering a question of Smale, we prove that the space of C 1

More information

THE GEOMETRIC APPROACH FOR CONSTRUCTING SINAI-RUELLE-BOWEN MEASURES

THE GEOMETRIC APPROACH FOR CONSTRUCTING SINAI-RUELLE-BOWEN MEASURES THE GEOMETRIC APPROACH FOR CONSTRUCTING SINAI-RUELLE-BOWEN MEASURES VAUGHN CLIMENHAGA, STEFANO LUZZATTO, AND YAKOV PESIN Abstract. An important class of physically relevant measures for dynamical systems

More information

Lecture 4. Entropy and Markov Chains

Lecture 4. Entropy and Markov Chains preliminary version : Not for diffusion Lecture 4. Entropy and Markov Chains The most important numerical invariant related to the orbit growth in topological dynamical systems is topological entropy.

More information

SRB MEASURES FOR AXIOM A ENDOMORPHISMS

SRB MEASURES FOR AXIOM A ENDOMORPHISMS SRB MEASURES FOR AXIOM A ENDOMORPHISMS MARIUSZ URBANSKI AND CHRISTIAN WOLF Abstract. Let Λ be a basic set of an Axiom A endomorphism on n- dimensional compact Riemannian manifold. In this paper, we provide

More information

ORBITAL SHADOWING, INTERNAL CHAIN TRANSITIVITY

ORBITAL SHADOWING, INTERNAL CHAIN TRANSITIVITY ORBITAL SHADOWING, INTERNAL CHAIN TRANSITIVITY AND ω-limit SETS CHRIS GOOD AND JONATHAN MEDDAUGH Abstract. Let f : X X be a continuous map on a compact metric space, let ω f be the collection of ω-limit

More information

Physical Measures. Stefano Luzzatto Abdus Salam International Centre for Theoretical Physics Trieste, Italy.

Physical Measures. Stefano Luzzatto Abdus Salam International Centre for Theoretical Physics Trieste, Italy. Physical Measures Stefano Luzzatto Abdus Salam International Centre for Theoretical Physics Trieste, Italy. International conference on Dynamical Systems Hammamet, Tunisia September 5-7, 2017 Let f : M

More information

Nonlocally Maximal Hyperbolic Sets for Flows

Nonlocally Maximal Hyperbolic Sets for Flows Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2015-06-01 Nonlocally Maximal Hyperbolic Sets for Flows Taylor Michael Petty Brigham Young University - Provo Follow this and additional

More information

Preprint Preprint Preprint Preprint

Preprint Preprint Preprint Preprint CADERNOS DE MATEMÁTICA 16, 179 187 May (2015) ARTIGO NÚMERO SMA#12 Regularity of invariant foliations and its relation to the dynamics R. Varão * Departamento de Matemática, Instituto de Matemática, Estatística

More information

Smooth flows with fractional entropy dimension

Smooth flows with fractional entropy dimension Smooth flows with fractional entropy dimension Steve Hurder MCA Montreal, July 27, 2017 University of Illinois at Chicago www.math.uic.edu/ hurder Theorem (K. Kuperberg, 1994) Let M be a closed, orientable

More information