Tevatron Beam-Beam Phenomena and Counter-Measures

Size: px
Start display at page:

Download "Tevatron Beam-Beam Phenomena and Counter-Measures"

Transcription

1 Tevatron Beam-Beam Phenomena and Counter-Measures Alexander Valishev Fermilab, Batavia, IL LARP Mini-Workshop on Beam-Beam Compensation July 2-4, 2007

2 Outline Overview of Beam-Beam Effects Injection Collisions Countermeasures New Collision Helix New Working Point Second Order Chromaticity Correction Results and Summary LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 2

3 Luminosity and Luminosity Integral L = 3γ f πβ * 0 B N ( ) ε + ε p p N p p H ( * ) σ β l I = Ldt N stores τ L ln(1 + T Luminosity Integral: primary factors L / τ 0 L ) Beta* at IP and bunchlength: H(x)/beta^* Emittances ε p ε pbar Number of protons: N p Number of antiprotons: BN pbar Lumi-lifetime: τ L LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 3

4 Overview of Beam-Beam Effects Beam Intensities in Store 5506 LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 4

5 Sources of Luminosity Loss in Tevatron Recycler Helix Sext LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 5

6 Sources of Luminosity Loss in Tevatron LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 6

7 Long-Range Effects at Injection LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 7

8 Long-Range Effects at Injection LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 8

9 Long-Range Effects at Injection LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 9

10 Long-Range Effects on Ramp LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 10

11 Beam Intensity Loss on Ramp Proton inefficiency vs. pbar intensity Pbar inefficiency vs. proton intensity LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 11

12 Long-Range Effects in Squeeze LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 12

13 Long-Range Effects in Squeeze LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 13

14 Long-Range Effects in Squeeze LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 14

15 Emittance blowup Lifetime deterioration Effects at Collisions Long-Range Head-on LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 15

16 Emittance Increase vs. Betatron Tune LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 16

17 Proton Loss Rate vs. Betatron Tune LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 17

18 Effect of the Helix Size on Lifetime Antiproton NL Loss Rate [% / hr] Average Antiproton Non-Luminous Loss Rate vs Helix Size Stores # # Helix size [% of nominal] LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 18

19 S Improvement of the Collision Helix CDF upstream CDF downstream D0 upstream D0 downstream s Before After LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 19

20 Gain in Luminosity Integral from the New Collision Helix LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 20

21 Effects in Collisions LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 21

22 Luminosity Evolution Model The model describes evolution of the beam emittances and intensities taking into account the following factors: Scattering at IP (luminosity) Scattering on residual gas RF noise Intra Beam Scattering Initial parameters (bunch by bunch intensity, transverse and longitudinal emittances) are taken from SDA Main free model parameters are: Gas pressure RF noise power The model does not include beam-beam effects LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 22

23 Luminosity Evolution Store 4581, L=1.72E32 Old Helix Bunch 7 LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 23

24 Luminosity Evolution Store 4859, L=1.70E32 New Helix Bunch 6 LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 24

25 Head-on Beam-Beam Tuneshifts LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 25

26 Luminosity Evolution Store 5245, L=2.92E32 New Helix Bunch 6 LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 26

27 Head-on Beam-Beam Tuneshifts.. Store 5245 LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 27

28 New Tevatron Working Point Currently operating between 4/7 and 3/5 with beambeam ξ = 0.02 To increase number of particles need more tune space WP near ½ should allow 40% more! However, vicinity of half-integer increases sensitivity to quadrupole errors, especially chromatic Moreover, large chromatic β-function is detrimental to beam-beam effects even at present WP LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 28

29 Horizontal Chromatic Beta Function LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 29

30 Correction of β-function Chromaticity Reconnection of sextupoles into new families LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 30

31 Corrected Chromatic Beta-Function 400 Vertical Chromatic β-function x x x10 5 Azimuth (cm) LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 31

32 Improvement of the Proton Lifetime Proton Bunch Intensity (10 9 ) Time (h) Work still in progress! LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 32

33 Summary Beam-beam effects at injection cause 5-10% beam loss At collisions, before 6/06 decrease of intensity lifetime and emittance blowup were caused by longrange effects Implementation of the new collision helix with increased separations at particular LR collision points gave improvement of the luminosity lifetime (~16%) Currently, beam-beam effects at collisions are dominated by proton losses due to head-on interactions LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 33

34 Summary Present working point allows little space for increasing beam intensities. Betatron tune near half-integer resonance has high potential for larger luminosity Operation near Q=0.5 is impossible without correction of β-function chromaticity The new sextupole circuits are being commissioned According to beam-beam simulations correction of chromatic beta will improve situation at present WP. Some encouraging results have already been obtained. LARP Beam-Beam Compensation Mini-Workshop 7/2/07 A.Valishev 34

Beam-beam Simulations of Hadron Colliders Tanaji Sen Fermilab, PO Box 500, Batavia, IL 60510

Beam-beam Simulations of Hadron Colliders Tanaji Sen Fermilab, PO Box 500, Batavia, IL 60510 Beam-beam Simulations of Hadron Colliders Tanaji Sen Fermilab, PO Box 500, Batavia, IL 60510 Abstract Simulations of beam-beam phenomena in the Tevatron and RHIC as well for the LHC are reviewed. The emphasis

More information

Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002

Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002 Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002 Linac Booster o 4.5-4.8e12 ppp at 0.5 Hz o Space charge (30% loss in the first 5 ms) o Main magnet field quality

More information

arxiv: v1 [physics.acc-ph] 18 Dec 2013

arxiv: v1 [physics.acc-ph] 18 Dec 2013 BEAM-BEAM COMPENSATION STUDIES IN THE TEVATRON WITH ELECTRON LENSES Giulio Stancari and Alexander Valishev Fermi National Accelerator Laboratory, Batavia, IL 60150, USA arxiv:1312.5006v1 [physics.acc-ph]

More information

RUN II LUMINOSITY PROGRESS*

RUN II LUMINOSITY PROGRESS* RUN II LUMINOSITY PROGRESS* K. Gollwitzer, Fermilab, Batavia, IL 60510, U.S.A. Abstract The Fermilab Collider Run II program continues at the energy and luminosity frontier of high energy particle physics.

More information

Implementation of Round Colliding Beams Concept at VEPP-2000

Implementation of Round Colliding Beams Concept at VEPP-2000 Implementation of Round Colliding Beams Concept at VEPP-2000 Dmitry Shwartz BINP, Novosibirsk Oct 28, 2016 JAI, Oxford Introduction Beam-Beam Effects 2 e Interaction Points (IP) Circular colliders e Different

More information

Run II Status and Prospects

Run II Status and Prospects Run II Status and Prospects Jeff Spalding Fermilab June 14, 2004 Run II Status and Prospects - Spalding 1 Contents Introduction Major elements of the Run II campaign Present performance Status of the upgrade

More information

Operational Experience with HERA

Operational Experience with HERA PAC 07, Albuquerque, NM, June 27, 2007 Operational Experience with HERA Joachim Keil / DESY On behalf of the HERA team Contents Introduction HERA II Luminosity Production Experiences with HERA Persistent

More information

FY04 Luminosity Plan. SAG Meeting September 22, 2003 Dave McGinnis

FY04 Luminosity Plan. SAG Meeting September 22, 2003 Dave McGinnis FY04 Luminosity Plan SAG Meeting September 22, 2003 Dave McGinnis FY03 Performance Accelerator Issues TEV Pbar Main Injector Reliability Operations Study Strategy Shot Strategy Outline FY04 Luminosity

More information

DEVELOPMENT AND BENCHMARKING OF CODES FOR SIMULATION OF BEAM-BEAM EFFECTS AT THE LHC

DEVELOPMENT AND BENCHMARKING OF CODES FOR SIMULATION OF BEAM-BEAM EFFECTS AT THE LHC DEVELOPMENT AND BENCHMARKING OF CODES FOR SIMULATION OF BEAM-BEAM EFFECTS AT THE LHC F. Schmidt, CERN, Geneva, Switzerland A. Valishev, FNAL, Batavia, IL 60510, USA Y. Luo, BNL, Upton, NY 11973-5000, USA

More information

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side Frank Zimmermann LHCb Upgrade Workshop Edinburgh, 11 January 2007 Frank Zimmermann, LHCb Upgrade Workshop time scale of LHC upgrade

More information

Status of Optics Design

Status of Optics Design 17th B2GM, February 5, 2014 Status of Optics Design Y. Ohnishi /KEK 17th B2GM KEK, February 5, 2014 Contents! Lattice parameters! Dynamic aperture under influence of beam-beam effect! Lattice preparation

More information

The Luminosity Upgrade at RHIC. G. Robert-Demolaize, Brookhaven National Laboratory

The Luminosity Upgrade at RHIC. G. Robert-Demolaize, Brookhaven National Laboratory The Luminosity Upgrade at RHIC G. Robert-Demolaize, Brookhaven National Laboratory RHIC accelerator complex: IPAC'15 - May 3-8, 2015 - Richmond, VA, USA 2 The Relativistic Heavy Ion Collider (RHIC) aims

More information

Introduction to particle accelerators

Introduction to particle accelerators Introduction to particle accelerators Walter Scandale CERN - AT department Lecce, 17 June 2006 Introductory remarks Particle accelerators are black boxes producing either flux of particles impinging on

More information

LHC Luminosity and Energy Upgrade

LHC Luminosity and Energy Upgrade LHC Luminosity and Energy Upgrade Walter Scandale CERN Accelerator Technology department EPAC 06 27 June 2006 We acknowledge the support of the European Community-Research Infrastructure Activity under

More information

LHC Upgrade (accelerator)

LHC Upgrade (accelerator) LHC Upgrade (accelerator) Time scale of LHC luminosity upgrade Machine performance limitations Scenarios for the LHC upgrade Phase 0: no hardware modifications Phase 1: Interaction Region upgrade Phase

More information

A Luminosity Leveling Method for LHC Luminosity Upgrade using an Early Separation Scheme

A Luminosity Leveling Method for LHC Luminosity Upgrade using an Early Separation Scheme LHC Project Note 03 May 007 guido.sterbini@cern.ch A Luminosity Leveling Method for LHC Luminosity Upgrade using an Early Separation Scheme G. Sterbini and J.-P. Koutchouk, CERN Keywords: LHC Luminosity

More information

LUMINOSITY OPTIMIZATION AND LEVELING

LUMINOSITY OPTIMIZATION AND LEVELING LUMINOSITY OPTIMIZATION AND LEVELING J. P. Koutchouk, CERN, Geneva, Switzerland. Abstract The Phase II of the LHC Upgrade is very ambitious with an increase by one order of magnitude of the machine luminosity.

More information

HL-LHC ALTERNATIVES SCENARIOS

HL-LHC ALTERNATIVES SCENARIOS Proceedings of Chamonix 4 Workshop on LHC Performance HL-LHC ALTERNATIVES SCENARIOS R. Tomás, G. Arduini, D. Banfi, J. Barranco, H. Bartosik, O. Brüning, R. Calaga, O. Dominguez, H. Damerau, S. Fartoukh,

More information

CRAB WAIST COLLISIONS IN DAΦNE AND SUPER-B DESIGN

CRAB WAIST COLLISIONS IN DAΦNE AND SUPER-B DESIGN CRAB WAIST COLLISIONS IN DAΦN AND SUPR-B DSIGN P. Raimondi, INFN Laboratori Nazionali Frascati, Frascati, Italy SLAC-PUB-14673 Abstract The new idea of increasing the luminosity of a collider with crab

More information

Concluding Summary on CARE-HHH-ABI Network Workshops

Concluding Summary on CARE-HHH-ABI Network Workshops Concluding Summary on CARE-HHH-ABI Network Workshops Hermann Schmickler, CERN, CH-1211 Geneva 23, Switzerland GENERAL STRATEGY At the creation of the CARE-HHH network in the year 2003 and during the six

More information

Overview of LHC Accelerator

Overview of LHC Accelerator Overview of LHC Accelerator Mike Syphers UT-Austin 1/31/2007 Large Hadron Collider ( LHC ) Outline of Presentation Brief history... Luminosity Magnets Accelerator Layout Major Accelerator Issues U.S. Participation

More information

Fermilab Collider Run II: Accelerator Status and Upgrades 1

Fermilab Collider Run II: Accelerator Status and Upgrades 1 FERMILAB-CONF-04-280-AD Fermilab Collider Run II: Accelerator Status and Upgrades 1 Pushpalatha C. Bhat and William J. Spalding Fermi National Accelerator Laboratory Batavia, IL 60510, USA. Abstract. Fermilab

More information

arxiv: v1 [physics.acc-ph] 21 Oct 2014

arxiv: v1 [physics.acc-ph] 21 Oct 2014 SIX-DIMENSIONAL WEAK STRONG SIMULATIONS OF HEAD-ON BEAM BEAM COMPENSATION IN RHIC arxiv:.8v [physics.acc-ph] Oct Abstract Y. Luo, W. Fischer, N.P. Abreu, X. Gu, A. Pikin, G. Robert-Demolaize BNL, Upton,

More information

BEAM-BEAM EFFECTS IN RHIC

BEAM-BEAM EFFECTS IN RHIC Proceedings of HB212, Beijing, China THO1A1 BEAM-BEAM EFFECTS IN RHIC Y. Luo, M. Bai, W. Fischer, C. Montag, S. White, Brookhaven National Laboratory, Upton, NY 11973, USA Abstract In this article we review

More information

DYNAMIC APERTURE STUDIES FOR HL-LHC V1.0 *

DYNAMIC APERTURE STUDIES FOR HL-LHC V1.0 * SLAC PUB 17366 December 2018 DYNAMIC APERTURE STUDIES FOR HL-LHC V1.0 * Y. Cai, R. De Maria, M. Giovannozzi, Y. Nosochkov, F.F. Van der Veken ;1 CERN, CH-1211 Geneva 23, Switzerland SLAC National Accelerator

More information

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Chin-Cheng Kuo On behalf of the TPS Lattice Design Team Ambient Ground Motion and Civil Engineering for Low Emittance Electron Storage Ring Workshop

More information

Luminosity Goals, Critical Parameters

Luminosity Goals, Critical Parameters CAS Zürich 22 nd February 2018 Luminosity Goals, Critical Parameters Bruno Muratori, STFC Daresbury Laboratory & Cockcroft Institute Werner Herr, CERN Goals At the end of this lecture you should be able

More information

Modeling CESR-c. D. Rubin. July 22, 2005 Modeling 1

Modeling CESR-c. D. Rubin. July 22, 2005 Modeling 1 Modeling CESR-c D. Rubin July 22, 2005 Modeling 1 Weak strong beambeam simulation Motivation Identify component or effect that is degrading beambeam tuneshift Establish dependencies on details of lattice

More information

2008 JINST 3 S Main machine layout and performance. Chapter Performance goals

2008 JINST 3 S Main machine layout and performance. Chapter Performance goals Chapter 2 Main machine layout and performance 2.1 Performance goals The aim of the LHC is to reveal the physics beyond the Standard Model with centre of mass collision energies of up to 14 TeV. The number

More information

Particle physics experiments

Particle physics experiments Particle physics experiments Particle physics experiments: collide particles to produce new particles reveal their internal structure and laws of their interactions by observing regularities, measuring

More information

The TESLA Dogbone Damping Ring

The TESLA Dogbone Damping Ring The TESLA Dogbone Damping Ring Winfried Decking for the TESLA Collaboration April 6 th 2004 Outline The Dogbone Issues: Kicker Design Dynamic Aperture Emittance Dilution due to Stray-Fields Collective

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF

ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF ELIC: A High Luminosity And Efficient Spin Manipulation Electron-Light Ion Collider Based At CEBAF Lia Merminga and Yaroslav Derbenev Center for Advanced Studies of Accelerators, Jefferson Laboratory,

More information

STATUS OF THE VEPP-2000 COLLIDER PROJECT

STATUS OF THE VEPP-2000 COLLIDER PROJECT STATUS OF THE VEPP-000 COLLIDER PROJECT Yu.M. Shatunov for the VEPP-000 Team Budker Institute of Nuclear Phsics, 630090, Novosibirsk, Russia Abstract The VEPP-000 collider which is now under construction

More information

Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron

Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron Urschütz Peter (AB/ABP) CLIC meeting, 29.10.2004 1 Overview General Information on the PS Booster Synchrotron Motivation

More information

Physics 610. Adv Particle Physics. April 7, 2014

Physics 610. Adv Particle Physics. April 7, 2014 Physics 610 Adv Particle Physics April 7, 2014 Accelerators History Two Principles Electrostatic Cockcroft-Walton Van de Graaff and tandem Van de Graaff Transformers Cyclotron Betatron Linear Induction

More information

RHIC - the high luminosity hadron collider

RHIC - the high luminosity hadron collider RHIC - the high luminosity hadron collider RHIC overview Luminosity and polarization evolution Performance limitations Future upgrades RHIC II luminosity upgrade erhic Thomas Roser MIT seminar November

More information

HL-LHC OPERATIONAL SCENARIOS

HL-LHC OPERATIONAL SCENARIOS CERN-ACC-NOTE-2015-0009 2015-05-19 Elias.Metral@cern.ch HL-LHC OPERATIONAL SCENARIOS G. Arduini, N. Biancacci, O. Brüning, R. De Maria, M. Giovannozzi, W. Höfle, K. Li, E. Métral, J.E. Muller, Y. Papaphilippou,

More information

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division First propositions of a lattice for the future upgrade of SOLEIL A. Nadji On behalf of the Accelerators and Engineering Division 1 SOLEIL : A 3 rd generation synchrotron light source 29 beamlines operational

More information

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1 Accelerators for Newcomers D. Brandt, CERN D. Brandt 1 Why this Introduction? During this school, you will learn about beam dynamics in a rigorous way but some of you are completely new to the field of

More information

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev.

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev. Compressor Ring Valeri Lebedev Fermilab Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions Muon Collider Workshop Newport News, VA Dec. 8-1, 8 Where do we go?

More information

We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area"

We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 Structuring the European Research Area Scenarios for the LHC Upgrade Walter Scandale & Frank Zimmermann BEAM 2007 CERN We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European

More information

Open Issues from the SPS Long-Range Experiments

Open Issues from the SPS Long-Range Experiments Open Issues from the SPS Long-Range Experiments Frank Zimmermann US-LARP Beam-Beam Workshop SLAC, 2007 Gerard Burtin, Ulrich Dorda, Gijs de Rijk, Jean-Pierre Koutchouk, Yannis Papaphilippou, Tannaji Sen,

More information

Status of the ESR And Future Options

Status of the ESR And Future Options Status of the ESR And Future Options M. Steck for the Storage Ring Division (C. Dimopoulou, A. Dolinskii, S. Litvinov, F. Nolden, P. Petri, U. Popp, I. Schurig) Outline 1) New Old ESR 2) Slow (Resonant)

More information

Future Light Sources March 5-9, 2012 Low- alpha mode at SOLEIL 1

Future Light Sources March 5-9, 2012 Low- alpha mode at SOLEIL 1 Introduction: bunch length measurements Reminder of optics Non- linear dynamics Low- alpha operation On the user side: THz and X- ray short bunch science CSR measurement and modeling Future Light Sources

More information

DAΦNE upgrade with large Piwinski angle and Crab Waist scheme

DAΦNE upgrade with large Piwinski angle and Crab Waist scheme DAΦNE upgrade with large Piwinski angle and Crab Waist scheme M.E. Biagini, LNF/INFN For the DAΦNE Upgrade Team PAC7, Albuquerque, June 25 th DAΦNE Upgrade Team D. Alesini, D. Babusci, S. Bettoni, M. E.

More information

LHC upgrade based on a high intensity high energy injector chain

LHC upgrade based on a high intensity high energy injector chain LHC upgrade based on a high intensity high energy injector chain Walter Scandale CERN AT department PAF n. 6 CERN, 15 September 2005 luminosity and energy upgrade Phase 2: steps to reach maximum performance

More information

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1

Beam Dynamics. D. Brandt, CERN. CAS Bruges June 2009 Beam Dynamics D. Brandt 1 Beam Dynamics D. Brandt, CERN D. Brandt 1 Some generalities D. Brandt 2 Units: the electronvolt (ev) The electronvolt (ev)) is the energy gained by an electron travelling, in vacuum, between two points

More information

Monochromatization Option for NLC Collisions

Monochromatization Option for NLC Collisions LCC-0134 SLAC-TN-04-003 February 19, 2004 Linear Collider Collaboration Tech Notes Monochromatization Option for NLC Collisions Andrei Seryi, Tor Raubenheimer Stanford Linear Accelerator Center Stanford

More information

OBTAINING SLOW BEAM SPILLS AT THE SSC COLLIDER D. Ritson Stanford Linear Accelerator Stanford, CA 94309

OBTAINING SLOW BEAM SPILLS AT THE SSC COLLIDER D. Ritson Stanford Linear Accelerator Stanford, CA 94309 I : SLAC-PUB-6332 August 1993 (A) OBTAINING SLOW BEAM SPILLS AT THE SSC COLLIDER D. Ritson Stanford Linear Accelerator Stanford CA 94309 Center 1. INTRODUCTION There is substantial interest in providing

More information

The Very Large Hadron Collider Beam Collimation System

The Very Large Hadron Collider Beam Collimation System The Very Large Hadron Collider Beam Collimation System A.I. Drozhdin, N.V. Mokhov, A.A. Sery, Fermilab, P.O. Box 5, Batavia, IL 65 USA INTRODUCTIONS Even in good operational conditions, a finite fraction

More information

LHC Collimation and Loss Locations

LHC Collimation and Loss Locations BLM Audit p. 1/22 LHC Collimation and Loss Locations BLM Audit Th. Weiler, R. Assmann, C. Bracco, V. Previtali, S Redaelli Accelerator and Beam Department, CERN BLM Audit p. 2/22 Outline Introduction /

More information

Lattice Design and Performance for PEP-X Light Source

Lattice Design and Performance for PEP-X Light Source Lattice Design and Performance for PEP-X Light Source Yuri Nosochkov SLAC National Accelerator Laboratory With contributions by M-H. Wang, Y. Cai, X. Huang, K. Bane 48th ICFA Advanced Beam Dynamics Workshop

More information

Status of SuperKEKB Design: Lattice and IR

Status of SuperKEKB Design: Lattice and IR Status of SuperKEKB Design: Lattice and IR Y. Ohnishi July 7, 2009 3rd Open Mee8ng of the Belle II collabora8on Tanabata : Festival of the Weaver? KEK Contents Nano-beam scheme: Design concept Machine

More information

NEXT GENERATION B-FACTORIES

NEXT GENERATION B-FACTORIES NEXT GENERATION B-FACTORIES M. Masuzawa, KEK, Tsukuba, Japan Abstract The KEKB and PEP-II B factories have achieved world record luminosities while doubling or tripling their original design luminosities.

More information

Conceptual design of an accumulator ring for the Diamond II upgrade

Conceptual design of an accumulator ring for the Diamond II upgrade Journal of Physics: Conference Series PAPER OPEN ACCESS Conceptual design of an accumulator ring for the Diamond II upgrade To cite this article: I P S Martin and R Bartolini 218 J. Phys.: Conf. Ser. 167

More information

The FAIR Accelerator Facility

The FAIR Accelerator Facility The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC SIS100 HESR pbar target SuperFRS goals: higher intensity (low charge states) higher energy (high charge states) production of

More information

New LSS optics for the LHC (status)

New LSS optics for the LHC (status) New LSS optics for the LHC (status) 23-03-2012 R.B. Appleby The University of Manchester/Cockcroft Institute, UK Many thanks to Riccardo, Bernhard, Stephane Motivation The optics limitations of the nominal

More information

The Electron-Ion Collider

The Electron-Ion Collider The Electron-Ion Collider C. Tschalaer 1. Introduction In the past year, the idea of a polarized electron-proton (e-p) or electron-ion (e-a) collider of high luminosity (10 33 cm -2 s -1 or more) and c.m.

More information

Synchrotron Based Proton Drivers

Synchrotron Based Proton Drivers Synchrotron Based Pron Drivers Weiren Chou Fermi National Accelerar Laborary P.O. Box 500, Batavia, IL 60510, USA Abstract. Pron drivers are pron sources that produce intense short pron bunches. They have

More information

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics ThomX Machine Advisory Committee (LAL Orsay, March 20-21 2017) Ring Beam Dynamics A. Loulergue, M. Biagini, C. Bruni, I. Chaikovska I. Debrot, N. Delerue, A. Gamelin, H. Guler, J. Zang Programme Investissements

More information

Possible Uses of Rapid Switching Devices and Induction RF for an LHC Upgrade

Possible Uses of Rapid Switching Devices and Induction RF for an LHC Upgrade Possible Uses of Rapid Switching Devices and Induction RF for an LHC Upgrade Frank Zimmermann, CERN Thanks to Ulrich Dorda, Wolfram Fischer, Jean-Pierre Koutchouk, Peter McIntyre, Kazuhito Ohmi, Francesco

More information

Beam. RF antenna. RF cable

Beam. RF antenna. RF cable Status of LEP2 J. Wenninger, SL Operation for the SL division LEPC September 1998 Outline Optics and RF for 1998 Beam current limitations Injection and ramp Performance at high energy Conclusions LEPC/15-09-98

More information

Transverse beam stability and Landau damping in hadron colliders

Transverse beam stability and Landau damping in hadron colliders Work supported by the Swiss State Secretariat for Educa6on, Research and Innova6on SERI Transverse beam stability and Landau damping in hadron colliders C. Tambasco J. Barranco, X. Buffat, T. Pieloni Acknowledgements:

More information

+.V) eo(o) -2 so - sx. hngc)90w3-- Beam-beam collisions and crossing angles in RHIC*

+.V) eo(o) -2 so - sx. hngc)90w3-- Beam-beam collisions and crossing angles in RHIC* i. Workshop on "Beam-Beam E f f e c t s i n L a r g e H a d r o n C o l l i d e r s ' ' CERN, Geneva, SZ, A p r i l 12-16, 1999. BNL-6 6 426 Beam-beam collisions and crossing angles in RHIC* 4 hngc)90w3--

More information

Beam Cooling. Beam Cooling. M. Steck, GSI, Darmstadt CERN Accelerator School Chios, Greece September 18 30, Introduction. 1.

Beam Cooling. Beam Cooling. M. Steck, GSI, Darmstadt CERN Accelerator School Chios, Greece September 18 30, Introduction. 1. Beam Cooling, GSI, Darmstadt CERN Accelerator School, September 18 30, 2011 Beam Cooling Introduction 1.Electron Cooling 2.Ionization Cooling 3.Laser Cooling 4.Stochastic Cooling Beam Cooling Beam cooling

More information

LUMINOSITY LEVELLING TECHNIQUES FOR THE LHC

LUMINOSITY LEVELLING TECHNIQUES FOR THE LHC Published by CERN in the Proceedings of the ICFA Mini-Workshop on Beam Beam Effects in Hadron Colliders, CERN, Geneva, Switzerland, 18 22 March 2013, edited by W. Herr and G. Papotti, CERN 2014 004 (CERN,

More information

Proton. source. Antiproton CDF. source. Tevatron. Main Injector\ Recycler. CERN John Adams Lecture Shiltsev - December 13, 2010

Proton. source. Antiproton CDF. source. Tevatron. Main Injector\ Recycler. CERN John Adams Lecture Shiltsev - December 13, 2010 Proton source Antiproton source CDF Tevatron DØ Main Injector\ Recycler CERN John Adams Lecture Shiltsev - December 13, 2010 1 Accelerator Breakthroughs, Achievements and Lessons from the Tevatron Collider

More information

Lattice Optimization Using Multi-Objective Genetic Algorithm

Lattice Optimization Using Multi-Objective Genetic Algorithm Lattice Optimization Using Multi-Objective Genetic Algorithm Vadim Sajaev, Michael Borland Mini-workshop on ICA in Beam Measurements and Genetic Algorithm in Nonlinear Beam Dynamics March 14, 2012 Introduction

More information

Pretzel scheme of CEPC

Pretzel scheme of CEPC Pretzel scheme of CEPC H. Geng, G. Xu, Y. Zhang, Q. Qin, J. Gao, W. Chou, Y. Guo, N. Wang, Y. Peng, X. Cui, T. Yue, Z. Duan, Y. Wang, D. Wang, S. Bai, F. Su HKUST, Hong Kong IAS program on High Energy

More information

US LHC Accelerator Research Program BNL - FNAL- LBNL - SLAC Hollow e-beam Lens for LHC Scraping

US LHC Accelerator Research Program BNL - FNAL- LBNL - SLAC Hollow e-beam Lens for LHC Scraping US LHC Accelerator Research Program BNL - FNAL- LBNL - SLAC Hollow e-beam Lens for LHC Scraping Jeff Smith SLAC Vladmir Shiltsev, Shasha Drozhdin, V. Kuznetsov, L. Vorobiev and Alex Valishev FNAL 2 April,

More information

Introduction to Accelerators

Introduction to Accelerators Introduction to Accelerators D. Brandt, CERN CAS Platja d Aro 2006 Introduction to Accelerators D. Brandt 1 Why an Introduction? The time where each accelerator sector was working alone in its corner is

More information

ELECTRON COOLING OF PB54+ IONS IN LEIR

ELECTRON COOLING OF PB54+ IONS IN LEIR ELECTRON COOLING OF PB+ IONS IN LEIR G. Tranquille, CERN, Geneva, Switzerland Abstract Electron cooling is central in the preparation of dense bunches of lead beams for the LHC. Ion beam pulses from the

More information

Correction of β-beating due to beam-beam for the LHC and its impact on dynamic aperture

Correction of β-beating due to beam-beam for the LHC and its impact on dynamic aperture Correction of β-beating due to beam-beam for the LHC and its impact on dynamic aperture WEOAB2 Luis Medina1,2, R. Toma s2, J. Barranco3, X. Buffat1, Y. Papaphilippou1, T. Pieloni3 1 Universidad de Guanajuato,

More information

( ( )) + w ( ) 3 / 2

( ( )) + w ( ) 3 / 2 K K DA!NE TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, March 4, 1 Note: G-7 SYNCHROTRON TUNE SHIFT AND TUNE SPREAD DUE TO BEAM-BEAM COLLISIONS WITH A CROSSING ANGLE M. Zobov and D. Shatilov

More information

Longitudinal Momentum Mining of Beam Particles in a Storage Ring

Longitudinal Momentum Mining of Beam Particles in a Storage Ring Longitudinal Momentum Mining of Beam Particles in a Storage Ring C. M. Bhat Fermi National Accelerator Laboratory, P.O.Box 5, Batavia, IL 651, USA (Submitted for publications) I describe a new scheme for

More information

LHC commissioning. 22nd June Mike Lamont LHC commissioning - CMS 1

LHC commissioning. 22nd June Mike Lamont LHC commissioning - CMS 1 LHC commissioning Mike Lamont AB-OP nd June 005.06.05 LHC commissioning - CMS 1 Detailed planning for 7-87 8 and 8-18 005 006 Short Circuit Tests CNGS/TI8/IT1 HWC LSS.L8.06.05 LHC commissioning - CMS Sector

More information

MD Landau Damping: Beam Transfer Functions and diffusion mechanisms

MD Landau Damping: Beam Transfer Functions and diffusion mechanisms CERN-ACC-NOTE-2017-0026 25-04-2017 claudia.tambasco@cern.ch MD 1407 - Landau Damping: Beam Transfer Functions and diffusion mechanisms C. Tambasco, J. Barranco *, A. Boccardi, X. Buffat, M. Crouch, M.

More information

HERA STATUS AND UPGRADE PLANS

HERA STATUS AND UPGRADE PLANS HERA STATUS AND UPGRADE PLANS F. Willeke, Deutsches Elektronen-Synchrotron, Notkestr.85, 22603 Hamburg, Germany Abstract The HERA electron-proton collider at Hamburg Germany, designed for collisions of

More information

HL-LHC: parameter space, constraints & possible options

HL-LHC: parameter space, constraints & possible options HL-LHC: parameter space, constraints & possible options Many thanks to R. Assmann, C. Bhat, O. Brüning, R. Calaga, R. De Maria, S. Fartoukh, J.-P. Koutchouk, S. Myers, L. Rossi, W. Scandale, E. Shaposhnikova,

More information

National Accelerator Laboratory

National Accelerator Laboratory Fermi National Accelerator Laboratory FERMILAB-Conf-97/188 Online Calculation of Tevatron Collider Luminosity using Accelerator Instrumentation A.A. Hahn Fermi National Accelerator Laboratory P.O. Box

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics. LHC Accelerator R&D and Upgrade Scenarios. Francesco Ruggiero

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics. LHC Accelerator R&D and Upgrade Scenarios. Francesco Ruggiero EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 666 LHC Accelerator R&D and Upgrade Scenarios Francesco Ruggiero Abstract

More information

CERN-ATS HiLumi LHC. FP7 High Luminosity Large Hadron Collider Design Study PUBLICATION

CERN-ATS HiLumi LHC. FP7 High Luminosity Large Hadron Collider Design Study PUBLICATION CERN-ATS-2012-290 HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study PUBLICATION INTRA-BEAM SCATTERING AND LUMINOSITY EVOLUTION FOR HL-LHC PROTON BEAMS MICHAELA SCHAUMANN (RWTH AACHEN &

More information

Much of this material comes from lectures given by Philippe Lebrun (head of CERN's Accelerator Technology Department), at SUSSP, Aug

Much of this material comes from lectures given by Philippe Lebrun (head of CERN's Accelerator Technology Department), at SUSSP, Aug ! " # # $ ' ( # # $ %& ) Much of this material comes from lectures given by Philippe Lebrun (head of CERN's Accelerator Technology Department), at SUSSP, Aug. 2009. http://www.ippp.dur.ac.uk/workshops/09/sussp65/programme/

More information

ILC Damping Ring Alternative Lattice Design (Modified FODO)

ILC Damping Ring Alternative Lattice Design (Modified FODO) ILC Damping Ring Alternative Lattice Design (Modified FODO) Yi-Peng Sun 1,2, Jie Gao 1, Zhi-Yu Guo 2 Wei-Shi Wan 3 1 Institute of High Energy Physics, CAS, China 2 State Key Laboratory of Nuclear Physics

More information

Simulations of HL-LHC Crab Cavity Noise using HEADTAIL

Simulations of HL-LHC Crab Cavity Noise using HEADTAIL Simulations of HL-LHC Crab Cavity Noise using HEADTAIL A Senior Project presented to the Faculty of the Physics Department California Polytechnic State University, San Luis Obispo In Partial Fulfillment

More information

ACHIEVABLE SPACE-CHARGE TUNE SHIFT WITH LONG LIFETIME IN THE CERN PS & SPS

ACHIEVABLE SPACE-CHARGE TUNE SHIFT WITH LONG LIFETIME IN THE CERN PS & SPS Contributed talk (15 + 5 min, 30 slides) ACHIEVABLE SPACE-CHARGE TUNE SHIFT WITH LONG LIFETIME IN THE CERN PS & SPS Elias Métral Elias Métral, HB2008 workshop, Nashville, Tennessee, USA, August 25-29,

More information

A Very Large Lepton Collider in a VLHC tunnel

A Very Large Lepton Collider in a VLHC tunnel A Very Large Lepton Collider in a VLHC tunnel Tanaji Sen Fermilab, Batavia, IL Design strategy Intensity Limitations RF and Optics parameters: Arc, IR Lifetime Scaling the beam-beam parameter Luminosity,

More information

Main aim: Preparation for high bunch intensity operation with β*=3.5 m and crossing angle (-100 µrad in IR1 and +100 µrad in IR5)

Main aim: Preparation for high bunch intensity operation with β*=3.5 m and crossing angle (-100 µrad in IR1 and +100 µrad in IR5) Week 24 Main aim: Preparation for high bunch intensity operation with β*=3.5 m and crossing angle (-100 µrad in IR1 and +100 µrad in IR5) Commission systems required for guaranteeing beam stability as

More information

Accelerator Physics Final Exam pts.

Accelerator Physics Final Exam pts. Accelerator Physics Final Exam - 170 pts. S. M. Lund and Y. Hao Graders: C. Richard and C. Y. Wong June 14, 2018 Problem 1 P052 Emittance Evolution 40 pts. a) 5 pts: Consider a coasting beam composed of

More information

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004 Beam Dynamics Gennady Stupakov DOE High Energy Physics Review June 2-4, 2004 Beam Dynamics Research in ARDA Broad expertise in many areas: lattice design, collective effects, electron cloud, beam-beam

More information

Plans for 2016 and Run 2

Plans for 2016 and Run 2 Plans for 2016 and Run 2 Mike Lamont An attempt at synthesis Acknowledgements all round After LS1 It s going to be like after a war Serge Claudet Evian 2012 Where are we? 1/2 6.5 TeV, 2*80 cm, 2*levelled

More information

LECTURE 18. Beam loss and beam emittance growth. Mechanisms for beam loss. Mechanisms for emittance growth and beam loss Beam lifetime:

LECTURE 18. Beam loss and beam emittance growth. Mechanisms for beam loss. Mechanisms for emittance growth and beam loss Beam lifetime: LCTUR 18 Beam loss and beam emittance growth Mechanisms for emittance growth and beam loss Beam lifetime: from residual gas interactions; Touschek effect; quantum lifetimes in electron machines; Beam lifetime

More information

Tools of Particle Physics I Accelerators

Tools of Particle Physics I Accelerators Tools of Particle Physics I Accelerators W.S. Graves July, 2011 MIT W.S. Graves July, 2011 1.Introduction to Accelerator Physics 2.Three Big Machines Large Hadron Collider (LHC) International Linear Collider

More information

Accelerator Physics Issues at the LHC and Beyond

Accelerator Physics Issues at the LHC and Beyond EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN-SL DIVISION CERN-SL-2002-003 (AP) Accelerator Physics Issues at the LHC and Beyond Frank Zimmermann I review the past performance of hadron colliders and

More information

Application of cooling methods at NICA project. G.Trubnikov JINR, Dubna

Application of cooling methods at NICA project. G.Trubnikov JINR, Dubna Application of cooling methods at NICA project G.Trubnikov JINR, Dubna Outline 1. NICA scheme, modes of operation, working cycles;. Booster scheme, parameters, beam requirements; 3. Status of the electron

More information

SPACE CHARGE EXPERIMENTS AND BENCHMARKING IN THE PS

SPACE CHARGE EXPERIMENTS AND BENCHMARKING IN THE PS SPACE CHARGE EXPERIMENTS AND BENCHMARKING IN THE PS E. Métral Crossing the integer or half-integer resonance Montague resonance Static & Dynamic Benchmarking of the simulation codes Space charge driven

More information

BEAM - BEAM TAILS STUDY FOR DAΦNE. D. Shatilov (BINP), M. Zobov

BEAM - BEAM TAILS STUDY FOR DAΦNE. D. Shatilov (BINP), M. Zobov K K DAΦNE TECHNICAL NOTE INFN - LNF, Accelerator Division Frascati, January 22, 1997 Note: G-45 BEAM - BEAM TAILS STUDY FOR DAΦNE D. Shatilov (BINP), M. Zobov Abstract The long tails induced by beam -

More information

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23,

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23, PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23, 2007 As each working day, since the beginning of the

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN ACCELERATORS AND TECHNOLOGY SECTOR. Collider Beam Physics

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN ACCELERATORS AND TECHNOLOGY SECTOR. Collider Beam Physics EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN ACCELERATORS AND TECHNOLOGY SECTOR CERN-ACC-2014-0284 Collider Beam Physics Frank Zimmermann Abstract We review some accelerator physics topics for circular

More information