Three-dimensional hydrodynamic analysis of fluid flow between two eccentric rotating cylinders

Size: px
Start display at page:

Download "Three-dimensional hydrodynamic analysis of fluid flow between two eccentric rotating cylinders"

Transcription

1 Three-dimensional hydrodynamic analysis of fluid flow between two eccentric rotating cylinders S. A. GandjalikhanNassab & M. A. Mehrabian Department of Mechanical Engineering, Shahid Bahonar Universip, Kerman. Iran Abstract In this study, hydrodynamic characteristics of laminar fluid flow between two eccentric rotating cylinders with finite length is investigated. The analysis is based on the numerical solution of the full Navier-Stokes equations using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid and the governing equations are transformed in the computational domain. Discretized forms of the transformed equations are obtained by control volume method and solved by SIMPLE algorithm. The numerical results of this analysis can be used to investigate the oil flow pattern in the journal bearings.to validate the computational results, comparison with the experimental data of other investigators is made, and reasonable agreement is found. 1 Introduction The accuracy of journal bearing performance prediction depends to a great extent on the ability to predict the oil flow pattern through the bearing. To reach this goal, a computational procedure for the numerical solution of three- dimensional incompressible viscous flow between two rotating eccentric cylinders with finite length is introduced m this work. This type of flow has been a subject of interest for many years. In 1968,the stability of viscous flow between eccentric rotating cylinders was studied by Ritchie [l].in that work, the stability of viscous flow between two eccentric cylinders has been analyzed for the case in which the inner cylinder rotates while the outer cylinder

2 184 Advmces irl Fluid Mechmks W remains stationary as in journal bearings, and where the difference in radii of cylinders is small in comparison with the mean radius. The linearized equations governing the marginal stability of axially periodic disturbances were derived for the case of infinitely long cylinders, and approximately solved to give an estimate for the critical Taylor number at which vortex flow occurs for a range of relative eccentricity of the cylinders. The linear stability of flow between two infinitely long eccentric rotating cylinders was studied by Di prima and Stuart [2]in Considering the fact that the basic flow depends on both radial and azimuthal directions, they argued that the entire flow field affects the stability characteristics and, therefore, a global stability analysis should be considered instead of the previously used local stability theory. In 197.5, the motion of viscous fluid flow contained between two rotating circular Cylinders whose axes were slightly apart was considered by Wood [3]. The result is an approximate analytical solution at large Reynolds numbers to the problem of viscous flow between two eccentric cylinders which are rotating in the same direction. No example has been calculated and, therefore, the results has not been compared with other solutions. A transient computational procedure for the numerical solution of the incompressible and laminar Navier-Stokes equations in doubly connected domains was described by Sood and Elrod [4] in For the purpose of illustration, the problem of flow between two eccentric cylinders, where the inner cylinder was rotating with unit speed, was studied.the differential equations were replaced by their finite-difference analogs and the resulting set of algebraic equations was solved iteratively. Solutions were obtained for both the Stokes flow (without the inertia) and the Navier-Stokes flow. It was found that the inclusion of inertia doesnot appreciably affect the accuracy of the solution. The hydrodynamic characteristics of the lubricant film in a journal bearing was studied by Medwell [5]in In that study, the steady, three-dimensional, laminar flow in a journal bearing with an axial groove at the lubricant inlet was considered. The governing equations only solved in the pressure zone of the flow by finite element method. Solutions were obtained for different values of the Reynolds number, eccentricity ratio and the length to diameter ratio. To study the effect of fluid inertia, an inertia correction factor was calculated for the load, power loss and the flow rate. In 1992, Dai, et al. [6] studied the effects of approximations which are usually considered in the analysis of hydrodynamic lubrication. In that study, they compared the results from three models for the isoviscous laminar flow in a long journal bearings. The first model was based on the full Navier-Stokes equations written in the bipolar coordinate system. The second model was lubrication theory in bipolar coordinate that neglected the fluid inertia. The third model was the classical lubrication theory of Reynolds that neglects both the fluid inertia and film curvature. The study demonstrated that on decreasing the clearance ratio, the results of both the Navier-Stokes equations and the bipolar lubrication theory converge monotonically to the results from the classical lubrication theory, one from below and the other from above.

3 Admcc.sill Fluid Mdxznics IV Recently, computational fluid dynamic technique has been used for the thennohydrodynamic analysis of journal bearings. Tucker and Keog [7,8] in 1995 and 1996obtained solutions to a set of exact governing equations for both cases of stationary and orbiting center of the journal. In these studies, the continuity, Navier-stokes and energy equations were considered as governing equations in cylindrical coordinate system (r,o,z). The finite difference forms of the governing equations in cylindrical coordinate obtained by using finite volume method and were solved by SIMPLEC algorithm. By this method, the velocity, pressure and temperature distributions of lubricant flow in journal bearings were obtained. It is noted that using the cylindrical coordinate system for solving the governing equations, introduces an approximation in the analysis. Although, several studies have been done to analyze the fluid flow between two rotating eccentric cylinders, but there is a few studies in which the fluid flow pattern and the effect of different parameters on the flow were be under consideration in details. So, the present work focuses on this point by solving the exact governing equations. In this study, for prediction the hydrodynamic characteristics and the fluid flow pattern between two rotating eccentric cylinders, numerical solutions of the full three dimensional Navier-Stokes equations under laminar, isoviscous and steady conditions are obtained by CFD techniques. To avoid any approximation in the numerical solution, conformal mapping is used to generate an orthogonal grid and the descretized form of the governing equations are solved in the curvilinear coordinate system as a computational domain. 2 Governing equations The governing equations which are written for a three-dimensional, steady, incompressible laminar flow, consist of the continuity and Navier-Stokes equations. The non-dimensional forms of these equations in the Cartesian coordinate system, fig.( l), can be written as : au av aw-, ax ay az c - 1 du +-@v---)=-- d 1 au dp (2) dx Redx ay Fkdy az Redz ax ~,,w_'aw)+d(,w_lw)+d(w~~law,=-ap (4) Redx ax Reay dy dz

4 186 Advmces irl Fluid Mechmks W and the dimensionless variables are defmed as : * x x =- C ' y * =yz* 2, U* =!Lv* =A,$2 p* = -,Re=- p C' C V V v' p v 2 PVC P In these definitions, c is the radial clearance and v = r, 03 is the linear speed of inner cylinder. It should be noted that in fig.(1) and eqns.(1) to (4), asterisks have been dropped for convenience. oil feed hole Y Figure 1: Geometrical configuration of two eccentric cylinders 3 Transformation functions Because of the complex flow geometry in the (x,y) plane which is the region between two eccentric circles, the governing equations are transformed into a simple computational domain such that, the physical domain at each axial location z=cte, is conformally mapped into a rectangular computational domain. The transformation between physical and computational planes can be performed in two steps. Fig.(2) shows these transformations along with their transformation functions. Itis mentioned that the z-axis is the same for both computational and physical coordinates. From these transformation functions, the relations between physical and computational planes are obtained and the transformed forms of the governing equations for cp as a dependent variable in the computational plane can be written in the following common form : in which the values of A, B, C, rwand S, vary from one equation to other.

5 Admcc.sill Fluid Mdxznics IV (a), Z - plane (b) > L- plane ari-z C,=a+iP=aZ-r. (c), 6- plane 6= 5+iq= -iln< Figure 2: Mapping of the flow field. 4 Boundary conditions The following conditions in the physical plane are considered : 1.Periodic boundary conditions in circumferential sense are imposed for all dependent variables. 2. No slip condition is used on the surfaces of inner and outer cylinders. 3.At the groove, where z I ALI2 and n - 0 I e rei+ n the following conditions are applied: Referring to figs.(1 and 2) and noticing that q=o,we can write v=w=o and U = vi,where vi is the dimensionless inlet fluid velocity at the groove which will be corrected at each iteration. 4. At the section z = 0 (mid-plane), the condition of symmetry, i e., zero axial gradient of dependent variables, is used. 5. At the section z =L/2,p = 0 (atmospheric gauge pressure) and zero axial gradient of velocity components will be considered. Also, to calculate vi at each iteration, the following continuity equation will be considered: in which,w is the axial velocity component at the section z = Ll2.

6 188 Advmces irl Fluid Mechmks W 5 Solution procedure Finite difference forms of the partial differential equations (5)were obtained by integrating over an elemental cell volume with staggered control volumes for the 5, q and z-velocity components. The discretized governing equations were numerically solved by SIMPLE algorithm of Patankar and Spalding [lo]. Numerical solutions were obtained iteratively by the line-by-line method with progressing in axial direction. The iterations were terminated when the sum of the absolute residuals was less than iw3for each equation. Numerical calculations were performed by writing a computer program in FORTRAN. As the result of grid tests for obtaining the grid-independent solutions, an optimum grid of 30x20~20,with clustering near the surface of inner cylinder, was used for the flow field calculations. 6 Results and discussion In order to validate the computational results,a test case was analyzed and the results are compared with the experimental data of Ref [9]. Fig(3) shows the pressure distribution around the inner cylinder of this test case. It can be seen that the pressure increases as the fluid passes through the converging region and decreases in the diverging zone. However, the agreement between the analysis and experiment is satisfactory. Figure 3: Pressure distribution around the surface of the inner cylinder at the midplane. Re=%, E= 0.5,~/ rs = 1 The system of rotating eccentric cylinders which are under study in this work, have an axial inlet groove located on the line of centers at the section of maximum gap [see tig(l)]. It is noted that in the bearings running under lubrication conditions, the clearance ratio is very small,but in order to show a typical flow field in physical domain in this study, numerical solution of the governing equations for the fluid flow between two eccentric cylinders with

7 Admcc.sill Fluid Mdxznics IV large clearance ratio, c / rs = 1 (out of lubrication condition) is obtained. Figs.(4-a and b) show the velocity filed and streamlines of this flow at the midplane (z=o). These figures indicate a separated flow in the vicinity of maximum film thickness because the existence of an unfavorable pressure gradient in this region. This result agrees with numerical and experimental results of several other investigators. The pressure contours and also the pressure distribution on the surface of the inner cylinder are presented in figs.(5-a and b). As shown in these figures, the value of pressure increases in the converging zone of the flow and the maximum pressure occurs at a short distance downstream from the minimum film thickness. (a) velocity vectors (b) streamlines Figure 4: Velocity field and streamlines between two eccentric rotating cylinders. Re=35, E= 0.5,c/ rs = 1,LID=10 Also, these figures indicate a negative pressure in the diverging zone of the flow. If the value of pressure in this region falls below the vapor pressure, cavitation will occur. It is noted that the effect of cavitation is neglected in this study. 1, 2n 9 (a) pressure contours (b) pressure distribution Figure 5: Pressure contours for the flow and pressure distribution around the surface of the inner cylinder at the midplane. Re=35, &=0.5,c/rs =l,l/d=lo

8 190 Advmces irl Fluid Mechmks W In another case with c / rs = 0.1, the pressure distributions on the surface of inner cylinder for three different axial planes are shown in Fig.(6). It is seen that the pressure zone ( region with positive pressure ) is located almost in the converging region of the flow and in the diverging region, the value of fluid pressure decreases such that the negative pressure is developed. In reality, if the value of pressure falls below the vapor pressure in the diverging zone, cavitation occurs and there is a two phase flow of lubricant and vapor in that region. In this hydrodynamic analysis, it is assumed that there is no region under cavitation condition. Figure 6: Pressure distribution on the surface on inner cylinder at three different axial planes. Re=60, E= 0.5,c / rs = 0.1, L/D=7.5 Also, fig.(6) indicates that the absolute value of pressure in both converging and diverging domain decreases in the axial direction such that the maximum value of pressure occurs at the mid-plane and the value of pressure in the outlet-plane is equal to zero which is imposed as a boundary condition Figure 7 : Mean axial velocity distribution. Re=60,&=0.5,c/rs= O.l,L/D=7.5 The mean axial velocity distribution in the 5-z plane is shown in Fig(7). It can be seen that there is no axial velocity at the mid-plane. Then, for z >O, this

9 Admcc.sill Fluid Mdxznics IV velocity component increases with increasing z in the pressure zone, where a positive squeeze effect ( favorable pressure gradient in axial direction ) is present. But in the diverging region, especially in the vicinity of the outlet plane (z = L/2 ), there is a negative squeeze effect ( unfavorable pressure gradient in axial direction, [see fig. (6) ] ) which generates a reverse flow such that there is an inflow into the flow field. This phenomena which behaves as a suction does not occur in the bearings under hydrodynamic lubrication conditions because of the cavitation effect which is neglected in the present analysis. Pressure distributions across the film thickness at the mid-plane of the bearing for four different circumferential sections (0 = O,d2,x,3x/2 ) are shown in Fig.@). It is seen that the pressure variation along the film thickness is small although the clearance ratio which is considered in this test case is very large in comparison to the hydrodynamic lubrication conditions. Thereby, the variation of pressure across the film thickness can be ignored for the lubricant flow in journal bearings, which can be considered as a reason for the Reynolds lubrication theory to predict accurately the hydrodynamic characteristics of journal bearings. 1 I I t Figure 8: Pressure distribution across the film at the mid-plane Re=60, E = 0.5,c / rs = 0.1, L/D=7.5 7 Conclusion In this study, the analysis of hydrodynamic characteristics of fluid flow between two rotating eccentric cylinders is done using CFD techniquesto avoid any approximation, conformal mapping is used to transfer the governing equations to the computational plane. The transformed equations are solved for the velocity components and pressure by SIMPLE algorithm. The numerical results from this analysis can be used to investigate the journal bearing performance and the oil flow pattern through this system. The main conclusions can be summarized as follow: 1. In the fluid flow between two eccentric cylinders such as lubricant flow in journal bearings, pressure increases as the fluid passes through the

10 192 Advmces irl Fluid Mechunks W converging region of the flow and then falls in the diverging part, such that the maximum pressure occurs immediately downstream from the minimum film thickness. If the value of pressure in the diverging zone is reduced below the vapor pressure of the lubricant, cavitation will occur. 2. The unfavorable pressure gradient in the circumferential direction, which exists in the vicinity of the maximum film thickness, causes flow separation at this region. The extent of the recirculation region decreases in the axial direction. 3. A positive squeeze effect on the lubricant film is present in the converging region up to the minimum film thickness after which a negative squeeze effect is developed. In reality for the lubricant flow in journal bearings under lubrication conditions, the negative squeeze effect is disappeared due to the cavitation effects. References [l]ritchie, G. S., On the stability of viscous flow between eccentric rotating cylinders. Journal of Fluid Mechanics,Vol. 32, part 1,pp ,1968. [2] Di Prima, R. C. & Stuart, J. T. Non-Local effects in the stability of flow between eccentric rotating cylinders. Journal of Fluid Mechanics,Vol. 54, part 1,pp ,1972. [3] Wood, W. W. The asymptotic expansion at large Reynolds numbers for steady motion between non-coaxial rotating cylinders. Journal of Fluid Mechanics,Vol.3,pp ,1975. [4] Sood,R, C% Elrod Jr, H. G. Numerical solution of the incompressible Navier- Stokes equations In doubly-connected regions. AIAA Journal, Vol. 12, pp ,1974. [5] Medwell, J. 0.Finite element analysis of steadily loaded hydrodynamic journal bearings. Proc. of the dst Int. Con$ On Numerical Methods in Laminar and Turbulent Flow,part 1,pp, ,1985. [6] Dai, R. X., Dong, Q. & Szeri, A. Z. Approximations in hydrodynamic lubrication. Journal of Tribology,Trans. ASME, Vol. 114,pp ,1992. [7]Tucker, P. G. &L Keogh, P. S. A generalized CFD approach for journal bearing performance prediction. Proc, hstn Mechanical Engineers, Journal of Tribology,Vol. 209, Part J, pp ,1995. [S] Tucker, P. G. 8~ Keogh, P. S. On the dynamic thermal state in a hydrodynamic bearings with a whirling journal using CFD techniques. ASME Journal of Tribology,Vol. 118, pp ,1996. [9] Pan, T. C% Vohr, H. Supper laminar flow in bearings and seals. The symposium on lubrication in nuclear applications., pp ,1967. [lo]patankar,v.p. & Spalding, B. D. A calculation procedure for heat, mass and momentum transfer in three - dimensional parabolic flows. International Journal of Heat and Mass Transfer,Vol. 15,pp ,1972.

Design and Modeling of Fluid Power Systems ME 597/ABE Lecture 7

Design and Modeling of Fluid Power Systems ME 597/ABE Lecture 7 Systems ME 597/ABE 591 - Lecture 7 Dr. Monika Ivantysynova MAHA Professor Fluid Power Systems MAHA Fluid Power Research Center Purdue University Content of 6th lecture The lubricating gap as a basic design

More information

A NUMERICAL ANALYSIS OF COMBUSTION PROCESS IN AN AXISYMMETRIC COMBUSTION CHAMBER

A NUMERICAL ANALYSIS OF COMBUSTION PROCESS IN AN AXISYMMETRIC COMBUSTION CHAMBER SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE-AFASES 2016 A NUMERICAL ANALYSIS OF COMBUSTION PROCESS IN AN AXISYMMETRIC COMBUSTION CHAMBER Alexandru DUMITRACHE*, Florin FRUNZULICA ** *Institute of

More information

Numerical analysis of three-lobe journal bearing with CFD and FSI

Numerical analysis of three-lobe journal bearing with CFD and FSI Numerical analysis of three-lobe journal bearing with CFD and FSI Pankaj Khachane 1, Dinesh Dhande 2 1PG Student at Department of Mechanical Engineering, AISSMSCOE Pune, Maharashtra, India 2Assistant Professor

More information

PRESSURE AND VELOCITY AMPLITUDES OF THE INCOMPRESSIBLE FLUID IN CONCENTRIC ANNULAR PASSAGE WITH OSCILLATORY BOUNDARY: TURBULENT FLOW

PRESSURE AND VELOCITY AMPLITUDES OF THE INCOMPRESSIBLE FLUID IN CONCENTRIC ANNULAR PASSAGE WITH OSCILLATORY BOUNDARY: TURBULENT FLOW Journal of Engineering Science and Technology Vol. 9, No. 2 (2014) 220-232 School of Engineering, Taylor s University PRESSURE AND VELOCITY AMPLITUDES OF THE INCOMPRESSIBLE FLUID IN CONCENTRIC ANNULAR

More information

The Validity of the Reynolds Equation in Modeling Hydrostatic Effects in Gas Lubricated Textured Parallel Surfaces

The Validity of the Reynolds Equation in Modeling Hydrostatic Effects in Gas Lubricated Textured Parallel Surfaces Y. Feldman Y. Kligerman 1 Mem. ASME e-mail: mermdyk@tx.technion.ac.il I. Etsion Fellow ASME S. Haber Mem. ASME Department of Mechanical Engineering, Technion-Israel Institute of Technology, Faculty of

More information

Meysam ATASHAFROOZ, Seyyed Abdolreza GANDJALIKHAN NASSAB, and Amir Babak ANSARI

Meysam ATASHAFROOZ, Seyyed Abdolreza GANDJALIKHAN NASSAB, and Amir Babak ANSARI THERMAL SCIENCE: Year 014, Vol. 18, No., pp. 479-49 479 NUMERICAL INVESTIGATION OF ENTROPY GENERATION IN LAMINAR FORCED CONVECTION FLOW OVER INCLINED BACKWARD AND FORWARD FACING STEPS IN A DUCT UNDER BLEEDING

More information

Iran University of Science & Technology School of Mechanical Engineering Advance Fluid Mechanics

Iran University of Science & Technology School of Mechanical Engineering Advance Fluid Mechanics 1. Consider a sphere of radius R immersed in a uniform stream U0, as shown in 3 R Fig.1. The fluid velocity along streamline AB is given by V ui U i x 1. 0 3 Find (a) the position of maximum fluid acceleration

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

Validation 3. Laminar Flow Around a Circular Cylinder

Validation 3. Laminar Flow Around a Circular Cylinder Validation 3. Laminar Flow Around a Circular Cylinder 3.1 Introduction Steady and unsteady laminar flow behind a circular cylinder, representing flow around bluff bodies, has been subjected to numerous

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

Circular Bearing Performance Parameters with Isothermal and Thermo-Hydrodynamic Approach Using Computational Fluid Dynamics

Circular Bearing Performance Parameters with Isothermal and Thermo-Hydrodynamic Approach Using Computational Fluid Dynamics Circular Bearing Performance Parameters with Isothermal and Thermo-Hydrodynamic Approach Using Computational Fluid Dynamics Amit Chauhan 1 Department of Mechanical Engineering, University Institute of

More information

Thermohydrodynamic analysis of a worn plain journal bearing

Thermohydrodynamic analysis of a worn plain journal bearing Tribology International 37 (2004) 129 136 www.elsevier.com/locate/triboint Thermohydrodynamic analysis of a worn plain journal bearing M. Fillon, J. Bouyer Université de Poitiers, Laboratoire de Mécanique

More information

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations

Pressure-velocity correction method Finite Volume solution of Navier-Stokes equations Exercise: Finish solving the Navier Stokes equations Today's Lecture 2D grid colocated arrangement staggered arrangement Exercise: Make a Fortran program which solves a system of linear equations using an iterative method SIMPLE algorithm Pressure-velocity

More information

SYNTHESIS OF A FLUID JOURNAL BEARING USING A GENETIC ALGORITHM

SYNTHESIS OF A FLUID JOURNAL BEARING USING A GENETIC ALGORITHM SYNTHESIS OF A FLUID JOURNAL BEARING USING A GENETIC ALGORITHM A. MANFREDINI and P. VIGNI Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione (DIMNP) - University of Pisa Via Diotisalvi,

More information

SIMULATION OF PRECESSION IN AXISYMMETRIC SUDDEN EXPANSION FLOWS

SIMULATION OF PRECESSION IN AXISYMMETRIC SUDDEN EXPANSION FLOWS Second International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 6-8 December 1999 SIMULATION OF PRECESSION IN AXISYMMETRIC SUDDEN EXPANSION FLOWS Baoyu GUO, Tim

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

Hydrodynamic Lubrication

Hydrodynamic Lubrication ME 383S Bryant February 15, 2005 1 Hydrodynamic Lubrication Fluid Lubricant: liquid or gas (gas bearing) Mechanism: Pressures separate surfaces o Normal loads on bodies o Convergent profile between surfaces

More information

Helical Coil Flow: a Case Study

Helical Coil Flow: a Case Study Excerpt from the Proceedings of the COMSOL Conference 2009 Milan Helical Coil Flow: a Case Study Marco Cozzini Renewable Energies and Environmental Technologies (REET) Research Unit, Fondazione Bruno Kessler

More information

CHAPTER 1 INTRODUCTION Hydrodynamic journal bearings are considered to be a vital component of all the rotating machinery. These are used to support

CHAPTER 1 INTRODUCTION Hydrodynamic journal bearings are considered to be a vital component of all the rotating machinery. These are used to support CHAPTER 1 INTRODUCTION Hydrodynamic journal bearings are considered to be a vital component of all the rotating machinery. These are used to support radial loads under high speed operating conditions.

More information

Analysis of Hydrodynamic Journal Bearing Using CFD and FSI Technique

Analysis of Hydrodynamic Journal Bearing Using CFD and FSI Technique Analysis of Hydrodynamic Journal Bearing Using CFD and FSI Technique Priyanka Tiwari M.E. Student of Government Engineering College Jabalpur, M.P.-India Veerendra Kumar Principal of Government Engineering

More information

Sliding Contact Bearings

Sliding Contact Bearings Sliding Contact Bearings Classification of Bearings 1. According to the direction of load to be supported. The bearings under this group are classified as: (a) Radial bearings (b) Thrust bearings. In radial

More information

3D Numerical Simulation of Supercritical Flow in Bends of Channel

3D Numerical Simulation of Supercritical Flow in Bends of Channel 3D Numerical Simulation of Supercritical Flow in Bends of Channel Masoud. Montazeri-Namin, Reyhaneh-Sadat. Ghazanfari-Hashemi, and Mahnaz. Ghaeini- Hessaroeyeh Abstract An attempt has been made to simulate

More information

A novel fluid-structure interaction model for lubricating gaps of piston machines

A novel fluid-structure interaction model for lubricating gaps of piston machines Fluid Structure Interaction V 13 A novel fluid-structure interaction model for lubricating gaps of piston machines M. Pelosi & M. Ivantysynova Department of Agricultural and Biological Engineering and

More information

Oil Flow in Connecting Channels of Floating Ring Bearings

Oil Flow in Connecting Channels of Floating Ring Bearings SIRM 2015 11 th International Conference on Vibrations in Rotating Machines, Magdeburg, Deutschland, 23. 25. February 2015 Oil Flow in Connecting Channels of Floating Ring Bearings Rob Eling 1,2, Ron van

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible

More information

Compressible Stokes Flow in Thin Films

Compressible Stokes Flow in Thin Films D. E. A. van Odyck C. H. Venner University of Twente, Faculty of Mechanical Engineering, Tribology Group, P.O. Box 217, 7500 AE Enschede, The Netherlands Compressible Stokes Flow in Thin Films A multigrid

More information

Explicit algebraic Reynolds stress models for internal flows

Explicit algebraic Reynolds stress models for internal flows 5. Double Circular Arc (DCA) cascade blade flow, problem statement The second test case deals with a DCA compressor cascade, which is considered a severe challenge for the CFD codes, due to the presence

More information

Analysis of Fluid Film Stiffness and Damping coefficient for A Circular Journal Bearing with Micropolar Fluid

Analysis of Fluid Film Stiffness and Damping coefficient for A Circular Journal Bearing with Micropolar Fluid et International Journal on Emerging Technologies 5(1): 206-211(2014) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Analysis of Fluid Film Stiffness Damping coefficient for A Circular Journal

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

CFD ANALYSIS OF PRESSURE DISTRIBUTION IN SLIDE CONICAL BEARING LUBRICATED WITH NON-NEWTONIAN OIL

CFD ANALYSIS OF PRESSURE DISTRIBUTION IN SLIDE CONICAL BEARING LUBRICATED WITH NON-NEWTONIAN OIL Journal of KONES Powertrain and Transport, Vol. 20, No. 3 2013 CFD ANALYSIS OF PRESSURE DISTRIBUTION IN SLIDE CONICAL BEARING LUBRICATED WITH NON-NEWTONIAN OIL Adam Czaban Gdynia Maritime University Faculty

More information

Benchmark solutions for the natural convective heat transfer problem in a square cavity

Benchmark solutions for the natural convective heat transfer problem in a square cavity Benchmark solutions for the natural convective heat transfer problem in a square cavity J. Vierendeels', B.Merci' &L E. Dick' 'Department of Flow, Heat and Combustion Mechanics, Ghent University, Belgium.

More information

UNIT IV BOUNDARY LAYER AND FLOW THROUGH PIPES Definition of boundary layer Thickness and classification Displacement and momentum thickness Development of laminar and turbulent flows in circular pipes

More information

STATIC AND DYNAMIC CHARACTERISTICS OF HYDRODYNAMIC FOUR- LOBE JOURNAL BEARING WITH COUPLE STRESS LUBRICANTS

STATIC AND DYNAMIC CHARACTERISTICS OF HYDRODYNAMIC FOUR- LOBE JOURNAL BEARING WITH COUPLE STRESS LUBRICANTS STATIC AND DYNAMIC CHARACTERISTICS OF HYDRODYNAMIC FOUR- LOBE JOURNAL BEARING WITH COUPLE STRESS LUBRICANTS B. Chetti, b.chetti@gmail.com, Institute of sciences and Technology, Center University of Khemis

More information

Lubrication and Journal Bearings

Lubrication and Journal Bearings UNIVERSITY OF HAIL College of Engineering Department of Mechanical Engineering Chapter 12 Lubrication and Journal Bearings Text Book : Mechanical Engineering Design, 9th Edition Dr. Badreddine AYADI 2016

More information

Heat Transfer Analysis of Machine Tool Main Spindle

Heat Transfer Analysis of Machine Tool Main Spindle Technical Paper Heat Transfer Analysis of Machine Tool Main Spindle oshimitsu HIRASAWA Yukimitsu YAMAMOTO CAE analysis is very useful for shortening development time and reducing the need for development

More information

Available online at ScienceDirect. Procedia Engineering 113 (2015 )

Available online at   ScienceDirect. Procedia Engineering 113 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 113 (2015 ) 306 311 International Conference on Oil and Gas Engineering, OGE-2015 Developing of computational investigation

More information

Some Aspects Regarding the Modeling of Highly Pressurized Squeeze Film Dampers

Some Aspects Regarding the Modeling of Highly Pressurized Squeeze Film Dampers Some Aspects Regarding the Modeling of ighly Pressurized Squeeze Film Dampers Laurenţiu MORARU* *Corresponding author Department of Aerospace Sciences, The POLITENICA University of Bucharest Splaiul Independenţei

More information

Analysis of Hydrodynamic Plain Journal Bearing

Analysis of Hydrodynamic Plain Journal Bearing Analysis of Hydrodynamic Plain Journal Bearing Ravindra M. Mane* 1, Sandeep Soni 1 1 Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India-395007 * Corresponding Author: At/Po: Varkute-Mhaswad,

More information

SIMULATION OF THREE-DIMENSIONAL INCOMPRESSIBLE CAVITY FLOWS

SIMULATION OF THREE-DIMENSIONAL INCOMPRESSIBLE CAVITY FLOWS ICAS 2000 CONGRESS SIMULATION OF THREE-DIMENSIONAL INCOMPRESSIBLE CAVITY FLOWS H Yao, R K Cooper, and S Raghunathan School of Aeronautical Engineering The Queen s University of Belfast, Belfast BT7 1NN,

More information

Shell Balances in Fluid Mechanics

Shell Balances in Fluid Mechanics Shell Balances in Fluid Mechanics R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University When fluid flow occurs in a single direction everywhere in a system, shell

More information

Lecture Slides. Chapter 12. Lubrication and Journal Bearings

Lecture Slides. Chapter 12. Lubrication and Journal Bearings Lecture Slides Chapter 12 Lubrication and Journal Bearings The McGraw-Hill Companies 2012 Chapter Outline Types of Lubrication Hydrodynamic Hydrostatic Elastohydrodynamic Boundary Solid film Viscosity

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Identification of SFD force coefficients Large Clearance Open Ends SFD

Identification of SFD force coefficients Large Clearance Open Ends SFD 32 nd Turbomachinery Research Consortium Meeting Identification of SFD force coefficients Large Clearance Open Ends SFD TRC-SFD-1-212 Luis San Andrés Mast-Childs Professor May 212 TRC Project 32513/1519FB

More information

INTRODUCTION TO FLUID MECHANICS June 27, 2013

INTRODUCTION TO FLUID MECHANICS June 27, 2013 INTRODUCTION TO FLUID MECHANICS June 27, 2013 PROBLEM 3 (1 hour) A perfect liquid of constant density ρ and constant viscosity µ fills the space between two infinite parallel walls separated by a distance

More information

FLUID MECHANICS. Chapter 9 Flow over Immersed Bodies

FLUID MECHANICS. Chapter 9 Flow over Immersed Bodies FLUID MECHANICS Chapter 9 Flow over Immersed Bodies CHAP 9. FLOW OVER IMMERSED BODIES CONTENTS 9.1 General External Flow Characteristics 9.3 Drag 9.4 Lift 9.1 General External Flow Characteristics 9.1.1

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 3 LAMINAR BOUNDARY LAYER FLOW LAMINAR BOUNDARY LAYER FLOW Boundary

More information

LOW REYNOLDS NUMBER FLOWS HINCHEY

LOW REYNOLDS NUMBER FLOWS HINCHEY LOW REYNOLDS NUMBER FLOWS HINCHEY LUBRICATION FLOWS Lubrication flows are governed by Reynolds Equation for Pressure. For a Cartesian geometry, its derivation starts with the following simplified form

More information

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer

CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer CENG 501 Examination Problem: Estimation of Viscosity with a Falling - Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic

More information

PREDICTION OF OPERATIONAL CHARACTERISTICS OF FLUID-FILM AND GAS BEARINGS FOR HIGH-SPEED TURBOMACHINERY USING COMPUTATIONAL FLUID DYNAMICS

PREDICTION OF OPERATIONAL CHARACTERISTICS OF FLUID-FILM AND GAS BEARINGS FOR HIGH-SPEED TURBOMACHINERY USING COMPUTATIONAL FLUID DYNAMICS PREDICTION OF OPERATIONAL CHARACTERISTICS OF FLUID-FILM AND GAS BEARINGS FOR HIGH-SPEED TURBOMACHINERY USING COMPUTATIONAL FLUID DYNAMICS Ravikovich Y.A., Ermilov Y.I., Pugachev A.O., Matushkin A.A., Kholobtsev

More information

Mixed Lubrication of Coupled Journal-Thrust-Bearing Systems Including Mass Conserving Cavitation

Mixed Lubrication of Coupled Journal-Thrust-Bearing Systems Including Mass Conserving Cavitation Yansong Wang e-mail: yswang@northwestern.edu Q. Jane Wang Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208 Chih Lin Baker Hughes, Inc., Houston, TX 77252 Mixed Lubrication

More information

Second Law Analysis of Forced Convective Cooling in a Channel with a Heated Wall Mounted Obstacle

Second Law Analysis of Forced Convective Cooling in a Channel with a Heated Wall Mounted Obstacle Journal of Electronics Cooling and Thermal Control, 3, 3, - http://d.doi.org/.436/jectc.3.33 Published Online September 3 (http://www.scirp.org/journal/jectc) Second Law Analysis of Forced Convective Cooling

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

Keywords - Gas Turbine, Exhaust Diffuser, Annular Diffuser, CFD, Numerical Simulations.

Keywords - Gas Turbine, Exhaust Diffuser, Annular Diffuser, CFD, Numerical Simulations. Numerical Investigations of PGT10 Gas Turbine Exhaust Diffuser Using Hexahedral Dominant Grid Vaddin Chetan, D V Satish, Dr. Prakash S Kulkarni Department of Mechanical Engineering, VVCE, Mysore, Department

More information

Laminar Mixed Convection in the Entrance Region of Horizontal Quarter Circle Ducts

Laminar Mixed Convection in the Entrance Region of Horizontal Quarter Circle Ducts Proceedings of the 5th IASME/WSEAS Int. Conference on Heat Transfer Thermal Engineering and Environment Athens Greece August 5-7 007 49 Laminar Mixed Convection in the Entrance Region of Horizontal Quarter

More information

Computation of Incompressible Flows: SIMPLE and related Algorithms

Computation of Incompressible Flows: SIMPLE and related Algorithms Computation of Incompressible Flows: SIMPLE and related Algorithms Milovan Perić CoMeT Continuum Mechanics Technologies GmbH milovan@continuummechanicstechnologies.de SIMPLE-Algorithm I - - - Consider

More information

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B.

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B. Fall 010 Exam 1A. 1B. Fall 010 Exam 1C. Water is flowing through a 180º bend. The inner and outer radii of the bend are 0.75 and 1.5 m, respectively. The velocity profile is approximated as C/r where C

More information

ENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH V-DOWNSTREAM DISCRETE BAFFLES

ENERGY PERFORMANCE IMPROVEMENT, FLOW BEHAVIOR AND HEAT TRANSFER INVESTIGATION IN A CIRCULAR TUBE WITH V-DOWNSTREAM DISCRETE BAFFLES Journal of Mathematics and Statistics 9 (4): 339-348, 2013 ISSN: 1549-3644 2013 doi:10.3844/jmssp.2013.339.348 Published Online 9 (4) 2013 (http://www.thescipub.com/jmss.toc) ENERGY PERFORMANCE IMPROVEMENT,

More information

Stability of Water-Lubricated, Hydrostatic, Conical Bearings With Spiral Grooves for High-Speed Spindles

Stability of Water-Lubricated, Hydrostatic, Conical Bearings With Spiral Grooves for High-Speed Spindles S. Yoshimoto Professor Science University of Tokyo, Department of Mechanical Engineering, 1-3 Kagurazaka Shinjuku-ku, Tokyo 16-8601 Japan S. Oshima Graduate Student Science University of Tokyo, Department

More information

Analysis of Fitted Bearings under Second Order Rotatory Theory of Hydrodynamic Lubrication

Analysis of Fitted Bearings under Second Order Rotatory Theory of Hydrodynamic Lubrication International Journal of Multidisciplinary and Current Research Research Article ISSN: 2321-3124 Available at: http://ijmcr.com Analysis of Fitted Bearings under Second Order Rotatory Theory of Hydrodynamic

More information

Hakwoon Kim Gunhee Jang Sanghoon Lee. 1 Introduction

Hakwoon Kim Gunhee Jang Sanghoon Lee. 1 Introduction Microsyst Technol (2011) 17:749 759 DOI 10.1007/s00542-010-1188-4 TECHNICAL PAPER Complete determination of the dynamic coefficients of coupled journal and thrust bearings considering five degrees of freedom

More information

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics

REE Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics REE 307 - Internal Fluid Flow Sheet 2 - Solution Fundamentals of Fluid Mechanics 1. Is the following flows physically possible, that is, satisfy the continuity equation? Substitute the expressions for

More information

Chapter 6: Incompressible Inviscid Flow

Chapter 6: Incompressible Inviscid Flow Chapter 6: Incompressible Inviscid Flow 6-1 Introduction 6-2 Nondimensionalization of the NSE 6-3 Creeping Flow 6-4 Inviscid Regions of Flow 6-5 Irrotational Flow Approximation 6-6 Elementary Planar Irrotational

More information

Fluid Dynamics Problems M.Sc Mathematics-Second Semester Dr. Dinesh Khattar-K.M.College

Fluid Dynamics Problems M.Sc Mathematics-Second Semester Dr. Dinesh Khattar-K.M.College Fluid Dynamics Problems M.Sc Mathematics-Second Semester Dr. Dinesh Khattar-K.M.College 1. (Example, p.74, Chorlton) At the point in an incompressible fluid having spherical polar coordinates,,, the velocity

More information

Comparison of Perturbed Reynolds Equation and CFD Models for the Prediction of Dynamic Coefficients of Sliding Bearings

Comparison of Perturbed Reynolds Equation and CFD Models for the Prediction of Dynamic Coefficients of Sliding Bearings lubricants Article Comparison of Perturbed Reynolds Equation and CFD Models for the Prediction of Dynamic Coefficients of Sliding Bearings Troy Snyder * and Minel Braun Department of Mechanical Engineering,

More information

Computation on Turbulent Dilute Liquid-Particale. Flows through a Centrifugal Impeller*

Computation on Turbulent Dilute Liquid-Particale. Flows through a Centrifugal Impeller* Computation on Turbulent Dilute Liquid-Particale Flows through a Centrifugal Impeller* Yulin WU** Risaburo OBA+ Toshiaki IKOHAGI + Abstract In present work, two-dimensional turbulent liquid- around a blade-toblade

More information

INVESTIGATION OF SWIRLING FLOW IN DIFFUSERS INSTALLED AT THE EXIT OF AN AXIAL-FLOW PUMP

INVESTIGATION OF SWIRLING FLOW IN DIFFUSERS INSTALLED AT THE EXIT OF AN AXIAL-FLOW PUMP TASK QUARTERLY 5 No 4 (2001), 603 610 INVESTIGATION OF SWIRLING FLOW IN DIFFUSERS INSTALLED AT THE EXIT OF AN AXIAL-FLOW PUMP ALEXEY N. KOCHEVSKY Department of Fluid Mechanics, Sumy State University, Rimsky-Korsakov

More information

Flow characteristics of curved ducts

Flow characteristics of curved ducts Applied and Computational Mechanics 1 (007) 55-64 Flow characteristics of curved ducts P. Rudolf a *, M. Desová a a Faculty of Mechanical Engineering, Brno University of Technology,Technická,616 69 Brno,

More information

150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces

150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with

More information

Improved Model for Meanline Analysis of Centrifugal Compressors with a Large Tip Clearance

Improved Model for Meanline Analysis of Centrifugal Compressors with a Large Tip Clearance Improved Model for Meanline Analysis of Centrifugal Compressors with a Large Tip Clearance Andrey Sherbina 1, Ivan Klimov 2 and Leonid Moroz 3 SoftInWay Inc., 1500 District Avenue, Burlington, MA, 01803,

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders

Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders Numerical Investigation of Thermal Performance in Cross Flow Around Square Array of Circular Cylinders A. Jugal M. Panchal, B. A M Lakdawala 2 A. M. Tech student, Mechanical Engineering Department, Institute

More information

A numerical study of heat transfer and fluid flow over an in-line tube bank

A numerical study of heat transfer and fluid flow over an in-line tube bank Fluid Structure Interaction VI 295 A numerical study of heat transfer and fluid flow over an in-line tube bank Z. S. Abdel-Rehim Mechanical Engineering Department, National Research Center, Egypt Abstract

More information

Thermo-Hydrodynamic Analysis of Journal Bearing To Find Out Equivalent Temperature

Thermo-Hydrodynamic Analysis of Journal Bearing To Find Out Equivalent Temperature IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 12 June 215 ISSN (online): 2349-784X Thermo-Hydrodynamic Analysis of Journal Bearing To Find Out Equivalent Temperature

More information

Introduction. Statement of Problem. The governing equations for porous materials with Darcy s law can be written in dimensionless form as:

Introduction. Statement of Problem. The governing equations for porous materials with Darcy s law can be written in dimensionless form as: Symbolic Calculation of Free Convection for Porous Material of Quadratic Heat Generation in a Circular Cavity Kamyar Mansour Amirkabir University of technology, Tehran, Iran, 15875-4413 mansour@aut.ac.ir

More information

SIMPLE Algorithm for Two-Dimensional Channel Flow. Fluid Flow and Heat Transfer

SIMPLE Algorithm for Two-Dimensional Channel Flow. Fluid Flow and Heat Transfer SIMPLE Algorithm for Two-Dimensional Channel Flow Fluid Flow and Heat Transfer by Professor Jung-Yang San Mechanical Engineering Department National Chung Hsing University Two-dimensional, transient, incompressible

More information

CHARACTERISTICS OF ELLIPTIC CO-AXIAL JETS

CHARACTERISTICS OF ELLIPTIC CO-AXIAL JETS ELECTRIC POWER 2003 March 4-6, 2003 George R Brown Convention Center, Houston, TX EP 03 Session 07C: Fuels, Combustion and Advanced Cycles - Part II ASME - FACT Division CHARACTERISTICS OF ELLIPTIC CO-AXIAL

More information

Linear and Nonlinear Analysis of Plain Journal Bearings Lubricated With Couple Stress Fluid

Linear and Nonlinear Analysis of Plain Journal Bearings Lubricated With Couple Stress Fluid ISSN 2395-1621 Linear and Nonlinear Analysis of Plain Journal Bearings Lubricated With Couple Stress Fluid #1 Deepali Kangude 1 deepalikangude94@gmail.com 1 P.G. student Mechanical Department, DYPIET Pimpri,

More information

3D MHD Free Surface Fluid Flow Simulation Based on. Magnetic-Field Induction Equations

3D MHD Free Surface Fluid Flow Simulation Based on. Magnetic-Field Induction Equations 3D MHD Free Surface Fluid Flow Simulation Based on Magnetic-Field Induction Equations H.L. HUANG, A. YING, M. A. ABDOU Mechanical and Aerospace Engineering Department, UCLA, Los Angeles, CA, 90095 Huang@fusion.ucla.edu

More information

Numerical Analysis of a Journal Bearing with Chemical Roughness

Numerical Analysis of a Journal Bearing with Chemical Roughness MSD.04-1 Numerical Analysis of a Journal Bearing with Chemical Roughness Mohammad Tauviqirrahman a,b, Muchammad a, Jamari b, and Dik J. Schipper a a Laboratory for Surface Technology and Tribology, Faculty

More information

Numerical Study of Laminar Free Convection About a Horizontal Cylinder with Longitudinal Fins of Finite Thickness

Numerical Study of Laminar Free Convection About a Horizontal Cylinder with Longitudinal Fins of Finite Thickness Published in International Journal of Thermal Sciences 007 This is author version post-print Archived in Dspace@nitr http://dspace.nitrkl.ac.in/dspace Numerical Study of Laminar Free Convection About a

More information

TURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS

TURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS HEFAT2014 10 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 2014 Orlando, Florida TURBULENT FLOW ACROSS A ROTATING CYLINDER WITH SURFACE ROUGHNESS Everts, M.,

More information

MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow

MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow TRANSPORT PHENOMENA MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow Introduction to Turbulent Flow 1. Comparisons of laminar and turbulent flows 2. Time-smoothed equations of change for incompressible

More information

A numerical investigation of tip clearance flow in Kaplan water turbines

A numerical investigation of tip clearance flow in Kaplan water turbines Published in the proceedings of HYDROPOWER INTO THE NEXT CENTURY - III, 1999. ISBN 9522642 9 A numerical investigation of tip clearance flow in Kaplan water turbines M.Sc. H. Nilsson Chalmers University

More information

6.1 Momentum Equation for Frictionless Flow: Euler s Equation The equations of motion for frictionless flow, called Euler s

6.1 Momentum Equation for Frictionless Flow: Euler s Equation The equations of motion for frictionless flow, called Euler s Chapter 6 INCOMPRESSIBLE INVISCID FLOW All real fluids possess viscosity. However in many flow cases it is reasonable to neglect the effects of viscosity. It is useful to investigate the dynamics of an

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011 Experimental and Numerical comparison between the performance of Helical cone coils and ordinary helical coils used as dehumidifier for humidification dehumidification in desalination units Abo Elazm M.M.

More information

Summary of Thick Liquid FW/Blanket for High Power Density Fusion Devices

Summary of Thick Liquid FW/Blanket for High Power Density Fusion Devices Summary of Thick Liquid FW/Blanket for High Power Density Fusion Devices The replacement of the first wall with a flowing thick liquid offers the advantages of high power density, high reliability and

More information

COUETTE FLOW IN A PARTIALLY POROUS CURVED CHANNEL WHICH IS SLIGHTLY ECCENTRIC

COUETTE FLOW IN A PARTIALLY POROUS CURVED CHANNEL WHICH IS SLIGHTLY ECCENTRIC ISTP-6, 5, PAGUE 6 TH INTENATIONAL SYMPOSIUM ON TANSPOT PHENOMENA COUETTE FLOW IN A PATIALLY POOUS CUVED CHANNEL WHICH IS SLIGHTLY ECCENTIC Leong, J.C., Tsai, C.H., Tai, C.H. Department of Vehicle Engineering,

More information

Mechanical Engineering Programme of Study

Mechanical Engineering Programme of Study Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel

More information

Signature: (Note that unsigned exams will be given a score of zero.)

Signature: (Note that unsigned exams will be given a score of zero.) Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Dabiri Prof. Wassgren Prof.

More information

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition

Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow

More information

THERMOHYDRODYNAMIC ANALYSIS OF PLAIN JOURNAL BEARING WITH MODIFIED VISCOSITY - TEMPERATURE EQUATION

THERMOHYDRODYNAMIC ANALYSIS OF PLAIN JOURNAL BEARING WITH MODIFIED VISCOSITY - TEMPERATURE EQUATION INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 976 634(Print), ISSN 976 634 (Print) ISSN 976 6359 (Online)

More information

Fluid flow in a channel partially filled with porous material

Fluid flow in a channel partially filled with porous material Fluid flow in a channel partially filled with porous material M. Hriberkk', R. Jec12& L. Skerget' 'Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia 2Facultyof

More information

Study of the Losses in Fluid Machinery with the Help of Entropy

Study of the Losses in Fluid Machinery with the Help of Entropy Study of the Losses in Fluid Machinery with the Help of Entropy Martin Böhle 1, Annika Fleder 1, Matthias Mohr 1 * SYMPOSIA ON ROTATING MACHINERY ISROMAC 16 International Symposium on Transport Phenomena

More information

Magnetohydrodynamic Flow of a Liquid Metal in a Curved Circular Duct subject to the Effect of an External Magnetic Field

Magnetohydrodynamic Flow of a Liquid Metal in a Curved Circular Duct subject to the Effect of an External Magnetic Field Paper 85 Civil-Comp Press, 2012 Proceedings of the Eighth International Conference on Engineering Computational Technology, B.H.V. Topping, (Editor), Civil-Comp Press, Stirlingshire, Scotland Magnetohydrodynamic

More information

EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY

EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY THERMAL SCIENCE: Year 2018, Vol. 22, No. 6A, pp. 2413-2424 2413 EFFECT OF THE INLET OPENING ON MIXED CONVECTION INSIDE A 3-D VENTILATED CAVITY by Hicham DOGHMI *, Btissam ABOURIDA, Lahoucin BELARCHE, Mohamed

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

Numerical study of 2D heat transfer in a scraped surface heat exchanger

Numerical study of 2D heat transfer in a scraped surface heat exchanger Computers & Fluids 33 (2004) 869 880 www.elsevier.com/locate/compfluid Numerical study of 2D heat transfer in a scraped surface heat exchanger K.-H. Sun a, *, D.L. Pyle a, A.D. Fitt b, C.P. Please b, M.J.

More information

May New Proposal A HYBRID COMPUTATIONAL ANALYSIS FOR SHALLOW DEPTH, GROOVED ANNULAR SEALS FOR PUMPS. Luis San Andrés Tingcheng Wu

May New Proposal A HYBRID COMPUTATIONAL ANALYSIS FOR SHALLOW DEPTH, GROOVED ANNULAR SEALS FOR PUMPS. Luis San Andrés Tingcheng Wu New Proposal May 2015 A HYBRID COMPUTATIONAL ANALYSIS FOR SHALLOW DEPTH, GROOVED ANNULAR SEALS FOR PUMPS Luis San Andrés Tingcheng Wu Introduction Circumferentially-grooved seals are widely used in centrifugal

More information

Simulation and improvement of the ventilation of a welding workshop using a Finite volume scheme code

Simulation and improvement of the ventilation of a welding workshop using a Finite volume scheme code 1 st. Annual (National) Conference on Industrial Ventilation-IVC2010 Feb 24-25, 2010, Sharif University of Technology, Tehran, Iran IVC2010 Simulation and improvement of the ventilation of a welding workshop

More information