OVOIDS OF PG(3, q), q EVEN, WITH A CONIC SECTION

Size: px
Start display at page:

Download "OVOIDS OF PG(3, q), q EVEN, WITH A CONIC SECTION"

Transcription

1 OVOIDS OF PG(3, q), q EVEN, WITH A CONIC SECTION MATTHEW R. BROWN ABSTRACT It is shown that if a plane of PG(3, q), q even, meets an ovoid in a conic, then the ovoid must be an elliptic quadric. This is proved by using the generalized quadrangles T () ( a conic), W(q) and the isomorphism between them to show that every secant plane section of the ovoid must be a conic. The result then follows from a well-known theorem of Barlotti. 1. Introduction and definitions Throughout this paper we will assume that q is even. We will be considering ovoids of PG(3, q) which contain a conic as a plane section by using different representations of the classical generalized quadrangle of order q. An oal of PG(2, q) is a set of q1 points of PG(2, q), with no three collinear. Let be a line of PG(2, q); then is incident with zero, one or two points of and is accordingly called an external line, a tangent or a secant to. An elementary count shows that there is a unique tangent to incident with a given point of. If is tangent to and incident with the point P, then we say that is the tangent to at P. Ifq is even, then the tangents to are coincident in a fixed point, the nucleus of (see [9, Lemma 8.6]). The classical example of an oval in PG(2, q) is the set of points satisfying an irreducible quadratic equation, called a conic (more precisely this is a non-degenerate conic). A hyperoal of PG(2, q) is a set of q2 points, with no three collinear. An oval of PG(2, q) together with its nucleus is a hyperoval of PG(2, q). An ooid Ω of PG(3, q) is a set of q1 points of PG(3, q), with no three collinear. From this point we will assume that q 2, so that an ovoid is a maximal-sized set of points, with no three collinear. Let π be a plane of PG(3, q); then π meets Ω in a single point or in an oval of π and is called accordingly a tangent plane or a secant plane. The intersection of Ω and a secant plane of Ω is called a secant plane section of Ω. There is a unique tangent plane to Ω containing a given point P Ω. This plane is the tangent plane to Ω at P. (See [1, 2, 18] for the above.) If q is odd, then ovoids of PG(3, q) have been classified as the non-degenerate elliptic quadrics of PG(3, q) (see [1, 18]). For q even, q 2h, the two known isomorphism classes of ovoids are the non-degenerate elliptic quadrics, which exist for all h 1, and the Tits ovoids (see [10, Chapter 16]) which exist for h odd, h 3. Most results characterizing ovoids of PG(3, q) have been in terms of the secant plane sections. Barlotti [2] proved that if every secant plane section of an ovoid is a conic, then the ovoid must be an elliptic quadric. In [22] Segre strengthened this result (for q 8) to say that if at least (qq2q)2 secant plane sections of an ovoid are conics, then the ovoid must be an elliptic quadric. The motivation for further results of this type characterizing ovoids is the connection of ovoids with inversive planes Received 19 November 1998; revised 15 July Mathematics Subject Classification 51E20, 51E12 (primary), 51E21 (secondary). J. London Math. Soc. (2) 62 (2000) London Mathematical Society 2000.

2 570 MATTHEW R. BROWN (see [5]). In particular these results concern bundles, pencils and flocks of ovoids. A bundle (respectively, pencil) of an ovoid Ω is a set of q1 (respectively q) distinct secant plane sections of Ω whose corresponding set of secant planes intersect pairwise in a fixed line meeting Ω in two points (respectively one point). A flock of Ω is a set of q1 secant plane sections of Ω partitioning all but two points of Ω. Prohaska and Walker [21] proved that if every element of a bundle of an ovoid Ω is a conic, then Ω is an elliptic quadric, while Glynn [7] showed that if every element of a pencil is a conic, then the ovoid is an elliptic quadric. The corresponding result for flocks was proved by Brown, O Keefe and Penttila [3]. In this paper we prove that if an ovoid of PG(3, q) has a secant plane section that is a conic, then it must be an elliptic quadric. The proof of this result is independent of the bundle, pencil and flock results, relying on only the result of Barlotti [2, 5.2.7] which states that if every secant plane section of an ovoid is a conic, then the ovoid is an elliptic quadric. This result answers in the affirmative a conjecture made by Glynn in [7]. All of the above results consider cases where some selection of secant plane section(s) consists entirely of conics. The work of Penttila and Praeger [20] and O Keefe and Penttila [15] shows that if an ovoid has a pencil of translation ovals then it is either an elliptic quadric or a Tits ovoid. Further, in [16] O Keefe and Penttila show that if an ovoid has each secant plane section an oval which is contained in a translation hyperoval, then the ovoid is necessarily either an elliptic quadric or a Tits ovoid. The classification of ovoids of PG(3, q), q even, has been completed for the cases q 32 (q 4in[2], q 8in[6], q 16 in [13, 14] and q 32 in [17]). In the cases q 4 and q 16 there are only the elliptic quadric ovoids while in the cases q 8 and q 32 the only ovoids are the elliptic quadrics and the Tits ovoids. Note that the classification of ovoids for q 32 implies that for q 32 an ovoid of PG(3, q) containing a conic must be an elliptic quadric. For an excellent introductory survey of results on ovoids of PG(3, q), see [12]. A (finite) generalized quadrangle (see [19] for a comprehensive introduction) is an incidence structure (,, I) in which and are disjoint (non-empty) sets of objects called points and lines, respectively, and for which I ()() isa symmetric point line incidence relation satisfying the following axioms: (i) Each point is incident with 1t lines (t 1) and two distinct points are incident with at most one line. (ii) Each line is incident with 1s points (s 1) and two distinct lines are incident with at most one point. (iii) If X is a point and is a line not incident with X, then there is a unique pair (Y, m) for which X I m I Y I. The integers s and t are the parameters of the generalized quadrangle and is said to have order (s, t). If s t, then is said to have order s. If has order (s, t), then it follows that (s1) (st1) and (t1) (st1) [19, 1.2.1]. If (,, I) is a generalized quadrangle of order (s, t) then the incidence structure (,, I) is a generalized quadrangle of order (t, s) called the dual of. The classical generalized quadrangles of order q (q a prime power) are Q(4, q), which arises as the points and lines of the non-singular (parabolic) quadric in PG(4, q), and W(q), which is defined as the singular points and lines of a symplectic polarity of PG(3, q). From [19, 3.2.1] we have Q(4, q) W(q) and Q(4, q) W(q) if and only if q is even.

3 OVOIDS OF PG(3, q), q EVEN, WITH A CONIC SECTION 571 Another class of generalized quadrangles of order q are those constructed by Tits (first appearing in [5], see [19]). Let be an oval of PG(2, q) and let PG(2, q) beembedded as a hyperplane in PG(3, q). The points are (i) the points of PG(3, q)pg(2, q), (ii) the planes of PG(3, q) which meet PG(2, q) in a single point of, and (iii) a symbol (). The lines are (a) the lines of PG(3, q) which meet PG(2, q) in a single point of, and (b) the points of. Incidence is as follows: a point of type (i) is incident only with the lines of type (a) which contain it, a point of type (ii) is incident with all lines of type (a) contained in it and with the unique line of type (b) on it, and a point of type (iii) is incident with no line of type (a) and with all lines of type (b). The generalized quadrangle is denoted by T (). From [19, 3.2.2] we have T () Q(4, q) if and only if is a conic and T () W(q) if and only if q is even and is a conic. An ooid Ω of a generalized quadrangle of order (s, t) is a set of points such that each line of is incident with precisely one point of Ω. It follows that Ω has st1 points. If Ω is an ovoid of PG(3, q), then Ω defines a polarity of PG(3, q). If π is a plane of PG(3, q) which is tangent to Ω at the point P, then the polarity interchanges π with P, and if π meets Ω in the oval with nucleus N, then the polarity interchanges π with N. This polarity is necessarily a symplectic polarity of PG(3, q) and so the lines tangent to Ω form a linear complex of PG(3, q). Also, Ω is an ovoid of the generalized quadrangle W(q) constructed from the symplectic polarity that it defines. Conversely, if Ω is an ovoid of W(q), then by [23] Ω is also an ovoid of PG(3, q). 2. The isomorphism from T () to W(q) The following isomorphism from T () tow(q) is constructed by composing the inverse of the isomorphism from Q(4, q) tot () in the proof of [19, 3.2.2] with the isomorphism from Q(4, q) tow(q), for q even, in the proof of [19, 3.2.1]. We then apply an automorphism of W(q) to put the isomorphism from T () tow(q) into a preferred canonical form. We introduce explicit coordinates here for use later. First let q be even and let π be the plane of Σ PG(3, q) defined by the equation x 0. Let be the conic in π defined by the equations x x x x 0, that is, (1, t, t/,0):t GF(q)(0, 1, 0, 0), with nucleus (0, 0, 1, 0). We construct T () from Σ, π and as in Section 1. Now embed Σ in PG(4, q) as the hyperplane defined by the equation x 0. Let be the non-singular (parabolic) quadric of PG(4, q) defined by the form x x x x x 0. Thus the singular points and lines of form a generalized quadrangle Q(4, q). Note that. If P is a point of, then let P denote the tangent space to at P, and so we have (0, 0, 0, 0, 1), that is, (0, 0, 0, 0, 1) is collinear, in Q(4, q), with every point of. Thus we may now define an isomorphism from Q(4, q) tot () which essentially acts by projecting from (0, 0, 0, 0, 1) onto Σ. Let φ be the inverse of this isomorphism. We now explicitly determine the action of φ on the points of T (). The affine points of T () (that is, the points of Σπ) have the form (x, x, x,1,0)forx, x, x GF(q) and φ :(x, x, x,1,0) (x, x, x,1,x x x ). If π X is a point of T () which is a plane of Σ meeting π in a line tangent to, then φ maps π X to the point X of (0, 0, 0, 0, 1) such that π X X Σ. Using hyperplane

4 572 MATTHEW R. BROWN coordinates in PG(4, q), let π X [t,1,0,s,0][0, 0, 0, 0, 1] be a plane of Σ meeting π in a line tangent to at (1, t, t/, 0, 0). Since [t,1,0,s,0][0, 0, 0, 0, 1] (1, t, t/,0,s) [0, 0, 0, 0, 1] we have Similarly φ :[t,1,0,s,0][0, 0, 0, 0, 1] (1, t, t/,0,s). φ :[1, 0, 0, s,0][0, 0, 0, 0, 1] (0, 1, 0, 0, s). The point () oft () is mapped to the point (0, 0, 0, 0, 1) of Q(4, q) byφ. Now we consider an isomorphism φ from Q(4, q) tow(q). The point (0, 0, 1, 0, 0) is the nucleus of. Let H be the hyperplane of PG(4, q) with coordinates [0, 0, 1, 0, 0], and so (0, 0, 1, 0, 0) H. Projecting from (0, 0, 1, 0, 0) onto H the points (respectively lines) of Q(4, q) are mapped onto the points (respectively lines) of a generalized quadrangle isomorphic to W(q), defined by the form x y x y x y x y 0. This is the map φ. Thus the action of φ on the points of Q(4, q) is φ :(x, x, x,1,x x x) (x, x,0,1,x x x), for x, x, x GF(q), :(1, t, t/,0,s) (1, t,0,0,s), for s, t GF(q), :(0, 1, 0, 0, s) (0, 1, 0, 0, s), for s GF(q), :(0, 0, 0, 0, 1) (0, 0, 0, 0, 1). The map φ φ is an isomorphism from T () tow(q) that has the following action on the points of T (): φ φ :(x, x, x,1,0) (x, x,0,1,x x x), for x, x, x GF(q), :[t,1,0,s,0][0, 0, 0, 0, 1] (1, t,0,0,s), for s, t GF(q), :[1, 0, 0, s,0][0, 0, 0, 0, 1] (0, 1, 0, 0, s), for s GF(q), :() (0, 0, 0, 0, 1). We now apply the automorphism of W(q) that swaps the x and the x coordinates to put the isomorphism from T () to W(q) into the preferred canonical form presented in the following lemma. LEMMA 2.1. Let π be the plane of PG(3, q), qeen, defined by the equation x 0. Let be the conic in π defined by the equations x x x x 0, that is, (1, t, t/,0):t GF(q)(0, 1, 0, 0) with nucleus N (0, 0, 1, 0). Construct T () from Σ, π and. Let W(q) be the generalized quadrangle defined as the singular points and lines of the symplectic polarity of PG(3, q) with form x y x y x y x y 0. Then there exists an isomorphism φ from T () to W(q) that acts on the points of T () by (x, x, x,1) (x, x, x x x, 1), for x, x, x GF(q), [t,1,0,s] (1, t, s, 0), for s, t GF(q). [1, 0, 0, s] (0, 1, s, 0), for s GF(q), () (0, 0, 1, 0).

5 OVOIDS OF PG(3, q), q EVEN, WITH A CONIC SECTION Ooids of PG(3, q) containing a conic 3.1. Projectie ooids of T () Let π be a plane of Σ PG(3, q) and let be an oval in π. Let T () be the generalized quadrangle constructed from Σ, π and and let Ω be an ovoid of T (). If () Ω then of the q1 points of Ω, qq are affine points (that is, points of Σπ) and q1 points are planes of Σ meeting π in distinct lines tangent to. If the qq affine points of Ω have the property that no three are collinear in Σ, then we say that Ω is a projectie ovoid of T (). The reason for this term will become clear from the following lemma. LEMMA 3.1. Let Ω be a projectieooid of the generalized quadrangle T () and let be the qq affine points of Ω. Then is an ooid of PG(3, q). Proof. We check that has the property that no three of its points are collinear in PG(3, q). Let P, Q, R be three distinct points of. IfP, Q, R or P, Q, R, then we have the property that they are not collinear in PG(3, q). Hence, without loss of generality, let P, Q and R. Since P, Q is a line of π and R π it follows that P, Q, R are not collinear in PG(3, q). Now (again without loss of generality) let P and Q, R. Since any line of PG(3, q) incident with P and not contained in π is a line of T (), it follows that P, Q, R are not collinear in PG(3, q). Thus is an ovoid of PG(3, q). We also have the following converse. LEMMA 3.2. Let Ω be an ooid of PG(3, q), and let the oal be the intersection of the plane π with Ω. Then (Ω)π P :π P is the tangent plane to Ω at a point P is an ooid of the generalized quadrangle T () constructed from, π and PG(3, q). Proof. This is essentially the reverse of Lemma 3.1. Now we restrict our attention to the case of an ovoid Ω of PG(3, q) that contains a conic section. By Lemma 3.2, Ω gives rise to an ovoid Ω of the generalized quadrangle T (). By using the isomorphism from T ()tow(q) we may map Ω onto an ovoid Ω() of W(q). It follows from [23] that Ω() is also an ovoid of PG(3, q). We will now start with Ω in a canonical form and apply the explicit form of the isomorphism generated in Section 2 to construct the ovoid Ω() of PG(3, q). Note that while we shall eventually prove that Ω() and Ω are elliptic quadrics it is not immediate at this point that Q() and Ω are projectively equivalent in PG(3, q). Let Ω be an ovoid of PG(3, q) meeting the plane π in a conic. We may assume that the symplectic polarity of PG(3, q) defined by Ω has form x y x y x y x y 0 (by applying the Klein correspondence to [11, Theorem ]). We may also assume that the plane π has equation x 0 and that the conic has equation x x x x 0, that is, (1, t, t/,0):tgf(q)(0, 1, 0, 0) and has nucleus N (0, 0, 1, 0) (see [3; 11, Theorem ]). By Lemma 3.2, Ω gives rise to an ovoid Ω of T () where Ω (Ω)[t,1,0,t/]:tGF(q)[1, 0, 0, 0].

6 574 MATTHEW R. BROWN Using the isomorphism φ in Lemma 2.1, let φ(ω ) Ω(). Thus the symplectic polarity associated with Ω() has the form x y x y x y x y 0. Also [t,1,0,t/] (1, t, t/, 0) for t GF(q) and [1, 0, 0, 0] (0, 1, 0, 0), that is, Ω(). Now since Ω() and Ω() defines the same symplectic polarity as Ω it follows that we may repeat the above to generate another ovoid of PG(3, q) from Ω(). In fact we may repeat this process ad infinitum. However for our purposes here one iteration of the process will be sufficient. We will now use φ and the fact that φ(ω ) Ω() is an ovoid of PG(3, q) to generate conditions on some of the secant plane sections of Ω. It should be noted that in [7] Glynn investigated the properties of the restriction of φ to AG(3, q) (without explicitly using the generalized quadrangle isomorphism) and also observed that φ(ω ) is an ovoid of PG(3, q) containing Restrictions on a secant plane section of the ooid Ω of PG(3, q) In this section we will derive algebraic conditions on some secant plane sections of an ovoid Ω of PG(3, q) containing a conic. To do this we use the o-polynomial representation of hyperovals of PG(2, q). By the fundamental theorem of projective geometry any hyperoval of PG(2, q) is isomorphic to a hyperoval containing the fundamental quadrangle (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1). Consequently we may write in the form ( f(t), t,1):t GF(q)(1, 0, 0), (0, 1, 0), where f is a permutation polynomial over GF(q). Note that from [9, Section 1.3] the natural map from the polynomials over GF(q) with degree less than q to functions from GF(q)toGF(q) is a bijection. Thus, as with f above, we will abuse notation and use the same symbol to represent both a function and the unique polynomial of degree less than q that generates the function. Any polynomial with degree less than q that arises from a hyperoval as above will be called an o-polynomial (following Cherowitzo [4]). From [9, Theorem 8.22] we have the following theorem. THEOREM 3.3. If q 2, a permutation polynomial f with f(0) 0 and f(1) 1 is an o-polynomial if and only if for each element s GF(q), the function f s (x) [ f(xs)f(s)]x, with f s (0) 0, is a permutation polynomial oer GF(q). In Section 4 we will state a result by Glynn which gives an alternative description of o-polynomials and is more convenient for calculations that follow. Returning to our considerations in Section 3.1, let Ω be the ovoid of PG(3, q) as in Section 3.1 and let π a be the plane defined by the equation x ax, for a 0. Note that in the case where a 0 the plane π is the tangent plane to the ovoid Ω of PG(3, q) at the point (0, 1, 0, 0) and hence a point of the ovoid Ω of T (). We will now abuse notation and let φ, which is an isomorphism from T () to W(q), also represent the map on AG(3, q) PG(3, q)π that it induces. Thus φ:(x, x, x,1) (x, x, x x x, 1).

7 OVOIDS OF PG(3, q), q EVEN, WITH A CONIC SECTION 575 Now φ fixes the set of points of any plane of AG(3, q) whose projective completion contains N, the nucleus of. In particular φ fixes the set of points of the affine part of the plane π a (that is, the affine plane π a AG(3, q)) and the restriction of φ to this affine part of π a is φ πa :(a, x, x,1) (a, x, x ax, 1). Now let a Ωπ a ; then a is an oval of π a containing (0, 1, 0, 0) and with nucleus (0, 1, a, 0) (since (0, 1, a, 0) is the image of π a under the polarity defined by Ω). For convenience we will represent the plane π a in the coordinates x, x, x by omitting the x coordinate. Thus we write a (F(t), t,1):t GF(q)(1, 0, 0), for some function F. Let BaF(0) and AaF(1)1aF(0). Since the line spanned by (F(1), 1, 1) and (F(0), 0, 1) does not contain (1, a, 0), the nucleus of a, it follows that A0. Consider ( f(t), t,1):t GF(q)(1, 0, 0), where f(t) af(t)tb. (1) A This is an oval projectively equivalent to a and on the fundamental quadrangle; so f is an o-polynomial. Now φ πa :(F(t), t,1) (F(t), taf(t), 1) and so () (F(t), taf(t), 1):t GF(q)(1, 0, 0) a (F(t), taf(t), 1):t GF(q)(1, 0, 0) is the oval that is the intersection of π a with the ovoid Ω(). It follows that () has a nucleus (1, a, 0). By similar reasoning to that used for the oval a,if g(t) taf( t)b, (2) A then (t, g(t), 1):t GF(q)(1, 0, 0) is projectively equivalent to () and g is an a o-polynomial. Combining (1) and (2) and switching to the indeterminate x, we have g(x) A(xx)f(x), where A 0. So far we have only considered planes of PG(3, q) meeting π in a line tangent to at the point (0, 1, 0, 0). We now extend our considerations to any plane meeting π in a line tangent to. Let ψ t be the collineation of PG(3, q) that acts on points of PG(3, q) by ψ t :(x, x, x, x ) (tx x t/x,(t1) x tx t/(t1) x, t/(t1) x t/x x tx, x ). Then ψ t fixes, commutes with the symplectic polarity defined by Ω and interchanges the point (0, 1, 0, 0) with the point (1, t, t/, 0). Thus if we let Ω t ψ t (Ω), then we may apply the discussion of this section to the ovoid Ω t. Consequently we have the following lemma.

8 576 MATTHEW R. BROWN LEMMA 3.4. Let Ω be an ooid of PG(3, q) and π be a plane of PG(3, q) such that πω is a conic. If π is any plane of PG(3, q) such that ππ is a line tangent to but not tangent to Ω, then the oal πω is projectiely equialent to an oal ( f(t), t,1):tgf(q)(1, 0, 0) with nucleus (0, 1, 0), where f is an o-polynomial satisfying the equation g(x) A(xx)f(x), (3) for some o-polynomial g and A GF(q)0. In Section 4 we will show that if (3) is satisfied, then g(x) x and f(x) x. Now consider o-polynomials f and g satisfying (3). Since f and g have no constant term and no odd degree terms we may write f(x) f xf x f q xq, g(x) g xg x g q xq. From this it follows that f A 0 and similarly that g q/ A 0, that is, the coefficient of x in g(x) is non-zero. Further, since g has no odd degree terms it follows from (3) that f f f q 0, that is, f has no terms of degree 2n where n is odd. Since f has no term with degree greater than q2 it follows that g q/+ g q/+ g q 0, that is, g has no term of degree greater than q2. Thus f(x) f xf x f q xq f x (q )/ f xi, (4) i i= where f 0, and g(x) g xg xg x g q/ xq/ q/ g xi, (5) i i= where g q/ The classification of ooids of PG(3, q), qeen, containing a conic We now work towards proving that any ovoid of PG(3, q) containing a conic is an elliptic quadric. The bulk of this work is in extending Section 3.2 to prove the following result. THEOREM 4.1. Let Ω be an ooid of PG(3, q), qeen, and π be a plane of PG(3, q) such that πω is a conic. Then eery secant plane section of Ω that intersects in exactly one point is a conic. This result allows us to prove the classification. THEOREM 4.2. Let Ω be an ooid of PG(3, q), qeen, and π be a plane of PG(3, q) such that πω is a conic. Then Ω is an elliptic quadric.

9 OVOIDS OF PG(3, q), q EVEN, WITH A CONIC SECTION 577 Proof. Let πω be the conic and let be a secant plane section of Ω not meeting in exactly one point (and so meets in exactly zero or two points). Let the plane containing be π and the nucleus of be N. Let P be a point of ππ not contained in Ω. The plane P, N, N (where N is the nucleus of ) meets Ω in an oval such that 1. Theorem 4.1 implies that is a conic and consequently that is a conic. Hence by [2, 5.2.7] Ω is an elliptic quadric. To prove Theorem 4.1 we now show that if an o-polynomial f satisfies (3) for some g and A, then, in fact, f(x) x, g(x) x and A 1. By Lemma 3.4 this proves Theorem 4.1 and hence, by the above, we have Theorem 4.2. In Section 3.2 we saw that by using (3) and the fact that an o-polynomial has no odd degree terms we were able to restrict the o-polynomials f and g to the forms given in (4) and (5), respectively. The result that an o-polynomial has no odd degree terms is generalized by a result due to Glynn, which we will use repeatedly in the proof that f(x) x. First we define a partial ordering on the set of integers n where 0 n q1 and q 2h. If b h b 2i i and c h c 2i i i= i= (where each b i and each c i is either 0 or 1) then b c if and only if b i c i for all i. THEOREM 4.3 [8]. A polynomial f of degree at most q2 satisfying f(0) 0 and f(1) 1 is an o-polynomial if and only if the coefficient of xc in f(x)b (mod xqx) is zero for all pairs of integers (b, c) satisfying 1 b c q1, b q1 and b c. Note that b 1 gives the result that an o-polynomial has no odd degree terms. Now we shall show that in general f(x) x. Let q 2h, h 3 and let f be an o-polynomial over GF(q). We say that f is 2k-sparse if 1 k (h1)21 and f(x) f xf k+ x k+ f k+ x k+ f h k+ k+ x h k+ k+ h k f x f i i= k+ xi k+. (6) Let g be another o-polynomial; then we say that g is 2k-spare if 1 k (h1)21 and g(x) g h x h g k x k g k x k g h k k x h k k LEMMA 4.4. then f(x) x. h k g h x h g i i= k xi k. (7) Iffisano-polynomial oer GF(2h), h 3 and f is 2 (h )/ +-sparse, Proof. If k (h1)21, then 2h k1 is12 when h is odd and 0 when h is even. Thus from (6) we have f(x) f x x. Note that it follows from (4) that f is 2-sparse and from (5) that g is 2-spare. We will show that (3) and Theorem 4.3 allow us to proceed inductively to the case when f is 2 (h )/ +-sparse and g is 2 (h )/ +-spare, from which it follows, by Lemma 4.4, that f(x) x.

10 578 MATTHEW R. BROWN LEMMA 4.5. Let f and g be o-polynomials oer GF(2h), h 3, satisfying (3). If 1 k (h1)2, fis2k-sparse and g is 2k-spare, then f is 2k+-sparse and g is 2k+-spare. Proof. First we shall apply Theorem 4.3 to f. Let b 2k+1 and c 2k+1α2k+ where α 0,, (2h k 1)2k2h k 1 (these values of α ensure that c q1). We consider the expansion of f(x)b before reduction modulo xqx. Note that this expansion has the property that deg f(x)b (2k+1) (2h k+2k+) 2h+2k+2k+2h k+. (8) Now we consider which xd xc (mod xqx) have degree small enough to appear in f(x)b, that is, d deg f(x)b. By (8) we have d 2h+2k+2k+2h k+. Nowd cγ(2h1), for γ 0 and from our restriction on d we have 2k+1γ(2h1)α2k+ 2h+2k+2k+2h k+ γ 12 h+2k+2h k+ 2h1 since α 0 γ 4 52k+2 h k+. 2h1 Since k 1 it follows that γ 4, that is, γ 0, 1, 2 or 3. Now if γ is even then d 2k+1α2k+γ(2h1) 2k+γ2hα2k+(1γ) is odd, but since f(x) has no odd degree terms neither does f(x)b. Hence it follows that if γ is even, then xd does not appear in f(x)b. This leaves us with the possibilities that γ 1orγ3. Now suppose that γ 3. Then d cγ(2h1) 2k+1α2k+32h3 4 (mod 2k+) 2k+4(mod2k+). Now recall that h k f(x) f x f i i= k+ xi k+ and so if f(x)b contains a term of degree d c3(2h1), then since c3(2h1) 2k+4 (mod 2k+) it follows that this term of degree d must have the form h k ( f x)t ( f i i= k+ xi k+ )t i, where t 2k2 and t h k t i= i b. Since b (2k2)12k we now have the following upper bound on d: d 2k+4(12k)(2h k+2k+) 432h2k+α2k+ c3(2h1) d, a contradiction. Thus we have γ 3 and so we are left to consider the case γ 1. That is, we look for terms of degree 2k+1α2k+(2h1) in f(x)b.

11 Now OVOIDS OF PG(3, q), q EVEN, WITH A CONIC SECTION 579 2k+1α2k+2h1 2k+2α2k+2h 2k+2 (mod 2k+), and so if T(x) is a term of degree c2h1 off(x)b, then f k (x) k T(x). Since 2k+1 b (1 2k )2k and every term of f(x)b is of the form k ( f xu ui i) i, i= it follows that T(x) ( f x) k S(x) k, where S(x) f u k+ xu k+. Thus (u2k+)2kα2k+2h and hence u α2h k. Since k (h1)2 it follows that h2k1 0 and so u is an integer as required. Thus T(x) ( f x) k ( f α k+ + h k x α k+ + h k ) k is the unique term of degree c2h1 in the expansion of f(x)b before reduction mod xqx. By Theorem 4.3 we have f k f k α k+ + h k 0 and since f 0 it follows that f α k+ + h k 0. Recall that α 0,,2h k 1, and so we have f h k f k+ + h k f k+ + h k f h k+ k+ 0. (9) As a consequence of (3) we also have g h k g k + h k g k + h k g h k k 0. (10) Now we turn our attention to g and apply Theorem 4.3 with b 2k+1 and c 2k+1α2k+, α 0, 1,,2h k 1. We consider the expansion of g(x)b before reduction mod xqx. Note that g(x)b has degree deg g(x)b q 2 b 2 h (2k+1) 2h+k2h. (11) Now we consider which xd xc (mod xqx) have degree small enough to appear in g(x)b, that is, d deg g(x)b. By (11) we have d 2h+k2h.Nowdcγ(2h1), for γ 0, and so we have 2k+1α2k+γ(2h1) 2h+k2h γ 2 h+k2h 2k+1 2h1 γ 2k 2 k2h 2k+1. 2h1 since α 0 Thus γ 2k1. Now cγ(2h1) 2k+1α2k+γ(2h1) (γ1) (mod 2k).

12 580 MATTHEW R. BROWN Since every term of g(x) has degree congruent to 0 mod 2k so does every term of g(x)b (before reduction mod xqx). Thus for xd to appear in the expansion of g(x)b we require that (γ1) 0 mod 2k, that is, γ µ2k1 for some integer µ. We also have 0 γ 2k1 and so we conclude that γ 2k1. Thus our task now is to search for terms of degree d 2k+1α2k+(2k1) (2h1) in g(x)b. We now show that most of the terms of g(x)b have degree less than d. Consider terms of g(x)b of the form (g q/ xq/) k+ (g i k xi k ), (12) for 1 i 2h k1. From (10) we know that g i k 0 for i 2h k and so the largest possible degree of a term of the form (12) is 2h (2k+3)(2h k 1) 2k+ 2h+k2h2k(2h k2h k 2) 2h+k2h since k 1 2h+k2h2k+2k (α1) 2k+2h+k2h2k d. Thus any term of g(x)b of the form in (12) has degree less than d. The only terms of g(x)b that have degree greater than all terms of the form in (12) are (g q/ xq/) k+ and the terms (g q/ xq/) k+ (g i k xi k ) for 1 i 2h k 1. First we consider (g q/ xq/) k+ g k+ (x q/ h ) k+. Since the degree of this term is 0 mod 2h we also require that d (α1) 2k+2h+k2h2k 0(mod2h ). From this it follows that we must have 2h (α1) 2k+2k. However, α 2h k 1, so (α1) 2k+2k 2h k 2k+2k 2h k2k 2h for k 1, from which it follows that 2h (α1) 2k+2k and we have a contradiction. We are now left to consider the case (g q/ xq/) k+ (g i k xi k ) g k+ g q/ i k x h+k h +i k. Equating the degree of this term with d we have 2h+k2hi2k (α1) 2k+ 2h+k2h2k, which implies that i 2α1. Thus the coefficient of xd in g(x)b and hence of xc when g(x)b is reduced modulo xqx is g k+ g q/ α k+ + k. By using Theorem 4.3 and the fact that g q/ 0 we have g α k+ + k 0 for α 0,,2h k 1, that is, g k g k+ + k g k+ + k g k+ + k g h k k 0. (13) From (3) and (13) we have f k+ f k+ + k+ f k+ + k+ f k+ + k+ f h k+ k+ 0. (14) By (9), deg f 2h k2k+, and by (14) there are no terms of degree α2k+2k+ for α 0,, 2h k 1 (note that this is not all of the possible values of α), that is, f k+ f k+ + k+ f k+ + k+ f k+ + k+ f h k k+ 0.

13 Thus f must have the form OVOIDS OF PG(3, q), q EVEN, WITH A CONIC SECTION 581 f(x) f xf k+ x k+ f k+ x k+ f h k k+ x h k k+, where f 0, that is, f is 2k+-sparse. For g, by (10) the degree of g(x)g q/ xq/ is at most 2h k 2k and by (13) there are no terms of degree α2k+2k for α 0,,2h k 1. Thus g is 2k+-spare. THEOREM 4.6. If f(x) q/ f xi and g(x) q/ g xi are o-polynomials i= i i= i oer GF(2h), h 3 with f 0, g q/ 0 and satisfying then f(x) x and g(x) x. A(xx)f(x) g(x), A 0, Proof. Since f and g satisfy A(xx)f(x) g(x) it follows that f 0, g q/ 0, f is 2-sparse and g is 2-spare. Thus using Lemma 4.5 inductively it follows that f is 2 (h )/ 1-sparse and g is 2 (h )/ 1-spare. From Lemma 4.4 it then follows that f(x) x, and consequently that g(x) x. Now, finally, we restate the classification of ovoids of PG(3, q) containing a conic. THEOREM 4.2. Let Ω be an ooid of PG(3, q), qeen, and π be a plane of PG(3, q) such that πω is a conic. Then Ω is an elliptic quadric. Acknowledgements. The author would like to thank Stan Payne and Christine O Keefe for their suggested revisions to the paper. The work was supported by the Australian Research Council. References 1. A. BARLOTTI, Un estensione del teorema di Segre-Kustaanheimo, Boll. Un. Mat. Ital. 10 (1955) A. BARLOTTI, Some topics in finite geometrical structures, Institute of Statistics Mimeo Series 439 (University of North Carolina, North Carolina, 1965). 3. M. R. BROWN, C. M. O KEEFE and T. PENTTILA, Triads, flocks of conics and Q (5, q), Des. Codes Cryptogr. 18 (1999) W. CHEROWITZO, Hyperovals in Desarguesian planes of even order, Ann. Discrete Math. 37 (1988) P. DEMBOWSKI, Finite geometries (Springer, Berlin, 1968). 6. G. FELLEGARA, Gli ovaloidi di uno spazio tridimensionale de Galois di ordine 8, Atti Accad. Naz. Lincei Rend. 32 (1962) D. G. GLYNN, The Hering classification for inversive planes of even order, Simon Stein 58 (1984) D. G. GLYNN, A condition for the existence of ovals in PG(2, q), q even, Geom. Dedicata 32 (1989) J. W. P. HIRSCHFELD, Projectie geometries oer finite fields (Oxford University Press, 1998). 10. J. W. P. HIRSCHFELD, Finite projectie spaces of three dimensions (Oxford University Press, 1985). 11. J. W. P. HIRSCHFELD and J. A. THAS, General Galois geometries (Clarendon Press, Oxford, 1991). 12. C. M. O KEEFE, Ovoids in PG(3, q): a survey, Discrete Math. 151 (1996) C. M. O KEEFE and T. PENTTILA, Ovoids of PG(3, 16) are elliptic quadrics, J. Geometry 38 (1990) C. M. O KEEFE and T. PENTTILA, Ovoids of PG(3, 16) are elliptic quadrics II, J. Geometry 44 (1992) C. M. O KEEFE and T. PENTTILA, Ovoids with a pencil of translation ovals, Geom. Dedicata 62 (1996) C. M. O KEEFE and T. PENTTILA, Ovals in translation hyperovals and ovoids, European J. Combin. 18 (1997)

14 582 OVOIDS OF PG(3, q), q EVEN, WITH A CONIC SECTION 17. C. M. O KEEFE,T.PENTTILA and G. F. ROYLE, Classification of ovoids in PG(3, 32), J. Geometry 50 (1994) G. PANELLA, Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito, Boll. Un. Mat. Ital. 10 (1955) S. E. PAYNE and J. A. THAS, Finite generalized quadrangles (Pitman, London, 1984). 20. T. PENTTILA and C. E. PRAEGER, Ovoids and translation ovals, J. London Math. Soc. (2) 56 (1997) O. PROHASKA and M. WALKER, A note on the Hering type of inversive planes of even order, Arch. Math. 28 (1977) B. SEGRE, On complete caps and ovaloids in three-dimensional Galois spaces of characteristic two, Acta Arith. 5 (1959) J. A. THAS, Ovoidal translation planes, Arch. Math. 23 (1972) Department of Pure Mathematics and Computer Algebra Ghent Uniersity Gent B9000 Belgium mbrowncage.rug.ac.be

Blocking sets of tangent and external lines to a hyperbolic quadric in P G(3, q), q even

Blocking sets of tangent and external lines to a hyperbolic quadric in P G(3, q), q even Manuscript 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 Blocking sets of tangent and external lines to a hyperbolic quadric in P G(, q), q even Binod Kumar Sahoo Abstract Bikramaditya Sahu Let H be a fixed hyperbolic

More information

Generalized quadrangles and the Axiom of Veblen

Generalized quadrangles and the Axiom of Veblen Geometry, Combinatorial Designs and Related Structures (ed. J. W. P. Hirschfeld), Cambridge University Press, London Math. Soc. Lecture Note Ser. 245 (1997), 241 -- 253 Generalized quadrangles and the

More information

Constructing the Tits Ovoid from an Elliptic Quadric. Bill Cherowitzo UCDHSC-DDC July 1, 2006 Combinatorics 2006

Constructing the Tits Ovoid from an Elliptic Quadric. Bill Cherowitzo UCDHSC-DDC July 1, 2006 Combinatorics 2006 Constructing the Tits Ovoid from an Elliptic Quadric Bill Cherowitzo UCDHSC-DDC July 1, 2006 Combinatorics 2006 Ovoids An ovoid in PG(3,q) is a set of q 2 +1 points, no three of which are collinear. Ovoids

More information

The classification of the largest caps in AG(5, 3)

The classification of the largest caps in AG(5, 3) The classification of the largest caps in AG(5, 3) Y. Edel S. Ferret I. Landjev L. Storme Abstract We prove that 45 is the size of the largest caps in AG(5, 3), and such a 45-cap is always obtained from

More information

Group theoretic characterizations of Buekenhout Metz unitals in PG(2,q 2 )

Group theoretic characterizations of Buekenhout Metz unitals in PG(2,q 2 ) J Algebr Comb (2011) 33: 401 407 DOI 10.1007/s10801-010-0250-8 Group theoretic characterizations of Buekenhout Metz unitals in PG(2,q 2 ) Giorgio Donati Nicola Durante Received: 1 March 2010 / Accepted:

More information

On Ferri s characterization of the finite quadric Veronesean V 4 2

On Ferri s characterization of the finite quadric Veronesean V 4 2 On Ferri s characterization of the finite quadric Veronesean V 4 2 J. A. Thas H. Van Maldeghem Abstract We generalize and complete Ferri s characterization of the finite quadric Veronesean V2 4 by showing

More information

On the geometry of regular hyperbolic fibrations

On the geometry of regular hyperbolic fibrations On the geometry of regular hyperbolic fibrations Matthew R. Brown Gary L. Ebert Deirdre Luyckx January 11, 2006 Abstract Hyperbolic fibrations of PG(3, q) were introduced by Baker, Dover, Ebert and Wantz

More information

A characterization of the finite Veronesean by intersection properties

A characterization of the finite Veronesean by intersection properties A characterization of the finite Veronesean by intersection properties J. Schillewaert, J.A. Thas and H. Van Maldeghem AMS subject classification: 51E0, 51A45 Abstract. A combinatorial characterization

More information

On the structure of the directions not determined by a large affine point set

On the structure of the directions not determined by a large affine point set On the structure of the directions not determined by a large affine point set Jan De Beule, Peter Sziklai, and Marcella Takáts January 12, 2011 Abstract Given a point set U in an n-dimensional affine space

More information

(Hyper)ovals and ovoids in projective spaces

(Hyper)ovals and ovoids in projective spaces (Hyper)ovals and ovoids in projective spaces Matthew Brown Ghent University Contents Socrates Intensive Course Finite Geometry and its Applications Ghent, 3 14 April 2000 1 Introduction 2 2 (Hyper)ovals

More information

Finite affine planes in projective spaces

Finite affine planes in projective spaces Finite affine planes in projective spaces J. A.Thas H. Van Maldeghem Ghent University, Belgium {jat,hvm}@cage.ugent.be Abstract We classify all representations of an arbitrary affine plane A of order q

More information

Characterizations of the finite quadric Veroneseans V 2n

Characterizations of the finite quadric Veroneseans V 2n Characterizations of the finite quadric Veroneseans V 2n n J. A. Thas H. Van Maldeghem Abstract We generalize and complete several characterizations of the finite quadric Veroneseans surveyed in [3]. Our

More information

Finite geometries: classical problems and recent developments

Finite geometries: classical problems and recent developments Rendiconti di Matematica, Serie VII Volume 27, Roma (2007), 49-60 Finite geometries: classical problems and recent developments JOSEPH A. THAS Abstract: In recent years there has been an increasing interest

More information

A spectrum result on minimal blocking sets with respect to the planes of PG(3, q), q odd

A spectrum result on minimal blocking sets with respect to the planes of PG(3, q), q odd A spectrum result on minimal blocking sets with respect to the planes of PG(3, q), q odd C. Rößing L. Storme January 12, 2010 Abstract This article presents a spectrum result on minimal blocking sets with

More information

Two-intersection sets with respect to lines on the Klein quadric

Two-intersection sets with respect to lines on the Klein quadric Two-intersection sets with respect to lines on the Klein quadric F. De Clerck N. De Feyter N. Durante Abstract We construct new examples of sets of points on the Klein quadric Q + (5, q), q even, having

More information

Derivation Techniques on the Hermitian Surface

Derivation Techniques on the Hermitian Surface Derivation Techniques on the Hermitian Surface A. Cossidente, G. L. Ebert, and G. Marino August 25, 2006 Abstract We discuss derivation like techniques for transforming one locally Hermitian partial ovoid

More information

Characterizations of Veronese and Segre Varieties

Characterizations of Veronese and Segre Varieties Characterizations of Veronese and Segre Varieties Joseph A. Thas and Hendrik Van Maldeghem Dedicated to the memory of A. Barlotti Abstract. We survey the most important characterizations of quadric Veroneseans

More information

CONDITIONS ON POLYNOMIALS DESCRIBING AN OVAL IN PG(2, q)

CONDITIONS ON POLYNOMIALS DESCRIBING AN OVAL IN PG(2, q) CONDITIONS ON POLYNOMIALS DESCRIBING AN OVAL IN PG(2, q) TIMOTHY L. VIS Abstract. An oval in a finite projective plane of order q is a set of q+1 points such that no three of the points lie on a common

More information

Semifield flocks, eggs, and ovoids of Q(4, q)

Semifield flocks, eggs, and ovoids of Q(4, q) Semifield flocks, eggs, and ovoids of Q(4, q) Michel Lavrauw Universita degli studi di Napoli Federico II Dipartimento di Matematica e Applicazioni R. Caccioppoli Via Cintia Complesso Monte S. Angelo 80126

More information

Generalized Quadrangles with a Spread of Symmetry

Generalized Quadrangles with a Spread of Symmetry Europ. J. Combinatorics (999) 20, 759 77 Article No. eujc.999.0342 Available online at http://www.idealibrary.com on Generalized Quadrangles with a Spread of Symmetry BART DE BRUYN We present a common

More information

Generalized Quadrangles Weakly Embedded in Finite Projective Space

Generalized Quadrangles Weakly Embedded in Finite Projective Space Generalized Quadrangles Weakly Embedded in Finite Projective Space J. A. Thas H. Van Maldeghem Abstract We show that every weak embedding of any finite thick generalized quadrangle of order (s, t) in a

More information

Michel Lavrauw. Scattered Spaces with respect to Spreads, and Eggs in Finite Projective Spaces

Michel Lavrauw. Scattered Spaces with respect to Spreads, and Eggs in Finite Projective Spaces Michel Lavrauw Scattered Spaces with respect to Spreads, and Eggs in Finite Projective Spaces Scattered Spaces with respect to Spreads, and Eggs in Finite Projective Spaces PROEFSCHRIFT ter verkrijging

More information

Hyperovals. Tim Penttila

Hyperovals. Tim Penttila Hyperovals Tim Penttila Department of Mathematics, University of Western Australia, Nedlands 6009, Western Australia, Australia e-mail: penttila@maths.uwa.edu.au I vano Pinneri Dipartimento di Matematica,

More information

Buekenhout-Tits Unitals

Buekenhout-Tits Unitals Journal of Algebraic Combinatorics 6 (1997), 133 140 c 1997 Kluwer Academic Publishers. Manufactured in The Netherlands. Buekenhout-Tits Unitals G.L. EBERT ebert@math.udel.edu University of Delaware, Department

More information

On small minimal blocking sets in classical generalized quadrangles

On small minimal blocking sets in classical generalized quadrangles On small minimal blocking sets in classical generalized quadrangles Miroslava Cimráková a Jan De Beule b Veerle Fack a, a Research Group on Combinatorial Algorithms and Algorithmic Graph Theory, Department

More information

Lax Embeddings of Generalized Quadrangles in Finite Projective Spaces

Lax Embeddings of Generalized Quadrangles in Finite Projective Spaces Lax Embeddings of Generalized Quadrangles in Finite Projective Spaces J. A. Thas H. Van Maldeghem 1 Introduction Definition 1.1 A (finite) generalized quadrangle (GQ) S = (P, B, I) is a point-line incidence

More information

Complete arcs on the parabolic quadric Q(4,q)

Complete arcs on the parabolic quadric Q(4,q) Finite Fields and Their Applications 14 (008) 14 1 http://www.elsevier.com/locate/ffa Complete arcs on the parabolic quadric Q(4,q) Jan De Beule a,,1, András Gács b, a Department of Pure Mathematics and

More information

Three-Bit Monomial Hyperovals

Three-Bit Monomial Hyperovals Timothy Vis Timothy.Vis@ucdenver.edu University of Colorado Denver Rocky Mountain Discrete Math Days 2008 Definition of a Hyperoval Definition In a projective plane of order n, a set of n + 1-points, no

More information

On sets without tangents and exterior sets of a conic

On sets without tangents and exterior sets of a conic On sets without tangents and exterior sets of a conic Geertrui Van de Voorde Abstract A set without tangents in PG(2, q) is a set of points S such that no line meets S in exactly one point. An exterior

More information

Journal of Discrete Mathematical Sciences & Cryptography Vol. 9 (2006), No. 1, pp

Journal of Discrete Mathematical Sciences & Cryptography Vol. 9 (2006), No. 1, pp Some generalizations of Rédei s theorem T. Alderson Department of Mathematical Sciences University of New Brunswick Saint John, New Brunswick Canada EL 4L5 Abstract By the famous theorems of Rédei, a set

More information

Some Two Character Sets

Some Two Character Sets Some Two Character Sets A. Cossidente Dipartimento di Matematica e Informatica Università degli Studi della Basilicata Contrada Macchia Romana 85100 Potenza (ITALY) E mail: cossidente@unibas.it Oliver

More information

A subset of the Hermitian surface

A subset of the Hermitian surface G page 1 / 11 A subset of the Hermitian surface Giorgio Donati Abstract Nicola Durante n this paper we define a ruled algebraic surface of PG(3, q 2 ), called a hyperbolic Q F -set and we prove that it

More information

Monomial Hyperovals in Desarguesian Planes

Monomial Hyperovals in Desarguesian Planes Timothy Vis Timothy.Vis@ucdenver.edu University of Colorado Denver March 29, 2009 Hyperovals Monomial Hyperovals Introduction Classification Definition In a projective plane of even order q, a hyperoval

More information

Primitive arcs in P G(2, q)

Primitive arcs in P G(2, q) Primitive arcs in P G(2, q) L. Storme H. Van Maldeghem December 14, 2010 Abstract We show that a complete arc K in the projective plane P G(2, q) admitting a transitive primitive group of projective transformations

More information

On sets of vectors of a finite vector space in which every subset of basis size is a basis

On sets of vectors of a finite vector space in which every subset of basis size is a basis On sets of vectors of a finite vector space in which every subset of basis size is a basis Simeon Ball 17 January 2012 Abstract It is shown that the maximum size of a set S of vectors of a k-dimensional

More information

Generalized Veronesean embeddings of projective spaces, Part II. The lax case.

Generalized Veronesean embeddings of projective spaces, Part II. The lax case. Generalized Veronesean embeddings of projective spaces, Part II. The lax case. Z. Akça A. Bayar S. Ekmekçi R. Kaya J. A. Thas H. Van Maldeghem Abstract We classify all embeddings θ : PG(n, K) PG(d, F),

More information

Two-character sets as subsets of parabolic quadrics

Two-character sets as subsets of parabolic quadrics Two-character sets as subsets of parabolic uadrics Bart De Bruyn Ghent University Department of Mathematics Krijgslaan 81 (S) B-9000 Gent Belgium E-mail: bdb@cageugentbe Abstract A two-character set is

More information

European Journal of Combinatorics. Locally subquadrangular hyperplanes in symplectic and Hermitian dual polar spaces

European Journal of Combinatorics. Locally subquadrangular hyperplanes in symplectic and Hermitian dual polar spaces European Journal of Combinatorics 31 (2010) 1586 1593 Contents lists available at ScienceDirect European Journal of Combinatorics journal homepage: www.elsevier.com/locate/ejc Locally subquadrangular hyperplanes

More information

Tight Sets and m-ovoids of Quadrics 1

Tight Sets and m-ovoids of Quadrics 1 Tight Sets and m-ovoids of Quadrics 1 Qing Xiang Department of Mathematical Sciences University of Delaware Newark, DE 19716 USA xiang@mathudeledu Joint work with Tao Feng and Koji Momihara 1 T Feng, K

More information

Extending Arcs: An Elementary Proof

Extending Arcs: An Elementary Proof Extending Arcs: An Elementary Proof T. Alderson Department of Mathematical Sciences University of New Brunswick, Saint John, N.B., Canada talderso@unb.ca Submitted: Jan 19, 005 Mathematics Subject Classifications:

More information

A characterization of the Split Cayley Generalized Hexagon H(q) using one subhexagon of order (1, q)

A characterization of the Split Cayley Generalized Hexagon H(q) using one subhexagon of order (1, q) A characterization of the Split Cayley Generalized Hexagon H(q) using one subhexagon of order (1, q) Joris De Kaey and Hendrik Van Maldeghem Ghent University, Department of Pure Mathematics and Computer

More information

Tactical Decompositions of Steiner Systems and Orbits of Projective Groups

Tactical Decompositions of Steiner Systems and Orbits of Projective Groups Journal of Algebraic Combinatorics 12 (2000), 123 130 c 2000 Kluwer Academic Publishers. Manufactured in The Netherlands. Tactical Decompositions of Steiner Systems and Orbits of Projective Groups KELDON

More information

A geometric approach to Mathon maximal arcs. Thomas Maes

A geometric approach to Mathon maximal arcs. Thomas Maes Faculteit Wetenschappen Vakgroep Wiskunde A geometric approach to Mathon maximal arcs Thomas Maes Promotoren: Prof. Dr. F. De Clerck Dr. S. De Winter Proefschrift voorgelegd aan de Faculteit Wetenschappen

More information

On Monomial Flocks 1. INTRODUCTION

On Monomial Flocks 1. INTRODUCTION Europ. J. Combinatorics (2001) 22, 447 454 doi:10.1006/eujc.2001.0503 Available online at http://www.idealibrary.com on On Monomial Flocks LAURA BADER, DINA GHINELLI AND TIM PENTTILA We study monomial

More information

Characterizations of Segre Varieties

Characterizations of Segre Varieties Characterizations of Segre Varieties J. A Thas H. Van Maldeghem Abstract In this paper several characterizations of Segre varieties and their projections are given. The first two characterization theorems

More information

A characterization of the set of lines either external to or secant to an ovoid in PG(3,q)

A characterization of the set of lines either external to or secant to an ovoid in PG(3,q) AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 49 (011), Pages 159 163 A characterization of the set of lines either external to or secant to an ovoid in PG(3,q) Stefano Innamorati Dipartimento di Ingegneria

More information

On finite Steiner surfaces

On finite Steiner surfaces See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220187353 On finite Steiner surfaces Article in Discrete Mathematics February 2012 Impact Factor:

More information

Distance-j Ovoids and Related Structures in Generalized Polygons

Distance-j Ovoids and Related Structures in Generalized Polygons Distance-j Ovoids and Related Structures in Generalized Polygons Alan Offer and Hendrik Van Maldeghem Department of Pure Mathematics and Computer Algebra, Ghent University, Galglaan 2, B 9000 Ghent, Belgium

More information

SUBSTRUCTURES OF FINITE CLASSICAL POLAR SPACES

SUBSTRUCTURES OF FINITE CLASSICAL POLAR SPACES In: Current Research Topics in Galois Geometry Editors: J. De Beule and L. Storme, pp. 33-59 ISBN 978-1-61209-523-3 c 2011 Nova Science Publishers, Inc. Chapter 2 SUBSTRUCTURES OF FINITE CLASSICAL POLAR

More information

Monomial Flocks and Herds Containing a Monomial Oval

Monomial Flocks and Herds Containing a Monomial Oval Journal of Combinatorial Theory, Series A 83, 2141 (1998) Article No. TA972855 Monomial Flocks and Herds Containing a Monomial Oval Tim Penttila Department of Mathematics, University of Western Australia,

More information

Large minimal covers of PG(3,q)

Large minimal covers of PG(3,q) Large minimal covers of PG(3,q) Aiden A. Bruen Keldon Drudge Abstract A cover of Σ = PG(3,q) is a set of lines S such that each point of Σ is incident with at least one line of S. A cover is minimal if

More information

On the intersection of Hermitian surfaces

On the intersection of Hermitian surfaces On the intersection of Hermitian surfaces Nicola Durante and Gary Ebert Abstract In [6] and [3] the authors determine the structure of the intersection of two Hermitian surfaces of PG(3, q 2 ) under the

More information

Lax embeddings of the Hermitian Unital

Lax embeddings of the Hermitian Unital Lax embeddings of the Hermitian Unital V. Pepe and H. Van Maldeghem Abstract In this paper, we prove that every lax generalized Veronesean embedding of the Hermitian unital U of PG(2, L), L a quadratic

More information

Functional codes arising from quadric intersections with Hermitian varieties

Functional codes arising from quadric intersections with Hermitian varieties Functional codes arising from quadric intersections with Hermitian varieties A. Hallez L. Storme June 16, 2010 Abstract We investigate the functional code C h (X) introduced by G. Lachaud [10] in the special

More information

Generalized polygons in projective spaces

Generalized polygons in projective spaces Generalized polygons in projective spaces Hendrik Van Maldeghem Department of Pure Mathematics and Computer Algebra, Ghent University, Galglaan 2, B-9000 Gent, Belgium, e-mail: hvm@cage.rug.ac.be 1 Introduction

More information

ARCS IN FINITE PROJECTIVE SPACES. Basic objects and definitions

ARCS IN FINITE PROJECTIVE SPACES. Basic objects and definitions ARCS IN FINITE PROJECTIVE SPACES SIMEON BALL Abstract. These notes are an outline of a course on arcs given at the Finite Geometry Summer School, University of Sussex, June 26-30, 2017. Let K denote an

More information

Shult Sets and Translation Ovoids of the Hermitian Surface

Shult Sets and Translation Ovoids of the Hermitian Surface Shult Sets and Translation Ovoids of the Hermitian Surface A. Cossidente, G. L. Ebert, G. Marino, and A. Siciliano Abstract Starting with carefully chosen sets of points in the Desarguesian affine plane

More information

Dense near octagons with four points on each line, III

Dense near octagons with four points on each line, III Dense near octagons with four points on each line, III Bart De Bruyn Ghent University, Department of Pure Mathematics and Computer Algebra, Krijgslaan 281 (S22), B-9000 Gent, Belgium, E-mail: bdb@cage.ugent.be

More information

The geometry of finite fields

The geometry of finite fields UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA The geometry of finite fields Simeon Ball Quaderni Elettronici del Seminario di Geometria Combinatoria 2E (Maggio 2001) http://www.mat.uniroma1.it/ combinat/quaderni

More information

COMMUTATIVE PRESEMIFIELDS AND SEMIFIELDS

COMMUTATIVE PRESEMIFIELDS AND SEMIFIELDS COMMUTATIVE PRESEMIFIELDS AND SEMIFIELDS ROBERT S. COULTER AND MARIE HENDERSON Abstract. Strong conditions are derived for when two commutative presemifields are isotopic. It is then shown that any commutative

More information

Quasimultiples of Geometric Designs

Quasimultiples of Geometric Designs Quasimultiples of Geometric Designs G. L. Ebert Department of Mathematical Sciences University of Delaware Newark, DE 19716 ebert@math.udel.edu Dedicated to Curt Lindner on the occasion of his 65th birthday

More information

Recursive constructions for large caps

Recursive constructions for large caps Recursive constructions for large caps Yves Edel Jürgen Bierbrauer Abstract We introduce several recursive constructions for caps in projective spaces. These generalize the known constructions in an essential

More information

Codewords of small weight in the (dual) code of points and k-spaces of P G(n, q)

Codewords of small weight in the (dual) code of points and k-spaces of P G(n, q) Codewords of small weight in the (dual) code of points and k-spaces of P G(n, q) M. Lavrauw L. Storme G. Van de Voorde October 4, 2007 Abstract In this paper, we study the p-ary linear code C k (n, q),

More information

Hyperplanes of Hermitian dual polar spaces of rank 3 containing a quad

Hyperplanes of Hermitian dual polar spaces of rank 3 containing a quad Hyperplanes of Hermitian dual polar spaces of rank 3 containing a quad Bart De Bruyn Ghent University, Department of Mathematics, Krijgslaan 281 (S22), B-9000 Gent, Belgium, E-mail: bdb@cage.ugent.be Abstract

More information

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA. Semifield spreads

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA. Semifield spreads UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA Semifield spreads Giuseppe Marino and Olga Polverino Quaderni Elettronici del Seminario di Geometria Combinatoria 24E (Dicembre 2007) http://www.mat.uniroma1.it/~combinat/quaderni

More information

A geometric proof of a theorem on antiregularity of generalized quadrangles

A geometric proof of a theorem on antiregularity of generalized quadrangles Des. Codes Cryptogr. (2012) 64:255 263 DOI 10.1007/s10623-011-9569-y A geometric proof of a theorem on antiregularity of generalized quadrangles Anna Y. Pun Philip P. W. Wong Received: 17 January 2011

More information

An Introduction to Finite Geometry

An Introduction to Finite Geometry An Introduction to Finite Geometry Simeon Ball and Zsuzsa Weiner 1 29 March 2007 1 The second author was partially supported by OTKA Grant T49662 Contents Preface.................................... vii

More information

Partial geometries pg(s, t, 2 ) with an abelian Singer group and a characterization of the van Lint-Schrijver partial geometry

Partial geometries pg(s, t, 2 ) with an abelian Singer group and a characterization of the van Lint-Schrijver partial geometry J Algebr Comb (2006) 24:285 297 DOI 10.1007/s10801-006-0019-2 Partial geometries pg(s, t, 2 ) with an abelian Singer group and a characterization of the van Lint-Schrijver partial geometry S. De Winter

More information

α-flokki and Partial α-flokki

α-flokki and Partial α-flokki Innovations in Incidence Geometry Volume 00 (XXXX), Pages 000 000 ISSN 1781-6475 α-flokki and Partial α-flokki W. E. Cherowitzo N. L. Johnson O. Vega Abstract Connections are made between deficiency one

More information

On the geometry of the exceptional group G 2 (q), q even

On the geometry of the exceptional group G 2 (q), q even On the geometry of the exceptional group G 2 (q), q even Antonio Cossidente Dipartimento di Matematica Università della Basilicata I-85100 Potenza Italy cossidente@unibas.it Oliver H. King School of Mathematics

More information

Arcs and blocking sets in non-desarguesian planes

Arcs and blocking sets in non-desarguesian planes Arcs and blocking sets in non-desarguesian planes Tamás Szőnyi Eötvös Loránd University and MTA-ELTE GAC Research Group Budapest June 3, 2016 General overview First we summarize results about arcs, blocking

More information

A note on cyclic semiregular subgroups of some 2-transitive permutation groups

A note on cyclic semiregular subgroups of some 2-transitive permutation groups arxiv:0808.4109v1 [math.gr] 29 Aug 2008 A note on cyclic semiregular subgroups of some 2-transitive permutation groups M. Giulietti and G. Korchmáros Abstract We determine the semi-regular subgroups of

More information

12. Hilbert Polynomials and Bézout s Theorem

12. Hilbert Polynomials and Bézout s Theorem 12. Hilbert Polynomials and Bézout s Theorem 95 12. Hilbert Polynomials and Bézout s Theorem After our study of smooth cubic surfaces in the last chapter, let us now come back to the general theory of

More information

On the nucleus of the Grassmann embedding of the symplectic dual polar space DSp(2n, F), char(f) = 2

On the nucleus of the Grassmann embedding of the symplectic dual polar space DSp(2n, F), char(f) = 2 On the nucleus of the Grassmann embedding of the symplectic dual polar space DSp(2n, F), char(f) = 2 Rieuwert J. Blok Department of Mathematics and Statistics Bowling Green State University Bowling Green,

More information

Transitive Partial Hyperbolic Flocks of Deficiency One

Transitive Partial Hyperbolic Flocks of Deficiency One Note di Matematica Note Mat. 29 2009), n. 1, 89-98 ISSN 1123-2536, e-issn 1590-0932 DOI 10.1285/i15900932v29n1p89 Note http://siba-ese.unisalento.it, di Matematica 29, n. 2009 1, 2009, Università 89 98.

More information

Domesticity in projective spaces

Domesticity in projective spaces Innovations in Incidence Geometry Volume 12 (2011), Pages 141 149 ISSN 1781-6475 ACADEMIA PRESS Domesticity in projective spaces Beukje Temmermans Joseph A. Thas Hendrik Van Maldeghem Abstract Let J be

More information

The minimum weight of dual codes from projective planes

The minimum weight of dual codes from projective planes The minimum weight of dual codes from projective planes J. D. Key Department of Mathematical Sciences Clemson University, University of Wales Aberystwyth, University of the Western Cape and University

More information

A Geometric Characterization of the Perfect Ree-Tits Generalized Octagons.

A Geometric Characterization of the Perfect Ree-Tits Generalized Octagons. A Geometric Characterization of the Perfect Ree-Tits Generalized Octagons. H. Van Maldeghem Dedicated to Prof. J. Tits on the occasion of his 65th birthday 1 Introduction The world of Tits-buildings, created

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

On collineation groups of finite planes

On collineation groups of finite planes On collineation groups of finite planes Arrigo BONISOLI Dipartimento di Matematica Università della Basilicata via N.Sauro 85 85100 Potenza (Italy) Socrates Intensive Programme Finite Geometries and Their

More information

Theorems of Erdős-Ko-Rado type in polar spaces

Theorems of Erdős-Ko-Rado type in polar spaces Theorems of Erdős-Ko-Rado type in polar spaces Valentina Pepe, Leo Storme, Frédéric Vanhove Department of Mathematics, Ghent University, Krijgslaan 28-S22, 9000 Ghent, Belgium Abstract We consider Erdős-Ko-Rado

More information

Codes from generalized hexagons

Codes from generalized hexagons Codes from generalized hexagons A. De Wispelaere H. Van Maldeghem 1st March 2004 Abstract In this paper, we construct some codes that arise from generalized hexagons with small parameters. As our main

More information

Characterizing Geometric Designs

Characterizing Geometric Designs Rendiconti di Matematica, Serie VII Volume 30, Roma (2010), 111-120 Characterizing Geometric Designs To Marialuisa J. de Resmini on the occasion of her retirement DIETER JUNGNICKEL Abstract: We conjecture

More information

COMMUTATIVE SEMIFIELDS OF ORDER 243 AND 3125

COMMUTATIVE SEMIFIELDS OF ORDER 243 AND 3125 COMMUTATIVE SEMIFIELDS OF ORDER 243 AND 3125 ROBERT S. COULTER AND PAMELA KOSICK Abstract. This note summarises a recent search for commutative semifields of order 243 and 3125. For each of these two orders,

More information

On m ovoids of W 3 (q)

On m ovoids of W 3 (q) On m ovoids of W 3 (q) A. Cossidente, C. Culbert, G. L. Ebert, and G. Marino Abstract We show that the generalized quadrangle W 3 (q) for odd q has exponentially many 1 (q+1) ovoids, thus implying that

More information

M.D.S. Codes and Arcs in PG(n, q) with q Even: An Improvement of the Bounds of Bruen, Thas, and Blokhuis

M.D.S. Codes and Arcs in PG(n, q) with q Even: An Improvement of the Bounds of Bruen, Thas, and Blokhuis JOURNAL OF COMBINATORIAL THEORY, Series A 62, 139-154 (1993) M.D.S. Codes and Arcs in PG(n, q) with q Even: An Improvement of the Bounds of Bruen, Thas, and Blokhuis L. STORME* AND J. A. THAS Seminar of

More information

Embeddings of Small Generalized Polygons

Embeddings of Small Generalized Polygons Embeddings of Small Generalized Polygons J. A. Thas 1 H. Van Maldeghem 2 1 Department of Pure Mathematics and Computer Algebra, Ghent University, Galglaan 2, B 9000 Ghent, jat@cage.rug.ac.be 2 Department

More information

Odd order flag-transitive affine planes of dimension three over their kernel

Odd order flag-transitive affine planes of dimension three over their kernel Special Issue (2003), S215-S223 Advances in Geometry de Gruyter 2003 Odd order flag-transitive affine planes of dimension three over their kernel Ronald D. Baker, C. Culbert*, Gary L. Ebert* and Keith

More information

The geometry of secants in embedded polar spaces

The geometry of secants in embedded polar spaces The geometry of secants in embedded polar spaces Hans Cuypers Department of Mathematics Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands June 1, 2006 Abstract Consider

More information

. Here the flats of H(2d 1, q 2 ) consist of all nonzero totally isotropic

. Here the flats of H(2d 1, q 2 ) consist of all nonzero totally isotropic NEW BOUNDS FOR PARTIAL SPREADS OF H(d 1, ) AND PARTIAL OVOIDS OF THE REE-TITS OCTAGON FERDINAND IHRINGER, PETER SIN, QING XIANG ( ) Abstract Our first result is that the size of a partial spread of H(,

More information

Unextendible Mutually Unbiased Bases (after Mandayam, Bandyopadhyay, Grassl and Wootters)

Unextendible Mutually Unbiased Bases (after Mandayam, Bandyopadhyay, Grassl and Wootters) Article Unextendible Mutually Unbiased Bases (after Mandayam, Bandyopadhyay, Grassl and Wootters) Koen Thas Department of Mathematics, Ghent University, Ghent 9000, Belgium; koen.thas@gmail.com Academic

More information

arxiv: v1 [math.co] 2 Dec 2015

arxiv: v1 [math.co] 2 Dec 2015 CYCLIC ELLIPTIC SPREADS arxiv:1512.861v1 [math.co] 2 Dec 215 W. M. KANTOR Abstract. Moderately large numbers of transitive elliptic spreads are constructed in characteristic 2 and dimension 2 (mod 4).

More information

FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS

FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS Sairaiji, F. Osaka J. Math. 39 (00), 3 43 FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS FUMIO SAIRAIJI (Received March 4, 000) 1. Introduction Let be an elliptic curve over Q. We denote by ˆ

More information

Strongly Regular (:, ;)-Geometries

Strongly Regular (:, ;)-Geometries Journal of Combinatorial Theory, Series A 95, 234250 (2001) doi:10.1006jcta.2000.3164, available online at http:www.idealibrary.com on Strongly Regular (:, ;)-Geometries Nicholas Hamilton 1 Vakgroep Zuivere

More information

Exterior powers and Clifford algebras

Exterior powers and Clifford algebras 10 Exterior powers and Clifford algebras In this chapter, various algebraic constructions (exterior products and Clifford algebras) are used to embed some geometries related to projective and polar spaces

More information

Ree Geometries. Abstract

Ree Geometries. Abstract arxiv:0909.3211v1 [math.gr] 17 Sep 2009 Ree Geometries Fabienne Haot Koen Struyve Hendrik Van Maldeghem Abstract We introduce a rank 3 geometry for any Ree group over a not necessarily perfect field and

More information

Every generalized quadrangle of order 5 having a regular point is symplectic

Every generalized quadrangle of order 5 having a regular point is symplectic Every generalized quadrangle of order 5 having a regular point is symplectic Bart De Bruyn Ghent University, Department of Mathematics, Krijgslaan 281 (S22), B-9000 Gent, Belgium, E-mail: bdb@cage.ugent.be

More information

THE CLASSIFICATION OF PLANAR MONOMIALS OVER FIELDS OF PRIME SQUARE ORDER

THE CLASSIFICATION OF PLANAR MONOMIALS OVER FIELDS OF PRIME SQUARE ORDER THE CLASSIFICATION OF PLANAR MONOMIALS OVER FIELDS OF PRIME SQUARE ORDER ROBERT S COULTER Abstract Planar functions were introduced by Dembowski and Ostrom in [3] to describe affine planes possessing collineation

More information

Collineations of polar spaces with restricted displacements

Collineations of polar spaces with restricted displacements Collineations of polar spaces with restricted displacements B. Temmermans J. A. Thas H. Van Maldeghem Department of Mathematics, Ghent University, Krijgslaan 281, S22, B 9000 Gent btemmerm@cage.ugent.be,

More information

arxiv: v1 [math.co] 16 Oct 2008

arxiv: v1 [math.co] 16 Oct 2008 Symplectic spreads and permutation polynomials arxiv:0810.2839v1 [math.co] 16 Oct 2008 Simeon Ball Departament de Matemàtica Aplicada IV Universitat Politècnica de Catalunya Mòdul C3, Campus Nord 08034

More information