Low-Q 2 low-x Structure Function Analysis of CCFR data for F 2

Size: px
Start display at page:

Download "Low-Q 2 low-x Structure Function Analysis of CCFR data for F 2"

Transcription

1 Low-Q low-x Structure Function Analysis of data for F B. H. Tamminga a,t. Adams b,a.alton b,c.g.arroyo a,s.avvakumov c, L. de Barbaro d,p.debarbaro c,a.o.bazarko a,r.h.bernstein e,a.bodek c, T. Bolton b,j.brau f, D. Buchholz d, H. Budd c,l.bugel e,j.conrad a,r.b.drucker f, J. A. Formaggio a,r.frey f, J. Goldman b, M. Goncharov b,d.a.harris c,r.a.johnson g,j.h.kim a,b.j.king a,t.kinnel h, S. Koutsoliotas a,m.j.lamm e,w.marsh e, D. Mason f,k.s.mcfarland c,c.mcnulty a,s.r.mishra a, D. Naples b,p.nienaber e, A. Romosan a,w.k.sakumoto c, H. Schellman d,f.j.sciulli a,w.g.seligman a, M. H. Shaevitz a,w.h.smith h,p.spentzouris a,e.g.stern a, M. Vakili g, A. Vaitaitis a, V. Wu g,u.k.yang c,j.yu e,g.p.zeller d,e.d.zimmerman a a Columbia University, New York, NY 7 b Kansas State University, Manhattan, KS 6656 c University of Rochester, Rochester, NY 467 d Northwestern University, Evanston, IL 68 e Fermi National Accelerator Laboratory, Batavia, IL 65 f University of Oregon, Eugene, OR 9743 g University of Cincinnati, Cincinnati, OH 45 h University of Wisconsin, Madison, WI 5376 Analyses of structure functions (SFs) from neutrino and muon deep inelastic scattering (DIS) data have shown discrepancies in F for x<.. A new SF analysis of the collaboration data examining regions in x down to x =.5 and.4 <Q <.is presented. Comparison to corrected charged lepton scattering results for F from the and experiments are made. Differences between µ and ν scattering allow that the behavior of F µ could be different from F ν as Q approaches zero. Comparisons between F µ and F ν are made in this limit. High-energy neutrinos are a unique probe for understanding the parton properties of nucleon structure. Combinations of ν and ν DIS data are used to determine the F and xf 3 SFs which determine the valence, sea, and gluon parton distributions in the nucleon [,]. The universalities of parton distributions can also be studied by comparing neutrino and charged lepton scattering data. Past measurements have indicated that F ν differs from F e/µ by -5% in the low-x region [3]. These differences are larger than the quoted combined statistical and systematic errors of the measurements and may indicate the need for modifications of the theoretical modeling to include higher-order or new physics

2 contributions. We present a new analysis of the collaboration ν-n DISdataina previously unexplored kinematic region. In this low-x and low-q region, the discrepancy between F ν and F µ persists. However, in this kinematic region some differences in F from neutrino and charged lepton data may result from differences in the properties of weak and electromagnetic interactions. Within the PCAC nature of ν-n DIS, F ν should approach a constant as Q approaches zero, while F e/µ for charged lepton DIS should approach zero. A determination of this constant is presented. The ν DIS data were taken in two high-energy high-statistics runs, FNAL E744 and E77, in the Fermilab Tevatron fixed-target quadrupole triplet beam (QTB) line by the collaboration. The detector, described in Refs. [4,5], consists of a target calorimeter instrumented with both scintillators and drift chambers for measuring the energy of the hadron shower E HAD and the µ angle θ µ, followed by a toroid spectrometer for measuring the µ momentum p µ. There are 95, ν µ events and 7, ν µ events in the data sample after fiducial-volume cuts, geometric cuts, and kinematic cuts of p µ > 5 GeV, θ µ < 5 mr, E HAD > GeV,and3<E ν <36 GeV, to select regions of high efficiency and small systematic errors in reconstruction. In order to extract the SFs from the number of observed ν µ and ν µ events, determination of the flux was neccesary [7,6,8]. The cross-sections, multiplied by the flux, are compared to the observed number of ν-n and ν-n events in each x and Q bin to extract F (x, Q ) and xf 3 (x, Q ). Determination of muon and hadron energy calibrations from the previous analysis were used in the present analysis. These calibrations were determined from test beam data collected during the course of the experiment [4,5]. Changes in the SF extraction to extend the analysis into the low-q,low-xregion include incorporation of an appropriate model below Q of.35 GeV, in this case we chose the GRV [] model of PDFs. The data have been corrected using the leading order Buras-Gaemers model [9] for slow rescaling [,3], with charm mass of.3 GeV and for the difference in xf3 ν xf 3 ν. In addition, corrections for radiative effects [], non-isoscalarity of the Fe target, and the mass of the W -boson propagator were applied. Due to the systematic uncertainty in the model, the radiative correction error dominates in the lowest x bins. Other significant systematics across the entire kinematic region include the value of R, whichcomesfrom a global fit to the world s measurements []. The SF F from ν DISonironcanbecomparedtoF from charged lepton DIS on isoscalar targets. To make this comparison, two corrections must be made to the charged lepton data. For deuterium data, a heavy nuclear target correction must be made to convert F ld to F lfe [4]. Second, a correction was made to account for the different quark charge involved in the charged lepton DIS interactions [3]. The errors on the nuclear and charge corrections are small compared to the statistical and systematic errors on both the and data. The corrected SF, F, from µ DIS experiments and [5,6] along with for lowest x-bins is shown in Fig.. The new analysis allows comparison to data, which is in the low-x, low-q region. Error bars for and data are large in the x-bin, x=.5. However, In the next x-bin, x =.45, there is clearly as much as a % discrepancy between the F µ and the F ν and an approximately % discrepancy between and. As the value of x increases, the discrepancy decreases; there is agreement between and the charged lepton experiments above x =..

3 3 F.5 x=.5 (x=.9) (x=.) (x=.8) (x=.5) x=.75.5 x=.45 x=.5 F F F.5.5 x=.8 x=.5 (x=.37) (x=.5) (x=.69) (x=.89) x=.35 x=.5 Q Q Figure. F from ν-fe DIS compared to F from µd DIS. Errors bars are statistical and systematic added in quadrature. The µ data have been corrected as described in the text. The discrepancy between and at low-x is outside the experimental systematic errors quoted by the groups. Several suggestions for an explanation have been put forward. One suggestion [7], that the discrepancy can be entirely explained by a large strange sea, is excluded by the dimuon analysis which directly measures the strange sea [8]. Another is that the strange sea may not be the same as the anti-strange sea distribution. Data from both and do not support this possibility [9]. Another possibilty is that the heavy nuclear target correction may be different between neutrinos and charged leptons. Heavy target corrections used in this paper are determined by for charged lepton-nucleon DIS data and applied to and only; no charged lepton correction data is applied to ν data. Another possibility that has been proposed would have a large symmetry violation in the sea quark [], but recently the model has been ruled out by the CDF W charge asymmetry measurements []. Finally, in the low-x and low-q region, some of the discrepancy may be accounted for by the differences in behavior of F as Q approaches zero, although this can only address the x<.75 region. In charged lepton DIS, the SF, F, is constrained by gauge invariance to vanish linearly with Q at Q =. Donnachie and Landshoff predict that in the low-q region, F µ will follow the form [] C ( ) Q Q +A. However, in the case of neutrino DIS, the PCAC nature of the weak interaction contributes a nonzero component to F as Q approaches zero. Donnachie and Landshoff predict that F ν contribution at Q =: C ( ) should follow a form with a non-zero Q + Q +D Q +A Q +B. Using data we fit to the form predicted

4 4 Table Fit results for and data. is fit to Eq. 3 and parameter A extracted: A =. ±.7. data is fit to Eq. 4 with A extracted from fit. B, C, D and F at Q results shown below. x B C D F ν (Q =) χ ±.3.57 ±.9.4 ±.3. ± ±.4.34 ±.6.64 ±.6.33 ± ±.4.8 ±.5.7 ±.6.36 ± ±.4.3 ±.5.64 ±.6.33 ±.4.8 for e/µ DIS, extracting the parameter A. Inserting this value for A into the form predicted for ν DIS, we fit data to extract parameters B,C,D, and determine the value of F at Q =. OnlydatabelowQ =.35 GeV are used in the fits. The x-bins having enough data for a good fit in this Q region are x =.45, x =.8, x =.5, x =.75. Table shows the results of the fits. The values of F at Q = in the three highest x-bins are statistically significant and in agreement with each other. The lowest x-bin is consistent with the other results. In summary, a comparison of F from ν DIS to that from µ DIS continues to show good agreement above x =. but a difference at smaller x that grows to % at x =.45. The experimental systematic errors between the two experiments, and improved theoretical analyses of massive charm production in both neutrino and muon scattering are both presently being investigated as possible reasons for this discrepancy. Some of this low-x discrepancy may be explained by the different behavior of F from ν DIS to that from e/µ DIS at Q =. F ν data appear to approach a non-zero constant at Q =. REFERENCES. M. Glück, E. Reya, A. Vogt, Z. Phys. C67: 433 (995); A. D. Martin, R. G. Roberts, W. J. Stirling; DTP/96/44, RAL-TR (996).. H. L. Lai et al., Phys.Rev. D55: 8 (997). 3. W. G. Seligman et al., Phys. Rev. Lett. 79: 3 (997). 4. W. K. Sakumoto et al., Nucl. Instrum. Meth. A94: 79 (99). 5. B. J. King et al., Nucl. Instrum. Meth. A3: 54 (99). 6. P. S. Auchincloss et al., Z. Phys. C48: 4 (99). 7. W. G. Seligman, Ph. D. Thesis, Nevis Report R. Belusevic and D. Rein, Phys. Rev. D38: 753 (988). 9. A. J. Buras and K. J. F. Gaemers, Nucl. Phys. B3: 49 (978). D. Yu. Bardin, V. A. Dokuchaeva, JINR-E-86-6 (986).. L. W. Whitlow et al., Phys. Lett. B5: 93 (99).. R. M. Barnett, Phys. Rev. Lett. 36: 63 (976). 3. H. Georgi and H. D. Politzer, Phys. Rev. D4: 89 (976). 4. P. Amaudruz et al., Nucl. Phys. B44: 3 (995); R. G. Arnold et al., Phys. Rev. Lett.

5 5: 77 (984); J. Gomez et al., Phys. Rev. D49: 4348 (994); M. R. Adams et al., Z. Phys. C67: 43 (995). 5. M. Arneodo et al., Nucl. Phys. B483: 3 (997). 6. M.R. Adams et al., Phys.Rev. D54: 36 (996); L. W. Whitlow, Ph.D. Thesis, SLAC-REPORT-357 (99); A.C. Benvenuti et al., Phys. Lett. B37: 59 (99). 7. J. Botts et al., Phys. Lett. B34: 59 (993). 8. A. O. Bazarko et al., Z. Phys. 65: 89 (995). 9. S. Brodsky and B. Ma, Phys. Lett. B38: 37 (996).. C. Boros, J.T. Londergan, and A.W. Thomas, Phys. Rev. Lett. 8, 475, (998); also ADP-98-64/T33 (hep-ph-98). A. Bodek et al., UR-657,hep-ex/994, to be published in Phys. Rev. Lett.. A. Donnachie and P.V. Landshoff Z. Phys. C6: 39 (994) 5

Differential Cross Section Results from NuTeV

Differential Cross Section Results from NuTeV PROCEEDINGS Differential Cross Section Results from NuTeV and J. McDonald Department of Physics, University of Pittsburgh, PA E-mail: naples@phyast.pitt.edu T. Adams 4,A.Alton 4,S.Avvakumov 8,L.deBarbaro

More information

arxiv:hep-ex/ v3 25 Mar 2003

arxiv:hep-ex/ v3 25 Mar 2003 A Precise Determination of Electroweak Parameters in Neutrino-Nucleon Scattering arxiv:hep-ex/0110059 v3 25 Mar 2003 G. P. Zeller 5, K. S. McFarland 8,3, T. Adams 4, A. Alton 4, S. Avvakumov 8, L. de Barbaro

More information

Precise measurement of neutrino and antineutrino differential cross sections

Precise measurement of neutrino and antineutrino differential cross sections PHYSICAL REVIEW D 74, 28 (26) Precise measurement of neutrino and antineutrino differential cross sections M. Tzanov, D. Naples, S. Boyd, J. McDonald, and V. Radescu Department of Physics, University of

More information

OFF THE MASS SHELL: ELECTROWEAK PHYSICS AT NUTEV. Kevin S. McFarland, representing the NuTeV Collaboration

OFF THE MASS SHELL: ELECTROWEAK PHYSICS AT NUTEV. Kevin S. McFarland, representing the NuTeV Collaboration Physics in Collision - Stanford, California, June 20-22, 2002 OFF THE MASS SHELL: ELECTROWEAK PHYSICS AT NUTEV Kevin S. McFarland, representing the NuTeV Collaboration University of Rochester, Rochester,

More information

arxiv:hep-ex/ v1 9 Sep 2005

arxiv:hep-ex/ v1 9 Sep 2005 Precise Measurement of Neutrino and Anti-neutrino Differential Cross Sections M. Tzanov, D. Naples, S. Boyd, J. McDonald, V. Radescu Department of Physics, University of Pittsburgh, PA 56 R. A. Johnson,

More information

Publications Janet M. Conrad

Publications Janet M. Conrad Publications Janet M. Conrad Scientific Publications in Refereed Journals: The Neutrino Flux prediction at MiniBooNE, The MiniBooNE Collaboration (A. A. Aguilar-Arevalo, et al.), hep/ex:0806.1449 [hep-ex],

More information

FERMI NATIONAL ACCELERATOR LABORATORY

FERMI NATIONAL ACCELERATOR LABORATORY FERMI NATIONAL ACCELERATOR LABORATORY arxiv:0908.1374v1 [hep-ex] 10 Aug 2009 TEVEWWG/WZ 2009/01 FERMILAB-TM-2439-E CDF Note 9859 D0 Note 5965 10 th August 2009 Updated Combination of CDF and D0 Results

More information

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1 High Energy Physics Lecture 9 Deep Inelastic Scattering Scaling Violation HEP Lecture 9 1 Deep Inelastic Scattering: The reaction equation of DIS is written e+ p e+ X where X is a system of outgoing hadrons

More information

Neutrino Cross Sections and Scattering Physics

Neutrino Cross Sections and Scattering Physics Neutrino Cross Sections and Scattering Physics Bonnie Fleming Yale University, New Haven, CT. Abstract. Large flux uncertainties and small cross sections have made neutrino scattering physics a challenge.

More information

Measurement of Properties of Electroweak Bosons with the DØ Detector

Measurement of Properties of Electroweak Bosons with the DØ Detector Measurement of Properties of Electroweak Bosons with the DØ Detector Laboratoire de Physique Subatomique et de Cosmologie, 53, rue des Martyrs, 38026, Grenoble Cedex, France. E-mail: Hengne.Li@in2p3.fr

More information

The Neutron Structure Function from BoNuS

The Neutron Structure Function from BoNuS The Neutron Structure Function from BoNuS Stephen Bültmann 1 Physics Department, Old Dominion University, Norfolk, VA 359, USA Abstract. The BoNuS experiment at Jefferson Lab s Hall B measured the structure

More information

Measurements of charm and beauty proton structure functions F2 c c and F2 b b at HERA

Measurements of charm and beauty proton structure functions F2 c c and F2 b b at HERA Measurements of charm and beauty proton structure functions F c c and F b b at HERA Vladimir Chekelian MPI for Physics, Germany E-mail: shekeln@mail.desy.de Inclusive charm and beauty production is studied

More information

PoS(EPS-HEP2015)309. Electroweak Physics at LHCb

PoS(EPS-HEP2015)309. Electroweak Physics at LHCb European Organisation for Nuclear Research (CERN), Switzerland E-mail: william.barter@cern.ch LHCb s unique forward acceptance allows for complementary measurements of electroweak boson production to those

More information

Current Status of the NuTeV Experiment

Current Status of the NuTeV Experiment Current Status of the NuTeV Experiment Beyond the Standard Model?? QCD Effects?? NuTeV charged, neutral currents induced by neutrinos New measurement of Weinberg angle Possible New Physics beyond the Standard

More information

Structure Functions at Very High Q 2 From HERA

Structure Functions at Very High Q 2 From HERA Structure Functions at Very High Q 2 From HERA Christopher M. Cormack For the H1 and ZEUS Collaborations Rutherford Appleton Laboratory, Chilton, Didcot, Oxford, OX11 0QX, United Kingdom Abstract. Measurements

More information

Direct measurement of the W boson production charge asymmetry at CDF

Direct measurement of the W boson production charge asymmetry at CDF Direct measurement of the boson production charge asymmetry at CDF Eva Halkiadakis Rutgers University For the CDF collaboration Joint Experimental-Theoretical Physics Seminar Fermilab May 22 2009 Outline

More information

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University Results from the Tevatron: Standard Model Measurements and Searches for the Higgs Ashutosh Kotwal Duke University SLAC Summer Institute 31 July 2007 Why Build Accelerators? From Atoms to Quarks Scattering

More information

W, Z and top production measurements at LHCb

W, Z and top production measurements at LHCb 1 W, Z and top production measurements at LHCb Lorenzo Sestini, on behalf of the LHCb collaboration. Universitá di Padova e INFN E-mail: lorenzo.sestini@cern.ch The LHCb experiment offers a complementary

More information

Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR

Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR Longitudinal Double Spin Asymmetry in Inclusive Jet Production at STAR Katarzyna Kowalik for the STAR Collaboration Lawrence Berkeley National Laboratory, Berkeley, California 94720 Abstract. This contribution

More information

Electroweak Measurements at NuTeV: A Departure from Prediction

Electroweak Measurements at NuTeV: A Departure from Prediction Electroweak Measurements at NuTeV: A Departure from Prediction Mike Shaevitz Fermilab and Columbia University for the NuTeV Collaboration WIN00 Conference Christchurch, New Zealand January, 00 Introduction

More information

NuSOnG. Neutrinos Scattering On Glass. Let s consider each of these (though not in this order) William Seligman, 30-Jun-08.

NuSOnG. Neutrinos Scattering On Glass. Let s consider each of these (though not in this order) William Seligman, 30-Jun-08. NuSOnG Neutrinos Scattering On Glass Let s consider each of these (though not in this order) William Seligman, 30-Jun-08 Page 1 of 46 NuSOnG Neutrinos Scattering On Glass Page 2 of 46 Obtaining a neutrino

More information

Neutrino-Nucleus Scattering at MINERvA

Neutrino-Nucleus Scattering at MINERvA 1 Neutrino-Nucleus Scattering at MINERvA Elba XIII Workshop: Neutrino Physics IV Tammy Walton Fermilab June 26, 2014 2 MINERvA Motivation Big Picture Enter an era of precision neutrino oscillation measurements.

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

Nuclear Parton Distribution Functions

Nuclear Parton Distribution Functions Nuclear Parton Distribution Functions Lessons Learned from Global Fitting J.F. Owens Physics Department, Florida State University DNP Long Range Plan QCD Town Meeting Rutgers University January 12, 2007

More information

arxiv:hep-ph/ v1 13 Oct 2004

arxiv:hep-ph/ v1 13 Oct 2004 arxiv:hep-ph/0410184v1 13 Oct 2004 σ DIS (νn), NLO Perturbative QCD and O(1 GeV) Mass Corrections S. Kretzer a and M. H. Reno b a Physics Department and RIKEN-BNL Research Center, Bldg. 510a, Brookhaven

More information

A few words by Arie Bodek - University of Rochester

A few words by Arie Bodek - University of Rochester A: Nobel Prize 1990 - Friedman, Kendall, Taylor for their pioneering investigations concerning deep inelastic scattering of electrons on protons and bound neutrons, which have been of essential importance

More information

Hadron multiplicities at the HERMES experiment

Hadron multiplicities at the HERMES experiment A. I. Alikhanyan National Science Laboratory, Yerevan, Armenia E-mail: gevkar@mail.desy.de The HERMES collaboration has measured charge-separated pion and kaon multiplicities in semiinclusive deep-inelastic

More information

W Asymmetry and PDF s - CDF and LHC Analyses. Arie Bodek. University of Rochester CDF & CMS

W Asymmetry and PDF s - CDF and LHC Analyses. Arie Bodek. University of Rochester CDF & CMS W Asymmetry and PDF s - CDF and LHC Analyses Arie Bodek University of Rochester CDF & CMS Miami 2008 Conference - Saturday, Dec. 20, 2008 1 Why measure Wasym The W and Z cross sections are anticipated

More information

The MINERnA Experiment

The MINERnA Experiment The MINERnA Experiment What is Minerna? Why Mienrna? n / n CCQE sections Inclusive n sections n beam and n flux Outlook INPC 2013 June 4 th 13 Alessandro Bravar for the Mienrna Collaboration The MINERnA

More information

Using Neutrinos as a Probe of the Strong Interaction

Using Neutrinos as a Probe of the Strong Interaction Using Neutrinos as a Probe of the Strong Interaction Neutrino / Anti-neutrino Deep-Inelastic Scattering off of Massive Nuclear Targets e-nucleus XI Elba June, 2010 Jorge G. Morfín Fermilab With thanks

More information

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target University of Illinois E-mail: rsheitz2@illinois.edu On behalf

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 013 Weak Interactions II 1 Important Experiments Wu-Experiment (1957): radioactive decay of Co60 Goldhaber-Experiment (1958): radioactive decay

More information

Determination of Electroweak Parameters

Determination of Electroweak Parameters Determination of Electroweak Parameters Seminar Particle Physics at the LHC Proceedings R. Gugel Freiburg, 27.05.2014 Contents 1 Motivation 1 2 Template Method 4 3 Mass of the W Boson 5 3.1 Measurement

More information

Charged Current Inclusive Scattering in MINERnA

Charged Current Inclusive Scattering in MINERnA Charged Current Inclusive Scattering in MINERnA What is Minerna? Why Minerna? n beam and n flux n / n inclusive x-sections x-section ratios (A-depndence) Outlook NUFACT 2013 August 21 st 13 Alessandro

More information

Flavor Asymmetry of the Nucleon Sea and W-Boson Production*

Flavor Asymmetry of the Nucleon Sea and W-Boson Production* Flavor Asymmetry of the Nucleon Sea and W-Boson Production* Department of Physics University of Illinois 7 December 2012 *R. Yang, J.C. Peng, M. Grosse-Perdekamp, Phys. Lett. B 680 (2009) 231-234 What

More information

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors 1 Experimental Aspects of Deep-Inelastic Scattering Kinematics, Techniques and Detectors 2 Outline DIS Structure Function Measurements DIS Kinematics DIS Collider Detectors DIS process description Dirac

More information

Proton PDFs constraints from measurements using the ATLAS experiment

Proton PDFs constraints from measurements using the ATLAS experiment Nuclear and Particle Physics Proceedings 00 (08) 6 Nuclear and Particle Physics Proceedings Proton PDFs constraints from measurements using the eperiment F. Giuli a a University of Oford, Keble Road, OX

More information

Quasi-Elastic Scattering in MINERvA

Quasi-Elastic Scattering in MINERvA Quasi-Elastic Scattering in MINERvA Kevin S. McFarland Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 USA and Fermi National Accelerator Laboratory, Batavia, IL 60510

More information

The Qweak experiment: a precision measurement of the proton s weak charge

The Qweak experiment: a precision measurement of the proton s weak charge The Qweak experiment: a precision measurement of the proton s weak charge R. D. Carlini Jefferson Lab, 1000 Jefferson Avenue, Newport News, Virginia 3606, USA Abstract. The Qweak experiment [1] will conduct

More information

Pion-nucleus Drell-Yan data as a novel constraint for nuclear PDFs

Pion-nucleus Drell-Yan data as a novel constraint for nuclear PDFs https://helda.helsinki.fi Pion-nucleus Drell-Yan data as a novel constraint for nuclear PDFs Paakkinen, P. 207 Paakkinen, P, Eskola, K J & Paukkunen, H 207, ' Pion-nucleus Drell-Yan data as a novel constraint

More information

Novel Measurements of Proton Structure at HERA

Novel Measurements of Proton Structure at HERA Introduction Combined Cross Sections & QCD Fits NC & CC Cross Section Measurements F L Summary Novel Measurements of Proton Structure at HERA Katie Oliver University of Oxford On behalf of the H1 and ZEUS

More information

PANIC August 28, Katharina Müller on behalf of the LHCb collaboration

PANIC August 28, Katharina Müller on behalf of the LHCb collaboration Measurements with electroweak bosons at LHCb PANIC August 28, 2014 on behalf of the LHCb collaboration Outline LHCb detector Measurements with electroweak bosons Motivation Z production Z plus jets, Z

More information

Models of the Nucleon & Parton Distribution Functions

Models of the Nucleon & Parton Distribution Functions 11th CTEQ Summer School on QCD Analysis and Phenomenology Madison, Wisconsin, June 22-30, 2004 Models of the Nucleon & Parton Distribution Functions Wally Melnitchouk Jefferson Lab Outline Introduction

More information

Top quark pair properties in the production and decays of t t events at ATLAS

Top quark pair properties in the production and decays of t t events at ATLAS ATL-PHYS-PROC-214-72 11 July 214 Top quark pair properties in the production and decays of t t events at DESY, Hamburg Universität Wuppertal E-mail: ralph.schaefer@cern.ch In proton-proton collisions at

More information

SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION. Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 94309

SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION. Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 94309 SLAC-PUB-662 September 1994 (TE) SPIN STRUCTURE OF THE NUCLEON AND POLARIZATION Charles Y. Prescott Stanford Linear Accelerator Center Stanford University, Stanford CA 9439 Work supported by Department

More information

Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering

Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering Jerold Eugene Young III Department of Physics, Western Illinois University dvisor Dr. Gil Paz Wayne State

More information

Study of Strange Quark in the Nucleon with Neutrino Scattering

Study of Strange Quark in the Nucleon with Neutrino Scattering July 28, 2004 NuFact 04, Osaka Study of Strange Quark in the Nucleon with Neutrino Scattering T.-A. Shibata Tokyo Institute of Technology Contents: 3. Physics Motivation --- Quark Structure of the Nucleon

More information

3.2 DIS in the quark parton model (QPM)

3.2 DIS in the quark parton model (QPM) Experimental studies of QCD 1. Elements of QCD 2. Tests of QCD in annihilation 3. Studies of QCD in DIS 4. QCD in collisions 3.2 DIS in the quark parton model (QPM) M W Elastic scattering: W = M only one

More information

Arie Bodek. Un-ki Yang

Arie Bodek. Un-ki Yang Update to the Bodek-Yang Unified Model for Electron- and Neutrino- Nucleon Scattering Cross sections Arie Bodek University of Rochester Un-ki Yang University of Manchester Saturday July 24 15:00-15:30

More information

Why understanding neutrino interactions is important for oscillation physics

Why understanding neutrino interactions is important for oscillation physics Why understanding neutrino interactions is important for oscillation physics Christopher W. Walter Department of Physics, Duke University, Durham, NC 27708 USA Unfortunately, we do not live in a world

More information

Electroweak Physics at the Tevatron

Electroweak Physics at the Tevatron Electroweak Physics at the Tevatron Adam Lyon / Fermilab for the DØ and CDF collaborations 15 th Topical Conference on Hadron Collider Physics June 2004 Outline Importance Methodology Single Boson Measurements

More information

A High Resolution Neutrino Experiment in a Magnetic Field for Project-X at Fermilab

A High Resolution Neutrino Experiment in a Magnetic Field for Project-X at Fermilab A High Resolution Neutrino Experiment in a Magnetic Field for Project-X at Fermilab SANJIB R. MISHRA Department of Physics and Astronomy, University of South Carolina, Columbia SC 29208, USA E-mail: sanjib@sc.edu

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 22 Fermi Theory Standard Model of Particle Physics SS 22 2 Standard Model of Particle Physics SS 22 Fermi Theory Unified description of all kind

More information

Recent STAR Jet Results of the High-Energy Spin Physics Program at RHIC

Recent STAR Jet Results of the High-Energy Spin Physics Program at RHIC Recent STAR Jet Results of the High-Energy Spin Physics Program at RHIC Daniel L. Olvitt Jr. Temple University E-mail: daniel.olvitt@temple.edu The production of jets from polarized proton+proton collisions

More information

Detecting. Particles

Detecting. Particles Detecting Experimental Elementary Particle Physics Group at the University of Arizona + Searching for Quark Compositeness at the LHC Particles Michael Shupe Department of Physics M. Shupe - ATLAS Collaboration

More information

Parton Uncertainties and the Stability of NLO Global Analysis. Daniel Stump Department of Physics and Astronomy Michigan State University

Parton Uncertainties and the Stability of NLO Global Analysis. Daniel Stump Department of Physics and Astronomy Michigan State University Parton Uncertainties and the Stability of NLO Global Analysis Daniel Stump Department of Physics and Astronomy Michigan State University J. Huston, J. Pumplin, D. Stump and W.K. Tung, Stability of NLO

More information

Calculation of the Gluon Distribution Function Using Alternative Method for the Proton Structure Function

Calculation of the Gluon Distribution Function Using Alternative Method for the Proton Structure Function Commun. Theor. Phys. (Beijing, China 40 (2003 pp. 551 557 c International Academic Publishers Vol. 40, No. 5, November 15, 2003 Calculation of the Gluon Distribution Function Using Alternative Method for

More information

Dilepton Forward-Backward Asymmetry and electroweak mixing angle at ATLAS and CMS

Dilepton Forward-Backward Asymmetry and electroweak mixing angle at ATLAS and CMS Dilepton Forward-Backward Asymmetry and electroweak mixing angle at ATLAS and CMS University of Rochester E-mail: jyhan@fnal.gov We present measurements of the forward-backward asymmetry in Drell-Yan dilepton

More information

Standard Model of Particle Physics SS 2013

Standard Model of Particle Physics SS 2013 Lecture: Standard Model of Particle Physics Heidelberg SS 23 Fermi Theory Standard Model of Particle Physics SS 23 2 Standard Model of Particle Physics SS 23 Weak Force Decay of strange particles Nuclear

More information

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.: The Development of Particle Physics Dr. Vitaly Kudryavtsev E45, Tel.: 0114 4531 v.kudryavtsev@sheffield.ac.uk The structure of the nucleon Electron - nucleon elastic scattering Rutherford, Mott cross-sections

More information

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on the CMS information server CMS CR 212/178 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH211 GENEVA 23, Switzerland 212//9 Measurement of isolated photon

More information

Publications Janet M. Conrad

Publications Janet M. Conrad Publications Janet M. Conrad Scientific Publications: Atmospheric Tau Neutrinos in a Multi-kiloton Liquid Argon Detector, J. Conrad, A. de Gouvea, S. Shalgar, J. Spitz, arxiv:1008.2984. Submitted to Phys.

More information

Matter, Energy, Space, Time

Matter, Energy, Space, Time Matter, Energy, Space, Time UW UW UW UW UW UW UW UW Trails in Particle Physics Particle Physics at UW-Madison 1 Wisconsin program DESY: ep Hamburg, Germany HERA: ZEUS Structure of Matter SLAC: e + e -

More information

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004

Precision Tests of the Standard Model. Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Precision Tests of the Standard Model Yury Kolomensky UC Berkeley Physics in Collision Boston, June 29, 2004 Motivation Experiments (not covered by previous speakers ) Atomic Parity Violation Neutrino

More information

LHCb results in proton-nucleus collisions at the LHC

LHCb results in proton-nucleus collisions at the LHC LHCb results in proton-nucleus collisions at the LHC PANIC August 28, 2014 on behalf of the LHCb collaboration Outline Motivation LHCb Detector Beam configurations Measurements J/Ψ production Υ production

More information

Matter, Energy, Space, Time

Matter, Energy, Space, Time Matter, Energy, Space, Time UW UW UW UW UW UW UW UW Trails in Particle Physics Particle Physics at UW-Madison 1 Wisconsin program SLAC: e + e - Stanford, CA Babar: CP Violation FNAL Batavia, IL CDF: pp

More information

The Study of ν-nucleus Scattering Physics Interplay of Cross sections and Nuclear Effects

The Study of ν-nucleus Scattering Physics Interplay of Cross sections and Nuclear Effects The Study of ν-nucleus Scattering Physics Interplay of Cross sections and Nuclear Effects Jorge G. Morfín Fermilab University of Pittsburgh, 8 December 2012 1 ν H / D Scattering Life was simpler when our

More information

Proton Structure Function Measurements from HERA

Proton Structure Function Measurements from HERA Proton Structure Function Measurements from HERA Jörg Gayler DESY, Notkestrasse 85, 2263 Hamburg, Germany E-mail: gayler@mail.desy.de Abstract. Measurements of proton structure functions made in neutral

More information

USING e+e- CROSS-SECTIONS TO TEST QCD AND TO SEARCH FOR NEW PARTICLES*

USING e+e- CROSS-SECTIONS TO TEST QCD AND TO SEARCH FOR NEW PARTICLES* SLAC-PUB-2579 July 1980 (T/E) USING e+e- CROSS-SECTIONS TO TEST QCD AND TO SEARCH FOR NEW PARTICLES* R. Michael Barnett Stanford Linear Accelerator Center Stanford University, Stanford, California 94305

More information

The SHiP experiment. Colloquia: IFAE A. Paoloni( ) on behalf of the SHiP Collaboration. 1. Introduction

The SHiP experiment. Colloquia: IFAE A. Paoloni( ) on behalf of the SHiP Collaboration. 1. Introduction IL NUOVO CIMENTO 40 C (2017) 54 DOI 10.1393/ncc/i2017-17054-1 Colloquia: IFAE 2016 The SHiP experiment A. Paoloni( ) on behalf of the SHiP Collaboration INFN, Laboratori Nazionali di Frascati - Frascati

More information

Searching for New High Mass Phenomena Decaying to Muon Pairs using Proton-Proton Collisions at s = 13 TeV with the ATLAS Detector at the LHC

Searching for New High Mass Phenomena Decaying to Muon Pairs using Proton-Proton Collisions at s = 13 TeV with the ATLAS Detector at the LHC Proceedings of the Fifth Annual LHCP ATL-PHYS-PROC-07-089 August 9, 07 Searching for New High Mass Phenomena Decaying to Muon Pairs using Proton-Proton Collisions at s = TeV with the Detector at the LHC

More information

Spin Physics Experiments at SLAC

Spin Physics Experiments at SLAC SLAC-PUB-9269 June, 2002 Spin Physics Experiments at SLAC P. Bosted, for the E155/E155x Collaborations 1 Stanford Linear Accelerator Center, Stanford CA 94309 and Physics Dept., University of Massachusetts,

More information

The flavour asymmetry and quark-antiquark asymmetry in the

The flavour asymmetry and quark-antiquark asymmetry in the The flavour asymmetry and quark-antiquark asymmetry in the Σ + -sea Fu-Guang Cao and A. I. Signal Institute of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North, arxiv:hep-ph/9907560v2

More information

THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS & SCIENCES W BOSON PRODUCTION CHARGE ASYMMETRY IN THE ELECTRON CHANNEL ASHLEY S HUFF

THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS & SCIENCES W BOSON PRODUCTION CHARGE ASYMMETRY IN THE ELECTRON CHANNEL ASHLEY S HUFF THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS & SCIENCES W BOSON PRODUCTION CHARGE ASYMMETRY IN THE ELECTRON CHANNEL By ASHLEY S HUFF A Thesis submitted to the Department of Physics In partial fulfillment

More information

Standard Model Measurements at ATLAS

Standard Model Measurements at ATLAS ATL-PHYS-PROC-2013-291 Standard Model Measurements at ATLAS Julia I. Hofmann a, on behalf of the ATLAS Coaboration a Kirchhoff-Institue for Physics, Heidelberg University Im Neuenheimer Feld 227, 68789

More information

PoS(ICHEP2012)300. Electroweak boson production at LHCb

PoS(ICHEP2012)300. Electroweak boson production at LHCb Physik-Institut der Universität Zürich, Switzerland. E-mail: jonathan.anderson@cern.ch The electroweak boson production cross-sections have been measured in the forward region using s = 7 TeV proton-proton

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

Scattering at NuTeV. Kevin McFarland University of Rochester for the NuTeV Collaboration. Neutrinos and Implications for New Physics 11 October 2002

Scattering at NuTeV. Kevin McFarland University of Rochester for the NuTeV Collaboration. Neutrinos and Implications for New Physics 11 October 2002 sin 2 W from Neutrino Scattering at NuTeV Kevin McFarland University of Rochester for the NuTeV Collaboration Neutrinos and Implications for New Physics 11 October 2002 Outline 1. Why Study Electroweak

More information

NuSOnG Detector Resolution, Calibration, and Event Separation

NuSOnG Detector Resolution, Calibration, and Event Separation NuSOnG Detector Resolution, Calibration, and Event Separation Christina Ignarra July 31, 2008 Abstract This paper presents the methods and results for the NuSOnG[2] detector calibration and energy resolution

More information

Structure Functions and Parton Distribution Functions at the HERA ep Collider

Structure Functions and Parton Distribution Functions at the HERA ep Collider Structure Functions and Parton Distribution Functions at the HERA ep Collider by Chris Targett Adams (University College London) on behalf of the ZEUS and H1 collaborations. Moriond QCD, 16/03/2005 Contents

More information

EW Physics at LHC. phi= mu_4: pt=7.9 GeV, eta=-1.13, phi=0.94. Toni Baroncelli:

EW Physics at LHC. phi= mu_4: pt=7.9 GeV, eta=-1.13, phi=0.94. Toni Baroncelli: EW Physics at LHC Event display of a 2e2mu candidate. EventNumber: 12611816 RunNumber: 205113 m_4l=123.9 GeV. m_12=87.9 GeV, m_34=19.6 GeV. e_1: pt=18.7 GeV, eta=-2.45, phi=1.68,. 15/09/17 e_2: pt=75.96

More information

The first Z boson measurement in the dimuon channel in PbPb collisions at s = 2.76 TeV at CMS

The first Z boson measurement in the dimuon channel in PbPb collisions at s = 2.76 TeV at CMS The first Z boson measurement in the dimuon channel in PbPb collisions at s = 2.76 TeV at CMS Lamia Benhabib On behalf of CMS collaboration We present the first measurement of Z bosons in the di-muon channel

More information

PHYS 5326 Lecture #2. Wednesday, Jan. 24, 2007 Dr. Jae Yu. Wednesday, Jan. 24, 2007 PHYS 5326, Spring 2007 Jae Yu

PHYS 5326 Lecture #2. Wednesday, Jan. 24, 2007 Dr. Jae Yu. Wednesday, Jan. 24, 2007 PHYS 5326, Spring 2007 Jae Yu PHYS 5326 Lecture #2 Wednesday, Jan. 24, 2007 Dr. 1. Sources of Neutrinos 2. How is neutrino beam produced? 3. Physics with neutrino experiments 4. Characteristics of accelerator based neutrino experiments

More information

Top quark pair property measurements and tt+x, using the ATLAS detector at the LHC

Top quark pair property measurements and tt+x, using the ATLAS detector at the LHC Top quark pair property measurements and tt+x, using the ATLAS detector at the LHC On behalf of the ATLAS collaboration II. Physikalisches Institut 25th International Workshop on Deep Inelastic Scattering

More information

Studies of b b gluon and c c vertices Λ. Abstract

Studies of b b gluon and c c vertices Λ. Abstract SLAC PUB 8661 October 2000 Studies of b b gluon and c c vertices Λ Toshinori Abe Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 Representing the SLD Collaboration Abstract

More information

arxiv:hep-ph/ v1 4 Nov 1998

arxiv:hep-ph/ v1 4 Nov 1998 Gluon- vs. Sea quark-shadowing N. Hammon, H. Stöcker, W. Greiner 1 arxiv:hep-ph/9811242v1 4 Nov 1998 Institut Für Theoretische Physik Robert-Mayer Str. 10 Johann Wolfgang Goethe-Universität 60054 Frankfurt

More information

arxiv: v1 [hep-ex] 18 Nov 2010

arxiv: v1 [hep-ex] 18 Nov 2010 PDF sensitivity studies using electroweak processes at LHCb arxiv:1011.4260v1 [hep-ex] 18 Nov 2010 University College Dublin E-mail: francesco.de.lorenzi@cern.ch We describe parton density function sensitivity

More information

Study of Inclusive Jets Production in ep Interactions at HERA

Study of Inclusive Jets Production in ep Interactions at HERA HEP 003 Europhysics Conference in Aachen, Germany Study of Inclusive Jets Production in ep Interactions at HERA Mónica Luisa Vázquez Acosta Universidad Autónoma de Madrid On behalf of the ZEUS & H1 Collaborations

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title Anti-Lambda Polarization in High Energy pp Collisions with Polarized Beams Permalink https://escholarship.org/uc/item/8ct9v6vt

More information

Diffractive parton distributions from the HERA data

Diffractive parton distributions from the HERA data Diffractive parton distributions from the HER data Michael Groys a, haron Levy a and lexander Proskuryakov b a Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and stronomy, Tel

More information

Neutron Structure Function from BoNuS

Neutron Structure Function from BoNuS Neutron Structure Function from BoNuS Stephen BültmannB Old Dominion University for the CLAS Collaboration The Structure of the Neutron at Large x The BoNuS Experiment in 005 First Results from the BoNuS

More information

hep-ex/ Jun 1995

hep-ex/ Jun 1995 Department of Physics & Astronomy Experimental Particle Physics Group Kelvin Building, University of Glasgow, Glasgow, G 8QQ, Scotland Telephone: +44 ()4 9 8855 Fax: +44 ()4 4 99 GLAS{PPE/95{ 9 th June

More information

STUDY OF HIGGS EFFECTIVE COUPLINGS AT ep COLLIDERS

STUDY OF HIGGS EFFECTIVE COUPLINGS AT ep COLLIDERS STUDY OF HIGGS EFFECTIVE COUPLINGS AT ep COLLIDERS HODA HESARI SCHOOL OF PARTICLES AND ACCELERATORS, INSTITUTE FOR RESEARCH IN FUNDAMENTAL SCIENCES (IPM) The LHeC is a proposed deep inelastic electron-nucleon

More information

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction FYS 3510 Subatomic physics with applications in astrophysics Nuclear and Particle Physics: An Introduction Nuclear and Particle Physics: An Introduction, 2nd Edition Professor Brian Martin ISBN: 978-0-470-74275-4

More information

arxiv: v1 [nucl-ex] 12 May 2008

arxiv: v1 [nucl-ex] 12 May 2008 1 Highlights from PHENIX - II arxiv:0805.1636v1 [nucl-ex] 12 May 2008 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Terry C. Awes (for the PHENIX Collaboration ) Oak

More information

Charged Current Quasielastic Analysis from MINERνA

Charged Current Quasielastic Analysis from MINERνA Charged Current Quasielastic Analysis from MINERνA Anushree Ghosh CBPF - Centro Brasileiro de Pesquisas F sicas, Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro, Rio de Janeiro, 22290-180, Brazil on behalf

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 2012 W- and Z-Bosons 1 2 Contents Discovery of real W- and Z-bosons Intermezzo: QCD at Hadron Colliders LEP + Detectors W- and Z- Physics at LEP

More information

Analysis of Top Quarks Using a Kinematic Likelihood Method

Analysis of Top Quarks Using a Kinematic Likelihood Method The Ohio State University Undergraduate Research Thesis Presented in Partial Fulfillment of the Requirements for Graduation with Research Distinction in Physics in the Undergraduate Colleges of The Ohio

More information

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep.

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep. Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep. of strong dynamics and parton picture) Experimental Development Fixed

More information

SHiP: a new facility with a dedicated detector for neutrino physics

SHiP: a new facility with a dedicated detector for neutrino physics SHiP: a new facility with a dedicated detector for neutrino physics Università "Federico II" and INFN, Naples, Italy E-mail: giovanni.de.lellis@cern.ch The SHiP facility recently proposed at CERN copiously

More information