Exactly solvable Richardson-Gaudin models in nuclear structure

Size: px
Start display at page:

Download "Exactly solvable Richardson-Gaudin models in nuclear structure"

Transcription

1 Exactly solvable Rchardson-Gaudn models n nuclear structure Jorge Dukelsky In collaboraton wth people n audence: S. Pttel, P. Schuck, P. Van Isacker. And many others

2 Rchardson s Exact Soluton

3 Exact Soluton of the BCS Model P k k k Egenvalue equaton: H P H n g c c c c k, k ' k E k k ' k ' Ansatz for the egenstates (generalzed Cooper ansatz) M 0, 1 k 1 2 k E c c k k

4 Rchardson equatons M M g 2g 0, E E 2 E E E Propertes: k 0 k 1 1 Ths s a set of M nonlnear coupled equatons wth M unknowns (E ). The par energes are ether real or complex conjugated pars. There are as many ndependent solutons as states n the Hlbert space. The solutons can be classfed n the weak couplng lmt (g0). Exact solvablty reduces an exponental complex problem to an algebrac problem.

5 L k1 1 2 k E c c k k E= E= E= Evoluton of the real and magnary part of the par energes wth g. L=16, M=8. R. W. Rchardson, Phys. Rev. 141 (1966) 949. Solved numercal systems up to L=32, dm=10 8

6 The SU(2) Algebra Rank 1 and 1 quantum degree of freedom S, S S, S, S S, S, S 2S z z z The par realzatons s: 1 z j 1 S a a, S a a j jm jm j jm jm m m Other realzatons lke, two level atoms, spn, fnte center of mass pars, Holsten-Prmakoff or Schwnger, gve rse to dfferent physcal Hamltonans

7 Rchardson-Gaudn Models: Constructon of the Integrals of Moton J. D., C. Esebbag and P. Schuck, Phys. Rev. Lett. 87, (2001). The most general combnaton of lnear and quadratc generators, wth the restrcton of beng hermtan and number conservng, s X j 2 R S g S S S S Y S S j 2 z z z j j j j The ntegrablty condton R, Rj 0 leads to Yj X jk X jkyk X kx j These are the same condtons encountered by Gaudn (J. de Phys. 37 (1976) 1087) n a spn model known as the Gaudn magnet. 0

8 Gaudn (1976) found three solutons XXX (Ratonal) X j Y j 1 j XXZ (Hyperbolc Trgonometrc) 1 j j X j 2, Zj Cothx x j Snh x x Exact soluton j R j j Egenstates of the Ratonal and Hyperbolc Models Rchardson ansatz r 1 XXX S 0, XXZ S 0 E E

9 Any functon of the R operators defnes a vald ntegrable Hamltonan. The Hamltonan s dagonal n the bass of common egenstates of the R operators. Wthn the par representaton two body Hamltonans can be obtan by a lnear combnaton of R operators: H R, g The parameters g, s and s are arbtrary. There are 2 L+1 free parameters to defne an ntegrable Hamltonan n each of the famles. (L number of sngle partcle levels) The constant PM or reduced BCS Hamltonan solved by Rchardson can be obtaned by from the XXX famly by choosng =. For the same lnear combnaton n the Hyperbolc famly: l l l z H 2 S g S S BCS ï j j z H 2 S g S S Hyper ï ï j j j

10 Applcaton to Samarum sotopes G.G. Dussel, S. Pttel, J. Dukelsky and P. Sarrguren, PRC 76, (2007) Z = 62, 80 N 96 Selfconsstent Skyrme (SLy4) Hartree-Fock plus BCS n 11 harmonc oscllator shells. 40 to 48 pars n 286 double degenerate levels. Dm. of the parng Hamltonan matrx ~ to The strength of the parng force s chosen to reproduce the expermental parng gaps n 154 Sm ( n =0.98 MeV, p = 0.94 MeV) g n =0.106 MeV and g p =0.117 MeV. A dependence g=g n /A s assumed for the sotope chan.

11 Real Part Real Part 154 Sm C 2 C 5 C 4 C C C C C 1 G= ,0-0,5 0,0 0,5 1,0 G= Imagnary Part G= G= Imagnary Part

12 Correlatons Energes Mass Ec(Exact) Ec(PBCS Ec(BCS+H) Ec(BCS)

13 The Hyperbolc Model n Nuclear Structure J. Dukelsky, S. Lerma H., L. M. Robledo, R. Rodrguez-Guzman, S. Rombouts, Phys. Rev. C 84, (R) (2011) The separable ntegrable Hyperbolc Hamltonan Redefnng the 0 of energy the chemcal potental μ H S G S S z j j, j, absorbng the constant n H c c G c c c c j j j, j α s a new parameter that serves as an energy cutoff. In BCS approxmaton: The BCS Hamltonan has unphyscal Exactly solvable H wth nonconstant matrx elements G u v ' ' ' '

14 Mappng of the Gogny force n the Canoncal Bass We ft the parng strength G and the nteracton cutoff to the parng tensor u v and the parng gaps of the Gogny HFB egenstate n the Hartree-Fock bass. G u v uv ' ' ' ' Protons o Gogny _ Hyperbolco

15 M L D G E BCS corr E Exa corr 154 Sm x x U x x

16 Models derved from r = 1 RG [SU(2) and SU(1,1)] BCS or constant parng Hamltonan Generalzed Parng Hamltonans (Fermon and Bosons) Central Spn Model (Quantum dot) Gaudn magnets (Quantum magnetsm) Lpkn Model Two-level boson models (IBM, molecular, etc..) Atom-molecule Hamltonans (Feshbach resonances n cold atoms) Generalzed Jaynes-Cummngs models. Breached superconductvty. LOFF and breached LOFF states. p-wave parng n 2D lattces. Rchardson-Gaudn-Ktaev model of topologcal supeconductvty. Revews: J.Dukelsky, S. Pttel and G. Serra, Rev. Mod. Phys. 76, 643 (2004); G. Ortz, R. Somma, J. Dukelsky y S. Rombouts. Nucl. Phys. B 7070 (2005) 401

17 Exactly Solvable RG models for smple Le algebras Cartan classfcaton of Le algebras rank A n su(n+1) B n so(2n+1) C n sp(2n) D n so(2n) 1 su(2), su(1,1) parng so(3)~su(2) sp(2) ~su(2) so(2) ~u(1) 2 su(3) Three level Lpkns so(5), so(3,2) pn-parng sp(4) ~so(5) so(4) ~su(2)xsu(2) 3 su(4) Wgner so(7) FDSM sp(6) FDSM so(6)~su(4) color superconductvty 4 su(5) so(9) sp(8) so(8) parng T=0,1. Gnnoccho. S=3/2 fermons

18 Exactly Solvable Parng Hamltonans 1) SU(2), Rank 1 algebra 2) SO(5), Rank 2 algebra H n g P P j j H n g P P j j J. Dukelsky, V. G. Gueorguev, P. Van Isacker, S. Dmtrova, B. Errea y S. Lerma H. PRL 96 (2006) ) SO(8), Rank 4 algebra S. Lerma H., B. Errea, J. Dukelsky and W. Satula. PRL 99, (2007). 3) SO(6), Rank 3 algebra H n g P P j j B. Errea, J. Dukelsky and G. Ortz, PRA 79, (R) (2009). H n g S S g D D ST j j j j 1 1 S a a D a a 2 2,

19 Exact soluton of the SO(8) model M 1 E e u L l e e e 2 e g M M L ' ' ' M e 2 M M M M ' ' ' ' ' ' ' ' ' M M L ' ' ' ' M M L ' ' ' '

20 80 Nucleons n L=50 equdstant levels Quartet: 1e, 1, 1, 1 n-n Cooper par: 1e p-p Cooper par: 1e, 2, 1, 1

21 50 Even T G= Odd T 40 T=0 T=1 T=0,1 30 T=0 T=1 T=0,1 30 E T T T Analyss of the nuclear symmetry energy vs T n terms of the Isocrankng model (W. Satula and R. Wyss, PRL 86, 4488 (2001) and 87, (2001). e 1 o 1 ET T T, ET T T E 2J 2J T J T : so-moi, : Lnear enhancement factor (Wgner energy), E: 2qp exctaton (=2) T

22 Lnear enhancement factor λ Wgner lmt G=0.16 Inverse of the Iso-MoI G=.22 T=0 crcles, T=1damonds, T=0,1 trangles. Sold (open) -> even (odd) T

23 Pcket-Fence model and the thermodynamc lmt of p-n BCS G. F. Bertsch, J. Dukelsky, B. Errea, C. Esebbag, Ann. Phys. 325 (2019) 1340 Equdstant sngle partcle levels, 1,, 2 SU(4) symmetrc parng Hamltonan H n g S S D D ST j j j j Quarter fllng N, wth g 0.15 f 0.54 Thermodynamc lmt N,, N BCS equatons: 1/2 1/2 4 1 d 1, d g

24 Unlke the SU(2) RG model, we cannot derve analytcally the contnuous lmt. Proceed numercally by expandng the GS and quaspartcle energes as EGS b c d 4 a 2 3 1/ N N N N N E 4n E 4n 1 E 4n q GS GS 1 oe GS GS GS 2 g n 1 n 4n 1 2E 4n 1 E 4n E 4n 2 c 8 1, 160 N 1000, 40 n 250

25

26 levels, 200 partcles =0.5, g=-0.2 E correlacon exact 90 BCS T=(N-Z)/2

27 T=0,1 Parng Odd-Even Par effect as a sgnal of quartet correlatons 200 levels, g= E A+2 -E A -E A Exact p-n BCS Z=N

28 Summary For fnte systems, PBCS mproves sgnfcantly over BCS but t s stll far from the exact soluton. Typcally, PBCS msses ~ 1 MeV n bndng energy. The Isovector SO(5) and the SO(8) parng models are excellent benchmark models to study dfferent approxmatons dealng wth quartet correlatons, clusterzaton and condensaton. The SO(8) model can also descrbe spn 3/2 cold atoms where nuclear physcs could be explored n the lab. SO(5) has been used to test the QCM approxmaton n: N. Sandulescu, D. Negrea, J. Dukelsky, and C. W. Johnson Phys. Rev. C 85, (R) (2012) The exact GS energy of the T=0,1 parng Hamltonan goes to p-n BCS energy n the thermodynamc lmt. However, quartet correlatons are mportant for fnte systems. Alpha phases n nuclear matter requre more realstc nteractons: contact, schematc or realstc nuclear forces. Could they be explore wth cold atoms n optcal lattces?

Brief historical introduction. 50th anniversary of the BCS paper. Richardson exact solution (1963) Ultrasmall superconducting grains (1999).

Brief historical introduction. 50th anniversary of the BCS paper. Richardson exact solution (1963) Ultrasmall superconducting grains (1999). Brief historical introduction. 50th anniversary of the BCS paper. Richardson exact solution (1963) Ultrasmall superconducting grains (1999). Cooper pairs and pairing correlations from the exact solution

More information

The Cooper Problem. Problem : A pair of electrons with an attractive interaction on top of an inert Fermi sea c c FS,

The Cooper Problem. Problem : A pair of electrons with an attractive interaction on top of an inert Fermi sea c c FS, Jorge Duelsy Brief History Cooper pair and BCS Theory (1956-57) Richardson exact solution (1963). Gaudin magnet (1976). Proof of Integrability. CRS (1997). Recovery of the exact solution in applications

More information

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt

where the sums are over the partcle labels. In general H = p2 2m + V s(r ) V j = V nt (jr, r j j) (5) where V s s the sngle-partcle potental and V nt Physcs 543 Quantum Mechancs II Fall 998 Hartree-Fock and the Self-consstent Feld Varatonal Methods In the dscusson of statonary perturbaton theory, I mentoned brey the dea of varatonal approxmaton schemes.

More information

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal Inner Product Defnton 1 () A Eucldean space s a fnte-dmensonal vector space over the reals R, wth an nner product,. Defnton 2 (Inner Product) An nner product, on a real vector space X s a symmetrc, blnear,

More information

A how to guide to second quantization method.

A how to guide to second quantization method. Phys. 67 (Graduate Quantum Mechancs Sprng 2009 Prof. Pu K. Lam. Verson 3 (4/3/2009 A how to gude to second quantzaton method. -> Second quantzaton s a mathematcal notaton desgned to handle dentcal partcle

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechancs Rajdeep Sensarma! sensarma@theory.tfr.res.n ecture #9 QM of Relatvstc Partcles Recap of ast Class Scalar Felds and orentz nvarant actons Complex Scalar Feld and Charge conjugaton

More information

8. Superfluid to Mott-insulator transition

8. Superfluid to Mott-insulator transition 8. Superflud to Mott-nsulator transton Overvew Optcal lattce potentals Soluton of the Schrödnger equaton for perodc potentals Band structure Bloch oscllaton of bosonc and fermonc atoms n optcal lattces

More information

Dynamics of a Superconducting Qubit Coupled to an LC Resonator

Dynamics of a Superconducting Qubit Coupled to an LC Resonator Dynamcs of a Superconductng Qubt Coupled to an LC Resonator Y Yang Abstract: We nvestgate the dynamcs of a current-based Josephson juncton quantum bt or qubt coupled to an LC resonator. The Hamltonan of

More information

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model EXACT OE-DIMESIOAL ISIG MODEL The one-dmensonal Isng model conssts of a chan of spns, each spn nteractng only wth ts two nearest neghbors. The smple Isng problem n one dmenson can be solved drectly n several

More information

The GW approximation in 90 minutes or so. F. Bruneval Service de Recherches de Métallurgie Physique CEA, DEN

The GW approximation in 90 minutes or so. F. Bruneval Service de Recherches de Métallurgie Physique CEA, DEN The GW approxmaton n 90 mnutes or so Servce de Recherches de Métallurge Physque CEA, DEN DFT tutoral, Lyon december 2012 Outlne I. Standard DFT suffers from the band gap problem II. Introducton of the

More information

12. The Hamilton-Jacobi Equation Michael Fowler

12. The Hamilton-Jacobi Equation Michael Fowler 1. The Hamlton-Jacob Equaton Mchael Fowler Back to Confguraton Space We ve establshed that the acton, regarded as a functon of ts coordnate endponts and tme, satsfes ( ) ( ) S q, t / t+ H qpt,, = 0, and

More information

Magnon pairing in quantum spin nematic

Magnon pairing in quantum spin nematic Magnon parng n quantum spn nematc (Grenoble) n collaboraton wth Hro Tsunetsugu (Tokyo) Introducton Outlne Introducton Bound magnon states: from 1D chan to frustrated square lattce Condensate of bound magnon

More information

NUCLEAR STRUCTURE CALCULATIONS WITH A SEPARABLE APPROXIMATION FOR SKYRME INTERACTIONS

NUCLEAR STRUCTURE CALCULATIONS WITH A SEPARABLE APPROXIMATION FOR SKYRME INTERACTIONS NUCLEAR STRUCTURE CALCULATIONS WITH A SEPARABLE APPROXIMATION FOR SKYRME INTERACTIONS A. P. SEVERYUKHIN, V. V. VORONOV Bogolubov Laboratory of Theoretcal Physcs, JINR, Dubna, Moscow regon, Russa NGUYEN

More information

1 Rabi oscillations. Physical Chemistry V Solution II 8 March 2013

1 Rabi oscillations. Physical Chemistry V Solution II 8 March 2013 Physcal Chemstry V Soluton II 8 March 013 1 Rab oscllatons a The key to ths part of the exercse s correctly substtutng c = b e ωt. You wll need the followng equatons: b = c e ωt 1 db dc = dt dt ωc e ωt.

More information

Lecture 4. Macrostates and Microstates (Ch. 2 )

Lecture 4. Macrostates and Microstates (Ch. 2 ) Lecture 4. Macrostates and Mcrostates (Ch. ) The past three lectures: we have learned about thermal energy, how t s stored at the mcroscopc level, and how t can be transferred from one system to another.

More information

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2

Salmon: Lectures on partial differential equations. Consider the general linear, second-order PDE in the form. ,x 2 Salmon: Lectures on partal dfferental equatons 5. Classfcaton of second-order equatons There are general methods for classfyng hgher-order partal dfferental equatons. One s very general (applyng even to

More information

Density matrix. c α (t)φ α (q)

Density matrix. c α (t)φ α (q) Densty matrx Note: ths s supplementary materal. I strongly recommend that you read t for your own nterest. I beleve t wll help wth understandng the quantum ensembles, but t s not necessary to know t n

More information

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations

Robert Eisberg Second edition CH 09 Multielectron atoms ground states and x-ray excitations Quantum Physcs 量 理 Robert Esberg Second edton CH 09 Multelectron atoms ground states and x-ray exctatons 9-01 By gong through the procedure ndcated n the text, develop the tme-ndependent Schroednger equaton

More information

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t

Snce h( q^; q) = hq ~ and h( p^ ; p) = hp, one can wrte ~ h hq hp = hq ~hp ~ (7) the uncertanty relaton for an arbtrary state. The states that mnmze t 8.5: Many-body phenomena n condensed matter and atomc physcs Last moded: September, 003 Lecture. Squeezed States In ths lecture we shall contnue the dscusson of coherent states, focusng on ther propertes

More information

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as:

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as: 1 Problem set #1 1.1. A one-band model on a square lattce Fg. 1 Consder a square lattce wth only nearest-neghbor hoppngs (as shown n the fgure above): H t, j a a j (1.1) where,j stands for nearest neghbors

More information

The Feynman path integral

The Feynman path integral The Feynman path ntegral Aprl 3, 205 Hesenberg and Schrödnger pctures The Schrödnger wave functon places the tme dependence of a physcal system n the state, ψ, t, where the state s a vector n Hlbert space

More information

WORM ALGORITHM. Nikolay Prokofiev, Umass, Amherst. Boris Svistunov, Umass, Amherst Igor Tupitsyn, PITP, Vancouver

WORM ALGORITHM. Nikolay Prokofiev, Umass, Amherst. Boris Svistunov, Umass, Amherst Igor Tupitsyn, PITP, Vancouver WOR ALGORTH Nkolay Prokofev, Umass, Amherst asha ra Bors Svstunov, Umass, Amherst gor Tuptsyn, PTP, Vancouver assmo Bonnsegn, UAlerta, Edmonton Los Angeles, January 23, 2006 Why other wth algorthms? Effcency

More information

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields EJTP 6, No. 0 009) 43 56 Electronc Journal of Theoretcal Physcs Non-nteractng Spn-1/ Partcles n Non-commutng External Magnetc Felds Kunle Adegoke Physcs Department, Obafem Awolowo Unversty, Ile-Ife, Ngera

More information

Relaxation laws in classical and quantum long-range lattices

Relaxation laws in classical and quantum long-range lattices Relaxaton laws n classcal and quantum long-range lattces R. Bachelard Grupo de Óptca Insttuto de Físca de São Carlos USP Quantum Non-Equlbrum Phenomena Natal RN 13/06/2016 Lattce systems wth long-range

More information

Canonical description of charm and bottom

Canonical description of charm and bottom Canoncal descrpton of charm and bottom producton n e + e, pa, π A, pp and pp collsons Krzysztof Redlch Statstcal Model and exact charge conservaton laws: e Its phenomenologcal consequences + e n HIC SM

More information

Neutral-Current Neutrino-Nucleus Inelastic Reactions for Core Collapse Supernovae

Neutral-Current Neutrino-Nucleus Inelastic Reactions for Core Collapse Supernovae Neutral-Current Neutrno-Nucleus Inelastc Reactons for Core Collapse Supernovae A. Juodagalvs Teornės Fzkos r Astronomjos Insttutas, Lthuana E-mal: andrusj@tpa.lt J. M. Sampao Centro de Físca Nuclear da

More information

V.C The Niemeijer van Leeuwen Cumulant Approximation

V.C The Niemeijer van Leeuwen Cumulant Approximation V.C The Nemejer van Leeuwen Cumulant Approxmaton Unfortunately, the decmaton procedure cannot be performed exactly n hgher dmensons. For example, the square lattce can be dvded nto two sublattces. For

More information

Electron-Impact Double Ionization of the H 2

Electron-Impact Double Ionization of the H 2 I R A P 6(), Dec. 5, pp. 9- Electron-Impact Double Ionzaton of the H olecule Internatonal Scence Press ISSN: 9-59 Electron-Impact Double Ionzaton of the H olecule. S. PINDZOLA AND J. COLGAN Department

More information

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws

Representation theory and quantum mechanics tutorial Representation theory and quantum conservation laws Representaton theory and quantum mechancs tutoral Representaton theory and quantum conservaton laws Justn Campbell August 1, 2017 1 Generaltes on representaton theory 1.1 Let G GL m (R) be a real algebrac

More information

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density.

This chapter illustrates the idea that all properties of the homogeneous electron gas (HEG) can be calculated from electron density. 1 Unform Electron Gas Ths chapter llustrates the dea that all propertes of the homogeneous electron gas (HEG) can be calculated from electron densty. Intutve Representaton of Densty Electron densty n s

More information

Quantum Field Theory III

Quantum Field Theory III Quantum Feld Theory III Prof. Erck Wenberg February 16, 011 1 Lecture 9 Last tme we showed that f we just look at weak nteractons and currents, strong nteracton has very good SU() SU() chral symmetry,

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

APPENDIX A Some Linear Algebra

APPENDIX A Some Linear Algebra APPENDIX A Some Lnear Algebra The collecton of m, n matrces A.1 Matrces a 1,1,..., a 1,n A = a m,1,..., a m,n wth real elements a,j s denoted by R m,n. If n = 1 then A s called a column vector. Smlarly,

More information

Now that we have laws or better postulates we should explore what they imply

Now that we have laws or better postulates we should explore what they imply I-1 Theorems from Postulates: Now that we have laws or better postulates we should explore what they mply about workng q.m. problems -- Theorems (Levne 7.2, 7.4) Thm 1 -- egen values of Hermtan operators

More information

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR

5.04, Principles of Inorganic Chemistry II MIT Department of Chemistry Lecture 32: Vibrational Spectroscopy and the IR 5.0, Prncples of Inorganc Chemstry II MIT Department of Chemstry Lecture 3: Vbratonal Spectroscopy and the IR Vbratonal spectroscopy s confned to the 00-5000 cm - spectral regon. The absorpton of a photon

More information

2 More examples with details

2 More examples with details Physcs 129b Lecture 3 Caltech, 01/15/19 2 More examples wth detals 2.3 The permutaton group n = 4 S 4 contans 4! = 24 elements. One s the dentty e. Sx of them are exchange of two objects (, j) ( to j and

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

Polymer Chains. Ju Li. GEM4 Summer School 2006 Cell and Molecular Mechanics in BioMedicine August 7 18, 2006, MIT, Cambridge, MA, USA

Polymer Chains. Ju Li. GEM4 Summer School 2006 Cell and Molecular Mechanics in BioMedicine August 7 18, 2006, MIT, Cambridge, MA, USA Polymer Chans Ju L GEM4 Summer School 006 Cell and Molecular Mechancs n BoMedcne August 7 18, 006, MIT, Cambrdge, MA, USA Outlne Freely Jonted Chan Worm-Lke Chan Persstence Length Freely Jonted Chan (FJC)

More information

PHYS 705: Classical Mechanics. Canonical Transformation II

PHYS 705: Classical Mechanics. Canonical Transformation II 1 PHYS 705: Classcal Mechancs Canoncal Transformaton II Example: Harmonc Oscllator f ( x) x m 0 x U( x) x mx x LT U m Defne or L p p mx x x m mx x H px L px p m p x m m H p 1 x m p m 1 m H x p m x m m

More information

Canonical transformations

Canonical transformations Canoncal transformatons November 23, 2014 Recall that we have defned a symplectc transformaton to be any lnear transformaton M A B leavng the symplectc form nvarant, Ω AB M A CM B DΩ CD Coordnate transformatons,

More information

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry

Workshop: Approximating energies and wave functions Quantum aspects of physical chemistry Workshop: Approxmatng energes and wave functons Quantum aspects of physcal chemstry http://quantum.bu.edu/pltl/6/6.pdf Last updated Thursday, November 7, 25 7:9:5-5: Copyrght 25 Dan Dll (dan@bu.edu) Department

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 13 GENE H GOLUB 1 Iteratve Methods Very large problems (naturally sparse, from applcatons): teratve methods Structured matrces (even sometmes dense,

More information

WORM ALGORITHM NASA. ISSP, August Nikolay Prokofiev, Umass, Amherst. Boris Svistunov, Umass, Amherst Igor Tupitsyn, PITP, Vancouver

WORM ALGORITHM NASA. ISSP, August Nikolay Prokofiev, Umass, Amherst. Boris Svistunov, Umass, Amherst Igor Tupitsyn, PITP, Vancouver WOR ALGORITH asha kolay Prokofev, Umass, Amherst Ira Bors Svstunov, Umass, Amherst Igor Tuptsyn, PITP, Vancouver Vladmr Kashurnkov, EPI, oscow assmo Bonnsegn, UAlberta, Edmonton Evgen Burovsk, Umass, Amherst

More information

Double-beta decay matrix elements and nuclear shapes

Double-beta decay matrix elements and nuclear shapes Double-beta decay matrx elements and nuclear shapes E. Moya de Guerra UCM and CSIC Madrd (Span) December 2005 Collaborators P. Sarrguren R. lvarez-rodrguez O. Moreno Contents Overvew of underlyng theory:

More information

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order:

1 (1 + ( )) = 1 8 ( ) = (c) Carrying out the Taylor expansion, in this case, the series truncates at second order: 68A Solutons to Exercses March 05 (a) Usng a Taylor expanson, and notng that n 0 for all n >, ( + ) ( + ( ) + ) We can t nvert / because there s no Taylor expanson around 0 Lets try to calculate the nverse

More information

Many-body localization (overview)

Many-body localization (overview) Many-body localzaton (overvew) Dma Abann Permeter Insttute Unversty of Geneva Closng The Entanglement Gap Santa Barbara, June 4, 2015 Ergodcty and ts breakng n classcal systems Ergodcty: System explores

More information

THEOREMS OF QUANTUM MECHANICS

THEOREMS OF QUANTUM MECHANICS THEOREMS OF QUANTUM MECHANICS In order to develop methods to treat many-electron systems (atoms & molecules), many of the theorems of quantum mechancs are useful. Useful Notaton The matrx element A mn

More information

Microscopic Nuclear Theory. RIA Summer School

Microscopic Nuclear Theory. RIA Summer School Mcroscopc Nuclear Theory RI Summer School ugust 1-6, 005 Lawrence Berkeley Natonal Laboratory Lectures by James P. Vary ISU, LLNL, SLC Effectve Operator Theory and the b-into No Core Shell Model (NCSM)

More information

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physcs 607 Exam 1 Please be well-organzed, and show all sgnfcant steps clearly n all problems. You are graded on your wor, so please do not just wrte down answers wth no explanaton! Do all your wor on

More information

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions PHYS 5C: Quantum Mechancs Sprng 07 Problem Set 3 Solutons Prof. Matthew Fsher Solutons prepared by: Chatanya Murthy and James Sully June 4, 07 Please let me know f you encounter any typos n the solutons.

More information

The non-negativity of probabilities and the collapse of state

The non-negativity of probabilities and the collapse of state The non-negatvty of probabltes and the collapse of state Slobodan Prvanovć Insttute of Physcs, P.O. Box 57, 11080 Belgrade, Serba Abstract The dynamcal equaton, beng the combnaton of Schrödnger and Louvlle

More information

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0

ψ = i c i u i c i a i b i u i = i b 0 0 b 0 0 Quantum Mechancs, Advanced Course FMFN/FYSN7 Solutons Sheet Soluton. Lets denote the two operators by  and ˆB, the set of egenstates by { u }, and the egenvalues as  u = a u and ˆB u = b u. Snce the

More information

Functional Quantization

Functional Quantization Functonal Quantzaton In quantum mechancs of one or several partcles, we may use path ntegrals to calculate transton matrx elements as out Ût out t n n = D[allx t] exps[allx t] Ψ outallx @t out Ψ n allx

More information

Excited - State Quantum Phase Transitions in Many-Body Systems

Excited - State Quantum Phase Transitions in Many-Body Systems 0/ xcted - tate Quantum Phase Transtons n Many-Body ystems Pavel Cejnar Insttute of Partcle and uclear Physcs Charles Unversty n Prague, Cech Rep. pavel.cejnar@mff.cun.c ) What s QPT ( slde) ) xamples

More information

Lecture 14: Forces and Stresses

Lecture 14: Forces and Stresses The Nuts and Bolts of Frst-Prncples Smulaton Lecture 14: Forces and Stresses Durham, 6th-13th December 2001 CASTEP Developers Group wth support from the ESF ψ k Network Overvew of Lecture Why bother? Theoretcal

More information

Meson baryon components in the states of the baryon decuplet

Meson baryon components in the states of the baryon decuplet Meson baryon components n the states of the baryon decuplet Insttuto de Físca Corpuscular, Unversdad de Valenca - CSIC Oct 1st, 2013 Collaborators: L. R. Da, L. S. Geng, E. Oset and Y. Zhang Outlne ntroducton

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 7 Specal Relatvty (Chapter 7) What We Dd Last Tme Worked on relatvstc knematcs Essental tool for epermental physcs Basc technques are easy: Defne all 4 vectors Calculate c-o-m

More information

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 2 May 11: Ligand Field Theory

5.03, Inorganic Chemistry Prof. Daniel G. Nocera Lecture 2 May 11: Ligand Field Theory 5.03, Inorganc Chemstry Prof. Danel G. Nocera Lecture May : Lgand Feld Theory The lgand feld problem s defned by the followng Hamltonan, h p Η = wth E n = KE = where = m m x y z h m Ze r hydrogen atom

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Solutions to Problem Set 6

Solutions to Problem Set 6 Solutons to Problem Set 6 Problem 6. (Resdue theory) a) Problem 4.7.7 Boas. n ths problem we wll solve ths ntegral: x sn x x + 4x + 5 dx: To solve ths usng the resdue theorem, we study ths complex ntegral:

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 12 REVIEW Lecture 11: 2.29 Numercal Flud Mechancs Fall 2011 Lecture 12 End of (Lnear) Algebrac Systems Gradent Methods Krylov Subspace Methods Precondtonng of Ax=b FINITE DIFFERENCES Classfcaton of Partal

More information

nuclear level densities from exactly solvable pairing models

nuclear level densities from exactly solvable pairing models nuclear level densities from exactly solvable pairing models Stefan Rombouts In collaboration with: Lode Pollet, Kris Van Houcke, Dimitri Van Neck, Kris Heyde, Jorge Dukelsky, Gerardo Ortiz Ghent University

More information

PHY688, Statistical Mechanics

PHY688, Statistical Mechanics Department of Physcs & Astronomy 449 ESS Bldg. Stony Brook Unversty January 31, 2017 Nuclear Astrophyscs James.Lattmer@Stonybrook.edu Thermodynamcs Internal Energy Densty and Frst Law: ε = E V = Ts P +

More information

Poisson brackets and canonical transformations

Poisson brackets and canonical transformations rof O B Wrght Mechancs Notes osson brackets and canoncal transformatons osson Brackets Consder an arbtrary functon f f ( qp t) df f f f q p q p t But q p p where ( qp ) pq q df f f f p q q p t In order

More information

Oblique Basis Approach to Nuclear Structure and Reactions

Oblique Basis Approach to Nuclear Structure and Reactions Oblique Basis Approach to Nuclear Structure and Reactions Vesselin G. Gueorguiev, Ph.D. Vesselin@MailAPS.org Perspectives on the modern shell model and related experimental topics Sat., Feb. 6, 2010 EFES-NSCL

More information

Efficient Optimal Control for a Unitary Operation under Dissipative Evolution

Efficient Optimal Control for a Unitary Operation under Dissipative Evolution Effcent Optmal Control for a Untary Operaton under Dsspatve Evoluton Mchael Goerz, Danel Rech, Chrstane P. Koch Unverstät Kassel March 20, 2014 DPG Frühjahrstagung 2014, Berln Sesson Q 43 Mchael Goerz

More information

Quantum Statistical Mechanics

Quantum Statistical Mechanics Chapter 8 Quantum Statstcal Mechancs 8.1 Mcrostates For a collecton of N partcles the classcal mcrostate of the system s unquely specfed by a vector (q, p) (q 1...q N, p 1...p 3N )(q 1...q 3N,p 1...p 3N

More information

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS) Some Comments on Acceleratng Convergence of Iteratve Sequences Usng Drect Inverson of the Iteratve Subspace (DIIS) C. Davd Sherrll School of Chemstry and Bochemstry Georga Insttute of Technology May 1998

More information

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS

NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS IJRRAS 8 (3 September 011 www.arpapress.com/volumes/vol8issue3/ijrras_8_3_08.pdf NON-CENTRAL 7-POINT FORMULA IN THE METHOD OF LINES FOR PARABOLIC AND BURGERS' EQUATIONS H.O. Bakodah Dept. of Mathematc

More information

Supplemental document

Supplemental document Electronc Supplementary Materal (ESI) for Physcal Chemstry Chemcal Physcs. Ths journal s the Owner Socetes 01 Supplemental document Behnam Nkoobakht School of Chemstry, The Unversty of Sydney, Sydney,

More information

Solutions to Problems Fundamentals of Condensed Matter Physics

Solutions to Problems Fundamentals of Condensed Matter Physics Solutons to Problems Fundamentals of Condensed Matter Physcs Marvn L. Cohen Unversty of Calforna, Berkeley Steven G. Loue Unversty of Calforna, Berkeley c Cambrdge Unversty Press 016 1 Acknowledgement

More information

be a second-order and mean-value-zero vector-valued process, i.e., for t E

be a second-order and mean-value-zero vector-valued process, i.e., for t E CONFERENCE REPORT 617 DSCUSSON OF TWO PROCEDURES FOR EXPANDNG A VECTOR-VALUED STOCHASTC PROCESS N AN ORTHONORMAL WAY by R. GUTkRREZ and M. J. VALDERRAMA 1. ntroducton Snce K. Karhunen [l] and M. Lo&e [2]

More information

Symmetric Lie Groups and Conservation Laws in Physics

Symmetric Lie Groups and Conservation Laws in Physics Symmetrc Le Groups and Conservaton Laws n Physcs Audrey Kvam May 1, 1 Abstract Ths paper eamnes how conservaton laws n physcs can be found from analyzng the symmetrc Le groups of certan physcal systems.

More information

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain

Mean field studies of odd mass nuclei and quasiparticle excitations. Luis M. Robledo Universidad Autónoma de Madrid Spain Mean field studies of odd mass nuclei and quasiparticle excitations Luis M. Robledo Universidad Autónoma de Madrid Spain Odd nuclei and multiquasiparticle excitations(motivation) Nuclei with odd number

More information

arxiv: v3 [math-ph] 16 Nov 2018

arxiv: v3 [math-ph] 16 Nov 2018 Integrable coupled Lénard-type systems wth balanced loss and gan Debdeep Snha and Pjush K. Ghosh arxv:1804.0366v3 [math-ph] 16 Nov 018 Department of Physcs, Sksha-Bhavana, Vsva-Bharat Unversty, Santnketan,

More information

Advanced School on Quantum Monte Carlo Methods in Physics and Chemistry. 21 January - 1 February, Worm algorithm

Advanced School on Quantum Monte Carlo Methods in Physics and Chemistry. 21 January - 1 February, Worm algorithm 1929-15 Advanced School on Quantum onte Carlo ethods n Physcs and Chemstry 21 January - 1 February, 2008 Worm algorthm. Prokofev Unversty of assachusetts, Amherst WOR ALGORITH FOR CLASSICAL AD QUATU STATISTICAL

More information

On Finite Rank Perturbation of Diagonalizable Operators

On Finite Rank Perturbation of Diagonalizable Operators Functonal Analyss, Approxmaton and Computaton 6 (1) (2014), 49 53 Publshed by Faculty of Scences and Mathematcs, Unversty of Nš, Serba Avalable at: http://wwwpmfnacrs/faac On Fnte Rank Perturbaton of Dagonalzable

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Affine and Riemannian Connections

Affine and Riemannian Connections Affne and Remannan Connectons Semnar Remannan Geometry Summer Term 2015 Prof Dr Anna Wenhard and Dr Gye-Seon Lee Jakob Ullmann Notaton: X(M) space of smooth vector felds on M D(M) space of smooth functons

More information

The equation of motion of a dynamical system is given by a set of differential equations. That is (1)

The equation of motion of a dynamical system is given by a set of differential equations. That is (1) Dynamcal Systems Many engneerng and natural systems are dynamcal systems. For example a pendulum s a dynamcal system. State l The state of the dynamcal system specfes t condtons. For a pendulum n the absence

More information

Random Matrices and topological strings

Random Matrices and topological strings Random Matrces and topologcal strngs Bertrand Eynard, IPHT CEA Saclay, CERN GENEZISS Strng Theory Meetng, EPFL, Lausane based on collaboratons wth A. Kashan-Poor, O. Marchal, and L. Chekhov, N. Orantn,

More information

Particle-number projection in finite-temperature mean-field approximations to level densities

Particle-number projection in finite-temperature mean-field approximations to level densities Particle-number projection in finite-temperature mean-field approximations to level densities Paul Fanto (Yale University) Motivation Finite-temperature mean-field theory for level densities Particle-number

More information

Lecture 2 - Sep 3, Spontaneous Symmetry Breaking in the Quantum ising Model in D=1+1.

Lecture 2 - Sep 3, Spontaneous Symmetry Breaking in the Quantum ising Model in D=1+1. Lecture - Sep 3, 013. Spontaneous Symmetry Breakng n the Quantum sng Model n D=1+1. Phy 50 - Ashvn Vshwanath PACS numbers: We wll be studyng the Hamltonan: I. OVERVIEW OF SYMMETRY J " X +1 + g X We note

More information

Bayesian Analysis for 4 7 Be + p 5 8 B + γ Based on Effective Field Theory

Bayesian Analysis for 4 7 Be + p 5 8 B + γ Based on Effective Field Theory Bayesan Analyss for 4 7 Be + p 5 8 B + γ Based on Effectve Feld Theory Xln Zhang Unversty of Washngton In collaboraton wth K. Nollett (San Dego State U.) and D. Phllps (Oho U.) INT Program INT-16-a, Bayesan

More information

Ultracold atoms in an optical lattice -an ideal simulator of strongly-correlated quantum many-body system-

Ultracold atoms in an optical lattice -an ideal simulator of strongly-correlated quantum many-body system- GCOE Symposum Development of emergent new felds February 14 2013 Ultracold atoms n an optcal lattce -an deal smulator of strongly-correlated quantum many-body system- Kyoto Unversty Y. Takahash R. Yamamoto

More information

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY

ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY ON MECHANICS WITH VARIABLE NONCOMMUTATIVITY CIPRIAN ACATRINEI Natonal Insttute of Nuclear Physcs and Engneerng P.O. Box MG-6, 07725-Bucharest, Romana E-mal: acatrne@theory.npne.ro. Receved March 6, 2008

More information

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra

MEM 255 Introduction to Control Systems Review: Basics of Linear Algebra MEM 255 Introducton to Control Systems Revew: Bascs of Lnear Algebra Harry G. Kwatny Department of Mechancal Engneerng & Mechancs Drexel Unversty Outlne Vectors Matrces MATLAB Advanced Topcs Vectors A

More information

The GW Approximation. Lucia Reining, Fabien Bruneval

The GW Approximation. Lucia Reining, Fabien Bruneval , Faben Bruneval Laboratore des Soldes Irradés Ecole Polytechnque, Palaseau - France European Theoretcal Spectroscopy Faclty (ETSF) Belfast, June 2007 Outlne 1 Remnder 2 GW approxmaton 3 GW n practce 4

More information

The Quadratic Trigonometric Bézier Curve with Single Shape Parameter

The Quadratic Trigonometric Bézier Curve with Single Shape Parameter J. Basc. Appl. Sc. Res., (3541-546, 01 01, TextRoad Publcaton ISSN 090-4304 Journal of Basc and Appled Scentfc Research www.textroad.com The Quadratc Trgonometrc Bézer Curve wth Sngle Shape Parameter Uzma

More information

SL n (F ) Equals its Own Derived Group

SL n (F ) Equals its Own Derived Group Internatonal Journal of Algebra, Vol. 2, 2008, no. 12, 585-594 SL n (F ) Equals ts Own Derved Group Jorge Macel BMCC-The Cty Unversty of New York, CUNY 199 Chambers street, New York, NY 10007, USA macel@cms.nyu.edu

More information

Multi-electron atoms (11) 2010 update Extend the H-atom picture to more than 1 electron: H-atom sol'n use for N-elect., assume product wavefct.

Multi-electron atoms (11) 2010 update Extend the H-atom picture to more than 1 electron: H-atom sol'n use for N-elect., assume product wavefct. Mult-electron atoms (11) 2010 update Extend the H-atom pcture to more than 1 electron: VII 33 H-atom sol'n use for -elect., assume product wavefct. n ψ = φn l m where: ψ mult electron w/fct φ n l m one

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

14 The Postulates of Quantum mechanics

14 The Postulates of Quantum mechanics 14 The Postulates of Quantum mechancs Postulate 1: The state of a system s descrbed completely n terms of a state vector Ψ(r, t), whch s quadratcally ntegrable. Postulate 2: To every physcally observable

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

Problems in quantum condensed matter

Problems in quantum condensed matter Gl Refael and Krll Shtengel June 4, 007 Book proposal Problems n quantum condensed matter From our experence as both teachers and students, the best way to learn subject matter s through problem-solvng.

More information

Full Configuration Interaction Monte Carlo Studies of Quantum Dots

Full Configuration Interaction Monte Carlo Studies of Quantum Dots Full Confguraton Interacton Monte Carlo Studes of Quantum Dots by Karl Roald Lekanger THESIS for the degree of MASTER OF SCIENCE (Master n Computatonal Physcs) Faculty of Mathematcs and Natural Scences

More information

Binding energy of a Cooper pairs with non-zero center of mass momentum in d-wave superconductors

Binding energy of a Cooper pairs with non-zero center of mass momentum in d-wave superconductors Bndng energ of a Cooper pars wth non-zero center of mass momentum n d-wave superconductors M.V. remn and I.. Lubn Kazan State Unverst Kremlevsaa 8 Kazan 420008 Russan Federaton -mal: gor606@rambler.ru

More information

PROPERTIES OF FRACTIONAL EXCLUSION STATISTICS IN INTERACTING PARTICLE SYSTEMS

PROPERTIES OF FRACTIONAL EXCLUSION STATISTICS IN INTERACTING PARTICLE SYSTEMS PROPERTIES OF FRACTIONAL EXCLUSION STATISTICS IN INTERACTING PARTICLE SYSTEMS DRAGOŞ-VICTOR ANGHEL Department of Theoretcal Physcs, Hora Hulube Natonal Insttute for Physcs and Nuclear Engneerng (IFIN-HH),

More information

Applied Nuclear Physics (Fall 2004) Lecture 23 (12/3/04) Nuclear Reactions: Energetics and Compound Nucleus

Applied Nuclear Physics (Fall 2004) Lecture 23 (12/3/04) Nuclear Reactions: Energetics and Compound Nucleus .101 Appled Nuclear Physcs (Fall 004) Lecture 3 (1/3/04) Nuclear Reactons: Energetcs and Compound Nucleus References: W. E. Meyerhof, Elements of Nuclear Physcs (McGraw-Hll, New York, 1967), Chap 5. Among

More information

2010 Black Engineering Building, Department of Mechanical Engineering. Iowa State University, Ames, IA, 50011

2010 Black Engineering Building, Department of Mechanical Engineering. Iowa State University, Ames, IA, 50011 Interface Energy Couplng between -tungsten Nanoflm and Few-layered Graphene Meng Han a, Pengyu Yuan a, Jng Lu a, Shuyao S b, Xaolong Zhao b, Yanan Yue c, Xnwe Wang a,*, Xangheng Xao b,* a 2010 Black Engneerng

More information