arxiv: v1 [math.ap] 11 Mar 2015

Size: px
Start display at page:

Download "arxiv: v1 [math.ap] 11 Mar 2015"

Transcription

1 Global classical solution to D compressible magnetohydrodynamic equations with large initial data and vacuum arxiv:5.v [math.ap] Mar 5 Guangyi Hong, Xiaofeng Hou, Hongyun Peng, Changjiang Zhu Abstract In this paper, we study the Cauchy problem of the isentropic compressible magnetohydrodynamic equations in. When γ ) 6E, together with the H, is suitably small, a result on the existence of global classical solutions is obtained. It should be pointed out that the initial energy E except the - norm of H can be large as γ goes to, and that throughout the proof of the theorem in the present paper, we make no restriction upon the initial data ρ,u ). Our result improves the one established by i-xu-zhang in [], where, with small initial engergy, the existence of classical solution was proved. Keyword: isentropic compressible magnetohydrodynamic equations, global classical solution, vacuum. Contents AMS Subject Classification ): 5K65, 76N, 76W5. Introduction Preliminaries 5 Time-independent estimates 7 Proof of Theorem. School of Mathematics and Statistics, Central China Normal University, Wuhan 7, China. hongguangyi8@6.com School of Mathematics and Statistics, Central China Normal University, Wuhan 7, China. xiaofengh5@6.com School of Mathematics and Statistics, Central China Normal University, Wuhan 7, China. penghy@6.com Corresponding author. School of Mathematics, South China University of Technology, Guangzhou, 56, China. cjzhu@mail.ccnu.edu.cn

2 Introduction In this paper, we consider the following isentropic compressible magnetohydrodynamic equations in refer, e.g., [, 6]): ρ t +divρu) =, ρu) t +divρu u)+ Pρ) = H) H +µ u+µ+λ) divu,.) H t u H) = ν H), divh =, x, t >, with the initial data and the far-field behavior ρ,u,h)x,) = ρ,u,h )x), x,.) ρ,u,h),,) as x, for t >..) Here ρ = ρx,t), u = u,u,u )x,t), P and H = H,H,H )x,t) represent the density, velocity, pressure and magnetic field of the fluid respectively. More precisely, P is given by Pρ) = Aρ γ,.) where γ is the adiabatic exponent, and A > is a constant. Without loss of generality, we assumed that A =. The viscosity coefficients µ and λ satisfy µ >, λ+µ..5) The constant ν > is the resistivity coefficient which is inversely proportional to the electrical conductivity and acts as the magnetic diffusivity of magnetic fields. The magnetohydrodynamic MHD) model is used to study the dynamics of conducting fluid under the effect of the magnetic field and finds its way in a huge range of physical objects, from liquid metals to cosmic plasmas, refer for example [,, 8, 6, ]. And for so, there have been a lot of literatures on the MHD system.)-.5), see for instance, [,, 8,,,,, 5, 6, 7,,,,,,,,, ] and references therein. It should be noted that if H =, i.e., there is no electromagnetic effect, then.) becomes the compressible Navier-Stokes equations, which has been widely studied, refer for example [, 5, 6, 7,, 5,, 5, 6, 7] and the references therein. The main difficulty in investigating the issues of well-posedness and dynamical behaviors of MHD system is caused by the strong coupling and interplay interaction between the fluid motion and the magnetic field. Now let s recall briefly some results on the multi-dimensional compressible MHD system, especially the ones that are closely relative to our topic in the present paper. With large initial data, the local strong solutions to the compressible MHD equations were proved in [] and [] for the case ρ > and the case ρ, respectively. When the initial data are small perturbations of a given constant state in H -norm, Kawashima in [] firstly established a result on the global existence of smooth solutions to the general electro-magneto-fluid equations in R. The global existence and time decay rate of smooth solutions to the linearized two-dimensional compressible MHD equations was studied by Umeda, Kawashima and Shizuta in []. Zhang and Zhao [] proved the optimal decay estimates of classical solutions to the compressible MHD equations when the initial data are close to a nonvacuum equilibrium. For the case that the initial density is allowed to vanish and even has compact port, i-xu-zhang []

3 established a result on the existence and large-time behavior of classical solution with regular initial data, which are of small energy but possibly large oscillations, and constant state as far field density which may contain vacuum. Before stating our main results, we firstly explain the notations and conventions used through this paper. Notations. i) f = fdx, f = fdt. ii) For r, denote the r spaces and the standard Sobolev spaces as follows: r = r ), D k,r = {u loc R ) k u r )}, u D k,r = u r, D = D,, W k,r = W k,r ), H k = W k,, { }.6) Ḣ β = u : R u = ξ β ûξ) dξ <. Ḣ β iii) G µ+λ)divu P H is the so-called effective viscous flux, while ω u is the vorticity. iv) ḣ = h t +u h denotes the material derivatives. v) E = ρ u + γ ργ + ) H is the initial energy. Now it is the place to state our main theorem. Theorem.. Assume that the initial data ρ,u,h ) satisfy ρ u + γ ργ + H, ρ ρ, ρ,pρ )) H W,q, u D D, H D D, u M, H D M, H γ ),.7) for given constants M i > i =,), ρ and q,6), and that the compatibility condition holds µ u λ+µ) divu + Pρ )+ H H H = ρ g,.8) with g. In addition, we pose that γ ) E, < γ..) Then, there exists a unique global classical solution ρ,u,h) in [, ) satisfying ρx,t) ρ, x, t,.)

4 and for any < τ < T <, provided that ρ,p) C[,T];H W,q ), u C[,T];D D ) τ,t;d D,q ), u t τ,t;d D ) H τ,t;d ), H C[,T];H ) τ,t;h ), H t C[,T]; ) H τ,t; ), γ ) ε min { ρ K ) } 6,ε 5, ρ..).) Here ε 5 = min { ε,c K ), }, { ε = min ε,, K 5 6 C ρ)γ ) K 6 ) 8, } ε = min { ε,ε,c ρ)) 7, }, { ε = min ε,c ) 7 ) 7}, { ) } ε = min, CM +K )..), Remark.. We make no restriction on the initial data ρ,u ). In fact, it follows from.7) that E C γ ), then the upper bound of E may go to as γ goes to, in spite that H is small. Remark.. The solution obtained in Theorem. becomes a classical one away from the initial time. More precisely, we establish a result on the existence of a classical solution to.)-.5) under the assumption that γ ) 6E and H are suitably small. Moreover, we care more about the case that γ is near, so the assumption < γ is reasonable. Indeed, the initial energy except the -norm of H is allowed to be large when γ is near. When the far-field density is vacuum, our result in Theorem. is a generalization of that in []. It should be emphasized that for the case γ is some fixed constant, Theorem. is still applicable necessarily after some modification for the proof ). Remark.. If we remove u M and H M in.7) in Theorem., and assume instead that u,h Ḣβ β,]) with u Ḣ β M and H Ḣβ M for some M i > i =,), Theorem. will still hold, and the ε in Theorem. will also depend on M i instead of M i correspondingly. This can be achieved by a similar way as in []. Remark.. It should be noted that when the viscous coefficient µ is taken to be suitable large, the initial energy except the - norm of H could also be large, which together with the conclusion in Theorem., implies the fact that when γ ) µ α and H are suitably small for some α >, the existence of classical solutions to.)-.5) could also be obtained. And this can be done by using a similar method as in [], which considered the compressible Navier-Stokes equations, we omit it for simplicity in the present paper. Moreover,

5 when H =, i.e., there is no electromagnetic effect,.) reduces to the compressible Navier- Stokes equations. Roughly speaking, we generalize the result of [] to the compressible MHD equations. We now briefly make some comments on the analysis of the present paper. Note that the local existence and uniqueness of classical solutions to problem.)-.5) can be proved by combining the arguments in [] with the higher order estimates in section of []. Hence, to extend the classical solution globally in time, we just need some global a priori estimates on the smooth solution ρ,u,h) in suitable regularity norms. Formally, the key to the proof is to get the time-independent upper bound of the density as well as the time-dependent higher norm estimates of ρ,u,h). In this paper, the latter one follows in the same way as in [] see emmas.-.6), once the former one is achieved. To derived the upper bound of the density, on the one hand, we try to adapt some basic ideas in [, 8, ]. However, new difficulties arise in our analysis, since the smallness of γ ) 6E does not result in the small initial energy. One the other hand, compared with compressible Navier-Stokes equations, the strong coupling and interplay interaction between the fluid motion and the magnetic field, such as u H) and H) H, will bring out some new difficulties. Precisely, in [, 8, ] the smallness of the initial energy was used to ensure the smallness of R u and H, which play crucial role in the proof of the upper bound of density. Similar to [, 8, ], here we need to close the a priori estimates A and A. Compared with [, 8], we not only need to handle the terms u, u, u, P u, P u, but the terms caused by u H) and H) H, like H H u and H u. Adapting the idea developed in [], we need to derive the smallness of σt) u, but this is not trivial because of the lack of the smallness of H. The key observation to overcome this difficulty is as follows: ooking back to the basic energy E = ρ u + γ ργ + H ), the smallness of of γ could remove the smallness restriction upon ρ and the term involving u and ρ. But it has nothing to do with H. Moreover, For all terms in.), we can never see any term in which ρ is coupled with H. Hence we assume that H γ ) 6E is small, and then we succeed to derive some estimates on the smallness and boundedness of H and its derivatives with a key estimate u. Similar to [, 8], we try to estimate A and A and achieve an inequality involving u, u, u, P u and P u. And then we handle all these terms one the right hand side of the inequality with two crucial boundedness estimate see emma.7). Thus the upper bound of ρ is obtained by a standard method as in [, 8, ], together with some new estimate see.) and.)). It should be noted that during the process, the estimates obtained for H always play a key role, especially when controlling the coupled term u H). The rest of the paper is organized as follows. In section, we first collect some elementary inequalities and facts which will be need in the later analysis. In section, we devote to derive the necessary lower-order a priori estimates on the classical solution which is independent of time. The time-dependent estimates on the higher-norms of the solutions will be proved in Section, and then Theorem. is proved. Preliminaries In this section, we will recall some elementary inequality and results which will be used used frequently later. We begin with the following well-known Gagliardo-Nirenberg inequality see [7]). 5

6 emma.. For p 6, < q <, and < r <, there exists a generic constant C >, depending only on q and r, such that for f H and g q D,r, we have 6 p p f p C f g C g p 6 p f,.) qr ) r+qr ) q r r+qr ) g..) r Similar to the compressible Navier-Stokes equations see, for example[, 8]), one can easily derive the following elliptic equations from.): G = divρ u) divdivh H), µ ω = ρ u divh H))..) We now state some elementary p -estimates for the elliptic equations in.) by the virtue of.). emma.. et ρ,u,h) be a smooth solution to.)-.5) on,t]. Then there exists a generic C >, which may depend on µ and λ, such that for any p [,6], G p + ω p C ρ u p + H H p),.) G 6 + ω 6 C ρ u + H H ),.5) u 6 C ρ u + P 6 + H H ),.6) u C u ρ u P ρ u H ρ u u H H P H H H H H P..7) Proof. The proof of inequalities.)-.6) can be found in emma. in []. Here we will prove.7). It follows from direct computation that u = divu+ ω,.8) then the standard p -estimate for elliptic equation, together with.) and.), leads to u p C divu p + w p) C G p + P p + H 6 p p p + u ρ u p 6 p p 6) ) p + H H 6 p p C u ρ u 6 p p u 6 p) p H p 6 p H H et p = in.), one gets.7). 6 p p P p 6 p ρ u p 6 p 6 p p P 6 p) p H H H p 6 p p 6 p ρ u p 6 p H H P p..) To obtain the uniform in time) upper bound of the density, we need the following Zlotnik inequality. 6

7 emma. see[8]). Assume that the function y satisfies y t) = gy)+b t) on [,T], y) = y,.) with g CR) and y,b W,,T). If g ) = and for all t t T with some N and N, then Time-independent estimates bt ) bt ) N +N t t ),.) gξ) N, for ξ ξ..) In this section, we will derive the uniform time-independent estimates of the solution to.)-.5) and the time-independent upper bound of the density. Assume that ρ, u, H) is a smooth solution to.)-.5) on,t) for some positive time T >. Set σ = σt) min{, t} and define the following functionals: A T) σ u + H ) t T + A T) σ t T + A T) H + t T ) σ ρ u + H + H t, ρ u + H + H t ) σ u + H t ), H H, A T) σ u, t T A 5 T) ρ u..) t T Throughout this section, for simplicity we denote by C or C i i =,, ) the generic positive constants which may depend on µ, λ, ν, A, γ, ρ, ρ, C, M i i =,) and ρ but independent of time T > and γ. Sometimes Cα) is also used to emphasize the dependent of α. we state the key proposition in the present paper as follows. Proposition.. Assume that the initial data ρ,u,h ) satisfy.7)-.). et ρ,u,h) be a smooth solution to problem.)-.5) on,t] satisfying ρx,t) ρ, x,t) [,T], ) ) A T)+A T) γ ), A T) γ ),.) A σt))+a 5 σt)) γ ) 6E ), 7

8 then ρx,t) ρ, 7 x,t) R [,T], A T)+A T) A σt))+a 5 σt)) γ ) 6E ), A T) γ ) 6E ),.) γ ) 6E ), provided that Here γ ) ε min { ρ K ) } 6,ε 5, ρ..) ε 5 = min { ε,c K ), }, { ε = min ε,, K 5 6 C ρ)γ ) K 6 ) 8, } ε = min { ε,ε,c ρ)) 7, }, { ε = min ε,c ) 7 ) 7}, { ) } ε = min, CM +K )..5) Proof. Proposition. can be derived from emmas.-. below. emma.. Under the same assumption as in Proposition., we have P γ )E,.6) t T R T u E µ..7) Proof. Multiplying.),.) and.) by γργ γ, u and H, respectively, and integrating the resulting equation over,t], we have P t T γ + ρ u + H ) + µ u +µ+λ) divu +ν H ) E,.8) which gives.6) and.7). emma.. Under the same assumption as in Proposition., it holds that where K = ) +γ ). u CK γ ) 6E ),.), 8

9 Proof. σt) u u + σ u σt) ) σ σt) u t σt) C C C σt) t T σ u ) σt) σ u γ ) 6E ) + γ ) 6E ) E γ ) 6E ) γ ) 6E ) 6 γ ) 6E ) E ) γ ) ) +γ ) ) γ ) K γ ) 6E ),.) here γ ) 6E and.) have been used. emma. is proved. emma.. Under the same assumption as in Proposition., it holds that ) H +σ H and t T where K = e K. + H +σ H t +σ H ) CK γ ) 6E.) H + Ht + H ) CK M..) t T Proof. Multiplying.) by H t, then integrating over, using.), Hölder inequality and Cauchy inequality, we get H H t = u H) H ν H) H = [H )u u )H divu)h] H + H H u H H ν u C u 6 H H ν u ǫ H u H ν u,.)

10 which implies that An application of Gronwall s inequality leads to H + d H + ν H C u H dt..) ν H CK H Ce K γ )..5) Thanks to.) and emma., using integration by parts, we derive that d H + H t + H dt = H t H = H u u H Hdivu we consequently have C u H + H,.6) d dt H + H t + H ) C u H..7) As before, Gronwall s inequality leads to H + t T Multiplying.7) by σ, one has Ht + H ) Ce K M..8) d ) σ H dt +σ Ht + H ) Cσ u H +σ H..) Again, using Gronwall s inequality, we get T σ H ) + t T Ce K H σ H t + H ) Ce K H..) Combining.5),.8) and.), we finish the proof of emma.. emma.. Under the same assumption as in Proposition., it holds that ) H + H H + H γ ) 6E ),.) t T provided γ ) ε, where ε = min { } CM )) +K,..)

11 Proof. Multiplying.) by H H, using integration by parts as in [], we have d H +ν H H +ν H H dt ν H H +ν H H u H..) Noticing that H C H 6 C H H,.) H C H H C H H,.5) substituting.) and.5) into.), using Cauchy inequality, we thus deduce that d H + H H C dt γ ) ) u..6) Integrating.6) over [, T], by the virtue of Sobolev embedding inequality, one can derived that H + H H t T C H H ) D K γ ) CM γ ) 6E ) K γ ) 6E ) CM +K ) γ ) ) γ ) 6E ),.7) provided { γ ) } < min CM )) +K, ε..8) Then estimate.7), together with.), yields.). This ends up the proof of emma.. emma.5. Under the same assumption as in emma., we have where K = C ρ) ρ u + t σt) σt) ) +γ ) +γ ). u CK γ ) 6E,.)

12 Proof. Multiplying.) by u and then integrating the resulting equality over, and using integration by parts, we have d ρ u + µ u +λ+µ) divu ) dt R = Pdivu+ H H ) H u..) Integrating.) over, σt)), one has σt) ρ u µ + t σt) u +µ+λ) divu ) σt) σt) [ ρ u + Pdivu+ H H ] H )u C ρ u 6 + µ σt) σt) σt) u P + u 6 6 H H Cγ )E ) + µ Cγ )E ) + µ It thus holds that σt) σt) ρ u + t σt) u ρ)γ )E + u ρ)γ )E σt) Cγ )E ) ρ)γ )E σt) H H dt γ ) µ u +µ+λ) divu ) γ ) 6E ) 7 + ) 7 +..) CK γ )..) Here we have used the condition γ ) 6E. We finish the proof of emma.5. emma.6. Under the same assumption as in Proposition., it holds that A T) CK γ ) σt) u R T σ u γ σ P u.) and provided that A T) CK 5 γ ) 6E ) 8 γ σ P u σ u A T),.) { γ ) 6E ε min ε,c ) 7 ) 7},.5)

13 where K and K 5 are given by K = K 5 M +K +K K,.6) K 5 = K +K γ ) +K M..7) Proof. The basic idea of the proof of this lemma is due to Hoff [], Huang-i-Xin [8], i-xu- Zhang [] and Hou-Peng-Zhu []. Multiplying.) by σ u, and integrating over, one has σρ u = σ u P +µ σ u u = +µ+λ) divu σ u+ H H H ) σ u E i..8) i= Moreover, using integration by parts, we have E = σ u P = σdivu t P + σdivu u)p = d σdivup σ Pdivu σdivup t + σdivu u)p dt = d σdivup σ Pdivu+γ )σ P divu dt R + σp u,.) and E = µσ u u = µ σ u u t +µ σ u u u) ) µ σ u µσ u +µσ u.) E = µ+λ)σ divu u µ+λ d dt σ divu + µ+λ It remains to estimate E. In fact, E = H H ) H σu t +σu u) = d dt t σ R divu +µ+λ)σ u..) H H ) H σu H H ) H σu t

14 H H ) H σ u+ d dt σ H H H ) u u) H H H ) σuσ H 6 H t u +σ u H σ H 6 H 6 u 6 u d H H ) dt H σuσ H 6 +σ H t +σ u σ u σ H H σ H +σ u H..) Substituting.)-.) into.8), we have d { µ dt σ u + µ+λ ) σ divu +σ divup H H ) } H σu + σρ u µσ u +µσ u + µ+λ σ divu R +µ+λ)σ u σ H 6 +σ H t +σ u σ R Pdivu+γσ P u σ u σ H H σ H +σ u H..) Integrate.) over,t), we have µ t T σ + + σt) σt) σ u + µ+λ σ divu )+ H H H ) u Pdivu +γ σt) σ P u + H H γ )E + ǫµσ u + Cǫ) µ σ H σt) σ ρ u u µ+λ+) σ H 6 + σ H + u γ σ P u ρ,ǫ)γ )E KM 5 γ ) 6E ) + K γ ) 6E +K σ u γ ) σ H t σ u σ H u ) ) 7 + +K K γ ) 6E,.) which leads to µ t T σ u + µ+λ σ divu )+ σ ρ u dt

15 CK γ ) 6E σt) u σ u R T γ σ P u..5) Then, by the virtue of.), we get.). Next, operating t +divu ) to the both sides of the jth equation of.), yields that ρ u j ) t +divρu u j ) µ u j µ+λ) j div u = µ i i u u j +divu i u j ) µdiv i u i u j ) µ+λ) j [ i u u i divu ] div j uµ+λ)divu)+γ ) j Pdivu)+divP j u) + [ H H j ) t +divuh H j ) ] [ j H ) t +divu j H ) ]..6) Multiplying.6) by σ m u j for m, and integrating by parts over, we obtain after summing them with respect to j that d σ m ρ u +µ σ m u +µ+λ) σ m div u dt = m σm σ R ρ u +µ σ m i u j i u u i divu i u j ) +µ σ m k u j i u k i u j + σ m j u j [ µ+λ) i u u i µ divu ] +µ+λ) σ m k u j j u k divu σ m k u j j u k P γ ) σ m j u j k u k P σ m u j [ j H ) t +divu j H ) ] + σ m u j [ H H j ) t +divuh H j ) ] m σm σ ρ u + µ σ m u + µ+λ σ m div u µ σ m u µ+λ) + λ ) σ m u γ σ m P u µ σ m H H t σ m u + H ) H m σm σ ρ u + µ σ m u + µ+λ σ m div u ) µ σ m u γ σ m P u σ m γ ) 7 Ht σ m u + H ) H,.7) which implies that d σ m ρ u + σ m u C σ m dt 5 ) γ ) 7 Ht

16 Cσ m σ R ρ u µ σ m u γ σ m P u Similar to [], noting that σ m u + H ) H..8) H tt ν H t = H u u H Hdivu) t,.) and using the identity u t = u u u, we obtain by direct computation that d σ m H t +ν σ m H t m dt σm σ H t = σ m H t u u H t H t divu) H t R + σ m H u u H Hdiv u) H t σ m [H u u) u u) H Hdivu u)] H t N i..5) i= It follows from Cauchy inequality, Sobolev inequality and.) that N ǫνσ m H t σ m H t u, N C H σ m u + H t ) C γ ) 6E ) 7 σ m u + H t ), N Cσ m u u 6 H H t..5) Thanks to.6),.6) and Sobolev inequality, we deduce that u 6 C ρ u + P 6 + H H ) C ρ) ρ u + H H ) ρ)γ ) 6..5) Combining.5) and.5), we get N ν 8 σm H t σ m u + H ) H H σ m u ρ u H σ m u H γ ) E..5) Consequently, substituting.5)-.5) into.5) yields that d σ m H t + σ m H t C νσ m dt γ ) ) 7 u + H t ) m Cσm σ H t σ m u ρ u H σ m u + H ) H H + H t ) 6

17 σ m u H γ ) E..5) Thus, taking m = in.8) and.5), and integrating the resulting equation over,t), we deduce that σ ρ u + H t )+ σ u + H t ) t T CK 5 γ ) 6E ) 8 T γ σ P u R T σ u A T),.55) provided that { γ ) 6E ε min ε,c ) 7 ) 7},.56) where we have used the following inequalities: t T σ u ρ u H ) σ ρ u u + H ) ) CK γ ) σ u H γ ) E 8 K M γ ) C σ u ) γ ) E t T CK γ ) 6E ) γ ) E CKγ ) 7 C t T γ ) H ),.57) ),.58) σ u + H ) H H + H t ) + t T σ H ) t T ) σ H t T H ) H u CK γ ) 6E )7 5 K M γ ) 6E ) CK +KM ) γ ) Here, to obtained.57)-.5),.) and.) have been used. Furthermore, it holds from.) that ) 8..5) H = H t H u u H divuh),.6) 7

18 then standard p estimate for elliptic equation gives By.) and.55), we have σ H ) t T H C H t + H u u H divuh ) ) C H t + H H u..6) C σ H u + H t ) t T C σ H u ) σ H u ) t σt) σt) t T σ H t t T C t σt) ) ) σ H ) σ ) ) ) u σ H σ u σt) t T ) K 5 γ ) 8 T γ σ P u R T σ u A T) ) CK 5 γ ) 8 T γ σ P u R T σ u A T)..6) Due to.),.55) and.6), we finally get.). And emma.6 is proved. The following lemma will play a crucial role in the proof of the upper bound of the density. emma.7. Under the same assumption as in Proposition., it holds that ) σt) u + divu + ρ u K 6,.6) t σt) ) σt) ) t ρ u + H t + t u + H t K 7,.6) t σt) and u + t T ρ u CK 6 +),.65) σ t T ) ρ u + H t + ) σ u + H t CK 7 +),.66) provided that γ ) ε min { ε,ε,c ρ)) 7, },.67) 8

19 where K 6 = C ρ)k M +K +K +M M +) ρ)γ ) K γ ) K M γ ) K γ ) +γ ) K +)γ ),.68) K 7 = max{k 7,K 7},.6) K 7 = CK 6 K 6 K 6 K M K 6 γ ) K 6 +K M ) γ ) K 6 +K 6 K M +K 6 γ ) ), K 7 = CK M K 6K K M K 6 K M )K K 6 K γ )..7) Proof. Multiplying.) by u t, we have ρ u + µ u +µ+λ) divu ) Pdivu+ H H ) t H ) u t = H H H ) u P tdivu+ρu u u..7) t Integrating.7) over, one has d µ u +µ+λ) divu Pdivu H H dt H )) u+ ρ u = ρ u u u) H H H ) u P t divu t R C ρ) ρ u ρ u u 6 + divudivpu)+γ ) P divu + H H t u 6 C ρ) ρ u ρ u ρ)γ ) u + H H t ρ u + P 6 + H H ) Pu divu ρ u + P 6 + H H ) C ρ) ρ u A 5 σt)) ρ) ρ u A 5 σt)) P 6 ρ) ρ u A 5 σt)) H H Pu G+ divup µ+λ µ+λ) Pu H ρ)γ ) u ρ) H µ+λ) H t ρ u H H t P 6 H H t H 8 ρ u ρ) ρ u A 5 σt)) ρ)a 5 σt)) P 6 ρ)a 5 σt)) H H P u ) ρ u + H H P u P ρ) u H ρ) H ρ)γ ) u ρ) γ ) ) 7 Ht P 6 γ ) ) 7 H

20 ρ u ρ) ρ u A 5 σt)) ρ)a 5 σt))γ ) E ρ)a 5 σt)) γ ) ) 7 H γ ) E u γ ) E γ ) 6E ) 7 u γ ) E γ ) 6E ) 7 H γ ) E u +γ ) E ρ) γ ) ) 7 u ρ) H ρ)γ ) u +γ ) E γ ) 6E ) 7 Ht ρ) γ ) 6E ) 7 H..7) Integrating.7) over,σt)), we get µ t σt) u + σt) ρ u C ρ)a 5 σt))γ ) E ρ)a 5 σt)) γ ) 6E ) γ ) E σt) γ ) E 7 σt) u γ ) E γ ) 6E ) γ ) ) 7 σt) +γ ) E ρ) γ ) 6E ) ρ) σt) γ ) 6E ) H ρ)γ ) 7 σt) H +γ ) E 7 σt) σt) + µ u +µ+λ) divu Pdivu u u +γ ) E H t ρ) γ ) 6E ) 7 σt) σt) 7 σt) H H H )) u C ρ)k M +K +K +M M +) ρ)γ ) K γ ) H u u H K M γ ) K γ ) +γ ) K +)γ ),.7) t= provided γ ) 6E min{c ρ)) 7,}, then we get.6). Taking m = in.8), one has d σρ u + σ u C σ dt γ ) 6E ) 7 Ht

21 Cσ R ρ u µ σ u γ σ P u σ u + H ) H..7) Integrating.7) over,σt)), we get σt) σt) σρ u + σ u C σ γ ) 6E ) 7 Ht σt) σt) σt) C ρ u µ σ u γ σ P u σt) σ u + H ) H CK 6 K 6 K 6 K M K σt) 6 γ ) ) [ u + t σt) t σt) P ) ] ) σt) H σ H CK 6 K 6 K 6 K M K 6 γ ) K 6 +K M ) σt) σ u ) γ ) K 6 +K 6 K M +K 6 γ ) ) K 7,.75) where we have used the condition γ ) 6E and the following estimate σt) σ u u t σt) CK 6 σt) CK 6 t σt) σt) σ u 6 ) σ ρ u + P + H H 6 σ ρ u ) K σt) 6 σ H H σt) CK 6 A T)) K6 K 6 γ ) E K 6 t σt) σ H ) σt) ρ u K 6 γ ) E H CK 6 A T)) K6 K 6 γ ) E K 6 A T)) K M CK 6 K 6 K M K 6 γ )..76)

22 Similarly, Taking m = in.5), we get d σ H t + σ H t C σ γ ) 6E ) 7 u dt + H t ) and C C σ H t σ u ρ u H σ H t + σt) σt) σ u + H ) H H + H t ) σ u H γ ) E.77) σt) CK M σt) H t σ H t C σt) σt) σ σ u ρ u H σ u + H ) H H + H t ) σ u H γ ) E t σt) γ ) 6E ) 7 t σt) t σt) t σt) H ) u ) t σt) t σt) u + t σt) ) σ H t σt) t σt) γ ) 6E ) 7 u + H t ) ) σ H σt) ρ u ) σt) u σ H ) σ H σt) H ) σt) H σ H t u ) γ ) E CK M K 6K K M K 6 K M )K K 6 K γ ) K 7..78) Combining.75) and.78), we deduce ) t ρ u + H t + t σt) σt) ) t u + H t K 7,.7) provided that { } γ ) 6E min ε,c ) 7 ) 7,,.8)

23 where K 7 = max{k 7,K 7}. And this leads to.6). By.),.6) and.6), we can get.65) and.66). Then we finish the proof of emma.7. emma.8. Under the same assumption as in Proposition., we get that A σt))+a 5 σt)) γ ) 6E ),.8) provided that { γ ) ε min ε, K 5 6, C ρ)γ ) K 6 ) 8, }..8) Proof. It follows from.) and.6) that A σt)) σ u t σt) { provided γ ) 6E min ε, t σt) K ) 6 γ ) 8 ) ) σ u u t σt) γ ) 6E ),.8) K6 5 },. Now, to end up the proof of emma.8, it remains to estimate A 5 σt)). Due to.6), we deduce that A 5 σt)) = ρ u t σt) ρ u ) 6 t σt) C ρ)γ ) E K 6 C ρ)k 6 γ ) γ ) 6E γ ) 6E ),.8) provided that { γ ) min C ρ)γ ) K 6 ) 8, }..85) emma.. Under the same assumption as in Proposition., we get that A T)+A T) ) γ ),.86)

24 provided γ ) ε 5 min { ε,c K ), },.87) where K = K +K 5 )+K +K 8 γ ) + K 8 K 8 +K 8, + K 8 K 8 γ ) K 8 = CK 6 +)K 7 +)γ ) K 7 +)γ ) 7 K M K 6 +) K M γ ) 5 K M K 7 +)γ ) 7 K M, K 8 = C ρ)γ ) K 5 M +K 8..88) Proof. From.) and.), we have A T)+A T) CK +K 5 ) γ ) 6E ) 8 σt) u σ u γ σ P u γ σ P u σ u R ) CK +K 5 ) γ ) T i..8) An application of.7) gives T 5 = C σ u C = 7 J i. i= σ u ρ u i= σ u H H σ P ρ u σ H H H H Thanks to.),.),.6),.65) and.66), we have J C ρ) t T σ P H H σ P σ H H ρ u ) u σ ρ ) u σ ρ u t T C ρ)k 6 +) γ ) 6E ) γ ) E K 7 +) C ρ)k 6 +)K 7 +)γ ) 7 E.)

25 Similarly, we deduce C ρ)k 6 +)K 7 +)γ ) J C C t T σ P ρ u ) γ )..) σ ρ ) ) u T P σ ρ u t T C ρ)k 7 +)γ ) C ρ)k 7 +)γ ) 7 E ) γ ) It follows from.),.),.),.) and.65)-.66) that J C CK σ H H ρ u t T σ ρ u..) ) ) H σ ρ u t T CK ) γ ) T σ ρ u CK γ ) 6E ) γ ) E CK K 7 +)γ ) E CK K 7 +)γ ) γ ) 6E ),.) Moreover, J to J 6 can be estimated, in a similar way, as follows: J C C t T σ u H H ) ) σ H H H t T t T ) u σ H CK M K 6 +) γ ) 6E ),.) J 5 C C t T σ P H H CK M γ ) E ) ) σ H H H t T ) γ ) t T ) P σ H 5

26 CK M γ ) ) γ ),.5) and J 6 C C t T CK M σ H H H H σ H ) t T γ ) H ) t T ) H H T σ H )..6) In order to obtain desired estimate on T 5, it suffices to estimate J 7. One can deduce from.) that P t +u P +γpdivu =..7) In terms of the effective viscous flux G, we can rewrite.7) as P t +u P + γ µ+λ PG+ γ µ+λ) P H + γ µ+λ P =..8) Multiplying.8) by σ P and integrating the resulting equality over [,T], we obtain C C t T σ P σ P ) σ P H C ρ)γ )E +ǫ σσ P σ P σ G σ P G + σ H 8. 8.) To handle the terms on the right hand side of.), we have by.),.)-.) and.) that C C C σ H 8 8 t T σ H H 6 H σ H H H ) ) ) σ H σ H H H t T t T CK 5 M γ ) 6E ) 8 +..) 6

27 Furthermore, we have also C C C C C σ G t T σ G G 6 σ µ+λ) u + P ) ρ u + H H ) σ H H ρ u + H H ) σ u ρ u t T t T t T t T t T t T σ u H H σ H H ρ u σ P ρ u ) ) u σ ρ u σ ρ u t T P ) t T σ ρ u ) σ P H H σ H H H H σ ρ u ) ) u H H t T P ) t T H H ) t T t T ) σ H σ H ) ) ) H H σ ρ ) u σ ρ u t T t T ) ) ) H H H H t T t T σ H ) CK 6 +)K 7 +) γ ) σ H ) γ ) K 7 +) γ ) 6E ) 7 γ ) 6E 7 6 E σ H σ H K M K 6 +) γ ) 6E ) K M γ ) E γ ) 6E ) 7

28 K 5 M K 7 +) K 7 M γ ) γ ) ) ) γ ) E K 8 γ ) 6E ),.) provided γ ) 6E, where K 8 = CK 6 +)K 7 +)γ ) K 7 +)γ ) 7 K M K 6 +) K M γ ) 5 K M K 7 +)γ ) 7 K M Substituting.) and.) into.), assuming γ ) 6E, we have where J 7 = C σ P C ρ)γ )E σ G + σ H 8 8..) ) K 8 γ ),.) K 8 = C ρ)γ ) K 5 M +K 8..) Combining.)-.6) and.), we consequently get that T 5 = C σ u K 8 γ ) 6E ),.5) where It holds from.) that K 8 = C ρ)k 6 +)K 7 +)γ ) ρ)k7 +)γ ) 7 K K 7 +)γ ) K M K 6 +) K M γ ) K M +K 8..6) T = C σt) u CK γ ) 6E..7) To estimate T, due to Hölder inequality,.7),.) and.5), we deduce T = C σ u 8

29 ) C u T ) σ u CE K 8 γ ) 6E ) CK 8 γ ) As for T, by Hölder inequality,.) and.5), we get T = Cγ ) 7 γ )..8) σ P u ) C σ P T ) σ u C K 8 K 8 γ ) 6E )..) Now it remains to estimate T. It follows from.7),.) and.5) that T = Cγ σ P u ) C σ P T ) σ u T ) σ u CE K 8 K 8 γ ) 6 E C K 8 K 8 γ ) ) Finally, we deduce from.5),.7)-.) that provided that ) 7 γ )..) A T)+A T) CK +K 5 ) γ ) 6E ) 8 K γ ) 6E K 8 γ ) K 8 K 8 γ ) ) 7 γ ) K 8 K ) 8 γ ) 6 E ) CK γ ) 8 γ ) 6E ) 7 +K8 γ ) γ ) 6E ),.) γ ) min{ CK ), }..) )

30 where K is given by K = K +K 5 )+K +K 8 γ ) + K 8 K 8 γ ) + K 8 K 8 +K 8..) And to get.), we have used the facts that γ ) 6E. Then we finish the proof of emma.. Now we are ready to prove the upper bound of the density. emma.. Under the same assumption as in Proposition., it holds that 7 ρ.) t T ρ, provided that { ) } γ ) ρ 6 min ρ ε 5,, K C ρ)+k ),.5) where K = K K M +K M +K 8 M 8 K 7..6) Proof. et D t t + u denote the material derivative operator. Then, in terms of the effective viscous flux G, we can rewrite.) as D t ρ = gρ)+b ρ), where gρ) ρp µ+λ, bt) = µ+λ t ρg+ ρ H )..7) Moreover, it follows from emmas.-.,.) and.5) that G C G 6 G 6 ) ) C ρ u + H H u + H H C ρ u u ρ u H H u H H H H..8) For t [.σt)], one can deduce that for all t t σt), bt ) bt ) C C σt) σt) G + H ) ρ u u σt) H H

31 + σt) ρ u H H + σt) C ρ u t + σt) ) σt) H ) σt) ) t ρ u t σt) t σt) ) 8 H t σt) CK 7 σt) K 8 M 8 γ ) 6E ) t σt) σt) t u ) H ) u H H H ) 8 σt) t H ) ) ) ρ u t t K M K 8 M 8 γ ) 6E ) CK 7 t σt) ) ρ u t 8 σt) 6 σt) 6 ) σt) t H 8 σt) γ ) H ) 8 σt) t u ) σt) ) ) ρ u t t K M γ ) 6E ) K M γ ) 6E ) 8 K 8 M 8 K 7 CK σt) K M γ ) ) 6 t ρ u ) 6 σt) γ ) t 8 ) 8 K 8 M 8 K 7 ) 6 K M γ ) t u ) t ) t 5 t )5 8 ) γ ) CK A σt)) 6 K M γ ) 6E ) K M γ ) 6E ) 8 K 8 M 8 K 7 γ ) ) 6 ) 6 )

32 C K K M +K M +K 8 M 8 ) K 7 γ ) ) K γ ) 6,.) where.),.6),.86) and.8) have been used. Therefore, for t [,σt)], we can choose N and N in emma. as follows and ζ =. Then We thus have ) 6 ) N =, N = K γ ) 6,.) gζ) = ζp µ+λ N = for all ζ ζ =..) ) ρ max{ ρ,}+n ρ+k γ ) 6E 6 ρ t σt),.) provided { γ ) ) } ρ 6 min,ε 5..) K Furthermore, due to emmas.-., for t [σt),t], we can derive bt ) bt ) C t t G + H ) C ρ) µ+λ t t ) ρ) σt) G σt) H H ) ) C ρ) T µ+λ t t )+ H H σt) σt) ρ) ρ u u ρ u H H σt) σt) σt) u H H σt) C ρ) µ+λ t t ) ρ)k γ ) 6E ρ)a T) A T) A T) +A T) A T) σt) H H σt) u u A T) C ρ) µ+λ t t ) ρ)γ ) ρ)k A T)

33 A T) A T) A T) C ρ) µ+λ t t ) ρ)+k )γ )..) Consequently, for t [σt),t], we can choose N and N in emma. as follows Noticing that one can set ζ =. Thus N = µ+λ, N = C ρ)+k )γ ) 6E..5) gζ) = ζpζ) µ+λ N = µ+λ for all ζ,.6) ρ max{ ρ,}+n ρ ρ)+k )γ 6E ) 7 ρ σt) t T,.7) provided { } γ ) 6E ρ min ε 5, C ρ)+k )..8) Proof of Theorem. In this section, we devote to prove the main result of this paper. First, from now on we always assume that the conditions in Theorem. hold. Moreover, we denote the generic constant by C which may depends on T, µ, λ, ν, γ, ρ, ρ, M,M, g and some other initial data. Here g is the function in the compatibility condition.8). The following higher-order a priori estimates of the smooth solutions which are needed to guarantee the classical solutions ρ,u,h) to be global ones have been proved in [], so we omit their proof here. emma.. The following estimates hold: H + u ) t T ) + ρ u + H t + H CT),.) ρ u + H + H t ) t T ) + u + H t CT),.) ρ 6 + u H )+ t T ρ u t )+ t T ρ H + P H )+ t T u CT),.) u t CT),.) u H CT),.5)

34 ρ t H + P t H )+ t T ρ tt + P tt ) CT),.6) σ u H + u t + H t + H H ) t T ) + σ ρ utt + u t H + H tt CT),.7) t T ρ W,q + P W,q) ) + u t p + u p q CT),.8) W,q for fixed q,6), where p < q 5q 6,). σ ρ u tt + u t + u W,q + H H + H t + H tt ) t T + σ ) u tt + H tt CT)..) Thanks to all the a priori estimates established above, we now are ready to prove Theorem.. Infact, thiscan bedoneinamethodthesameas that in[], weomit it hereforsimplicity. Acknowledgement This work was ported by the National Natural Science Foundation of China#5, the Program for Changjiang Scholars and Innovative Research Team in University #IRT66, and the Special Fund for Basic Scientific Research of Central Colleges #CCNUC. The first author was also ported by excellent doctorial dissertation cultivation grant from Central Normal University. References [] H. Cabannes, Theoretical Magnetofluiddynamics. Academic Press, New York-ondon, 7. [] G.Q. Chen, D. Wang, Global solutions of nonlinear magnetohydrodynamics with large initial data, J. Differential Equations, 8 ), -76. [] G.Q. Chen, D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations, Z. Angew. Math. Phys., 5 ), [] Y. Cho, H.J. Choe, H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl., 8 ), -75. [5] Y. Cho, H. Kim, On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities, Manuscripta Math., 6), -. [6] S.J. Ding, H.Y. Wen, C.J. Zhu, Global classical large solutions to D compressible Navier- Stokes equations with density-dependent viscosity and vacuum, J. Differential Equations, 5 ),

35 [7] S.J. Ding, H.Y. Wen,. Yao, C.J. Zhu, Global spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuum, SIAM J. Math. Anal., ), [8] B. Ducomet, E. Feireisl, The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars, Comm. Math. Phys., 66 6), [] J. Fan, S. Jiang, G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations, Comm. Math. Phys., 7 7), [] J. Fan, W. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Anal., 6 8), [] J. Fan, W. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., ), -. [] D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Differential Equations 5), 5-5. [] X.F. Hou, H.Y. Peng, C.J. Zhu, Global classical solution to D isentropic comressible Navier-Stokes equations with large initial data and vacuum, under review. [] X. Hu, D. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 8 8), [5] X. Hu, D. Wang, Compactness of weak solutions to the three-dimensional compressible magnetohydrodynamic equations, J. Differential Equations, 5 8), [6] X. Hu, D. Wang, ow mach number limit of viscous compressible magnetohydrodynamic flows, SIAM J. Math. Anal., ), 7-. [7] X. Hu, D. Wang, Global existence and large-time behavior of solutions to the threedimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 7 ), -8. [8] X.D. Huang, J. i, Z.P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 ), [] A. Jeffrey, T. Taniuti, Non-linear wave propagation. With applications to physics and magnetohydrodynamics. Academic Press, New York-ondon, 6. [] S. Jiang, Q.C. Ju, F.C. i, Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions, Comm. Math. Phys., 7 ), 7-. [] S. Kawashima, Smooth global solutions for two-dimensional equations of electromagnetofluid dynamics, Japan J. Appl. Math., 8), 7-. [] S. Kawashima, M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics, Proc. Japan Acad. Ser. A Math. Sci., 58 8), [] S. Kawashima, Y. Shizuta, Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid, Tsukuba J. Math., 86), -. 5

36 [] S. Kawashima, Y. Shizuta, Magnetohydrodynamic approximation of the complete equations for an electromagnetic fluid II, Proc. Japan Acad. Ser. A Math. Sci., 6 86), 8-8. [5] A.V. Kazhikhov, V.V. Shelukhin, Unique global solution with respect to time of initialboundary value problems for one-dimensional equations of a viscous gas, Prikl. Mat. Meh., 77), 8-. [6] A.G. Kulikovskiy, G. A. yubimov, Magnetohydrodynamics. Addison-Wesley, Reading, Massachusetts, 65. [7] O.A. adyzenskaja, V.A. Solonnikov, N.N. Ural ceva, inear and quasilinear equations of parabolic type. AMS, Providence, R.I. 68. [8].D. andau, E.M. ifschitz, Electrodynamics of continua. Pergamon Press, Oxford, 8. [] H.. i, X.Y. Xu, J.W. Zhang, Global classical solutions to D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 5 ), [] P.. ions, Mathematical topics in fluid mechanics. Vol., Compressible models. The Clarendon Press, Oxford University Press, New York, 8. [] R.V. Polovin, V.P. Demutskii, Fundamentals of Magnetohydrodynamics. Consultants Bureau, New York,. [] T. Umeda, S. Kawashima, Y. Shizuta, On the decay of solutions to the linearized equations of electromagnetofluid dynamics, Japan J. Appl. Math., 8), [] A.I. Vol pert, S.I. Hudjaev, The Cauchy problem for composite systems of nonlinear differential equations, Mat. Sb., 87 7), [] D. Wang, arge solutions to the initial-boundary value problem for planar magnetohydrodynamics, SIAM J. Appl. Math., 6 ), -. [5] H.Y. Wen, C.J. Zhu, Global classical large solutions to Navier-Stokes equations for viscous compressible and heat-conducting fluids with vacuum, SIAM J. Math. Anal., 5 ), -68. [6] H.Y. Wen, C.J. Zhu, Global symmetric classical and strong solutions of the full compressible Navier-Stokes equations with vacuum and large initial data, J. Math. Pures Appl., in press. [7] H.Y. Wen, C.J. Zhu, Blow-up criterions of strong solutions to D compressible Navier- Stokes equations with vacuum, Adv. Math., 8 ), 5C57. [8] A. Zlotnik, On global in time properties of the symmetric compressible barotropic Navier- Stokes-Poisson flows in a vacuum, Instability in models connected with fluid flows, II, -76, Int. Math. Ser. N. Y.), 7, Springer, New York, 8. [] J.W. Zhang, S. Jiang, F. Xie, Global weak solutions of an initial boundary value problem for screw pinches in plasma physics, Math. Models Methods Appl. Sci., ), [] J.W. Zhang, J. N. Zhao, Some decay estimates of solutions for the -D compressible isentropic magnetohydrodynamics, Commun. Math. Sci., 8 ),

University of Science and Technology of China, Hefei , P. R. China. Academia Sinica, Beijing , P. R. China

University of Science and Technology of China, Hefei , P. R. China. Academia Sinica, Beijing , P. R. China Global Well-Posedness of Classical Solutions with Large Oscillations and Vacuum to the Three-Dimensional Isentropic Compressible Navier-Stokes Equations Xiangdi HUANG a,c,jingli b,c, Zhouping XIN c a Department

More information

Serrin Type Criterion for the Three-Dimensional Viscous Compressible Flows

Serrin Type Criterion for the Three-Dimensional Viscous Compressible Flows Serrin Type Criterion for the Three-Dimensional Viscous Compressible Flows Xiangdi HUANG a,c, Jing LI b,c, Zhouping XIN c a. Department of Mathematics, University of Science and Technology of China, Hefei

More information

Global Well-Posedness and Large Time Asymptotic Behavior of Classical Solutions to the Compressible Navier-Stokes Equations with Vacuum

Global Well-Posedness and Large Time Asymptotic Behavior of Classical Solutions to the Compressible Navier-Stokes Equations with Vacuum Global Well-Posedness and Large Time Asymptotic Behavior of Classical Solutions to the Compressible Navier-Stokes Equations with Vacuum Jing LI a,b, Zhouping XIN b a. Institute of Applied Mathematics,

More information

Decay rate of the compressible Navier-Stokes equations with density-dependent viscosity coefficients

Decay rate of the compressible Navier-Stokes equations with density-dependent viscosity coefficients South Asian Journal of Mathematics 2012, Vol. 2 2): 148 153 www.sajm-online.com ISSN 2251-1512 RESEARCH ARTICLE Decay rate of the compressible Navier-Stokes equations with density-dependent viscosity coefficients

More information

OPTIMAL CONVERGENCE RATES FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH POTENTIAL FORCES

OPTIMAL CONVERGENCE RATES FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH POTENTIAL FORCES OPTIMAL CONVERGENCE RATES FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH POTENTIAL FORCES RENJUN DUAN Department of Mathematics, City University of Hong Kong 83 Tat Chee Avenue, Kowloon, Hong Kong,

More information

Author(s) Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 41(1)

Author(s) Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 41(1) Title On the stability of contact Navier-Stokes equations with discont free b Authors Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 4 Issue 4-3 Date Text Version publisher URL

More information

Compressible hydrodynamic flow of liquid crystals in 1-D

Compressible hydrodynamic flow of liquid crystals in 1-D Compressible hydrodynamic flow of liquid crystals in 1-D Shijin Ding Junyu Lin Changyou Wang Huanyao Wen Abstract We consider the equation modeling the compressible hydrodynamic flow of liquid crystals

More information

LOCAL WELL-POSEDNESS FOR AN ERICKSEN-LESLIE S PARABOLIC-HYPERBOLIC COMPRESSIBLE NON-ISOTHERMAL MODEL FOR LIQUID CRYSTALS

LOCAL WELL-POSEDNESS FOR AN ERICKSEN-LESLIE S PARABOLIC-HYPERBOLIC COMPRESSIBLE NON-ISOTHERMAL MODEL FOR LIQUID CRYSTALS Electronic Journal of Differential Equations, Vol. 017 (017), No. 3, pp. 1 8. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu LOCAL WELL-POSEDNESS FOR AN ERICKSEN-LESLIE S

More information

ON THE STRONG SOLUTIONS OF THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN A THIN DOMAIN

ON THE STRONG SOLUTIONS OF THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN A THIN DOMAIN ON THE STRONG SOLUTIONS OF THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN A THIN DOMAIN XIAN LIAO Abstract. In this work we will show the global existence of the strong solutions of the inhomogeneous

More information

The 2D Magnetohydrodynamic Equations with Partial Dissipation. Oklahoma State University

The 2D Magnetohydrodynamic Equations with Partial Dissipation. Oklahoma State University The 2D Magnetohydrodynamic Equations with Partial Dissipation Jiahong Wu Oklahoma State University IPAM Workshop Mathematical Analysis of Turbulence IPAM, UCLA, September 29-October 3, 2014 1 / 112 Outline

More information

Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System

Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System Joshua Ballew University of Maryland College Park Applied PDE RIT March 4, 2013 Outline Description of the Model Relative Entropy Weakly

More information

Global well-posedness of the primitive equations of oceanic and atmospheric dynamics

Global well-posedness of the primitive equations of oceanic and atmospheric dynamics Global well-posedness of the primitive equations of oceanic and atmospheric dynamics Jinkai Li Department of Mathematics The Chinese University of Hong Kong Dynamics of Small Scales in Fluids ICERM, Feb

More information

arxiv: v1 [math.fa] 30 Jun 2011

arxiv: v1 [math.fa] 30 Jun 2011 Existence of strong solutions for the compressible arxiv:116.614v1 [math.fa] 3 Jun 211 Ericksen-Leslie model Xiangao Liu, Lanming Liu, Yihang Hao School of Mathematic Sciences, Fudan University, Shanghai,

More information

ON MULTICOMPONENT FLUID MIXTURES

ON MULTICOMPONENT FLUID MIXTURES ON MULTICOMPONENT FLUID MIXTURES KONSTANTINA TRIVISA 1. Introduction We consider the flow of the mixture of viscous, heat-conducting, compressible fluids consisting of n different components, each of which

More information

arxiv: v1 [math.ap] 27 Nov 2014

arxiv: v1 [math.ap] 27 Nov 2014 Weak-Strong uniqueness for compressible Navier-Stokes system with degenerate viscosity coefficient and vacuum in one dimension Boris Haspot arxiv:1411.7679v1 [math.ap] 27 Nov 214 Abstract We prove weak-strong

More information

The inviscid limit to a contact discontinuity for the compressible Navier-Stokes-Fourier system using the relative entropy method

The inviscid limit to a contact discontinuity for the compressible Navier-Stokes-Fourier system using the relative entropy method The inviscid limit to a contact discontinuity for the compressible Navier-Stokes-Fourier system using the relative entropy method Alexis Vasseur, and Yi Wang Department of Mathematics, University of Texas

More information

GLOBAL EXISTENCE AND LARGE-TIME BEHAVIOR OF SOLUTIONS TO THE THREE-DIMENSIONAL EQUATIONS OF COMPRESSIBLE MAGNETOHYDRODYNAMIC FLOWS

GLOBAL EXISTENCE AND LARGE-TIME BEHAVIOR OF SOLUTIONS TO THE THREE-DIMENSIONAL EQUATIONS OF COMPRESSIBLE MAGNETOHYDRODYNAMIC FLOWS GLOBAL EXISTENCE AND LARGE-TIME BEHAVIOR OF SOLUTIONS TO THE THREE-DIMENSIONAL EQUATIONS OF COMPRESSIBLE MAGNETOHYDRODYNAMIC FLOWS XIANPENG HU AND DEHUA WANG Abstract. The three-dimensional equations of

More information

Liouville-type theorem for the Lamé system with singular coefficients

Liouville-type theorem for the Lamé system with singular coefficients Liouville-type theorem for the Lamé system with singular coefficients Blair Davey Ching-Lung Lin Jenn-Nan Wang Abstract In this paper, we study a Liouville-type theorem for the Lamé system with rough coefficients

More information

A regularity criterion for the generalized Hall-MHD system

A regularity criterion for the generalized Hall-MHD system Gu et al. Boundary Value Problems (016 016:188 DOI 10.1186/s13661-016-0695-3 R E S E A R C H Open Access A regularity criterion for the generalized Hall-MHD system Weijiang Gu 1, Caochuan Ma,3* and Jianzhu

More information

Global regularity of a modified Navier-Stokes equation

Global regularity of a modified Navier-Stokes equation Global regularity of a modified Navier-Stokes equation Tobias Grafke, Rainer Grauer and Thomas C. Sideris Institut für Theoretische Physik I, Ruhr-Universität Bochum, Germany Department of Mathematics,

More information

Nonlinear Analysis. A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel Lizorkin spaces

Nonlinear Analysis. A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel Lizorkin spaces Nonlinear Analysis 74 (11) 5 Contents lists available at ScienceDirect Nonlinear Analysis journal homepage: www.elsevier.com/locate/na A regularity criterion for the 3D magneto-micropolar fluid equations

More information

Decay in Time of Incompressible Flows

Decay in Time of Incompressible Flows J. math. fluid mech. 5 (23) 231 244 1422-6928/3/3231-14 c 23 Birkhäuser Verlag, Basel DOI 1.17/s21-3-79-1 Journal of Mathematical Fluid Mechanics Decay in Time of Incompressible Flows Heinz-Otto Kreiss,

More information

On the local well-posedness of compressible viscous flows with bounded density

On the local well-posedness of compressible viscous flows with bounded density On the local well-posedness of compressible viscous flows with bounded density Marius Paicu University of Bordeaux joint work with Raphaël Danchin and Francesco Fanelli Mathflows 2018, Porquerolles September

More information

The incompressible Navier-Stokes equations in vacuum

The incompressible Navier-Stokes equations in vacuum The incompressible, Université Paris-Est Créteil Piotr Bogus law Mucha, Warsaw University Journées Jeunes EDPistes 218, Institut Elie Cartan, Université de Lorraine March 23th, 218 Incompressible Navier-Stokes

More information

REGULARITY CRITERIA FOR WEAK SOLUTIONS TO 3D INCOMPRESSIBLE MHD EQUATIONS WITH HALL TERM

REGULARITY CRITERIA FOR WEAK SOLUTIONS TO 3D INCOMPRESSIBLE MHD EQUATIONS WITH HALL TERM Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 10, pp. 1 12. ISSN: 1072-6691. UL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EGULAITY CITEIA FO WEAK SOLUTIONS TO D INCOMPESSIBLE

More information

GLOBAL WEAK SOLUTION TO THE MAGNETOHYDRODYNAMIC AND VLASOV EQUATIONS

GLOBAL WEAK SOLUTION TO THE MAGNETOHYDRODYNAMIC AND VLASOV EQUATIONS GLOBAL WEAK SOLUTION TO THE MAGNETOHYDRODYNAMIC AND VLASOV EQUATIONS ROBIN MING CHEN, JILONG HU, AND DEHUA WANG Abstract. An initial-boundary value problem for the fluid-particle system of the inhomogeneous

More information

On Smoothness of Suitable Weak Solutions to the Navier-Stokes Equations

On Smoothness of Suitable Weak Solutions to the Navier-Stokes Equations On Smoothness of Suitable Weak Solutions to the Navier-Stokes Equations G. Seregin, V. Šverák Dedicated to Vsevolod Alexeevich Solonnikov Abstract We prove two sufficient conditions for local regularity

More information

Low Froude Number Limit of the Rotating Shallow Water and Euler Equations

Low Froude Number Limit of the Rotating Shallow Water and Euler Equations Low Froude Number Limit of the Rotating Shallow Water and Euler Equations Kung-Chien Wu Department of Pure Mathematics and Mathematical Statistics University of Cambridge, Wilberforce Road Cambridge, CB3

More information

EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS WITH UNBOUNDED POTENTIAL. 1. Introduction In this article, we consider the Kirchhoff type problem

EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS WITH UNBOUNDED POTENTIAL. 1. Introduction In this article, we consider the Kirchhoff type problem Electronic Journal of Differential Equations, Vol. 207 (207), No. 84, pp. 2. ISSN: 072-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS

More information

VANISHING VISCOSITY LIMIT FOR THE 3D NONHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATION WITH SPECIAL SLIP BOUNDARY CONDITION

VANISHING VISCOSITY LIMIT FOR THE 3D NONHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATION WITH SPECIAL SLIP BOUNDARY CONDITION Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 169, pp. 1 13. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu VANISHING VISCOSITY LIMIT FOR THE 3D NONHOMOGENEOUS

More information

Research Article On a Quasi-Neutral Approximation to the Incompressible Euler Equations

Research Article On a Quasi-Neutral Approximation to the Incompressible Euler Equations Applied Mathematics Volume 2012, Article ID 957185, 8 pages doi:10.1155/2012/957185 Research Article On a Quasi-Neutral Approximation to the Incompressible Euler Equations Jianwei Yang and Zhitao Zhuang

More information

TRAVELING WAVES IN 2D REACTIVE BOUSSINESQ SYSTEMS WITH NO-SLIP BOUNDARY CONDITIONS

TRAVELING WAVES IN 2D REACTIVE BOUSSINESQ SYSTEMS WITH NO-SLIP BOUNDARY CONDITIONS TRAVELING WAVES IN 2D REACTIVE BOUSSINESQ SYSTEMS WITH NO-SLIP BOUNDARY CONDITIONS PETER CONSTANTIN, MARTA LEWICKA AND LENYA RYZHIK Abstract. We consider systems of reactive Boussinesq equations in two

More information

arxiv: v1 [math.ap] 1 Jan 2015

arxiv: v1 [math.ap] 1 Jan 2015 EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS OF THE COMPRESSIBLE SPHERICALLY SYMMETRIC NAVIER-STOKES EQUATIONS XIANGDI HUANG arxiv:5.262v [math.ap] Jan 25 Abstract. One of the most influential fundamental

More information

A LOWER BOUND ON BLOWUP RATES FOR THE 3D INCOMPRESSIBLE EULER EQUATION AND A SINGLE EXPONENTIAL BEALE-KATO-MAJDA ESTIMATE. 1.

A LOWER BOUND ON BLOWUP RATES FOR THE 3D INCOMPRESSIBLE EULER EQUATION AND A SINGLE EXPONENTIAL BEALE-KATO-MAJDA ESTIMATE. 1. A LOWER BOUND ON BLOWUP RATES FOR THE 3D INCOMPRESSIBLE EULER EQUATION AND A SINGLE EXPONENTIAL BEALE-KATO-MAJDA ESTIMATE THOMAS CHEN AND NATAŠA PAVLOVIĆ Abstract. We prove a Beale-Kato-Majda criterion

More information

hal , version 1-22 Nov 2009

hal , version 1-22 Nov 2009 Author manuscript, published in "Kinet. Relat. Models 1, 3 8) 355-368" PROPAGATION OF GEVREY REGULARITY FOR SOLUTIONS OF LANDAU EQUATIONS HUA CHEN, WEI-XI LI AND CHAO-JIANG XU Abstract. By using the energy-type

More information

Applications of the compensated compactness method on hyperbolic conservation systems

Applications of the compensated compactness method on hyperbolic conservation systems Applications of the compensated compactness method on hyperbolic conservation systems Yunguang Lu Department of Mathematics National University of Colombia e-mail:ylu@unal.edu.co ALAMMI 2009 In this talk,

More information

WELL-POSEDNESS OF THE TWO-DIMENSIONAL GENERALIZED BENJAMIN-BONA-MAHONY EQUATION ON THE UPPER HALF PLANE

WELL-POSEDNESS OF THE TWO-DIMENSIONAL GENERALIZED BENJAMIN-BONA-MAHONY EQUATION ON THE UPPER HALF PLANE WELL-POSEDNESS OF THE TWO-DIMENSIONAL GENERALIZED BENJAMIN-BONA-MAHONY EQUATION ON THE UPPER HALF PLANE YING-CHIEH LIN, C. H. ARTHUR CHENG, JOHN M. HONG, JIAHONG WU, AND JUAN-MING YUAN Abstract. This paper

More information

arxiv: v2 [math.ap] 14 May 2016

arxiv: v2 [math.ap] 14 May 2016 THE MINKOWSKI DIMENSION OF INTERIOR SINGULAR POINTS IN THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS YOUNGWOO KOH & MINSUK YANG arxiv:16.17v2 [math.ap] 14 May 216 ABSTRACT. We study the possible interior

More information

Existence of global strong solution for the compressible Navier-Stokes equations with degenerate viscosity coefficients in 1D

Existence of global strong solution for the compressible Navier-Stokes equations with degenerate viscosity coefficients in 1D Existence of global strong solution for the compressible Navier-Stokes equations with degenerate viscosity coefficients in 1D Boris Haspot To cite this version: Boris Haspot. Existence of global strong

More information

Explosive Solution of the Nonlinear Equation of a Parabolic Type

Explosive Solution of the Nonlinear Equation of a Parabolic Type Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 5, 233-239 Explosive Solution of the Nonlinear Equation of a Parabolic Type T. S. Hajiev Institute of Mathematics and Mechanics, Acad. of Sciences Baku,

More information

EXISTENCE OF GLOBAL SOLUTIONS TO FREE BOUNDARY VALUE PROBLEMS FOR BIPOLAR NAVIER-STOKES-POSSION SYSTEMS

EXISTENCE OF GLOBAL SOLUTIONS TO FREE BOUNDARY VALUE PROBLEMS FOR BIPOLAR NAVIER-STOKES-POSSION SYSTEMS Electronic Journal of Differential Equations, Vol. 23 (23), No. 2, pp. 5. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTENCE OF GLOBAL SOLUTIONS

More information

A RIEMANN PROBLEM FOR THE ISENTROPIC GAS DYNAMICS EQUATIONS

A RIEMANN PROBLEM FOR THE ISENTROPIC GAS DYNAMICS EQUATIONS A RIEMANN PROBLEM FOR THE ISENTROPIC GAS DYNAMICS EQUATIONS KATARINA JEGDIĆ, BARBARA LEE KEYFITZ, AND SUN CICA ČANIĆ We study a Riemann problem for the two-dimensional isentropic gas dynamics equations

More information

REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID

REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID DRAGOŞ IFTIMIE AND JAMES P. KELLIHER Abstract. In [Math. Ann. 336 (2006), 449-489] the authors consider the two dimensional

More information

Institute of Mathematics, Russian Academy of Sciences Universitetskiĭ Prosp. 4, Novosibirsk, Russia

Institute of Mathematics, Russian Academy of Sciences Universitetskiĭ Prosp. 4, Novosibirsk, Russia PARTIAL DIFFERENTIAL EQUATIONS BANACH CENTER PUBLICATIONS, VOLUME 27 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1992 L p -THEORY OF BOUNDARY VALUE PROBLEMS FOR SOBOLEV TYPE EQUATIONS

More information

arxiv: v1 [math.ap] 21 Dec 2016

arxiv: v1 [math.ap] 21 Dec 2016 arxiv:1612.07051v1 [math.ap] 21 Dec 2016 On the extension to slip boundary conditions of a Bae and Choe regularity criterion for the Navier-Stokes equations. The half-space case. H. Beirão da Veiga, Department

More information

Global Well-posedness of the Incompressible Magnetohydrodynamics

Global Well-posedness of the Incompressible Magnetohydrodynamics Global Well-posedness of the Incompressible Magnetohydrodynamics arxiv:165.439v1 [math.ap] May 16 Yuan Cai Zhen Lei Abstract This paper studies the Cauchy problem of the incompressible magnetohydrodynamic

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Note on the fast decay property of steady Navier-Stokes flows in the whole space

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. Note on the fast decay property of steady Navier-Stokes flows in the whole space INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES Note on the fast decay property of stea Navier-Stokes flows in the whole space Tomoyuki Nakatsuka Preprint No. 15-017 PRAHA 017 Note on the fast

More information

Entropy and Relative Entropy

Entropy and Relative Entropy Entropy and Relative Entropy Joshua Ballew University of Maryland October 24, 2012 Outline Hyperbolic PDEs Entropy/Entropy Flux Pairs Relative Entropy Weak-Strong Uniqueness Weak-Strong Uniqueness for

More information

FENG CHENG, WEI-XI LI, AND CHAO-JIANG XU

FENG CHENG, WEI-XI LI, AND CHAO-JIANG XU GEVERY REGULARITY WITH WEIGHT FOR INCOMPRESSIBLE EULER EQUATION IN THE HALF PLANE arxiv:151100539v2 [mathap] 23 Nov 2016 FENG CHENG WEI-XI LI AND CHAO-JIANG XU Abstract In this work we prove the weighted

More information

Partial regularity for suitable weak solutions to Navier-Stokes equations

Partial regularity for suitable weak solutions to Navier-Stokes equations Partial regularity for suitable weak solutions to Navier-Stokes equations Yanqing Wang Capital Normal University Joint work with: Quansen Jiu, Gang Wu Contents 1 What is the partial regularity? 2 Review

More information

SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS. M. Grossi S. Kesavan F. Pacella M. Ramaswamy. 1. Introduction

SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS. M. Grossi S. Kesavan F. Pacella M. Ramaswamy. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 12, 1998, 47 59 SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS M. Grossi S. Kesavan F. Pacella M. Ramaswamy

More information

OSGOOD TYPE REGULARITY CRITERION FOR THE 3D NEWTON-BOUSSINESQ EQUATION

OSGOOD TYPE REGULARITY CRITERION FOR THE 3D NEWTON-BOUSSINESQ EQUATION Electronic Journal of Differential Equations, Vol. 013 (013), No. 3, pp. 1 6. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu OSGOOD TYPE REGULARITY

More information

WELL-POSEDNESS OF WEAK SOLUTIONS TO ELECTRORHEOLOGICAL FLUID EQUATIONS WITH DEGENERACY ON THE BOUNDARY

WELL-POSEDNESS OF WEAK SOLUTIONS TO ELECTRORHEOLOGICAL FLUID EQUATIONS WITH DEGENERACY ON THE BOUNDARY Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 13, pp. 1 15. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu WELL-POSEDNESS OF WEAK SOLUTIONS TO ELECTRORHEOLOGICAL

More information

DIRECTION OF VORTICITY AND A REFINED BLOW-UP CRITERION FOR THE NAVIER-STOKES EQUATIONS WITH FRACTIONAL LAPLACIAN

DIRECTION OF VORTICITY AND A REFINED BLOW-UP CRITERION FOR THE NAVIER-STOKES EQUATIONS WITH FRACTIONAL LAPLACIAN DIRECTION OF VORTICITY AND A REFINED BLOW-UP CRITERION FOR THE NAVIER-STOKES EQUATIONS WITH FRACTIONAL LAPLACIAN KENGO NAKAI Abstract. We give a refined blow-up criterion for solutions of the D Navier-

More information

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS EXISTECE AD REGULARITY RESULTS FOR SOME OLIEAR PARABOLIC EUATIOS Lucio BOCCARDO 1 Andrea DALL AGLIO 2 Thierry GALLOUËT3 Luigi ORSIA 1 Abstract We prove summability results for the solutions of nonlinear

More information

BLOW-UP OF SOLUTIONS FOR A NONLINEAR WAVE EQUATION WITH NONNEGATIVE INITIAL ENERGY

BLOW-UP OF SOLUTIONS FOR A NONLINEAR WAVE EQUATION WITH NONNEGATIVE INITIAL ENERGY Electronic Journal of Differential Equations, Vol. 213 (213, No. 115, pp. 1 8. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu BLOW-UP OF SOLUTIONS

More information

A Product Property of Sobolev Spaces with Application to Elliptic Estimates

A Product Property of Sobolev Spaces with Application to Elliptic Estimates Rend. Sem. Mat. Univ. Padova Manoscritto in corso di stampa pervenuto il 23 luglio 2012 accettato l 1 ottobre 2012 A Product Property of Sobolev Spaces with Application to Elliptic Estimates by Henry C.

More information

REGULARITY OF GENERALIZED NAVEIR-STOKES EQUATIONS IN TERMS OF DIRECTION OF THE VELOCITY

REGULARITY OF GENERALIZED NAVEIR-STOKES EQUATIONS IN TERMS OF DIRECTION OF THE VELOCITY Electronic Journal of Differential Equations, Vol. 00(00), No. 05, pp. 5. ISSN: 07-669. UR: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu REGUARITY OF GENERAIZED NAVEIR-STOKES

More information

ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS. Tian Ma. Shouhong Wang

ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS. Tian Ma. Shouhong Wang DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Volume 11, Number 1, July 004 pp. 189 04 ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS Tian Ma Department of

More information

ON THE GLOBAL EXISTENCE OF A CROSS-DIFFUSION SYSTEM. Yuan Lou. Wei-Ming Ni. Yaping Wu

ON THE GLOBAL EXISTENCE OF A CROSS-DIFFUSION SYSTEM. Yuan Lou. Wei-Ming Ni. Yaping Wu DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS Volume 4, Number 2, April 998 pp. 93 203 ON THE GLOBAL EXISTENCE OF A CROSS-DIFFUSION SYSTEM Yuan Lou Department of Mathematics, University of Chicago Chicago,

More information

Global existence and asymptotic behavior of the solutions to the 3D bipolar non-isentropic Euler Poisson equation

Global existence and asymptotic behavior of the solutions to the 3D bipolar non-isentropic Euler Poisson equation Nonlinear Analysis: Modelling and Control, Vol., No. 3, 35 33 ISSN 139-5113 http://dx.doi.org/1.15388/na.15.3.1 Global existence and asymptotic behavior of the solutions to the 3D bipolar non-isentropic

More information

Asymptotic Behavior of a Hyperbolic-parabolic Coupled System Arising in Fluid-structure Interaction

Asymptotic Behavior of a Hyperbolic-parabolic Coupled System Arising in Fluid-structure Interaction International Series of Numerical Mathematics, Vol. 154, 445 455 c 2006 Birkhäuser Verlag Basel/Switzerland Asymptotic Behavior of a Hyperbolic-parabolic Coupled System Arising in Fluid-structure Interaction

More information

Measure-valued - strong uniqueness for hyperbolic systems

Measure-valued - strong uniqueness for hyperbolic systems Measure-valued - strong uniqueness for hyperbolic systems joint work with Tomasz Debiec, Eduard Feireisl, Ondřej Kreml, Agnieszka Świerczewska-Gwiazda and Emil Wiedemann Institute of Mathematics Polish

More information

Journal of Differential Equations

Journal of Differential Equations J. Differential Equations 48 (1) 6 74 Contents lists available at ScienceDirect Journal of Differential Equations www.elsevier.com/locate/jde Two regularity criteria for the D MHD equations Chongsheng

More information

A generalised Ladyzhenskaya inequality and a coupled parabolic-elliptic problem

A generalised Ladyzhenskaya inequality and a coupled parabolic-elliptic problem A generalised Ladyzhenskaya inequality and a coupled parabolic-elliptic problem Dave McCormick joint work with James Robinson and José Rodrigo Mathematics and Statistics Centre for Doctoral Training University

More information

Analytical solutions to the 3-D compressible Navier-Stokes equations with free boundaries

Analytical solutions to the 3-D compressible Navier-Stokes equations with free boundaries Wang et al. Boundary Value Problems 215) 215:94 DOI 1.1186/s1661-15-5-1 RESEARCH Open Access Analytical solutions to the -D compressible Navier-Stokes equations with free boundaries Mei Wang1*, Zilai Li2

More information

arxiv: v1 [math.ap] 28 Apr 2009

arxiv: v1 [math.ap] 28 Apr 2009 ACOUSTIC LIMIT OF THE BOLTZMANN EQUATION: CLASSICAL SOLUTIONS JUHI JANG AND NING JIANG arxiv:0904.4459v [math.ap] 28 Apr 2009 Abstract. We study the acoustic limit from the Boltzmann equation in the framework

More information

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

Piecewise Smooth Solutions to the Burgers-Hilbert Equation Piecewise Smooth Solutions to the Burgers-Hilbert Equation Alberto Bressan and Tianyou Zhang Department of Mathematics, Penn State University, University Park, Pa 68, USA e-mails: bressan@mathpsuedu, zhang

More information

Weak Solutions to Nonlinear Parabolic Problems with Variable Exponent

Weak Solutions to Nonlinear Parabolic Problems with Variable Exponent International Journal of Mathematical Analysis Vol. 1, 216, no. 12, 553-564 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.216.6223 Weak Solutions to Nonlinear Parabolic Problems with Variable

More information

arxiv: v1 [math.ap] 22 Jul 2016

arxiv: v1 [math.ap] 22 Jul 2016 FROM SECOND GRADE FUIDS TO TE NAVIER-STOKES EQUATIONS A. V. BUSUIOC arxiv:607.06689v [math.ap] Jul 06 Abstract. We consider the limit α 0 for a second grade fluid on a bounded domain with Dirichlet boundary

More information

On uniqueness of weak solutions to transport equation with non-smooth velocity field

On uniqueness of weak solutions to transport equation with non-smooth velocity field On uniqueness of weak solutions to transport equation with non-smooth velocity field Paolo Bonicatto Abstract Given a bounded, autonomous vector field b: R d R d, we study the uniqueness of bounded solutions

More information

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 21, 2003, 211 226 SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS Massimo Grosi Filomena Pacella S.

More information

arxiv: v2 [math.ap] 6 Sep 2007

arxiv: v2 [math.ap] 6 Sep 2007 ON THE REGULARITY OF WEAK SOLUTIONS OF THE 3D NAVIER-STOKES EQUATIONS IN B 1, arxiv:0708.3067v2 [math.ap] 6 Sep 2007 A. CHESKIDOV AND R. SHVYDKOY ABSTRACT. We show that if a Leray-Hopf solution u to the

More information

GLOBAL EXISTENCE AND ENERGY DECAY OF SOLUTIONS TO A PETROVSKY EQUATION WITH GENERAL NONLINEAR DISSIPATION AND SOURCE TERM

GLOBAL EXISTENCE AND ENERGY DECAY OF SOLUTIONS TO A PETROVSKY EQUATION WITH GENERAL NONLINEAR DISSIPATION AND SOURCE TERM Georgian Mathematical Journal Volume 3 (26), Number 3, 397 4 GLOBAL EXITENCE AND ENERGY DECAY OF OLUTION TO A PETROVKY EQUATION WITH GENERAL NONLINEAR DIIPATION AND OURCE TERM NOUR-EDDINE AMROUN AND ABBE

More information

arxiv: v1 [math.ap] 16 May 2007

arxiv: v1 [math.ap] 16 May 2007 arxiv:0705.446v1 [math.ap] 16 May 007 Regularity criterion for 3D Navier-Stokes equations in terms of the direction of the velocity Alexis Vasseur October 3, 018 Abstract In this short note, we give a

More information

Renormalized Solutions of a Nonlinear Parabolic Equation with Double Degeneracy

Renormalized Solutions of a Nonlinear Parabolic Equation with Double Degeneracy Electronic Journal of Qualitative Theory of Differential Equations 26, No. 5, -2; http://www.math.u-szeged.hu/ejqtde/ Renormalized Solutions of a Nonlinear Parabolic Equation with Double Degeneracy Zejia

More information

GLOBAL REGULARITY OF LOGARITHMICALLY SUPERCRITICAL 3-D LAMHD-ALPHA SYSTEM WITH ZERO DIFFUSION

GLOBAL REGULARITY OF LOGARITHMICALLY SUPERCRITICAL 3-D LAMHD-ALPHA SYSTEM WITH ZERO DIFFUSION GLOBAL REGULARITY OF LOGARITHMICALLY SUPERCRITICAL 3-D LAMHD-ALPHA SYSTEM WITH ZERO DIFFUSION KAZUO YAMAZAKI Abstract. We study the three-dimensional Lagrangian-averaged magnetohydrodynamicsalpha system

More information

UNIFORM DECAY OF SOLUTIONS FOR COUPLED VISCOELASTIC WAVE EQUATIONS

UNIFORM DECAY OF SOLUTIONS FOR COUPLED VISCOELASTIC WAVE EQUATIONS Electronic Journal of Differential Equations, Vol. 16 16, No. 7, pp. 1 11. ISSN: 17-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu UNIFORM DECAY OF SOLUTIONS

More information

Boundary layers for Navier-Stokes equations with slip boundary conditions

Boundary layers for Navier-Stokes equations with slip boundary conditions Boundary layers for Navier-Stokes equations with slip boundary conditions Matthew Paddick Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie (Paris 6) Séminaire EDP, Université Paris-Est

More information

GLOBAL EXISTENCE OF SOLUTIONS TO A HYPERBOLIC-PARABOLIC SYSTEM

GLOBAL EXISTENCE OF SOLUTIONS TO A HYPERBOLIC-PARABOLIC SYSTEM PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 35, Number 4, April 7, Pages 7 7 S -99396)8773-9 Article electronically published on September 8, 6 GLOBAL EXISTENCE OF SOLUTIONS TO A HYPERBOLIC-PARABOLIC

More information

EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A QUASILINEAR SCHRÖDINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL

EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A QUASILINEAR SCHRÖDINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 05, pp. 1 8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTENCE OF NONTRIVIAL

More information

Local null controllability of the N-dimensional Navier-Stokes system with N-1 scalar controls in an arbitrary control domain

Local null controllability of the N-dimensional Navier-Stokes system with N-1 scalar controls in an arbitrary control domain Local null controllability of the N-dimensional Navier-Stokes system with N-1 scalar controls in an arbitrary control domain Nicolás Carreño Université Pierre et Marie Curie-Paris 6 UMR 7598 Laboratoire

More information

ON THE GLOBAL REGULARITY ISSUE OF THE TWO-DIMENSIONAL MAGNETOHYDRODYNAMICS SYSTEM WITH MAGNETIC DIFFUSION WEAKER THAN A LAPLACIAN

ON THE GLOBAL REGULARITY ISSUE OF THE TWO-DIMENSIONAL MAGNETOHYDRODYNAMICS SYSTEM WITH MAGNETIC DIFFUSION WEAKER THAN A LAPLACIAN ON THE GOBA REGUARITY ISSUE OF THE TWO-DIMENSIONA MAGNETOHYDRODYNAMICS SYSTEM WITH MAGNETIC DIFFUSION WEAKER THAN A APACIAN KAZUO YAMAZAKI Abstract. In this manuscript, we discuss the recent developments

More information

GLOBAL WELL-POSEDNESS FOR NONLINEAR NONLOCAL CAUCHY PROBLEMS ARISING IN ELASTICITY

GLOBAL WELL-POSEDNESS FOR NONLINEAR NONLOCAL CAUCHY PROBLEMS ARISING IN ELASTICITY Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 55, pp. 1 7. ISSN: 1072-6691. UL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu GLOBAL WELL-POSEDNESS FO NONLINEA NONLOCAL

More information

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

Universität des Saarlandes. Fachrichtung 6.1 Mathematik Universität des Saarlandes U N I V E R S I T A S S A R A V I E N I S S Fachrichtung 6.1 Mathematik Preprint Nr. 155 A posteriori error estimates for stationary slow flows of power-law fluids Michael Bildhauer,

More information

Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations

Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations Jiequan Li 1 Department of Mathematics, Capital Normal University, Beijing, 100037 Tong Zhang Institute

More information

Propagation of Singularities

Propagation of Singularities Title: Name: Affil./Addr.: Propagation of Singularities Ya-Guang Wang Department of Mathematics, Shanghai Jiao Tong University Shanghai, 200240, P. R. China; e-mail: ygwang@sjtu.edu.cn Propagation of Singularities

More information

Weak-strong uniqueness for the compressible Navier Stokes equations with a hard-sphere pressure law

Weak-strong uniqueness for the compressible Navier Stokes equations with a hard-sphere pressure law Weak-strong uniqueness for the compressible Navier Stokes equations with a hard-sphere pressure law Eduard Feireisl Yong Lu Antonín Novotný Institute of Mathematics, Academy of Sciences of the Czech Republic

More information

Blow up of Solutions for a System of Nonlinear Higher-order Kirchhoff-type Equations

Blow up of Solutions for a System of Nonlinear Higher-order Kirchhoff-type Equations Mathematics Statistics 6: 9-9, 04 DOI: 0.389/ms.04.00604 http://www.hrpub.org Blow up of Solutions for a System of Nonlinear Higher-order Kirchhoff-type Equations Erhan Pişkin Dicle Uniersity, Department

More information

On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals

On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals Fanghua Lin Changyou Wang Dedicated to Professor Roger Temam on the occasion of his 7th birthday Abstract

More information

A new regularity criterion for weak solutions to the Navier-Stokes equations

A new regularity criterion for weak solutions to the Navier-Stokes equations A new regularity criterion for weak solutions to the Navier-Stokes equations Yong Zhou Department of Mathematics, East China Normal University Shanghai 6, CHINA yzhou@math.ecnu.edu.cn Proposed running

More information

DETERMINATION OF THE BLOW-UP RATE FOR THE SEMILINEAR WAVE EQUATION

DETERMINATION OF THE BLOW-UP RATE FOR THE SEMILINEAR WAVE EQUATION DETERMINATION OF THE LOW-UP RATE FOR THE SEMILINEAR WAVE EQUATION y FRANK MERLE and HATEM ZAAG Abstract. In this paper, we find the optimal blow-up rate for the semilinear wave equation with a power nonlinearity.

More information

Global existence of smooth solutions to two-dimensional compressible isentropic Euler equations for Chaplygin gases

Global existence of smooth solutions to two-dimensional compressible isentropic Euler equations for Chaplygin gases Global existence of smooth solutions to two-dimensional compressible isentropic Euler equations for Chaplygin gases De-Xing Kong a Yu-Zhu Wang b a Center of Mathematical Sciences, Zhejiang University Hangzhou

More information

Analysis of a non-isothermal model for nematic liquid crystals

Analysis of a non-isothermal model for nematic liquid crystals Analysis of a non-isothermal model for nematic liquid crystals E. Rocca Università degli Studi di Milano 25th IFIP TC 7 Conference 2011 - System Modeling and Optimization Berlin, September 12-16, 2011

More information

Homogenization of stationary Navier-Stokes equations in domains with tiny holes

Homogenization of stationary Navier-Stokes equations in domains with tiny holes Homogenization of stationary Navier-Stokes equations in domains with tiny holes Eduard Feireisl Yong Lu Institute of Mathematics of the Academy of Sciences of the Czech Republic Žitná 25, 115 67 Praha

More information

SIMULTANEOUS AND NON-SIMULTANEOUS BLOW-UP AND UNIFORM BLOW-UP PROFILES FOR REACTION-DIFFUSION SYSTEM

SIMULTANEOUS AND NON-SIMULTANEOUS BLOW-UP AND UNIFORM BLOW-UP PROFILES FOR REACTION-DIFFUSION SYSTEM Electronic Journal of Differential Euations, Vol. 22 (22), No. 26, pp. 9. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu SIMULTANEOUS AND NON-SIMULTANEOUS

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 3, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 3, ISSN: Available online at http://scik.org J. Math. Comput. Sci. 4 (2014), No. 3, 587-593 ISSN: 1927-5307 A SMALLNESS REGULARITY CRITERION FOR THE 3D NAVIER-STOKES EQUATIONS IN THE LARGEST CLASS ZUJIN ZHANG School

More information

Sufficient conditions on Liouville type theorems for the 3D steady Navier-Stokes equations

Sufficient conditions on Liouville type theorems for the 3D steady Navier-Stokes equations arxiv:1805.07v1 [math.ap] 6 May 018 Sufficient conditions on Liouville type theorems for the D steady Navier-Stokes euations G. Seregin, W. Wang May 8, 018 Abstract Our aim is to prove Liouville type theorems

More information

Optimal L p (1 p ) rates of decay to linear diffusion waves for nonlinear evolution equations with ellipticity and dissipation

Optimal L p (1 p ) rates of decay to linear diffusion waves for nonlinear evolution equations with ellipticity and dissipation Nonlinear Analysis ( ) www.elsevier.com/locate/na Optimal L p (1 p ) rates of decay to linear diffusion waves for nonlinear evolution equations with ellipticity and dissipation Renjun Duan a,saipanlin

More information

Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions

Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions Asymptotics of fast rotating density-dependent incompressible fluids in two space dimensions Francesco Fanelli 1 and Isabelle Gallagher 2 1 Université de Lyon, Université Claude Bernard Lyon 1 Institut

More information