ON NEW EXACT SOLUTIONS OF NONLINEAR WAVE EQUATIONS. Abstract

Size: px
Start display at page:

Download "ON NEW EXACT SOLUTIONS OF NONLINEAR WAVE EQUATIONS. Abstract"

Transcription

1 UDK 517.9: Ivan YURYK ON NEW EXACT SOLUTIONS OF NONLINEAR WAVE EQUATIONS Abstract A new simple method for constructing solutions of multidimensional nonlinear dalembert equations is proposed Let us consider a nonlinear Poincare-invariant d'alembert equation u + F(u) = 0, (1) qu gu gu dxl дх'( dx 2 n' F(u) is an arbitrary smooth function. Papers [1, 5, 6, 7] are devoted to the construction of exact solutions to equation (1) for different restrictions on the function F(x). Majority of these solutions is invariant with respect to a subgroup of the invariance group of equation (1), i.e., they are Lie solutions. One of the methods for constructing solutions is the method of symmetry reduction of equation (1) to ordinary differential equations. The essence of this method for equation (1) consists in the following. Equation (1) is invariant under the Poincare algebra AP( 1, n) with the basis elements Joa = %fida + xad0, Jab = xbda - xadb, P0 = до- Pa = da (a, b = 1, 2,..., n). Let L be an arbitrary rank n subalgebra of the algebra AP{l,n). The subalgebra L has two main invariants и, и = w(xq, x\,..., xn). The ansatz и = ц>(и) corresponding to the subalgebra L reduces equation (1) to the ordinary differential equation (Vu;) 2 + фпи + F(<p) = 0, Such a reduction is called the symmetry reduction, and the ansatz is called the symmetry ansatz. There exist eight types of nonequivalent rank n subalgebras of the algebra AP( 1, n) [5]. In Table 1, we write out these subalgebras, their invariants and values of (Vw) 2, Do; for each invariant. 1

2 ()UJ\ duj'2 dio i dio 2 0(jJ\ du>2 Vwj Vw2 =. dxo dx0 dxi dxi dxn dxn Let us impose the condition on equation (4), under which equation (4) coincides with the reduced equation (3). Under such assumption, equation (4) decomposes into two equations k fn + <Pi + F(v>) = 0, Wi 2^12(Vwx Vw2) + V22(Vu;2) 2 + <p i2nu>2 = 0. (5) Equation (5) will be fulfilled for an arbitrary function ip if we impose the conditions w2 = 0, (Vw2) 2 = 0, (6) Vu>i-Vu;2 = 0 (7) on the variable u>2. Therefore, if we choose the variable oj2 such that conditions (6), (7) are satisfied, then the multidimensional equation (1) is reduced to the ordinary differential equation (3) and solutions of the latter equation give us solutions of equation (1). So, the problem of reduction is reduced to the construction of general or partial solutions to system (6), (7). The overdetermined system (6) is studied in detail in papers [10, 11]. A wide class of solutions to system (6) is constructed in papers [10, 11]. These solutions are constructed in the following way. Let us consider a linear algebraic equation in variables x0, xi,...,xn with coefficients depending on the unknown lo2: 00(^2)^0 - ai(w2)a;i an(u>2)xn - b(uj2) = 0. (8) Let the coefficients of this equation represent analytic functions of uj2 satisfying the condition [a0(w2)] 2 - [ai(w2)] 2 K(w2)] 2 = 0. Suppose that equation (8) is solvable for w2 and let a solution of this equation represent some real or complex function ^2(^0,..., xn). (9) Then function (9) is a solution to system (6). Single out those solutions (9), that possess the additional property VuvVo>2 = 0. It is obvious that du>2 a0 duj2 «1 du>2 an dx0 6' ' dxi 6' ' " ' ' dxn 6' ' S(u2) = a0(uj2)x0 - ai(u2)xi an(co2)xn - b(cj2) and 5' is the derivative of S with respect to io2. Since du>i _ x0 dull _ xi du>i xn dxo u\ ' dxi u}\ ' ' dxn ui ' 3

3 we have 1. Vui-Vu>2 = 7j( a o x o - iixi - anxn). u>i o' Hence, with regard for (8), the equality Vu>i-Vti;2 = 0 is fulfilled if and only if b(co2) = 0. Therefore, we have constructed the wide class of ansatzes reducing the d'alembert equation to ordinary differential equations. The arbitrariness in choosing the function lo2 may be used to satisfy some additional conditions (initial, boundary and so on). b) The symmetry ansatz u = ip(ui), = (xj-\ \-xf) 1/2, 1 < I < n-1, is generalized in the following way. Let u>2 be an arbitrary solution to the system of equations d 2 u> d 2 uj d 2 u> _ dx"l 9xf+1 dx 2 ' ^ The ansatz u = <p(ui,w2) reduces equation (1) to the equation d 2 ip k - 1 dtp + F(<p) = 0. du>l u> i du 1 If I = n - 1, then the ansatz u = <p(u i,cj2), symmetry ansatz u = <p{u 1). u>2 = x0 - xn is a generalization of the Ansatzes corresponding to subalgebras 2, 6 and 8 in Table 1, are particular cases of the ansatz constructed above. Doing in a similar way, one can obtain wide classes of ansatzes reducing equation (1) to two-dimensional, three-dimensional and so on equations. Let us present some of them. c) The ansatz u = <p{ui,...,w/,ui+i), u>i = xi,...,ui = xi, is an arbitary solution of system (10), / < n 1, is a generalization of the symmetry ansatz u tp{oji,...,u>1) and reduces equation (1) to the equation ^ ^ ^ + = 0. dio\ dj\ duf d) The ansatz u = <p(wi,.,cos,u;s+1), <Ji = [xq x\ x 2 ) 1^2, u>2 = xi+i,..,,u)s = xi+s-1, I > 2, / + s - 1 < n, ws+i is an arbitrary solution of the system w,+i = 0, (Vcjs+i) 2 = 0, V«t-VwH.i = 0, i 1, 2,..., s, (11) is a generalization of the symmetry ansatz u = the equation..., ws) and reduces equation (1) to <fu ~ Vl -<P22 Vss + F(<p) = 0. Let us construct in the way described above some classes of exact solutions of the equation u + = k^l. (12) 4

4 The following solution of equation (12) is obtained in paper [7]: u.1 -k r (M)(»i+ + *?). (13) Solution (13) defines a multiparameter solution set u 1 -** = a{k, Z)[( i + Ci) 2 + +(«/ + Ci)\ Ci,...,Ci are arbitrary constants. Hence, according to c), we obtain the following set of solutions to equation (12) for I < n 1: u l-k = <r(k, l)[(xi + hx (w)) (xi + hi(u))% k ± I I-2' u> is an arbitrary solution of system (10) and h\ (w),..., hi(u) are arbitrary twice differentiable functions of a;. In particular, if n = 3 and / = 1, then equation (12) possesses in the space Rit3 the solution set Next, let us consider the following solution of equation (1) [7]: u 1 k = a(k,s)(x 2 -x 2 x 2 ), s = 2,...,ra, (14) (U A(l-&) 2,, s + l a^ S ) -'2(s-ks + k + iy s-l Solution (14) defines the multiparameter solution set u l ~ k = <r{k, s)[x 2 0-xl xf - (xi+1 + Ci+1) 2 (xa + C,) 2 ], Ci-)_i,..., Cs are arbitrary constants. According to d) we obtain the following solution set for I > 2 u l ~ k = a(k, s)[z 2 - x 2 x] - (xl+1 + hl+l{u)) 2 (xs + hs(u)) 2 ], lj is an arbitrary solution of system (11), and hi+i(w),..., hs(u>) are arbitrary twice differentiable functions. In particular, if I = 2 and s = 3, then equation (1) possesses in the space Rii3 the following solution set u l ~ k = J ^ - l x l * l - ( * 3 - M«)fl, k + 2. The equation Ou + 6u 2 =0 (15) 5

5 possesses the solution u = V(xs + C2), V(x3 + C2) is an elliptic Weierstrass function with the invariants g2 = 0 and #3 = C\. Therefore, according to c) we get the following set of solutions of equation (15): u = V(x3 + h(u)), uj is an arbitrary solution to system (10) and h(u) is an arbitrary twice differentiable function of U). Next consider the Liouville equation u + Aexp«= 0. (16) The symmetry ansatz u = ui\ = x3l reduces equation (16) to the equation d^p = Aexpv(wi). Integrating this equation, we obtain that <p coincides with one of the following functions: In {(-^sec 2 ^/ z CT (wi + C2) (Cj < 0, A > 0, C2 G 2C1C2exp(v / CTa;i) In A[l-C2exp(VCTo;1)] 2 m (J^+c). (Cl > 0, AC2 > 0); Hence, according to c) we get the following solutions set for equation (16): v / z Mw) (u 1 + h2(u)) (hi(u) < 0, A > 0);, ( 2hi[u)h2(u) exp(\/hi(u)ui) I..,,,, u= - In I \j-u 1 + h(u) hi(u>), /12(^)5 h(u>) are arbitrary twice differentaible-functions; to is an arbitrary solution to system (10). Using, for example, the solution to the Liouville equation (16) [7] 2(s - 2) u = In s ^ 2, \[xq - x\ - xl] we obtain the wide class of solutions to the Liouville equation u = In 2(s 2) 2i ' X[xl -x\ xf - {xl+1 + h,+1(0;)) (xs + hs(u>)y] 6

6 lo is an arbitrary solution to system (11), and hi+i (w),..., hs(u) are arbitrary twice differentaible functions. If s = 3, then equation (16) possesses in the space R13 the following solution set 2 \[xl-x\-xl- (*3 + M")) 2 ]' Let us consider now the sine-gordon equation m + sin u = 0. Doing in an analogous way, we get the following solutions: u = 4arctan/ii(w) e (1 - E)TT, e0 = ±l, = ±1; u = 2 arccos[dn(z3 + h^u)), to] + ^(1 + e)tt, 0 < to < 1; u 2 arccos x3 + hi(u) cn TO 1,, TO + -(1 + 0 < to < 1, hi(u}) is an arbitrary twice differentiable function, to is is an arbitrary solution to system (10). [1] Fushchych W.I., Shtelen V.M. and Serov N.I., Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics, Kluwer, Dordrecht, [2] Fushchych W.I., Nikitin A.G., Symmetries of Maxwell's Equations, Dordrecht, Reidel, [3] Fushchych W.I. and Tsyfra I.M., On a reduction and solutions of nonlinear wave equations with broken symmetry, J. Phys. A: Math. Gen., 1987, V.20, N 2, L45-L48. [4] Levi D. and Winternitz P., J. Phys. A, V.22, [5] Grundland A.M., Harnad J. and Winternitz P., Symmetry reduction for nonlinear relativistically invariant equations, J. Math. Phys., 1984, V.25, N 4, [6] Cieciura G. and Grundland A., A certain class of solutions of the nonlinear wave equations, J. Math. Phys., 1984, V.25, N 12, [7] Fushchych W.I., Barannyk L.F. and Barannyk A.F., Subgroup Analysis of Galilei and Poincare Groups, and Reduction of Nonlinear Equations, Naukova Dumka, Kyiv, 1991 (in Russian). [8] Collins C.B., Complex potential equations. I. A technique for solutions, Proc. Cambridge Phil. Soc., 1976, N 9, [9] Fushchych W.I. and Zhdanov R.Z., Nonlinear Spinor Equations: Symmetry and Exact Solutions, Kyiv, Naukova Dumka, 1992 (in Russian). [10] Smirnov V.I. and Sobolev S.L., New method for solving a plane problem of elastic oscillations, Proc. of Seismological Institute of Acad. Sci. USSR, 1932, V.20, [11] Smirnov V.I. and Sobolev S.L., On application of a new method to the study of elastic oscillations in a space with the axial symmetry, Proc. of Seismological Institute of Acad. Sci. USSR, 1933, V.29,

On Some Exact Solutions of Nonlinear Wave Equations

On Some Exact Solutions of Nonlinear Wave Equations Symmetry in Nonlinear Mathematical Physics 1997, V.1, 98 107. On Some Exact Solutions of Nonlinear Wave Equations Anatoly BARANNYK and Ivan YURYK Institute of Mathematics, Pedagogical University, 22b Arciszewskiego

More information

Separation of Variables and Construction of Exact Solutions of Nonlinear Wave Equations

Separation of Variables and Construction of Exact Solutions of Nonlinear Wave Equations Proceedings of Institute of Mathematics of NAS of Uraine 000, Vol 30, Part 1, 73 8 Separation of Variables and Construction of Eact Solutions of Nonlinear Wave Equations AF BARANNYK and II YURYK Institute

More information

Conditional Symmetry Reduction and Invariant Solutions of Nonlinear Wave Equations

Conditional Symmetry Reduction and Invariant Solutions of Nonlinear Wave Equations Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 1, 229 233 Conditional Symmetry Reduction and Invariant Solutions of Nonlinear Wave Equations Ivan M. TSYFRA Institute of Geophysics

More information

Conditional symmetries of the equations of mathematical physics

Conditional symmetries of the equations of mathematical physics W.I. Fushchych, Scientific Works 2003, Vol. 5, 9 16. Conditional symmetries of the equations of mathematical physics W.I. FUSHCHYCH We briefly present the results of research in conditional symmetries

More information

Solitary Wave Solutions for Heat Equations

Solitary Wave Solutions for Heat Equations Proceedings of Institute of Mathematics of NAS of Ukraine 00, Vol. 50, Part, 9 Solitary Wave Solutions for Heat Equations Tetyana A. BARANNYK and Anatoly G. NIKITIN Poltava State Pedagogical University,

More information

On Reduction and Q-conditional (Nonclassical) Symmetry

On Reduction and Q-conditional (Nonclassical) Symmetry Symmetry in Nonlinear Mathematical Physics 1997, V.2, 437 443. On Reduction and Q-conditional (Nonclassical) Symmetry Roman POPOVYCH Institute of Mathematics of the National Academy of Sciences of Ukraine,

More information

On Symmetry Reduction of Some P(1,4)-invariant Differential Equations

On Symmetry Reduction of Some P(1,4)-invariant Differential Equations On Symmetry Reduction of Some P(1,4)-invariant Differential Equations V.M. Fedorchuk Pedagogical University, Cracow, Poland; Pidstryhach IAPMM of the NAS of Ukraine, L viv, Ukraine E-mail: vasfed@gmail.com,

More information

On Linear and Non-Linear Representations of the Generalized Poincaré Groups in the Class of Lie Vector Fields

On Linear and Non-Linear Representations of the Generalized Poincaré Groups in the Class of Lie Vector Fields Journal of Nonlinear Mathematical Physics ISSN: 1402-9251 (Print) 1776-0852 (Online) Journal homepage: http://www.tandfonline.com/loi/tnmp20 On Linear and Non-Linear Representations of the Generalized

More information

Nonlocal Symmetry and Generating Solutions for the Inhomogeneous Burgers Equation

Nonlocal Symmetry and Generating Solutions for the Inhomogeneous Burgers Equation Proceedings of Institute of Mathematics of NAS of Ukraine 004, Vol. 50, Part, 77 8 Nonlocal Symmetry and Generating Solutions for the Inhomogeneous Burgers Equation Valentyn TYCHYNIN and Olexandr RASIN

More information

The Erwin Schrodinger International Pasteurgasse 6/7. Institute for Mathematical Physics A-1090 Wien, Austria

The Erwin Schrodinger International Pasteurgasse 6/7. Institute for Mathematical Physics A-1090 Wien, Austria ESI The Erwin Schrodinger International Pasteurgasse 6/7 Institute for Mathematical Physics A-1090 Wien, Austria Spherically Symmetric Solutions of Nonlinear Schrodinger Equations Roman Cherniha Vienna,

More information

Symmetry Properties and Exact Solutions of the Fokker-Planck Equation

Symmetry Properties and Exact Solutions of the Fokker-Planck Equation Nonlinear Mathematical Physics 1997, V.4, N 1, 13 136. Symmetry Properties and Exact Solutions of the Fokker-Planck Equation Valery STOHNY Kyïv Polytechnical Institute, 37 Pobedy Avenue, Kyïv, Ukraïna

More information

A Discussion on the Different Notions of Symmetry of Differential Equations

A Discussion on the Different Notions of Symmetry of Differential Equations Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 1, 77 84 A Discussion on the Different Notions of Symmetry of Differential Equations Giampaolo CICOGNA Dipartimento di Fisica

More information

Lie and Non-Lie Symmetries of Nonlinear Diffusion Equations with Convection Term

Lie and Non-Lie Symmetries of Nonlinear Diffusion Equations with Convection Term Symmetry in Nonlinear Mathematical Physics 1997, V.2, 444 449. Lie and Non-Lie Symmetries of Nonlinear Diffusion Equations with Convection Term Roman CHERNIHA and Mykola SEROV Institute of Mathematics

More information

Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3 + 1) Dimensions

Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in (3 + 1) Dimensions Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 1, 118 124 Invariant and Conditionally Invariant Solutions of Magnetohydrodynamic Equations in 3 + 1) Dimensions A.M. GRUNDLAND

More information

GROUP CLASSIFICATION OF NONLINEAR SCHRÖDINGER EQUATIONS. 1 Introduction. Anatoly G. Nikitin and Roman O. Popovych

GROUP CLASSIFICATION OF NONLINEAR SCHRÖDINGER EQUATIONS. 1 Introduction. Anatoly G. Nikitin and Roman O. Popovych Anatoly G. Nikitin and Roman O. Popovych Institute of Mathematics, National Academy of Science of Ukraine, 3 Tereshchenkivs ka Street, 01601, Kyiv-4, Ukraine E-mail: nikitin@imath.kiev.ua URL: http://www.imath.kiev.ua/

More information

Department of Mathematics Luleå University of Technology, S Luleå, Sweden. Abstract

Department of Mathematics Luleå University of Technology, S Luleå, Sweden. Abstract Nonlinear Mathematical Physics 1997, V.4, N 4, 10 7. Transformation Properties of ẍ + f 1 t)ẋ + f t)x + f t)x n = 0 Norbert EULER Department of Mathematics Luleå University of Technology, S-971 87 Luleå,

More information

Towards Classification of Separable Pauli Equations

Towards Classification of Separable Pauli Equations Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 2, 768 773 Towards Classification of Separable Pauli Equations Alexander ZHALIJ Institute of Mathematics of NAS of Ukraine,

More information

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria ESI The Erwin Schrodinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria Null Killing Vectors and Reductions of the Self-Duality Equations J. Tafel D. Wojcik Vienna,

More information

One-Dimensional Fokker Planck Equation Invariant under Four- and Six-Parametrical Group

One-Dimensional Fokker Planck Equation Invariant under Four- and Six-Parametrical Group Proceedings of Institute of Mathematics of NAS of Ukraine 2000, Vol. 30, Part, 204 209. One-Dimensional Fokker Planck Equation Invariant under Four- and Six-Parametrical Group Stanislav SPICHAK and Valerii

More information

xi is asymptotically equivalent to multiplication by Xbxi/bs, where S SOME REMARKS CONCERNING SCHRODINGER'S WA VE EQ UA TION

xi is asymptotically equivalent to multiplication by Xbxi/bs, where S SOME REMARKS CONCERNING SCHRODINGER'S WA VE EQ UA TION (6 eks (VO + vl +... ) ~(1) VOL. 19, 1933 MA THEMA TICS: G. D. BIRKHOFF 339 is necessary due to the weakness that only the approximate frequency distribution ml is known except at the value I = '/2 n.

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

arxiv: v3 [math.rt] 23 Oct 2018

arxiv: v3 [math.rt] 23 Oct 2018 Classification of Realizations of Lie Algebras of Vector Fields on a Circle Stanislav Spichak arxiv:1304.2241v3 [math.rt] 23 Oct 2018 Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivska Str.,

More information

The Higher Dimensional Bateman Equation and Painlevé Analysis of Nonintegrable Wave Equations

The Higher Dimensional Bateman Equation and Painlevé Analysis of Nonintegrable Wave Equations Symmetry in Nonlinear Mathematical Physics 1997, V.1, 185 192. The Higher Dimensional Bateman Equation and Painlevé Analysis of Nonintegrable Wave Equations Norbert EULER, Ove LINDBLOM, Marianna EULER

More information

Theory of PDE Homework 2

Theory of PDE Homework 2 Theory of PDE Homework 2 Adrienne Sands April 18, 2017 In the following exercises we assume the coefficients of the various PDE are smooth and satisfy the uniform ellipticity condition. R n is always an

More information

Elements of differential geometry

Elements of differential geometry Elements of differential geometry R.Beig (Univ. Vienna) ESI-EMS-IAMP School on Mathematical GR, 28.7. - 1.8. 2014 1. tensor algebra 2. manifolds, vector and covector fields 3. actions under diffeos and

More information

Ed2 + (U2-1)du + u = 0; dt!= Xi(xi, PERTURBATIONS OF DISCONTINUOUS SOLUTIONS OF NON- plane could be exploited).

Ed2 + (U2-1)du + u = 0; dt!= Xi(xi, PERTURBATIONS OF DISCONTINUOUS SOLUTIONS OF NON- plane could be exploited). 214 MA TIIEMAA ICS: N. LEVINSON PROC. N^. A. S. PERTURBATIONS OF DISCONTINUOUS SOLUTIONS OF NON- LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS BY NORMAN LEVINSON MASSACHUSETTS INSTITUTE OF TECHNOLOGY Communicated

More information

AN EXTENSION OF A THEOREM OF NAGANO ON TRANSITIVE LIE ALGEBRAS

AN EXTENSION OF A THEOREM OF NAGANO ON TRANSITIVE LIE ALGEBRAS PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 45, Number 3, September 197 4 AN EXTENSION OF A THEOREM OF NAGANO ON TRANSITIVE LIE ALGEBRAS HÉCTOR J. SUSSMANN ABSTRACT. Let M be a real analytic

More information

Antireduction and exact solutions of nonlinear heat equations

Antireduction and exact solutions of nonlinear heat equations Nonlinear Mathematical Physics 1994, V.1, N 1, 60 64. Printed in the Ukraina. Antireduction and exact solutions of nonlinear heat equations WILHELM FUSHCHYCH and RENAT ZHDANOV, Mathematical Institute of

More information

THE STRUCTURE OF A RING OF FORMAL SERIES AMS Subject Classification : 13J05, 13J10.

THE STRUCTURE OF A RING OF FORMAL SERIES AMS Subject Classification : 13J05, 13J10. THE STRUCTURE OF A RING OF FORMAL SERIES GHIOCEL GROZA 1, AZEEM HAIDER 2 AND S. M. ALI KHAN 3 If K is a field, by means of a sequence S of elements of K is defined a K-algebra K S [[X]] of formal series

More information

THE SPACE-TIME STRUCTURE OF THE RELATIVISTIC SCATTERING MATRIX

THE SPACE-TIME STRUCTURE OF THE RELATIVISTIC SCATTERING MATRIX SOVIET PHYSICS JETP VOLUME 18, NUMBER 3 MARCH, 1964 THE SPACE-TIME STRUCTURE OF THE RELATIVISTIC SCATTERING MATRIX Yu. A. GOL'FAND P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R. Submitted

More information

A (2.3) TX41. XY- YX= at. +_X21p + ~~(2.2) alternate to give one of the same type if the vectors concerned are (each) solutions

A (2.3) TX41. XY- YX= at. +_X21p + ~~(2.2) alternate to give one of the same type if the vectors concerned are (each) solutions 390 MATHEMATICS: D. D. KOSAMBI PROC. N. A. S. equations in ul are obtained from (1.1) by the "infinitesimal change," x = xi + U'3T, where x and x are supposed to be co6rdinates of points on "nearby" paths.

More information

Trade Patterns, Production networks, and Trade and employment in the Asia-US region

Trade Patterns, Production networks, and Trade and employment in the Asia-US region Trade Patterns, Production networks, and Trade and employment in the Asia-U region atoshi Inomata Institute of Developing Economies ETRO Development of cross-national production linkages, 1985-2005 1985

More information

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim

An idea how to solve some of the problems. diverges the same must hold for the original series. T 1 p T 1 p + 1 p 1 = 1. dt = lim An idea how to solve some of the problems 5.2-2. (a) Does not converge: By multiplying across we get Hence 2k 2k 2 /2 k 2k2 k 2 /2 k 2 /2 2k 2k 2 /2 k. As the series diverges the same must hold for the

More information

Group classification of nonlinear wave equations

Group classification of nonlinear wave equations JOURNAL OF MATHEMATICAL PHYSICS 46, 053301 2005 Group classification of nonlinear wave equations V. Lahno a State Pedagogical University, 36000 Poltava, Ukraine R. Zhdanov b Institute of Mathematics of

More information

New Formal Solutions of Davey Stewartson Equation via Combined tanh Function Method with Symmetry Method

New Formal Solutions of Davey Stewartson Equation via Combined tanh Function Method with Symmetry Method Commun. Theor. Phys. Beijing China 7 007 pp. 587 593 c International Academic Publishers Vol. 7 No. April 5 007 New Formal Solutions of Davey Stewartson Equation via Combined tanh Function Method with

More information

A collocation method for solving some integral equations in distributions

A collocation method for solving some integral equations in distributions A collocation method for solving some integral equations in distributions Sapto W. Indratno Department of Mathematics Kansas State University, Manhattan, KS 66506-2602, USA sapto@math.ksu.edu A G Ramm

More information

SOLUTIONS TO THE GINZBURG LANDAU EQUATIONS FOR PLANAR TEXTURES IN SUPERFLUID 3 He

SOLUTIONS TO THE GINZBURG LANDAU EQUATIONS FOR PLANAR TEXTURES IN SUPERFLUID 3 He SOLUTIONS TO THE GINZBURG LANDAU EQUATIONS FOR PLANAR TEXTURES IN SUPERFLUID 3 He V. L. GOLO, M. I. MONASTYRSKY, AND S. P. NOVIKOV Abstract. The Ginzburg Landau equations for planar textures of superfluid

More information

Exact solutions through symmetry reductions for a new integrable equation

Exact solutions through symmetry reductions for a new integrable equation Exact solutions through symmetry reductions for a new integrable equation MARIA LUZ GANDARIAS University of Cádiz Department of Mathematics PO.BOX, 1151 Puerto Real, Cádiz SPAIN marialuz.gandarias@uca.es

More information

Implicit and Parabolic Ansatzes: Some New Ansatzes for Old Equations

Implicit and Parabolic Ansatzes: Some New Ansatzes for Old Equations Symmetry in Nonlinear Mathematical Physics 1997 V.1 34 47. Implicit and Parabolic Ansatzes: Some New Ansatzes for Old Equations Peter BASARAB-HORWATH and Wilhelm FUSHCHYCH Mathematics Department Linköping

More information

S. Lie has thrown much new light on this operation. The assumption

S. Lie has thrown much new light on this operation. The assumption 600 MATHEMATICS: A. E. ROSS PRoc. N. A. S. The operation of finding the limit of an infinite series has been one of the most fruitful operations of all mathematics. While this is not a group operation

More information

COMPLEMENTARY SURFACES FOR A VECTOR FIELD

COMPLEMENTARY SURFACES FOR A VECTOR FIELD COMPLEMENTARY SURFACES FOR A VECTOR FIELD T. K. PAN 1. Introduction. Let d be a vector field in a surface in an ordinary space. The author defined the curve of v and the asymptotic line of v and proved

More information

THE UNIVERSITY OF BRITISH COLUMBIA DEPARTMENT OF STATISTICS TECHNICAL REPORT #253 RIZVI-SOBEL SUBSET SELECTION WITH UNEQUAL SAMPLE SIZES

THE UNIVERSITY OF BRITISH COLUMBIA DEPARTMENT OF STATISTICS TECHNICAL REPORT #253 RIZVI-SOBEL SUBSET SELECTION WITH UNEQUAL SAMPLE SIZES THE UNIVERSITY OF BRITISH COLUMBIA DEPARTMENT OF STATISTICS TECHNICAL REPORT #253 RIZVI-SOBEL SUBSET SELECTION WITH UNEQUAL SAMPLE SIZES BY CONSTANCE VAN EEDEN November 29 SECTION 3 OF THIS TECHNICAL REPORT

More information

ON GENERATORS OF L/R2 LIE ALGEBRAS

ON GENERATORS OF L/R2 LIE ALGEBRAS proceedings of the american mathematical society Volume 119, Number 4, December 1993 ON GENERATORS OF L/R2 LIE ALGEBRAS VLADIMIR SHPILRAIN (Communicated by Maurice Auslander) Abstract. Let L be a free

More information

POTENTIAL LANDESMAN-LAZER TYPE CONDITIONS AND. 1. Introduction We investigate the existence of solutions for the nonlinear boundary-value problem

POTENTIAL LANDESMAN-LAZER TYPE CONDITIONS AND. 1. Introduction We investigate the existence of solutions for the nonlinear boundary-value problem Electronic Journal of Differential Equations, Vol. 25(25), No. 94, pp. 1 12. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) POTENTIAL

More information

Notes on the Inverse Scattering Transform and Solitons. November 28, 2005 (check for updates/corrections!)

Notes on the Inverse Scattering Transform and Solitons. November 28, 2005 (check for updates/corrections!) Notes on the Inverse Scattering Transform and Solitons Math 418 November 28, 2005 (check for updates/corrections!) Among the nonlinear wave equations are very special ones called integrable equations.

More information

Symmetries and reduction techniques for dissipative models

Symmetries and reduction techniques for dissipative models Symmetries and reduction techniques for dissipative models M. Ruggieri and A. Valenti Dipartimento di Matematica e Informatica Università di Catania viale A. Doria 6, 95125 Catania, Italy Fourth Workshop

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

MAC 1147 Final Exam Review

MAC 1147 Final Exam Review MAC 1147 Final Exam Review nstructions: The final exam will consist of 15 questions plu::; a bonus problem. Some questions will have multiple parts and others will not. Some questions will be multiple

More information

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELEC- TRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION.

THE USE OF A CALCULATOR, CELL PHONE, OR ANY OTHER ELEC- TRONIC DEVICE IS NOT PERMITTED DURING THIS EXAMINATION. MATH 220 NAME So\,t\\OV\ '. FINAL EXAM 18, 2007\ FORMA STUDENT NUMBER INSTRUCTOR SECTION NUMBER This examination will be machine processed by the University Testing Service. Use only a number 2 pencil

More information

On Some New Classes of Separable Fokker Planck Equations

On Some New Classes of Separable Fokker Planck Equations Proceedings of Institute of Mathematics of NAS of Ukraine 2000, Vol. 30, Part 1, 249 254. On Some New Classes of Separable Fokker Planck Equations Alexander ZHALIJ Institute of Mathematics of NAS of Ukraine,

More information

Department of Applied Mathematics, Dalian University of Technology, Dalian , China

Department of Applied Mathematics, Dalian University of Technology, Dalian , China Commun Theor Phys (Being, China 45 (006 pp 199 06 c International Academic Publishers Vol 45, No, February 15, 006 Further Extended Jacobi Elliptic Function Rational Expansion Method and New Families of

More information

ON THE RANK OF AN ELEMENT OF A FREE LIE ALGEBRA

ON THE RANK OF AN ELEMENT OF A FREE LIE ALGEBRA proceedings of the american mathematical society Volume 123, Number 5, May 1995 ON THE RANK OF AN ELEMENT OF A FREE LIE ALGEBRA VLADIMIR SHPILRAIN (Communicated by Roe Goodman) Abstract. Let L be a free

More information

On the old and new matrix representations of the Clifford algebra for the Dirac equation and quantum field theory

On the old and new matrix representations of the Clifford algebra for the Dirac equation and quantum field theory Available online at www.worldscientificnews.com WSN 87 (017) 38-45 EISSN 39-19 SHORT COMMUNICATION On the old and new matrix representations of the Clifford algebra for the Dirac equation and quantum field

More information

Soliton surfaces and generalized symmetries of integrable equations

Soliton surfaces and generalized symmetries of integrable equations Soliton surfaces and generalized symmetries of integrable equations Sarah Post, joint with Michel Grundland Centre de Recherches Mathématques Université de Montreal Symmetries in Science, Bregenz August

More information

Lie symmetries of (2+1)-dimensional nonlinear Dirac equations

Lie symmetries of (2+1)-dimensional nonlinear Dirac equations Lie symmetries of (2+1)-dimensional nonlinear Dirac equations Olena Vaneeva and Yuri Karadzhov Institute of Mathematics of the National Academy of Sciences of Ukraine, 3 Tereshchenkivs ka Str., 01601 Kyiv-4,

More information

STABILIZATION BY A DIAGONAL MATRIX

STABILIZATION BY A DIAGONAL MATRIX STABILIZATION BY A DIAGONAL MATRIX C. S. BALLANTINE Abstract. In this paper it is shown that, given a complex square matrix A all of whose leading principal minors are nonzero, there is a diagonal matrix

More information

This note derives marginal and conditional means and covariances when the joint distribution may be singular and discusses the resulting invariants.

This note derives marginal and conditional means and covariances when the joint distribution may be singular and discusses the resulting invariants. of By W. A. HARRIS, Jr. ci) and T. N. This note derives marginal and conditional means and covariances when the joint distribution may be singular and discusses the resulting invariants. 1. Introduction.

More information

r(j) -::::.- --X U.;,..;...-h_D_Vl_5_ :;;2.. Name: ~s'~o--=-i Class; Date: ID: A

r(j) -::::.- --X U.;,..;...-h_D_Vl_5_ :;;2.. Name: ~s'~o--=-i Class; Date: ID: A Name: ~s'~o--=-i Class; Date: U.;,..;...-h_D_Vl_5 _ MAC 2233 Chapter 4 Review for the test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the derivative

More information

Symmetry Methods for Differential Equations and Conservation Laws. Peter J. Olver University of Minnesota

Symmetry Methods for Differential Equations and Conservation Laws. Peter J. Olver University of Minnesota Symmetry Methods for Differential Equations and Conservation Laws Peter J. Olver University of Minnesota http://www.math.umn.edu/ olver Santiago, November, 2010 Symmetry Groups of Differential Equations

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl --

Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl -- Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl -- Consider the function h(x) =IJ\ 4-8x 3-12x 2 + 24x {?\whose graph is

More information

Special Function Solutions of a Class of Certain Non-autonomous Nonlinear Ordinary Differential Equations IJSER. where % "!

Special Function Solutions of a Class of Certain Non-autonomous Nonlinear Ordinary Differential Equations IJSER. where % ! International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 Special Function Solutions of a Class of Certain Non-autonomous Nonlinear Ordinary Differential Equations,, $ Abstract

More information

Kink, singular soliton and periodic solutions to class of nonlinear equations

Kink, singular soliton and periodic solutions to class of nonlinear equations Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 193-9466 Vol. 10 Issue 1 (June 015 pp. 1 - Applications and Applied Mathematics: An International Journal (AAM Kink singular soliton and periodic

More information

Algebraic Programming of Geometrical Calculus and Clifford Algebra

Algebraic Programming of Geometrical Calculus and Clifford Algebra J. Symbolic Computation (1989)7, 85-91 Algebraic Programming of Geometrical Calculus and Clifford Algebra Ph. TOMBAL AND A. MOUSSIAUX Laboratoire de Physique Mathdmatique, Facultks Universitaires, Rue

More information

On universality of critical behaviour in Hamiltonian PDEs

On universality of critical behaviour in Hamiltonian PDEs Riemann - Hilbert Problems, Integrability and Asymptotics Trieste, September 23, 2005 On universality of critical behaviour in Hamiltonian PDEs Boris DUBROVIN SISSA (Trieste) 1 Main subject: Hamiltonian

More information

Symmetries and solutions of field equations of axion electrodynamics

Symmetries and solutions of field equations of axion electrodynamics Symmetries and solutions of field equations of axion electrodynamics Oksana Kuriksha Petro Mohyla Black Sea State University, 10, 68 Desantnukiv Street, 54003 Mukolaiv, UKRAINE Abstract The group classification

More information

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 975 98 c International Academic Publishers Vol. 43, No. 6, June 15, 005 Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional

More information

Symmetry classification of KdV-type nonlinear evolution equations

Symmetry classification of KdV-type nonlinear evolution equations arxiv:nlin/0201063v2 [nlin.si] 16 Sep 2003 Symmetry classification of KdV-type nonlinear evolution equations F. Güngör Department of Mathematics, Faculty of Science and Letters, Istanbul Technical University,

More information

ON THE SYMMETRIES OF INTEGRABLE PARTIAL DIFFERENCE EQUATIONS

ON THE SYMMETRIES OF INTEGRABLE PARTIAL DIFFERENCE EQUATIONS Proceedings of the International Conference on Difference Equations, Special Functions and Orthogonal Polynomials, World Scientific (2007 ON THE SYMMETRIES OF INTEGRABLE PARTIAL DIFFERENCE EQUATIONS ANASTASIOS

More information

i.ea IE !e e sv?f 'il i+x3p \r= v * 5,?: S i- co i, ==:= SOrq) Xgs'iY # oo .9 9 PE * v E=S s->'d =ar4lq 5,n =.9 '{nl a':1 t F #l *r C\ t-e

i.ea IE !e e sv?f 'il i+x3p \r= v * 5,?: S i- co i, ==:= SOrq) Xgs'iY # oo .9 9 PE * v E=S s->'d =ar4lq 5,n =.9 '{nl a':1 t F #l *r C\ t-e fl ) 2 ;;:i c.l l) ( # =S >' 5 ^'R 1? l.y i.i.9 9 P * v ,>f { e e v? 'il v * 5,?: S 'V i: :i (g Y 1,Y iv cg G J :< >,c Z^ /^ c..l Cl i l 1 3 11 5 (' \ h 9 J :'i g > _ ^ j, \= f{ '{l #l * C\? 0l = 5,

More information

1. Let a(x) > 0, and assume that u and u h are the solutions of the Dirichlet problem:

1. Let a(x) > 0, and assume that u and u h are the solutions of the Dirichlet problem: Mathematics Chalmers & GU TMA37/MMG800: Partial Differential Equations, 011 08 4; kl 8.30-13.30. Telephone: Ida Säfström: 0703-088304 Calculators, formula notes and other subject related material are not

More information

Potential Symmetries and Differential Forms. for Wave Dissipation Equation

Potential Symmetries and Differential Forms. for Wave Dissipation Equation Int. Journal of Math. Analysis, Vol. 7, 2013, no. 42, 2061-2066 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.36163 Potential Symmetries and Differential Forms for Wave Dissipation

More information

New solutions for a generalized Benjamin-Bona-Mahony-Burgers equation

New solutions for a generalized Benjamin-Bona-Mahony-Burgers equation AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '8) Harvard Massachusetts USA March -6 8 New solutions for a generalized Benjamin-Bona-Mahony-Burgers equation MARIA S. BRUZÓN University of Cádiz Department

More information

Generalizations of Yang Mills theory with nonlinear constitutive equations

Generalizations of Yang Mills theory with nonlinear constitutive equations INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 37 (2004) 10711 10718 PII: S0305-4470(04)79205-7 Generalizations of Yang Mills theory with nonlinear

More information

HARMONIC MAPS AND THEIR APPLICATION TO GENERAL RELATIVITY* YISHI DUANE. Stanford Linear Accelerator. Stanford University, Stanford, California 94305

HARMONIC MAPS AND THEIR APPLICATION TO GENERAL RELATIVITY* YISHI DUANE. Stanford Linear Accelerator. Stanford University, Stanford, California 94305 SLACPUB3265 December 1983 _ 03 HARMONIC MAPS AND THEIR APPLICATION TO GENERAL RELATIVITY* YISHI DUANE Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 ABSTRACT A method

More information

Symmetries and Group Invariant Reductions of Integrable Partial Difference Equations

Symmetries and Group Invariant Reductions of Integrable Partial Difference Equations Proceedings of 0th International Conference in MOdern GRoup ANalysis 2005, 222 230 Symmetries and Group Invariant Reductions of Integrable Partial Difference Equations A. TONGAS, D. TSOUBELIS and V. PAPAGEORGIOU

More information

ON THE HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES P. L. SHARMA

ON THE HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES P. L. SHARMA ON THE HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES P. L. SHARMA 1. Suppose that the function f(u, v) is integrable in the sense of Lebesgue, over the square ( ir, ir; it, it) and is periodic with period

More information

ON THE CORRECT FORMULATION OF A MULTIDIMENSIONAL PROBLEM FOR STRICTLY HYPERBOLIC EQUATIONS OF HIGHER ORDER

ON THE CORRECT FORMULATION OF A MULTIDIMENSIONAL PROBLEM FOR STRICTLY HYPERBOLIC EQUATIONS OF HIGHER ORDER Georgian Mathematical Journal 1(1994), No., 141-150 ON THE CORRECT FORMULATION OF A MULTIDIMENSIONAL PROBLEM FOR STRICTLY HYPERBOLIC EQUATIONS OF HIGHER ORDER S. KHARIBEGASHVILI Abstract. A theorem of

More information

Linear Operators and the General Solution of Elementary Linear Ordinary Differential Equations

Linear Operators and the General Solution of Elementary Linear Ordinary Differential Equations CODEE Journal Volume 9 Article 11 5-12-2012 Linear Operators and the General Solution of Elementary Linear Ordinary Differential Equations Norbert Euler Follow this and additional works at: http://scholarship.claremont.edu/codee

More information

COINCIDENCE SETS IN THE OBSTACLE PROBLEM FOR THE p-harmonic OPERATOR

COINCIDENCE SETS IN THE OBSTACLE PROBLEM FOR THE p-harmonic OPERATOR PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 95, Number 3, November 1985 COINCIDENCE SETS IN THE OBSTACLE PROBLEM FOR THE p-harmonic OPERATOR SHIGERU SAKAGUCHI Abstract. We consider the obstacle

More information

No. 11 A series of new double periodic solutions metry constraint. For more details about the results of this system, the reader can find the

No. 11 A series of new double periodic solutions metry constraint. For more details about the results of this system, the reader can find the Vol 13 No 11, November 2004 cfl 2003 Chin. Phys. Soc. 1009-1963/2004/13(11)/1796-05 Chinese Physics and IOP Publishing Ltd A series of new double periodic solutions to a (2+1)-dimensional asymmetric Nizhnik

More information

Modern Geometric Structures and Fields

Modern Geometric Structures and Fields Modern Geometric Structures and Fields S. P. Novikov I.A.TaJmanov Translated by Dmitry Chibisov Graduate Studies in Mathematics Volume 71 American Mathematical Society Providence, Rhode Island Preface

More information

WIGNER'S INFLUENCE ON PARTICLE PHYSICS: UNIFICATION OF SPACETIME SYMMETRIES OF MASSIVE AND MASSLESS PARTICLES* Y.S. KIM

WIGNER'S INFLUENCE ON PARTICLE PHYSICS: UNIFICATION OF SPACETIME SYMMETRIES OF MASSIVE AND MASSLESS PARTICLES* Y.S. KIM Vol. 27 (1996) ACTA PHYSICA POLONICA B No 10 WIGNER'S INFLUENCE ON PARTICLE PHYSICS: UNIFICATION OF SPACETIME SYMMETRIES OF MASSIVE AND MASSLESS PARTICLES* Y.S. KIM Department of Physics, University of

More information

1. Introduction. 2. Basic equations. Theoretical and Mathematical Physics, 192(1): (2017) E. V. Trifonov

1. Introduction. 2. Basic equations. Theoretical and Mathematical Physics, 192(1): (2017) E. V. Trifonov Theoretical and Mathematical Physics, 9(): 974 98 (7) FAMILIES OF EXACT SOLUTIONS FOR LINEAR AND NONLINEAR WAVE EQUATIONS WITH A VARIABLE SPEED OF SOUND AND THEIR USE IN SOLVING INITIAL BOUNDARY VALUE

More information

Symmetry Classification of KdV-Type Nonlinear Evolution Equations

Symmetry Classification of KdV-Type Nonlinear Evolution Equations Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 1, 125 130 Symmetry Classification of KdV-Type Nonlinear Evolution Equations Faruk GÜNGÖR, Victor LAHNO and Renat ZHDANOV Department

More information

nd A L T O SOLO LOWELL. MICHIGAN. THURSDAY. APRIL Spring Activities Heads Up and Forward (Editorial By " T h e Committee'')

nd A L T O SOLO LOWELL. MICHIGAN. THURSDAY. APRIL Spring Activities Heads Up and Forward (Editorial By  T h e Committee'') - 6 7 8 9 3-6 7 8 9 3 G UDY 3 93 VU XXXV U XY F K FD D j V K D V FY G F D Y X K X DD Y j \ V F \ VD GD D U Y 78 K U D Y U Y 484?35 V 93 7 4 U x K 77 - D :3 F K > 6 D x F 5 - - x - G 7 43 8 D $35 K F $5

More information

Radial Symmetry of Minimizers for Some Translation and Rotation Invariant Functionals

Radial Symmetry of Minimizers for Some Translation and Rotation Invariant Functionals journal of differential equations 124, 378388 (1996) article no. 0015 Radial Symmetry of Minimizers for Some Translation and Rotation Invariant Functionals Orlando Lopes IMECCUNICAMPCaixa Postal 1170 13081-970,

More information

On the Linearization of Second-Order Dif ferential and Dif ference Equations

On the Linearization of Second-Order Dif ferential and Dif ference Equations Symmetry, Integrability and Geometry: Methods and Applications Vol. (006), Paper 065, 15 pages On the Linearization of Second-Order Dif ferential and Dif ference Equations Vladimir DORODNITSYN Keldysh

More information

f k j M k j Among them we recognize the gradient operator on polynomial-valued functions which is part of the complete gradient (see [9]) u j xj.

f k j M k j Among them we recognize the gradient operator on polynomial-valued functions which is part of the complete gradient (see [9]) u j xj. Advances in Applied Clifford Algebras 4, No. 1 (1994) 65 FUNCTIONS OF TWO VECTOR VARIABLES F. Sommen* and N. Van Acker Department of Mathematical Analysis, University of Gent, Galglaan 2 B-9000 Gent, Belgium

More information

ON DIVISION ALGEBRAS*

ON DIVISION ALGEBRAS* ON DIVISION ALGEBRAS* BY J. H. M. WEDDERBURN 1. The object of this paper is to develop some of the simpler properties of division algebras, that is to say, linear associative algebras in which division

More information

5.2 The Levi-Civita Connection on Surfaces. 1 Parallel transport of vector fields on a surface M

5.2 The Levi-Civita Connection on Surfaces. 1 Parallel transport of vector fields on a surface M 5.2 The Levi-Civita Connection on Surfaces In this section, we define the parallel transport of vector fields on a surface M, and then we introduce the concept of the Levi-Civita connection, which is also

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY ON ALGEBRAIC EQUATION WITH COEFFICIENTS FROM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY ON ALGEBRAIC EQUATION WITH COEFFICIENTS FROM PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 2018, 52(3), p. 161 165 M a t h e m a t i c s ON ALGEBRAIC EQUATION WITH COEFFICIENTS FROM THE β-uniform ALGEBRA C β (Ω) A.

More information

Dispersion relations, stability and linearization

Dispersion relations, stability and linearization Dispersion relations, stability and linearization 1 Dispersion relations Suppose that u(x, t) is a function with domain { < x 0}, and it satisfies a linear, constant coefficient partial differential

More information

Deformation of the `embedding'

Deformation of the `embedding' Home Search Collections Journals About Contact us My IOPscience Deformation of the `embedding' This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1997 J.

More information

SHAPE OPERATORS OF EINSTEIN HYPERSURFACES IN INDEFINITE SPACE FORMS MARTIN A. MAGID

SHAPE OPERATORS OF EINSTEIN HYPERSURFACES IN INDEFINITE SPACE FORMS MARTIN A. MAGID proceedings OF THE AMERICAN MATHEMATICAL SOCIETY Volume 84, Number 2, February 1982 SHAPE OPERATORS OF EINSTEIN HYPERSURFACES IN INDEFINITE SPACE FORMS MARTIN A. MAGID Abstract. The possible shape operats

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

Symmetry Reduction for a System of Nonlinear Evolution Equations

Symmetry Reduction for a System of Nonlinear Evolution Equations Nonlinear Mahemaical Physics 1996, V.3, N 3 4, 447 452. Symmery Reducion for a Sysem of Nonlinear Evoluion Equaions Lyudmila BARANNYK Insiue of Mahemaics of he Naional Ukrainian Academy of Sciences, 3

More information

Symmetry reductions and travelling wave solutions for a new integrable equation

Symmetry reductions and travelling wave solutions for a new integrable equation Symmetry reductions and travelling wave solutions for a new integrable equation MARIA LUZ GANDARIAS University of Cádiz Department of Mathematics PO.BOX 0, 50 Puerto Real, Cádiz SPAIN marialuz.gandarias@uca.es

More information

Narayana IIT Academy

Narayana IIT Academy INDIA XI_IC_SPARK ime : 3 Hours JEE-MAIN CP -5 Date: 5-0-8 Max Marks : 360 KEY SHEE PHYSICS.. 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. 8. 9. 30. CHEMISRY 3. 3. 33. 34. 35. 36.

More information

We would like to give a Lagrangian formulation of electrodynamics.

We would like to give a Lagrangian formulation of electrodynamics. Chapter 7 Lagrangian Formulation of Electrodynamics We would like to give a Lagrangian formulation of electrodynamics. Using Lagrangians to describe dynamics has a number of advantages It is a exceedingly

More information