3. Green and Ampt. Infiltration into a soil profile: 3. Green-Ampt model. Hillel 2001; Jury and Horton 2006 G & A G & A. Philip S G & A G & A

Size: px
Start display at page:

Download "3. Green and Ampt. Infiltration into a soil profile: 3. Green-Ampt model. Hillel 2001; Jury and Horton 2006 G & A G & A. Philip S G & A G & A"

Transcription

1 3. Green and Ampt Infiltration into a soil profile: 3. Green-Ampt model. Nobuo TORIDE 1 Kunio WATANABE 1 Yudai HISAYUKI 1 and Masaru SAKAI Philip S A 21 2 Hillel Philip Green and Ampt G & A Green and Ampt 1911 G & A 17 Hillel Green and Ampt G & A 27 G & A G & A G & A 1 Graduate School of Bioresources, Mie University, 1577 Kurima- Machiya, Tsu, Mie , Japan. Corresponding author: 2 Utah State University, Dep. Plants, Soils, and Climate , 51 6 (21) Hillel 21; Jury and Horton 26 G & A G & A G & A G & A G & A G & A G & A Fig. 3 2 Table 1 HYDRUS-1D Šimůnek et al. 28 Fig. 1 a b G & A Jury and Horton 26

2 (21) Fig. 2 a b h i = 5 cm h = 1 1, 17, 31, 55, 8 cm I t 1/2 2. h i θ i h θ Green and Ampt Fig. 1 a Fig. 1 b G & A Jury and Horton 26 L h θ K effective pressure head at the front h F Hillel 21; Warrick 23 h F h i θ i h θ L i 1 i = q = K h F h L = K h L h = h h F > i (1) I = L θ I I = t 1/2 2 θk h (4) Philip 1957 θ i θ 8 I Jury and Horton I = St 1/2 (5) S sorptivity G & A 4 Philip 5 I L t 1/2 Atkins 1993 Philip 5 S Green and Ampt Philip S 4 5 G & A h F i = d dt [(θ θ i )L] = θ dl dt (2) S = 2 θk h = 2 θk (h h F ) (6) θ = θ θ i > 1 2 L Jury and Horton 26 L 2 2 = K h θ t (3) 1 i q i = q S h F h F = h S2 2 θk (7) G & A

3 3. Green and Ampt 53 Fig. 3 h i = 5 cm 2 h = 1 31 cm a b c d h(x). 1 2 θ = [ ( )] h K(h) t x x x L h 2 4 h i Fig. 2 6 h I t 1/2 h i = 5 cm 4 I θ K h h F 5 I S h = cm θ i 2 Fig. 7 a Fig. 8 a (8) h = 1 cm h 1 Fig. 1 K h i = 5 cm h = 17 cm I I t 1/2 K 1 Fig. 1 I h h = 31 cm K h = 17 cm K h i = 5 cm h = 1 31 cm Fig. 3 Fig. 4 3 L G & A h F h F θ(h F ) Table 1 Fig. 3 h = 1 cm

4 (21) Fig. 4 h i = 5 cm 2 h = 1 31cm a b c d θ(x). Table 1 h i = 5 cm, h = 1 31 cm h F. Soil type Sandy loam Silt h h F h θ(h F ) (cm) (cm) (cm) (cm 3 cm 3 ) cm 2 d h i = 5 cm h = 1 cm K(h ) = 85.9 cm d 1 K(h i ) = cm d 1 1 Fig. 7 d K K(h i ) = cm d 1 G & A 1 G & A L h Fig. 3 a b G & A L L I = L θ C w θ 1 Fig. 2 G & A L h L h F h = 1 cm h F = 5.8 cm h = 31 cm h F = 41.1 cm h = h h F Table 1 1 K h Fig. 3 c d G & A L h F h Table 1 Fig. 4 a b G & A L G & A

5 3. Green and Ampt 55 Fig. 5 a b h h F θ i Fig. 4 h F θ(h F ) Table 1 G & A L Fig. 4 c d Fig. 2 i h = 17 cm h = 31 cm Fig. 5 h θ h F θ i h F h θ i h F h θ i h = h h F h Fig. 3 θ i h F θ i G & A h F h F θ i 2 Fig. 6 V F Fig. 7 Fig. 8 Philip 3. G & A 1 z = z = L i = q = K ( h + L) (9) L θ i i 2 i G & A 2 9 Jury and Horton 26 ( L hln 1 + L ) = K t h θ I(t) = L θ (1) ( I(t) h θ ln 1 + I(t) ) = K t (11) h θ I 11 ( ln 1 + I(t) ) I(t) h θ h θ 1 ( ) I(t) 2 (12) 2 h θ 11 I I t 1/2 4 4 L L = t 1/2 2K h θ V F V F = dl dt = K h t 1/2 2 θ (13) (14) 11 2 K

6 (21) Fig. 6 a b c d e f h i = 5 cm 3 h = cm h(z). I = K t (15) L = K t/ θ V F V F = dl dt = K θ (16) 2 7 G & A 11 G & A 9 L h/l L h/l I G & A Radcliffe and Šimůnek 21 L = θ/i 9 i Hillel 21 2 i = K θ h I + K (17) 17 G & A 17 I 1 2 i I 1 i K h F I 11 t I(t) f ( h,t) ( f ( h,t) = I(t) h θ ln 1 + I(t) ) K t (18) h θ f ( h,t) = h

7 Pressure head at the front, h F (cm) Green and Ampt 57 (a) Sandy loam Based on each time I Fitted with the overall I Time (d) (b) Silt Fig. 7 a b h i = 5 cm h = 1 cm h F I h F Table 2 h i = 5 cm, h = 1 31, 55 cm h F. Soil type h h F h θ( h F ) (cm) (cm) (cm) (cm 3 cm 3 ) Sandy loam Silt h = h h F h F I t 1/2 Fig. 2 h F h F h F Radcliffe and Šimůnek 21 I(t) h F h F I(t) G & A I(t) h F 11 I t 11 t I t(i) h F I (t(i) t) 2 h h F θ i h F 11 A6 θ i Fig. 6 1 cm h i = 5 cm 3 h = cm 1 Fig. 6 1 Fig. 7 Fig. 6 G & A I h F h F Table 2 L θ i A5 Fig. 6 Fig. 3 1 h = 1 cm h = h h F h Fig. 7 h = 1 cm I h F I 11 h F h F h F Fig. 7 t = h F Fig. 3 h = 1 cm h F Table 1 4 h F h F h F t h F 2 Philip 2 1 S A S/A h θ

8 (21) h i θ i S/A h h i Fig. 7 h = 1 cm h i = 5 cm S/A Fig. 9 h F h F h F i i i 2 Fig. 2 b h = 1 cm h i = 5 cm i G & A i Philp 2 1 h F h F h = h h F G & A h F Fig. 5 h θ h F h F θ i h F h θ i h F h = h h F h F Table 1 Table 2 h θ i Fig. 7 h = h h F h = 1 cm h i = 5 cm 1 Fig. 7 g Fig. 1 b G & A Fig. 5 h F G & A h F Fig. 7 a h F 4. G & A G & A Philip I h F h h i I t 1/2 h F h = h h F h θ i h F θ i h F I h F h F h = h h F I h F h F h θ i h F h F θ i Atkins 1993 S Philip Green and Ampt 1911 I h F G & A G & A I V F 9 G & A h F h F G & A G & A 1

9 3. Green and Ampt 59 Green and Ampt 1911 h F Neuman 1976 h F Fig. 5 c i i = θ dl dt + K i (A1) K i = K(h i ) 8 θ dl dt = K L ( h+l) K i= K { ( h + 1 K ) } i L L K η = 1 K i /K (> ) L L LdL h + ηl = 1 η 2 LdL h + ηl = K t dt = K t θ θ { ( ηl hlog 1 + ηl )} h (A2) (A3) (A4) I(t) = L θ + K i t L = I(t) K it θ A3 A4 A5 I(t) K i t η h θ η 2 ln [ 1 + η(i(t) K it) h θ (A5) ] = K t (A6) K K i η = 1 A6 11 Atkins, P.W. (1993) 4 pp Green, W.H. and Ampt, G.A.(1911): Studies on soil physics: I. The flow of air and water through soils. J. Agric. Sci., 4: W. H. Green and G. A. Ampt 1 15: Hillel, D. (21) II 1 pp Jury, W.A. and Horton, R. (26): pp Radcliffe, D.E. and Šimůnek, J. (21): Soil physics with HY- DRUS: Modeling and applications. pp , CRC Press, New York pp pp Neuman, S.P. (1976): Wetting front pressure head in the infiltration model of Green and Ampt. Water Resour. Res., 12: Philip, J.R. (1957): The theory of infiltration: 1. The infiltration equation and its solution. Soil Sci., 83: Šimůnek, J., Šejna, M., Saito, H., Sakai., M. and van Genuchten, M.Th., (28): The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media. Version 4., HYDRUS Software Series 3, Dep. of Environmental Sciences, Univ. of California Riverside, Riverside, CA, USA. 29 : : : : Warrick, A.W. (23): Soil water dynamics. pp , Oxford university press, New York.

10 6 115 (21) Green and Ampt G & A I t 1/2 h F h F h θ i G & A I V F h F h F h F G & A Green and Ampt

Successive measurement of water retention curves for relativity dry soils using AquaLab VSA

Successive measurement of water retention curves for relativity dry soils using AquaLab VSA J. Jpn. Soc. Soil Phys. No. 124, p.43 49 (2013) AquaLab VSA 1 1 1 1 Successive measurement of water retention curves for relativity dry soils using AquaLab VSA Kunio WATANABE 1, Yurie OSADA 1, Masaru SAKAI

More information

EXAMPLE PROBLEMS. 1. Example 1 - Column Infiltration

EXAMPLE PROBLEMS. 1. Example 1 - Column Infiltration EXAMPLE PROBLEMS The module UNSATCHEM is developed from the variably saturated solute transport model HYDRUS-1D [Šimůnek et al., 1997], and thus the water flow and solute transport parts of the model have

More information

Green-Ampt infiltration model for sloping surfaces

Green-Ampt infiltration model for sloping surfaces WATER RESOURCES RESEARCH, VOL. 42,, doi:10.1029/2005wr004468, 2006 Green-Ampt infiltration model for sloping surfaces Li Chen 1 and Michael H. Young 1 Received 27 July 2005; revised 31 March 2006; accepted

More information

Scaling to generalize a single solution of Richards' equation for soil water redistribution

Scaling to generalize a single solution of Richards' equation for soil water redistribution 582 Scaling to generalize a single solution of Richards' equation for soil water redistribution Morteza Sadeghi 1 *, Bijan Ghahraman 1, Kamran Davary 1, Seyed Majid Hasheminia 1, Klaus Reichardt 2 1 Ferdowsi

More information

An objective analysis of the dynamic nature of field capacity

An objective analysis of the dynamic nature of field capacity WATER RESOURCES RESEARCH, VOL. 45,, doi:10.1029/2009wr007944, 2009 An objective analysis of the dynamic nature of field capacity Navin K. C. Twarakavi, 1 Masaru Sakai, 2 and Jirka Šimůnek 2 Received 5

More information

Analytical approach predicting water bidirectional transfers: application to micro and furrow irrigation

Analytical approach predicting water bidirectional transfers: application to micro and furrow irrigation Advances in Fluid Mechanics VI 633 Analytical approach predicting water bidirectional transfers: application to micro and furrow irrigation D. Crevoisier Irrigation Research Unit, Cemagref Montpellier,

More information

2. RESPONSIBILITIES AND QUALIFICATIONS

2. RESPONSIBILITIES AND QUALIFICATIONS Questa Rock Pile Stability Study 65v1 Page 1 Standard Operating Procedure No. 65 Density by the sand-cone method used for volumetric moisture content REVISION LOG Revision Number Description Date 65.0

More information

Updating the Coupling Algorithm in HYDRUS Package for MODFLOW

Updating the Coupling Algorithm in HYDRUS Package for MODFLOW Updating the Coupling Algorithm in HYDRUS Package for MODFLOW SAHILA BEEGUM Guided by Dr. K P Sudheer, Dr. Indumathi M Nambi & Dr. Jirka Šimunek Department of Civil Engineering, Indian Institute of Technology

More information

6.6 Solute Transport During Variably Saturated Flow Inverse Methods

6.6 Solute Transport During Variably Saturated Flow Inverse Methods 6.6 Solute Transport During Variably Saturated Flow Inverse Methods JIÌÍ ŠIMæNEK AND MARTINUS TH. VAN GENUCHTEN, USDA-ARS, George E. Brown, Jr. Salinity Laboratory, Riverside, California DIEDERIK JACQUES,

More information

Modeling effect of initial soil moisture on sorptivity and infiltration

Modeling effect of initial soil moisture on sorptivity and infiltration Modeling effect of initial soil moisture on sorptivity and infiltration Stewart, R. D., D. E. Rupp, M. R. Abou Najm, and J. S. Selker (213), Modeling effect of initial soil moisture on sorptivity and infiltration,

More information

Numerical evaluation of a second-order water transfer term for variably saturated dual-permeability models

Numerical evaluation of a second-order water transfer term for variably saturated dual-permeability models WATER RESOURCES RESEARCH, VOL. 40, W07409, doi:10.1029/2004wr003285, 2004 Numerical evaluation of a second-order water transfer term for variably saturated dual-permeability models J. Maximilian Köhne

More information

CHLORIDE TRANSPORT PARAMETERS PREDICTION FOR A LACONIAN ALLUVIAL CLAY-LOAM SOIL COLUMN

CHLORIDE TRANSPORT PARAMETERS PREDICTION FOR A LACONIAN ALLUVIAL CLAY-LOAM SOIL COLUMN Proceedings of the 14 th International Conference on Environmental Science and Technology Rhodes, Greece, 3-5 September 015 CHLORIDE TRANSPORT PARAMETERS PREDICTION FOR A LACONIAN ALLUVIAL CLAY-LOAM SOIL

More information

ψ ae is equal to the height of the capillary rise in the soil. Ranges from about 10mm for gravel to 1.5m for silt to several meters for clay.

ψ ae is equal to the height of the capillary rise in the soil. Ranges from about 10mm for gravel to 1.5m for silt to several meters for clay. Contents 1 Infiltration 1 1a Hydrologic soil horizons...................... 1 1b Infiltration Process......................... 2 1c Measurement............................ 2 1d Richard s Equation.........................

More information

Comparison of conductivity averaging methods for one-dimensional unsaturated flow in layered soils

Comparison of conductivity averaging methods for one-dimensional unsaturated flow in layered soils A. Szymkiewicz a R. Helmig b Comparison of conductivity averaging methods for one-dimensional unsaturated flow in layered soils Stuttgart, October 1 a Faculty of Civil and Environmental Engineering, Gdansk

More information

Effective unsaturated hydraulic conductivity for one-dimensional structured heterogeneity

Effective unsaturated hydraulic conductivity for one-dimensional structured heterogeneity WATER RESOURCES RESEARCH, VOL. 41, W09406, doi:10.1029/2005wr003988, 2005 Effective unsaturated hydraulic conductivity for one-dimensional structured heterogeneity A. W. Warrick Department of Soil, Water

More information

Modelling Trickle Irrigation: Comparison of Analytical and Numerical Models For Estimation of Wetting Front Position with Time.

Modelling Trickle Irrigation: Comparison of Analytical and Numerical Models For Estimation of Wetting Front Position with Time. Modelling Trickle Irrigation: Comparison of Analytical and Numerical Models For Estimation of Wetting Front Position with Time. Freeman J. Cook a,c, Peter Fitch b, Peter Thorburn c,d, Philip B. Charlesworth

More information

We thank you for your review on our paper. We addressed the following points in a general answer to all reviewers

We thank you for your review on our paper. We addressed the following points in a general answer to all reviewers Hydrol. Earth Syst. Sci. Discuss., 11, C3731 C3742, 2014 www.hydrol-earth-syst-sci-discuss.net/11/c3731/2014/ Author(s) 2014. This work is distributed under the Creative Commons Attribute 3.0 License.

More information

designs during the advance of a wetting front is presented. Numeriumes farther from the rods. Despite these advances,

designs during the advance of a wetting front is presented. Numeriumes farther from the rods. Despite these advances, The Effect of the Spatial Sensitivity of TDR on Inferring Soil Hydraulic Properties from Water Content Measurements Made during the Advance of a Wetting Front Ty P. A. Ferré,* Henrik H. Nissen, and Jirka

More information

P. Broadbridge. Snippets from Infiltration: where Approximate Integral Analysis is Exact.

P. Broadbridge. Snippets from Infiltration: where Approximate Integral Analysis is Exact. P. Broadbridge Snippets from Infiltration: where Approximate Integral Analysis is Exact. Hydrology of 1D Unsaturated Flow in Darcy-Buckingham-Richards approach. Nonlinear diffusion-convection equations

More information

SOLUTE TRANSPORT. Renduo Zhang. Proceedings of Fourteenth Annual American Geophysical Union: Hydrology Days. Submitted by

SOLUTE TRANSPORT. Renduo Zhang. Proceedings of Fourteenth Annual American Geophysical Union: Hydrology Days. Submitted by THE TRANSFER FUNCTON FOR SOLUTE TRANSPORT Renduo Zhang Proceedings 1994 WWRC-94-1 1 n Proceedings of Fourteenth Annual American Geophysical Union: Hydrology Days Submitted by Renduo Zhang Department of

More information

An Alert Regarding a Common Misinterpretation of the Van Genuchten α Parameter

An Alert Regarding a Common Misinterpretation of the Van Genuchten α Parameter Research Note Division - Soil Processes and Properties Commission - Soil Physics An Alert Regarding a Common Misinterpretation of the Van Genuchten α Parameter Quirijn de Jong van Lier ()* and Everton

More information

1. Water in Soils: Infiltration and Redistribution

1. Water in Soils: Infiltration and Redistribution Contents 1 Water in Soils: Infiltration and Redistribution 1 1a Material Properties of Soil..................... 2 1b Soil Water Flow........................... 4 i Incorporating K - θ and ψ - θ Relations

More information

PROBABILISTIC PREDICTIONS OF INFILTRATION INTO HETEROGENEOUS MEDIA WITH UNCERTAIN HYDRAULIC PARAMETERS

PROBABILISTIC PREDICTIONS OF INFILTRATION INTO HETEROGENEOUS MEDIA WITH UNCERTAIN HYDRAULIC PARAMETERS International Journal for Uncertainty Quantification, 1(1):35 47, 211 PROBABILISTIC PREDICTIONS OF INFILTRATION INTO HETEROGENEOUS MEDIA WITH UNCERTAIN HYDRAULIC PARAMETERS Peng Wang & Daniel M. Tartakovsky

More information

Notes on Spatial and Temporal Discretization (when working with HYDRUS) by Jirka Simunek

Notes on Spatial and Temporal Discretization (when working with HYDRUS) by Jirka Simunek Notes on Spatial and Temporal Discretization (when working with HYDRUS) by Jirka Simunek 1. Temporal Discretization Four different time discretizations are used in HYDRUS: (1) time discretizations associated

More information

Estimating soil specific surface area using the summation of the number of spherical particles and geometric mean particle-size diameter

Estimating soil specific surface area using the summation of the number of spherical particles and geometric mean particle-size diameter African Journal of Agricultural Research Vol. 6(7), pp. 1758-1762, 4 April, 2011 Available online at http://www.academicjournals.org/ajar DOI: 10.5897/AJAR11.199 ISSN 1991-637X 2011 Academic Journals Full

More information

Principles of soil water and heat transfer in JULES

Principles of soil water and heat transfer in JULES Principles of soil water and heat transfer in JULES Anne Verhoef 1, Pier Luigi Vidale 2, Raquel Garcia- Gonzalez 1,2, and Marie-Estelle Demory 2 1. Soil Research Centre, Reading (UK); 2. NCAS-Climate,

More information

Verification of numerical solutions of the Richards equation using a traveling wave solution

Verification of numerical solutions of the Richards equation using a traveling wave solution Advances in Water Resources 30 (2007) 1973 1980 www.elsevier.com/locate/advwatres Verification of numerical solutions of the Richards equation using a traveling wave solution Vitaly A. Zlotnik a, *, Tiejun

More information

The HYDRUS-2D Software Package for Simulating the. Two-Dimensional Movement of Water, Heat, and. Multiple Solutes in Variably-Saturated Media

The HYDRUS-2D Software Package for Simulating the. Two-Dimensional Movement of Water, Heat, and. Multiple Solutes in Variably-Saturated Media The HYDRUS-2D Software Package for Simulating the Two-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media Version 2.0 April 1999 U. S. SALINITY LABORATORY AGRICULTURAL

More information

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6 Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture 6 Good morning and welcome to the next lecture of this video course on Advanced Hydrology.

More information

Electronic Supplementary Material Mine Water and the Environment

Electronic Supplementary Material Mine Water and the Environment Electronic Supplementary Material Mine Water and the Environment In-Lake Neutralization: Quantification and Prognoses of the Acid Load into a Conditioned Pit Lake (Lake Bockwitz, Central Germany) Kai-Uwe

More information

DOCUMENTATION FOR PREPARING THE INPUT FILE OF THE UPDATED HYDRUS PACKAGE FOR MODFLOW-2000

DOCUMENTATION FOR PREPARING THE INPUT FILE OF THE UPDATED HYDRUS PACKAGE FOR MODFLOW-2000 DOCUMENTATION FOR PREPARING THE INPUT FILE OF THE UPDATED HYDRUS PACKAGE FOR MODFLOW-2000 Updated May 2008 Navin Kumar C. Twarakavi 1, Hyeyoung Sophia Seo 2 and Jirka Simunek 1 1 University of California,

More information

The matric flux potential: history and root water uptake

The matric flux potential: history and root water uptake The matric flux potential: history and root water uptake Marius Heinen, Peter de Willigen (Alterra, Wageningen-UR) Jos van Dam, Klaas Metselaar (Soil Physics, Ecohydrology and Groundwater Management Group,

More information

Numerical evaluation of a set of analytical infiltration equations

Numerical evaluation of a set of analytical infiltration equations WATER RESOURCES RESEARCH, VOL. 45,, doi:0.029/2009wr00794, 2009 Numerical evaluation of a set of analytical infiltration equations L. Lassaatere, R. Angulo-Jaramillo, 2,3 J. M. Soria-Ugalde, 4 J. Šimůnek,

More information

HYDRUS. Technical Manual. Version 2

HYDRUS. Technical Manual. Version 2 HYDRUS Technical Manual Version 2 Software Package for Simulating the Two- and Three-Dimensional Movement of Water, Heat and Multiple Solutes in Variably-Saturated Media January 2011, PC-Progress, Prague,

More information

In situ estimation of soil hydraulic functions using a multistep soil-water extraction technique

In situ estimation of soil hydraulic functions using a multistep soil-water extraction technique WATER RESOURCES RESEARCH, VOL. 34, NO. 5, PAGES 1035 1050, MAY 1998 In situ estimation of soil hydraulic functions using a multistep soil-water extraction technique M. Inoue Arid Land Research Center,

More information

THE EFFECTS OF ROCK FRAGMENT SHAPES AND POSITIONS ON MODELED HYDRAULIC CONDUCTIVITIES OF STONY SOILS

THE EFFECTS OF ROCK FRAGMENT SHAPES AND POSITIONS ON MODELED HYDRAULIC CONDUCTIVITIES OF STONY SOILS 5 th International Conference 'Hydrus Software Applications to Subsurface Flow and Contaminant Transport Problems' THE EFFECTS OF ROCK FRAGMENT SHAPES AND POSITIONS ON MODELED HYDRAULIC CONDUCTIVITIES

More information

Falda del Carmen, 5187, Argentina Published online: 12 Jul 2011.

Falda del Carmen, 5187, Argentina Published online: 12 Jul 2011. This article was downloaded by: [Universidad de Buenos Aires] On: 26 July 2013, At: 16:13 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office:

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

THEORY. Water flow. Air flow

THEORY. Water flow. Air flow THEORY Water flow Air flow Does Suction Gradient Cause Flow? Coarse stone Fine ceramic Suction gradient to the right No suction gradient but still flow Does water content gradient cause Flow? Suction gradient

More information

Upscaling of Richards equation for soil moisture dynamics to be utilized in mesoscale atmospheric models

Upscaling of Richards equation for soil moisture dynamics to be utilized in mesoscale atmospheric models Exchange Processes at the imnd Surface for a Range of Space and Time Scales (Proceedings of the Yokohama Symposium, July 1993). [AHS Publ. no. 212, 1993. 125 Upscaling of Richards equation for soil moisture

More information

Suction Potential and Water Absorption from Periodic Channels in Different Types of Homogeneous Soils

Suction Potential and Water Absorption from Periodic Channels in Different Types of Homogeneous Soils I. Solekhudin and K.C. Ang/ Electronic Journal of Boundary Elements, Vol. 1, No. 2, pp. 42-55 (212) Suction Potential and Water Absorption from Periodic Channels in Different Types of Homogeneous Soils

More information

Ice Lensing Mechanism during Soil Freezing

Ice Lensing Mechanism during Soil Freezing Ice Lensing Mechanism during Soil Freezing Graduate School of Bioresources, Mie University Kunio Watanabe December, 1999 Kunio Watanabe, Ice Lensing Mechanism during Soil Freezing Nougyo-Doboku, Graduate

More information

+ ( f o. (t) = f c. f c. )e kt (1)

+ ( f o. (t) = f c. f c. )e kt (1) CIVE Basic Hydrology Jorge A. Ramírez Computations Example Assume that the time evolution of the infiltration capacity for a given soil is governed by Horton's equation (Note that this equation assumes

More information

On the relationships between the pore size distribution index and characteristics of the soil hydraulic functions

On the relationships between the pore size distribution index and characteristics of the soil hydraulic functions WATER RESOURCES RESEARCH, VOL. 41, W07019, doi:10.1029/2004wr003511, 2005 On the relationships between the pore size distribution index and characteristics of the soil hydraulic functions S. Assouline

More information

Modeling Non-equilibrium Overland Flow and Reactive Transport Processes Using HYDRUS-1D

Modeling Non-equilibrium Overland Flow and Reactive Transport Processes Using HYDRUS-1D 5 th International HYDRUS Conference, Prague, Czech Republic Modeling Non-equilibrium Overland Flow and Reactive Transport Processes Using HYDRUS-1D work with Dr. Jirka Simunek and Dr. Scott Bradford Department

More information

CE 394K.2 Hydrology. Homework Problem Set #3. Due Thurs March Theoretical study of infiltration at ponding time using Philip's equation

CE 394K.2 Hydrology. Homework Problem Set #3. Due Thurs March Theoretical study of infiltration at ponding time using Philip's equation CE 394K2 Hydrology Homework Problem Set #3 Due Thurs March 29 Problems in "Applied Hydrology" 423 nfiltration by Horton's method 432 nfiltration by Green-Ampt method 443 Ponding time and cumulative infiltration

More information

L. Weihermüller* R. Kasteel J. Vanderborght J. Šimůnek H. Vereecken

L. Weihermüller* R. Kasteel J. Vanderborght J. Šimůnek H. Vereecken Original Research L. Weihermüller* R. Kasteel J. Vanderborght J. Šimůnek H. Vereecken Uncertainty in Pes cide Monitoring Using Suc on Cups: Evidence from Numerical Simula ons Knowledge of the spatial and

More information

Numerical Issues Arising in the Simulations of Transient Water Flow. in Layered Unsaturated Soils. Ruowen Liu

Numerical Issues Arising in the Simulations of Transient Water Flow. in Layered Unsaturated Soils. Ruowen Liu Numerical Issues Arising in the Simulations of Transient Water Flow in Layered Unsaturated Soils by Ruowen Liu A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor

More information

AN ABSTRACT OF THE THESIS OF. Gloria M. Ambrowiak for the degree of Master of Science in Soil Science presented on June 1, Abstract approved:

AN ABSTRACT OF THE THESIS OF. Gloria M. Ambrowiak for the degree of Master of Science in Soil Science presented on June 1, Abstract approved: AN ABSTRACT OF THE THESIS OF Gloria M. Ambrowiak for the degree of Master of Science in Soil Science presented on June 1, 2015. Title: Effects of Initial Moisture and Surface Properties on Sorptivity of

More information

MICROSCOPIC OBSERVATION OF ICE LENSING AND FROST HEAVE IN GLASS BEADS

MICROSCOPIC OBSERVATION OF ICE LENSING AND FROST HEAVE IN GLASS BEADS MICROSCOPIC OBSERVATION OF ICE LENSING AND FROST HEAVE IN GLASS BEADS Yoshiko Mutou 1, Kunio Watanabe 1, Takeshi Ishizaki 2, Masaru Mizoguchi 1 1. Department of Bioresources, Mie University, 1515 Kamihama

More information

Removal of cationic surfactants from water using clinoptilolite zeolite

Removal of cationic surfactants from water using clinoptilolite zeolite 2098 From Zeolites to Porous MOF Materials the 40 th Anniversary of International Zeolite Conference R. Xu, Z. Gao, J. Chen and W. Yan (Editors) 2007 Elsevier B.V. All rights reserved. Removal of cationic

More information

HP1 Tutorials II (HYDRUS-1D + PHREEQC)

HP1 Tutorials II (HYDRUS-1D + PHREEQC) HP1 Tutorials II (HYDRUS-1D + PHREEQC).14.12 Concentration [mol/kg].1.8.6.4 Cl Ca Na K.2 144 288 432 576 72 864 Time [s] Diederik Jacques * and Jirka Šimůnek # * Waste and Disposal, SCK CEN, Mol, Belgium

More information

Microscopic Observation of Ice Lensing and Frost Heaves in Glass Beads

Microscopic Observation of Ice Lensing and Frost Heaves in Glass Beads Microscopic Observation of Ice Lensing and Frost Heaves in Glass Beads Yoshiko MUTOU*, Kunio WATANABE*, Takeshi ISHIZAKI** and Masaru MIZOGUCHI* *epartment of Bioresources, Mie University, 1515 Kamihama

More information

MODELLING SCALE-DEPENDENT RADIAL TWO-PHASE FLOW OF LIQUID AND GAS IN UNSATURATED POROUS MEDIA

MODELLING SCALE-DEPENDENT RADIAL TWO-PHASE FLOW OF LIQUID AND GAS IN UNSATURATED POROUS MEDIA Fifth International Conference on CFD in the Process Industries CSIRO, Melbourne, Australia -5 December 006 MODELLING SCALE-DEPENDENT RADIAL TWO-PHASE FLOW OF LIQUID AND GAS IN UNSATURATED POROUS MEDIA

More information

Comparison of Averaging Methods for Interface Conductivities in One-dimensional Unsaturated Flow in Layered Soils

Comparison of Averaging Methods for Interface Conductivities in One-dimensional Unsaturated Flow in Layered Soils Comparison of Averaging Methods for Interface Conductivities in One-dimensional Unsaturated Flow in Layered Soils Ruowen Liu, Bruno Welfert and Sandra Houston School of Mathematical & Statistical Sciences,

More information

Sensitivity analysis of physical and chemical properties affecting field-scale cadmium transport in a heterogeneous soil profile

Sensitivity analysis of physical and chemical properties affecting field-scale cadmium transport in a heterogeneous soil profile Journal of Hydrology 264 (2002) 185 200 www.elsevier.com/locate/jhydrol Sensitivity analysis of physical and chemical properties affecting field-scale cadmium transport in a heterogeneous soil profile

More information

Chapter 2 Water Movement and Solute Transport in Unsaturated Porous Media

Chapter 2 Water Movement and Solute Transport in Unsaturated Porous Media Chapter 2 Water Movement and Solute Transport in Unsaturated Porous Media The unsaturated zone, also termed the vadose zone, is the portion of the subsurface above the groundwater table. It contains air

More information

Scientific registration n : 1789 Symposium n : 4 Presentation : poster. ARINGHIERI Roberto

Scientific registration n : 1789 Symposium n : 4 Presentation : poster. ARINGHIERI Roberto Scientific registration n : 1789 Symposium n : 4 Presentation : poster Saturated hydraulic conductivity and structural properties of clay-sand systems Conductivité hydraulique en saturé et propriétés structurales

More information

A COUPLED REACTIVE TRANSPORT MODEL FOR CONTAMINANT LEACHING FROM CEMENTITIOUS WASTE MATRICES ACCOUNTING FOR SOLID PHASE ALTERATIONS

A COUPLED REACTIVE TRANSPORT MODEL FOR CONTAMINANT LEACHING FROM CEMENTITIOUS WASTE MATRICES ACCOUNTING FOR SOLID PHASE ALTERATIONS A COUPLED REACTIVE TRANSPORT MODEL FOR CONTAMINANT LEACHING FROM CEMENTITIOUS WASTE MATRICES ACCOUNTING FOR SOLID PHASE ALTERATIONS D. JACQUES *1, J. ŠIMŮNEK **, D. MALLANTS *, M.TH. VAN GENUCHTEN ***,

More information

12 SWAT USER S MANUAL, VERSION 98.1

12 SWAT USER S MANUAL, VERSION 98.1 12 SWAT USER S MANUAL, VERSION 98.1 CANOPY STORAGE. Canopy storage is the water intercepted by vegetative surfaces (the canopy) where it is held and made available for evaporation. When using the curve

More information

Quantifying nonisothermal subsurface soil water evaporation

Quantifying nonisothermal subsurface soil water evaporation WATER RESOURCES RESEARCH, VOL. 48, W11503, doi:10.1029/2012wr012516, 2012 Quantifying nonisothermal subsurface soil water evaporation Pukhraj Deol, 1 Josh Heitman, 1 Aziz Amoozegar, 1 Tusheng Ren, 2 and

More information

Quantifying nonisothermal subsurface soil water evaporation

Quantifying nonisothermal subsurface soil water evaporation Agronomy Publications Agronomy 11-2012 Quantifying nonisothermal subsurface soil water evaporation Pukhraj Deol North Carolina State University at Raleigh Josh Heitman North Carolina State University at

More information

Transient water flow in unsaturated porous media is usually described by the

Transient water flow in unsaturated porous media is usually described by the Soil Physics Combined Transient Method for Determining Soil Hydraulic Properties in a Wide Pressure Head Range H. Schelle* S. C. Iden W. Durner Institut für Geoökologie Technische Universität Braunschweig

More information

Analytical solutions for water flow and solute transport in the unsaturated zone

Analytical solutions for water flow and solute transport in the unsaturated zone Models for Assessing and Monitoring Groundwater Quality (Procsedines of a Boulder Symposium July 1995). IAHS Publ. no. 227, 1995. 125 Analytical solutions for water flow and solute transport in the unsaturated

More information

Colloid and colloid-facilitated transport modeling using HPx

Colloid and colloid-facilitated transport modeling using HPx Colloid and colloid-facilitated transport modeling using HPx D. Jacques 1, D. Zhou 2, J. Makselon 3, I. Engelhardt 2, and S. Thiele-Bruh 4 1 SCK-CEN, 2 TU Berlin, 3 Forschungszentrum Jülich GmbH, 4 University

More information

Extended multistep outflow method for the accurate determination of soil hydraulic properties near water saturation

Extended multistep outflow method for the accurate determination of soil hydraulic properties near water saturation WATER RESOURCES RESEARCH, VOL. 47, W08526, doi:10.1029/2011wr010632, 2011 Extended multistep outflow method for the accurate determination of soil hydraulic properties near water saturation W. Durner 1

More information

, 1983;, Fourier 1. G = λ dt dz (1) Cm 1 Km 1 C m. Sauer and Horton, Fourier. c Sauer and

, 1983;, Fourier 1. G = λ dt dz (1) Cm 1 Km 1 C m. Sauer and Horton, Fourier. c Sauer and J. Jpn. Soc. Soil Phys. No. 124, p.35 42 (2013) 1 2,3 1 1 1 Comparison between temperature gradient and heat flux plate methods and effect of heat storage for determination of soil heat flux at near soil

More information

Numerical investigations of hillslopes with variably saturated subsurface and overland flows

Numerical investigations of hillslopes with variably saturated subsurface and overland flows Numerical investigations of hillslopes with variably saturated subsurface and overland flows ARC DYNAS H. Beaugendre, T. Esclaffer, A. Ern and E. Gaume DYNAS Workshop 06-08/12/04 DYNAS Workshop 06-08/12/04

More information

Infiltration from irrigation channels into soil with impermeable inclusions

Infiltration from irrigation channels into soil with impermeable inclusions ANZIAM J. 46 (E) pp.c1055 C1068, 2005 C1055 Infiltration from irrigation channels into soil with impermeable inclusions Maria Lobo David L. Clements Nyoman Widana (Received 15 October 2004; revised 16

More information

Modeling Hg Reactive Transport in Soil Systems Using HP1

Modeling Hg Reactive Transport in Soil Systems Using HP1 Modeling Hg Reactive Transport in Soil Systems Using HP1 Bertrand Leterme and Diederik Jacques Performance Assessments, Institute Environment, Health and Safety, Belgian Nuclear Research Centre, Mol, Belgium,

More information

Analytical Models for Soil Pore-Size Distribution After Tillage

Analytical Models for Soil Pore-Size Distribution After Tillage Analytical Models for Soil Pore-Size Distribution After Tillage Feike J. Leij,* Teamrat A. Ghezzehei, and Dani Or ABSTRACT for all properties whereas tillage practices contributed Tillage causes soil fragmentation

More information

Fast proximal gradient methods

Fast proximal gradient methods L. Vandenberghe EE236C (Spring 2013-14) Fast proximal gradient methods fast proximal gradient method (FISTA) FISTA with line search FISTA as descent method Nesterov s second method 1 Fast (proximal) gradient

More information

Flow toward Pumping Well, next to river = line source = constant head boundary

Flow toward Pumping Well, next to river = line source = constant head boundary Flow toward Pumping Well, next to river = line source = constant head boundary Plan view River Channel after Domenico & Schwartz (1990) Line Source Leonhard Euler 1707-1783 e i" +1 = 0 wikimedia.org Charles

More information

Supporting Information

Supporting Information 1 Supporting Information 2 3 4 Transport of Biochar Particles in Saturated Granular Media: Effects of Pyrolysis Temperature and Particle Size 5 6 7 8 9 10 11 Dengjun Wang,, Wei Zhang, # Xiuzhen Hao, and

More information

LEAST SQUARES PROBLEMS WITH INEQUALITY CONSTRAINTS AS QUADRATIC CONSTRAINTS

LEAST SQUARES PROBLEMS WITH INEQUALITY CONSTRAINTS AS QUADRATIC CONSTRAINTS LEAST SQUARES PROBLEMS WITH INEQUALITY CONSTRAINTS AS QUADRATIC CONSTRAINTS JODI MEAD AND ROSEMARY A RENAUT. Introduction. The linear least squares problems discussed here are often used to incorporate

More information

Unsaturated Flow (brief lecture)

Unsaturated Flow (brief lecture) Physical Hydrogeology Unsaturated Flow (brief lecture) Why study the unsaturated zone? Evapotranspiration Infiltration Toxic Waste Leak Irrigation UNSATURATAED ZONE Aquifer Important to: Agriculture (most

More information

Empirical two-point A-mixing model for calibrating the ECH 2 O EC-5 soil moisture sensor in sands

Empirical two-point A-mixing model for calibrating the ECH 2 O EC-5 soil moisture sensor in sands WATER RESOURCES RESEARCH, VOL. 44, W00D08, doi:10.1029/2008wr006870, 2008 Empirical two-point A-mixing model for calibrating the ECH 2 O EC-5 soil moisture sensor in sands Toshihiro Sakaki, 1 Anuchit Limsuwat,

More information

THE SUBSURFACE TRANSPORT of metals in variably saturated

THE SUBSURFACE TRANSPORT of metals in variably saturated Published online March 8, 2006 Variably Saturated Reactive Transport of Arsenic in Heap-Leach Facilities David L. Decker,* Jirka Šimůnek, Scott W. Tyler, Charalambos Papelis, and Mark J. Logsdon ABSTRACT

More information

Indirect estimation of soil thermal properties and water flux using heat pulse probe measurements: Geometry and dispersion effects

Indirect estimation of soil thermal properties and water flux using heat pulse probe measurements: Geometry and dispersion effects WATER RESOURCES RESEARCH, VOL. 38, NO. 1, 1006, 10.1029/2000WR000071, 2002 Indirect estimation of soil thermal properties and water flux using heat pulse probe measurements: Geometry and dispersion effects

More information

Advanced Hydraulics Prof. Dr. Suresh A Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati

Advanced Hydraulics Prof. Dr. Suresh A Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Advanced Hydraulics Prof. Dr. Suresh A Kartha Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 2 Uniform Flows Lecture - 6 Design of Channels for Uniform Flow (Refer Slide

More information

Geoderma 281 (2016) Contents lists available at ScienceDirect. Geoderma. journal homepage:

Geoderma 281 (2016) Contents lists available at ScienceDirect. Geoderma. journal homepage: Geoderma 281 (2016) 39 48 Contents lists available at ScienceDirect Geoderma journal homepage: www.elsevier.com/locate/geoderma The effects of rock fragment shapes and positions on modeled hydraulic conductivities

More information

Hydrological process simulation in the earth dam and dike by the Program PCSiWaPro

Hydrological process simulation in the earth dam and dike by the Program PCSiWaPro Fakultät Umweltwissenschaften, Fachrichtung Hydrowissenschaften. Hydrological process simulation in the earth dam and dike by the Program PCSiWaPro Jinxing Guo, Peter-Wolfgang Graeber Table of contents

More information

The C-Ride Module. for HYDRUS (2D/3D) Simulating Two-Dimensional Colloid-Facilitated Solute Transport in Variably-Saturated Porous Media. Version 1.

The C-Ride Module. for HYDRUS (2D/3D) Simulating Two-Dimensional Colloid-Facilitated Solute Transport in Variably-Saturated Porous Media. Version 1. The C-Ride Module for HYDRUS (2D/3D) Simulating Two-Dimensional Colloid-Facilitated Solute Transport in Variably-Saturated Porous Media Version 1.0 Jirka Šimůnek 1, Miroslav Šejna 2, and Martinus Th. van

More information

DETERMINATION OF COEFFICIENTS OF INFILTRATION EQUATIONS

DETERMINATION OF COEFFICIENTS OF INFILTRATION EQUATIONS DETERMINATION OF COEFFICIENTS OF INFILTRATION EQUATIONS Wender Lin Research Engineer ~nvironment Alberta Edmonton, Alberta T5J OZ6 and Don M. Gray Chairman, Division of Hydrology College of Engineering

More information

Automatic Gamma-Ray Equipment for Multiple Soil Physical Properties Measurements

Automatic Gamma-Ray Equipment for Multiple Soil Physical Properties Measurements Automatic Gamma-Ray Equipment for Multiple Soil Physical Properties Measurements Carlos Manoel Pedro Vaz Embrapa Agricultural Instrumentation, São Carlos, Brazil Lecture given at the College on Soil Physics

More information

Analysis of infiltration processes into fractured and swelling soils as triggering factors of landslides

Analysis of infiltration processes into fractured and swelling soils as triggering factors of landslides Environ Earth Sci (2014) 71:2911 2923 DOI 10.1007/s12665-013-2666-7 ORIGINAL ARTICLE Analysis of infiltration processes into fractured and swelling soils as triggering factors of landslides A. Galeandro

More information

Tools for Parameter Estimation and Propagation of Uncertainty

Tools for Parameter Estimation and Propagation of Uncertainty Tools for Parameter Estimation and Propagation of Uncertainty Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt.edu Outline Models, parameters, parameter estimation,

More information

Darcy s Law, Richards Equation, and Green-Ampt Equation

Darcy s Law, Richards Equation, and Green-Ampt Equation Darcy s Law, Richards Equation, and Green-Ampt Equation 1. Darcy s Law Fluid potential: in classic hydraulics, the fluid potential M is stated in terms of Bernoulli Equation (1.1) P, pressure, [F L!2 ]

More information

WMS 9.0 Tutorial GSSHA Modeling Basics Infiltration Learn how to add infiltration to your GSSHA model

WMS 9.0 Tutorial GSSHA Modeling Basics Infiltration Learn how to add infiltration to your GSSHA model v. 9.0 WMS 9.0 Tutorial GSSHA Modeling Basics Infiltration Learn how to add infiltration to your GSSHA model Objectives This workshop builds on the model developed in the previous workshop and shows you

More information

Journal of Hydrology, 45 (1980) Elsevier Scientific Publishing Company, Amsterdam -- Printed in The Netherlands

Journal of Hydrology, 45 (1980) Elsevier Scientific Publishing Company, Amsterdam -- Printed in The Netherlands Journal of Hydrology, 45 (1980) 289--303 289 Elsevier Scientific Publishing Company, Amsterdam -- Printed in The Netherlands [4] CONSTANT-RAINFALL INFILTRATION M. KUTILEK Laboratory of Soil Science, Department

More information

Simulating Nonequilibrium Movement of Water, Solutes and. Particles Using HYDRUS: A Review of Recent Applications

Simulating Nonequilibrium Movement of Water, Solutes and. Particles Using HYDRUS: A Review of Recent Applications 1 2 Simulating Nonequilibrium Movement of Water, Solutes and Particles Using HYDRUS: A Review of Recent Applications 3 4 5 6 7 8 9 10 11 Jiří Šimůnek 1, J. Maximilian Köhne 2, Radka Kodešová 3, Miroslav

More information

Name Date Class. biota climate decomposition horizon organic matter parent material pore sediment soil topography. Clues

Name Date Class. biota climate decomposition horizon organic matter parent material pore sediment soil topography. Clues Content Vocabulary Directions: Use the clues and the terms listed below to complete the puzzle. NOTE: There is no empty square in the puzzle between the words of two-word terms. Some words may not be used.

More information

HydroUmcal Interactions Between Atmosphere, Soil and Vernation (Proceedings of the Vienna Symposium, August 1991). IAHS Publ. no. 204,1991.

HydroUmcal Interactions Between Atmosphere, Soil and Vernation (Proceedings of the Vienna Symposium, August 1991). IAHS Publ. no. 204,1991. HydroUmcal Interactions Between Atmosphere, Soil and Vernation (Proceedings of the Vienna Symposium, August 1991). IAHS Publ. no. 204,1991. Theoretical and Experimental Analysis of the Relationship Between

More information

Can we distinguish Richards and Boussinesq s equations for hillslopes?: The Coweeta experiment revisited

Can we distinguish Richards and Boussinesq s equations for hillslopes?: The Coweeta experiment revisited WATER RESOURCES RESEARCH, VOL. 35, NO. 2, PAGES 589 593, FEBRUARY 1999 Can we distinguish Richards and Boussinesq s equations for hillslopes?: The Coweeta experiment revisited T. S. Steenhuis, 1 J.-Y.

More information

Preferential Flow and Extensions to Richards Equation

Preferential Flow and Extensions to Richards Equation Preferential Flow and Extensions to Richards Equation David A. DiCarlo Dept. of Petroleum and Geosystems Engineering University of Texas at Austin Preferential flow Uniform infiltration Preferential flow

More information

Preliminary soil survey of the NATL Old Field Plots

Preliminary soil survey of the NATL Old Field Plots Preliminary soil survey of the NATL Old Field Plots The preliminary soil survey consisted of completing auger borings at 25 m intervals and included auger borings at total of 46 points. The borings were

More information

The influence of stony soil properties on water dynamics modeled by the HYDRUS model

The influence of stony soil properties on water dynamics modeled by the HYDRUS model J. Hydrol. Hydromech., 66, 2018, 2, 181 188 DOI: 10.1515/johh-2017-0052 The influence of stony soil properties on water dynamics modeled by the HYDRUS model Hana Hlaváčiková *, Viliam Novák, Zdeněk Kostka,

More information

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes 6 th International Conference on Earthquake Geotechnical Engineering 1-4 November 215 Christchurch, New Zealand Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes T. Nishimura

More information

The Singapore Copyright Act applies to the use of this document.

The Singapore Copyright Act applies to the use of this document. Title A laplace transform DRBEM with a predictor-corrector scheme for timedependent infiltration from periodic channels with root-water uptake Author(s) Imam Solekhudin and Keng-Cheng Ang Source Engineering

More information

PREDICTION OF CADMIUM ACCUMULATION IN A HETEROGENEOUS SOIL USING A SCALED SORPTION MODEL

PREDICTION OF CADMIUM ACCUMULATION IN A HETEROGENEOUS SOIL USING A SCALED SORPTION MODEL ModelCARE 90: Calibration and Reliability in Groundwater Modelling (Proceedings of the conference held in The Hague, September 1990). IAHS Publ. no. 195, 1990. PREDICTION OF CADMIUM ACCUMULATION IN A HETEROGENEOUS

More information