Nonassociative Geometry and Non-Geometric Backgrounds

Size: px
Start display at page:

Download "Nonassociative Geometry and Non-Geometric Backgrounds"

Transcription

1 Nonassociative Geometry and Non-Geometric Backgrounds Richard Szabo Action MP 1405 Quantum Structure of Spacetime Division of Theoretical Physics Seminar Rudjer Bos kovic Institute, Zagreb April 18, 2018

2 D-branes and the Lie algebra su(2)

3 D-branes and the Lie algebra su(2) D1 D3

4 D-branes and the Lie algebra su(2) D1 D3 (BPS) monopoles D1-branes ending on D3-branes

5 D-branes and the Lie algebra su(2) D1 D3 (BPS) monopoles D1-branes ending on D3-branes From perspective of D1-branes described by Nahm equations: (Nahm 80; Diaconescu 97; Tsimpis 98) dt i ds + εijk [T j, T k ] = 0 (s = x 6 )

6 D-branes and the Lie algebra su(2) D1 D3 (BPS) monopoles D1-branes ending on D3-branes From perspective of D1-branes described by Nahm equations: (Nahm 80; Diaconescu 97; Tsimpis 98) dt i ds + εijk [T j, T k ] = 0 (s = x 6 ) Solution: T i (s) = 1 s X i, [X i, X j ] = ε ijk X k fuzzy S 2 (Myers 99)

7 M-branes and the 3-Lie algebra A4

8 M-branes and the 3-Lie algebra A M2 M5

9 M-branes and the 3-Lie algebra A M2 M5 Lift monopoles to M-theory self-dual strings

10 M-branes and the 3-Lie algebra A M2 M5 Lift monopoles to M-theory self-dual strings M2-branes ending on M5-branes described by Basu Harvey equations: (Basu & Harvey 05) dt i ds + εijkl [T j, T k, T l ] = 0 (s = x 6 )

11 M-branes and the 3-Lie algebra A M2 M5 Lift monopoles to M-theory self-dual strings M2-branes ending on M5-branes described by Basu Harvey equations: (Basu & Harvey 05) dt i ds + εijkl [T j, T k, T l ] = 0 (s = x 6 ) Solution: T i (s) = 1 2s X i, [X i, X j, X k ] = ε ijkl X l fuzzy S 3?

12 Open strings and B-fields

13 Open strings and B-fields Nahm equations boundary condition for open strings (Chu & Smith 09)

14 Open strings and B-fields Nahm equations boundary condition for open strings (Chu & Smith 09) Turning on constant 2-form B-field on D3-brane induces shift in Nahm equations, accounted for by Heisenberg algebra: [X i, X j ] = i θ ij, θ B

15 Open strings and B-fields Nahm equations boundary condition for open strings (Chu & Smith 09) Turning on constant 2-form B-field on D3-brane induces shift in Nahm equations, accounted for by Heisenberg algebra: [X i, X j ] = i θ ij, θ B Quantization of Poisson bracket on R 2 (Chu & Ho 98; Schomerus 99; Seiberg & Witten 99;... )

16 Open strings and B-fields Nahm equations boundary condition for open strings (Chu & Smith 09) Turning on constant 2-form B-field on D3-brane induces shift in Nahm equations, accounted for by Heisenberg algebra: [X i, X j ] = i θ ij, θ B Quantization of Poisson bracket on R 2 (Chu & Ho 98; Schomerus 99; Seiberg & Witten 99;... ) Quantization captured by associative Moyal Weyl star-product of fields encoded in scattering amplitudes: (f g)(x) = f (k) g(k ) e i 2 k θk e i (k+k ) x k,k

17 Open strings and B-fields Nahm equations boundary condition for open strings (Chu & Smith 09) Turning on constant 2-form B-field on D3-brane induces shift in Nahm equations, accounted for by Heisenberg algebra: [X i, X j ] = i θ ij, θ B Quantization of Poisson bracket on R 2 (Chu & Ho 98; Schomerus 99; Seiberg & Witten 99;... ) Quantization captured by associative Moyal Weyl star-product of fields encoded in scattering amplitudes: (f g)(x) = f (k) g(k ) e i 2 k θk e i (k+k ) x k,k Low-energy dynamics described by noncommutative gauge theory on D3-brane

18 Open membranes and C-fields

19 Open membranes and C-fields Basu Harvey equations boundary condition of open membranes

20 Open membranes and C-fields Basu Harvey equations boundary condition of open membranes Modification from constant 3-form C-field on M5-brane accounted for by Nambu Heisenberg algebra: (Nambu 73) [X i, X j, X k ] = i Θ ijk, Θ C Quantization of Nambu Poisson 3-bracket on R 3

21 Open membranes and C-fields Basu Harvey equations boundary condition of open membranes Modification from constant 3-form C-field on M5-brane accounted for by Nambu Heisenberg algebra: (Nambu 73) [X i, X j, X k ] = i Θ ijk, Θ C Quantization of Nambu Poisson 3-bracket on R 3 Agrees via transgression with noncommutative loop space from quantization of open membranes: (Bergshoeff, Berman, van der Schaar & Sundell 00; Kawamoto & Sasakura 00; Sämann & RS 12) [ X i (τ), X j (τ ) ] = i Θ ijk Ẋ k (τ) Ẋ (τ) 2 δ(τ τ ) +

22 Open membranes and C-fields Basu Harvey equations boundary condition of open membranes Modification from constant 3-form C-field on M5-brane accounted for by Nambu Heisenberg algebra: (Nambu 73) [X i, X j, X k ] = i Θ ijk, Θ C Quantization of Nambu Poisson 3-bracket on R 3 Agrees via transgression with noncommutative loop space from quantization of open membranes: (Bergshoeff, Berman, van der Schaar & Sundell 00; Kawamoto & Sasakura 00; Sämann & RS 12) [ X i (τ), X j (τ ) ] = i Θ ijk Ẋ k (τ) Ẋ (τ) 2 δ(τ τ ) + Quantization unknown

23 Non-geometric fluxes

24 Non-geometric fluxes Quantum geometry of closed strings: Closed strings winding and propagating in non-geometric flux compactifications probe noncommutative/nonassociative deformations of geometry (Blumenhagen & Plauschinn 10; Lüst 10; Blumenhagen, Deser, Lüst, Plauschinn & Rennecke 11; Condeescu, Florakis & Lüst 12; Mylonas, Schupp & RS 12; Andriot, Larfors, Lüst & Patalong 12; Davidović, Nikolić & Sazdović 13; Blair 14; Bakas & Lüst 15; Nikolić & Obrić 18; Chatzistavrakidis, Jonke, Khoo & RS 18;... )

25 Non-geometric fluxes Quantum geometry of closed strings: Closed strings winding and propagating in non-geometric flux compactifications probe noncommutative/nonassociative deformations of geometry (Blumenhagen & Plauschinn 10; Lüst 10; Blumenhagen, Deser, Lüst, Plauschinn & Rennecke 11; Condeescu, Florakis & Lüst 12; Mylonas, Schupp & RS 12; Andriot, Larfors, Lüst & Patalong 12; Davidović, Nikolić & Sazdović 13; Blair 14; Bakas & Lüst 15; Nikolić & Obrić 18; Chatzistavrakidis, Jonke, Khoo & RS 18;... ) M = T 3 with H-flux gives geometric and non-geometric fluxes via T-duality (Hull 05; Shelton, Taylor & Wecht 05) H ijk T i f i jk T j Q ij k T k R ijk

26 Non-geometric fluxes Quantum geometry of closed strings: Closed strings winding and propagating in non-geometric flux compactifications probe noncommutative/nonassociative deformations of geometry (Blumenhagen & Plauschinn 10; Lüst 10; Blumenhagen, Deser, Lüst, Plauschinn & Rennecke 11; Condeescu, Florakis & Lüst 12; Mylonas, Schupp & RS 12; Andriot, Larfors, Lüst & Patalong 12; Davidović, Nikolić & Sazdović 13; Blair 14; Bakas & Lüst 15; Nikolić & Obrić 18; Chatzistavrakidis, Jonke, Khoo & RS 18;... ) M = T 3 with H-flux gives geometric and non-geometric fluxes via T-duality (Hull 05; Shelton, Taylor & Wecht 05) H ijk T i f i jk T j Q ij k T k R ijk Sends string winding (w i ) H 1 (T 3, Z) = Z 3 to momenta (p i )

27 Non-geometric fluxes Quantum geometry of closed strings: Closed strings winding and propagating in non-geometric flux compactifications probe noncommutative/nonassociative deformations of geometry (Blumenhagen & Plauschinn 10; Lüst 10; Blumenhagen, Deser, Lüst, Plauschinn & Rennecke 11; Condeescu, Florakis & Lüst 12; Mylonas, Schupp & RS 12; Andriot, Larfors, Lüst & Patalong 12; Davidović, Nikolić & Sazdović 13; Blair 14; Bakas & Lüst 15; Nikolić & Obrić 18; Chatzistavrakidis, Jonke, Khoo & RS 18;... ) M = T 3 with H-flux gives geometric and non-geometric fluxes via T-duality (Hull 05; Shelton, Taylor & Wecht 05) H ijk T i f i jk T j Q ij k T k R ijk Sends string winding (w i ) H 1 (T 3, Z) = Z 3 to momenta (p i ) T ijk In Double Field Theory: H ijk = [i B jk] R ijk = ˆ [i β jk] (Andriot, Hohm, Larfors, Lüst & Patalong 12)

28 Parabolic R-flux model

29 Parabolic R-flux model Twisted Poisson structure on phase space M = T M (Lüst 10) [x i, x j ] = i l3 s 3 Rijk p k, [x i, p j ] = i δ i j, [p i, p j ] = 0 Closed string nonassociativity (Jacobiator) [x i, x j, x k ] = l 3 s R ijk

30 Parabolic R-flux model Twisted Poisson structure on phase space M = T M (Lüst 10) [x i, x j ] = i l3 s 3 Rijk p k, [x i, p j ] = i δ i j, [p i, p j ] = 0 Closed string nonassociativity (Jacobiator) [x i, x j, x k ] = l 3 s R ijk Quantization captured by nonassociative phase space star product (Mylonas, Schupp & RS 12; Bakas & Lüst 13; Kupriyanov & Vassilevich 15) (f g)(x) = k,k f (k) g(k ) e i 2 (k p k x kx k p ) e i l3 s 6 R (kx k x ) p e i (k+k ) x

31 Parabolic R-flux model Twisted Poisson structure on phase space M = T M (Lüst 10) [x i, x j ] = i l3 s 3 Rijk p k, [x i, p j ] = i δ i j, [p i, p j ] = 0 Closed string nonassociativity (Jacobiator) [x i, x j, x k ] = l 3 s R ijk Quantization captured by nonassociative phase space star product (Mylonas, Schupp & RS 12; Bakas & Lüst 13; Kupriyanov & Vassilevich 15) (f g)(x) = k,k f (k) g(k ) e i 2 (k p k x kx k p ) e i l3 s 6 R (kx k x ) p e i (k+k ) x Nonassociative BCH formula captured by 3-cocycle: ( e i k x e i k x ) e i k x = e i l3 s 6 R k x (k x k x ) e i k x ( e i k x e i k x )

32 Parabolic R-flux model Twisted Poisson structure on phase space M = T M (Lüst 10) [x i, x j ] = i l3 s 3 Rijk p k, [x i, p j ] = i δ i j, [p i, p j ] = 0 Closed string nonassociativity (Jacobiator) [x i, x j, x k ] = l 3 s R ijk Quantization captured by nonassociative phase space star product (Mylonas, Schupp & RS 12; Bakas & Lüst 13; Kupriyanov & Vassilevich 15) (f g)(x) = k,k f (k) g(k ) e i 2 (k p k x kx k p ) e i l3 s 6 R (kx k x ) p e i (k+k ) x Nonassociative BCH formula captured by 3-cocycle: ( e i k x e i k x ) e i k x = e i l3 s 6 R k x (k x k x ) e i k x ( e i k x e i k x ) Closure, 3-cyclicity: f g = f g, (f g) h = f (g h)

33 Nonassociative quantum mechanics (Mylonas, Schupp & RS 13; Bojowald, Brahma, Büyükçam & Strobl 14; Bojowald, Brahma & Büyükçam 15; Kupriyanov & RS 18; Bunk, Müller & RS 18)

34 Nonassociative quantum mechanics (Mylonas, Schupp & RS 13; Bojowald, Brahma, Büyükçam & Strobl 14; Bojowald, Brahma & Büyükçam 15; Kupriyanov & RS 18; Bunk, Müller & RS 18) Phase space quantum mechanics:

35 Nonassociative quantum mechanics (Mylonas, Schupp & RS 13; Bojowald, Brahma, Büyükçam & Strobl 14; Bojowald, Brahma & Büyükçam 15; Kupriyanov & RS 18; Bunk, Müller & RS 18) Phase space quantum mechanics: Observables: Real-valued functions f (x, p)

36 Nonassociative quantum mechanics (Mylonas, Schupp & RS 13; Bojowald, Brahma, Büyükçam & Strobl 14; Bojowald, Brahma & Büyükçam 15; Kupriyanov & RS 18; Bunk, Müller & RS 18) Phase space quantum mechanics: Observables: Real-valued functions f (x, p) Dynamics: f t = i [H, f ]

37 Nonassociative quantum mechanics (Mylonas, Schupp & RS 13; Bojowald, Brahma, Büyükçam & Strobl 14; Bojowald, Brahma & Büyükçam 15; Kupriyanov & RS 18; Bunk, Müller & RS 18) Phase space quantum mechanics: Observables: Real-valued functions f (x, p) f Dynamics: = i t [H, f ] States: Normalized phase space wavefunctions ψ a Statistical probabilities µ a [0, 1]

38 Nonassociative quantum mechanics (Mylonas, Schupp & RS 13; Bojowald, Brahma, Büyükçam & Strobl 14; Bojowald, Brahma & Büyükçam 15; Kupriyanov & RS 18; Bunk, Müller & RS 18) Phase space quantum mechanics: Observables: Real-valued functions f (x, p) f Dynamics: = i t [H, f ] States: Normalized phase space wavefunctions ψ a Statistical probabilities µ a [0, 1] Expectation values: f = µ a ψa (f ψ a ) = a f S S = a µ a ψ a ψ a

39 Nonassociative quantum mechanics (Mylonas, Schupp & RS 13; Bojowald, Brahma, Büyükçam & Strobl 14; Bojowald, Brahma & Büyükçam 15; Kupriyanov & RS 18; Bunk, Müller & RS 18) Phase space quantum mechanics: Observables: Real-valued functions f (x, p) f Dynamics: = i t [H, f ] States: Normalized phase space wavefunctions ψ a Statistical probabilities µ a [0, 1] Expectation values: f = µ a ψa (f ψ a ) = a f S S = a µ a ψ a ψ a Positivity, reality,... using closure, 3-cyclicity, Hermiticity (f g) = g f, and unitality f 1 = f = 1 f

40 Spacetime quantization

41 Spacetime quantization Coarse-graining of spacetime with R-flux: Nonassociating observables cannot have common eigen-states x I S = λ I S

42 Spacetime quantization Coarse-graining of spacetime with R-flux: Nonassociating observables cannot have common eigen-states x I S = λ I S Oriented area and volume (uncertainty) operators: A IJ = Im ( [ x I, x J ] ) = i ( x I x J x J x I ) V IJK = 1 3 Re( x I [ x J, x K ] + x K [ x I, x J ] + x J [ x K, x I ] ) Shifted coordinates x I := x I x I

43 Spacetime quantization Coarse-graining of spacetime with R-flux: Nonassociating observables cannot have common eigen-states x I S = λ I S Oriented area and volume (uncertainty) operators: A IJ = Im ( [ x I, x J ] ) = i ( x I x J x J x I ) V IJK = 1 3 Re( x I [ x J, x K ] + x K [ x I, x J ] + x J [ x K, x I ] ) Shifted coordinates x I := x I x I Minimal area and volume: A x i,p j = δ i j, A ij = l3 s 3 Rijk p k, Quantized spacetime with cells of minimal volume V ijk = l3 s 2 R ijk l3 s 2 R ijk

44 Spacetime quantization Coarse-graining of spacetime with R-flux: Nonassociating observables cannot have common eigen-states x I S = λ I S Oriented area and volume (uncertainty) operators: A IJ = Im ( [ x I, x J ] ) = i ( x I x J x J x I ) V IJK = 1 3 Re( x I [ x J, x K ] + x K [ x I, x J ] + x J [ x K, x I ] ) Shifted coordinates x I := x I x I Minimal area and volume: A x i,p j = δ i j, A ij = l3 s 3 Rijk p k, Quantized spacetime with cells of minimal volume V ijk = l3 s 2 R ijk l3 s 2 R ijk Freed Witten anomaly: No D3-branes on T 3 with H-flux No D0-branes in R-flux background (Wecht 07) T ijk

45 Nonassociative geometry

46 Nonassociative geometry Configuration space triproducts (Aschieri & RS 15) (f g h)(x) = ( f (x) g(x) ) h(x) p=0

47 Nonassociative geometry Configuration space triproducts (Aschieri & RS 15) (f g h)(x) = ( f (x) g(x) ) h(x) p=0 = f (k x ) g(k x) h(k x ) e i l 3 s k x,k x,k x 12 R kx (k x k x ) e i (kx +k x +k x ) x

48 Nonassociative geometry Configuration space triproducts (Aschieri & RS 15) (f g h)(x) = ( f (x) g(x) ) h(x) p=0 = f (k x ) g(k x) h(k x ) e i l 3 s k x,k x,k x 12 R kx (k x k x ) e i (kx +k x +k x ) x Quantizes 3-bracket [f, g, h] = Asym(f g h) (Takhtajan 94) [x i, x j, x k ] = l 3 s R ijk

49 Nonassociative geometry Configuration space triproducts (Aschieri & RS 15) (f g h)(x) = ( f (x) g(x) ) h(x) p=0 = f (k x ) g(k x) h(k x ) e i l 3 s k x,k x,k x 12 R kx (k x k x ) e i (kx +k x +k x ) x Quantizes 3-bracket [f, g, h] = Asym(f g h) (Takhtajan 94) [x i, x j, x k ] = l 3 s R ijk Agrees with triproducts of tachyon vertex operators after T-duality in CFT perturbation theory around flat space with constant H-flux (Blumenhagen, Deser, Lüst, Plauschinn & Rennecke 11)

50 Nonassociative geometry Configuration space triproducts (Aschieri & RS 15) (f g h)(x) = ( f (x) g(x) ) h(x) p=0 = f (k x ) g(k x) h(k x ) e i l 3 s k x,k x,k x 12 R kx (k x k x ) e i (kx +k x +k x ) x Quantizes 3-bracket [f, g, h] = Asym(f g h) (Takhtajan 94) [x i, x j, x k ] = l 3 s R ijk Agrees with triproducts of tachyon vertex operators after T-duality in CFT perturbation theory around flat space with constant H-flux (Blumenhagen, Deser, Lüst, Plauschinn & Rennecke 11) Violates strong constraint of Double Field Theory (Blumenhagen, Fuchs, Hassler, Lüst & Sun 14)

51 Nonassociative geometry Configuration space triproducts (Aschieri & RS 15) (f g h)(x) = ( f (x) g(x) ) h(x) p=0 = f (k x ) g(k x) h(k x ) e i l 3 s k x,k x,k x 12 R kx (k x k x ) e i (kx +k x +k x ) x Quantizes 3-bracket [f, g, h] = Asym(f g h) (Takhtajan 94) [x i, x j, x k ] = l 3 s R ijk Agrees with triproducts of tachyon vertex operators after T-duality in CFT perturbation theory around flat space with constant H-flux (Blumenhagen, Deser, Lüst, Plauschinn & Rennecke 11) Violates strong constraint of Double Field Theory (Blumenhagen, Fuchs, Hassler, Lüst & Sun 14) On-shell associativity: f g h = f g h

52 (Günaydin, Lüst & Malek 16) M-theory lift of R-flux model

53 M-theory lift of R-flux model (Günaydin, Lüst & Malek 16) S 1 M M S 1 radius λ string coupling g s

54 M-theory lift of R-flux model (Günaydin, Lüst & Malek 16) S 1 M M S 1 radius λ string coupling g s Generate string R-flux starting from twisted torus M = T 3 : T jk R ijk f i jk

55 M-theory lift of R-flux model (Günaydin, Lüst & Malek 16) S 1 M M S 1 radius λ string coupling g s Generate string R-flux starting from twisted torus M = T 3 : T jk R ijk f i jk Lift to M-theory on M = M S 1 x 4 : T-duality = U-duality

56 M-theory lift of R-flux model (Günaydin, Lüst & Malek 16) S 1 M M S 1 radius λ string coupling g s Generate string R-flux starting from twisted torus M = T 3 : T jk R ijk f i jk Lift to M-theory on M = M S 1 x 4 : T-duality = U-duality U µνρ In SL(5) Exceptional Field Theory: C µνρ Ω µνρ with R µ,νραβ = ˆ µ[ν Ω ραβ] (Not a 5-vector!) (Blair & Malek 14)

57 M-theory lift of R-flux model (Günaydin, Lüst & Malek 16) S 1 M M S 1 radius λ string coupling g s Generate string R-flux starting from twisted torus M = T 3 : T jk R ijk f i jk Lift to M-theory on M = M S 1 x 4 : T-duality = U-duality U µνρ In SL(5) Exceptional Field Theory: C µνρ Ω µνρ with R µ,νραβ = ˆ µ[ν Ω ραβ] (Not a 5-vector!) (Blair & Malek 14) Choice R 4,µναβ = R ε µναβ breaks SL(5) SO(4)

58 M-theory phase space

59 M-theory phase space Sends membrane wrapping (w ij ) H 2( M, Z) to momenta (p i )

60 M-theory phase space Sends membrane wrapping (w ij ) H 2( M, Z) to momenta (p i ) No D0-branes on M = p 4 = 0 along M-theory direction: H 2( M, Z) = H 1( T 3, Z) H 2( T 3, Z) = Z 2 Z [H] Z 2 Restored for R = 0: H 2(T 3, Z) = Z 3

61 M-theory phase space Sends membrane wrapping (w ij ) H 2( M, Z) to momenta (p i ) No D0-branes on M = p 4 = 0 along M-theory direction: H 2( M, Z) = H 1( T 3, Z) H 2( T 3, Z) = Z 2 Z [H] Z 2 Restored for R = 0: H 2(T 3, Z) = Z 3 R µ,νραβ p µ = 0 = 7D phase space M: [x i, x j ] = i l 3 s 3 R4,ijk4 p k, [x 4, x i ] = i λ l3 s 3 R4,1234 p i [x i, p j ] = i δ i j x 4 + i λ ε i jk x k, [x 4, p i ] = i λ 2 x i [p i, p j ] = i λ ε ijk p k [x i, x j, x k ] = i l 3 s 3 R4,ijk4 x 4, [x i, x j, x 4 ] = i λ2 l 3 s 3 R 4,ijk4 x k [p i, x j, x k ] = i λ l 3 ( s 3 R4,1234 δ j i p k δ k i p j ), [p i, x j, x 4 ] = i λ2 l 3 s 3 R 4,ijk4 p k [p i, p j, x k ] = i λ 2 ε ij k x 4 i λ ( δ k j x i δ k i x j ), [pi, p j, x 4 ] = i λ 3 ε ijk x k [p i, p j, p k ] = 0

62 M-theory phase space Sends membrane wrapping (w ij ) H 2( M, Z) to momenta (p i ) No D0-branes on M = p 4 = 0 along M-theory direction: H 2( M, Z) = H 1( T 3, Z) H 2( T 3, Z) = Z 2 Z [H] Z 2 Restored for R = 0: H 2(T 3, Z) = Z 3 R µ,νραβ p µ = 0 = 7D phase space M: [x i, x j ] = i l 3 s 3 R4,ijk4 p k, [x 4, x i ] = i λ l3 s 3 R4,1234 p i [x i, p j ] = i δ i j x 4 + i λ ε i jk x k, [x 4, p i ] = i λ 2 x i [p i, p j ] = i λ ε ijk p k [x i, x j, x k ] = i l 3 s 3 R4,ijk4 x 4, [x i, x j, x 4 ] = i λ2 l 3 s 3 R 4,ijk4 x k [p i, x j, x k ] = i λ l 3 ( s 3 R4,1234 δ j i p k δ k i p j ), [p i, x j, x 4 ] = i λ2 l 3 s 3 R 4,ijk4 p k [p i, p j, x k ] = i λ 2 ε ij k x 4 i λ ( δ k j x i δ k i x j ), [pi, p j, x 4 ] = i λ 3 ε ijk x k [p i, p j, p k ] = 0 Reduces to string R-flux algebra at λ = 0 (with x 4 = 1 central)

63 Octonionic phase space

64 Octonionic phase space Originates from nonassociative, alternative, octonion algebra O: (x A ) = (x i, x 4 (, p i ) = Λ (e A ) = 1 λ l 4 2 s R/3 f i, λ 3 l 4 s R/3 e 7, λ e i )

65 Octonionic phase space Originates from nonassociative, alternative, octonion algebra O: (x A ) = (x i, x 4 (, p i ) = Λ (e A ) = 1 λ l 4 2 s R/3 f i, Imaginary unit octonions: λ 3 l 4 s R/3 e 7, λ e i ) e A e B = δ AB 1+η ABC e C, η ABC = +1 for ABC = 123, 435, 471,...

66 Octonionic phase space Originates from nonassociative, alternative, octonion algebra O: (x A ) = (x i, x 4 (, p i ) = Λ (e A ) = 1 λ l 4 2 s R/3 f i, Imaginary unit octonions: λ 3 l 4 s R/3 e 7, λ e i ) e A e B = δ AB 1+η ABC e C, η ABC = +1 for ABC = 123, 435, 471,... Octonionic commutator [e A, e B ] = 2 η ABC e C (f i = e i+3, i = 1, 2, 3): has components [e i, e j ] = 2 ε ijk e k, [e 7, e i ] = 2 f i [f i, f j ] = 2 ε ijk e k, [e 7, f i ] = 2 e i [e i, f j ] = 2 (δ ij e 7 ε ijk f k )

67 Octonionic phase space Originates from nonassociative, alternative, octonion algebra O: (x A ) = (x i, x 4 (, p i ) = Λ (e A ) = 1 λ l 4 2 s R/3 f i, Imaginary unit octonions: λ 3 l 4 s R/3 e 7, λ e i ) e A e B = δ AB 1+η ABC e C, η ABC = +1 for ABC = 123, 435, 471,... Octonionic commutator [e A, e B ] = 2 η ABC e C (f i = e i+3, i = 1, 2, 3): has components [e i, e j ] = 2 ε ijk e k, [e 7, e i ] = 2 f i [f i, f j ] = 2 ε ijk e k, [e 7, f i ] = 2 e i [e i, f j ] = 2 (δ ij e 7 ε ijk f k ) Jacobiator: [e A, e B, e C ] = 12 η ABCD e D = 6 ( (e A e B ) e C e A (e B e C ) ) η ABCD = +1 for ABCD = 1267, 1425, 1346,...

68 (Kupriyanov & RS 17) G 2 -structures

69 G 2 -structures (Kupriyanov & RS 17) 4 normed algebras over R: R, C, H, O

70 G 2 -structures (Kupriyanov & RS 17) 4 normed algebras over R: R, C, H, O 4 real inner product spaces with cross product: (R 0, 0) (R 1, 0) (R 3, ) (R 7, η) 0 0 (k p) i = ε ijk k j p k ( k η p ) A = η ABC k B p C SO(3) G 2 SO(7)

71 G 2 -structures (Kupriyanov & RS 17) 4 normed algebras over R: R, C, H, O 4 real inner product spaces with cross product: (R 0, 0) (R 1, 0) (R 3, ) (R 7, η) 0 0 (k p) i = ε ijk k j p k ( k η p ) A = η ABC k B p C SO(3) G 2 SO(7) Jacobiator: J η( k, k, k ) = ( k η k ) η k + ( k η k ) η k + ( k η k ) η k 0

72 G 2 -structures (Kupriyanov & RS 17) 4 normed algebras over R: R, C, H, O 4 real inner product spaces with cross product: (R 0, 0) (R 1, 0) (R 3, ) (R 7, η) 0 0 (k p) i = ε ijk k j p k ( k η p ) A = η ABC k B p C SO(3) G 2 SO(7) Jacobiator: J η( k, k, k ) = ( k η k ) η k + ( k η k ) η k + ( k η k ) η k 0 Represented on O through X k = k A e A : [ ] [ X k η k = 1 X k, X 2 k, X Jη( k, k, k ) = 1 X k, X 4 k, X k ]

73 G 2 -structures (Kupriyanov & RS 17) 4 normed algebras over R: R, C, H, O 4 real inner product spaces with cross product: (R 0, 0) (R 1, 0) (R 3, ) (R 7, η) 0 0 (k p) i = ε ijk k j p k ( k η p ) A = η ABC k B p C SO(3) G 2 SO(7) Jacobiator: J η( k, k, k ) = ( k η k ) η k + ( k η k ) η k + ( k η k ) η k 0 Represented on O through X k = k A e A : [ ] [ X k η k = 1 X k, X 2 k, X Jη( k, k, k ) = 1 X k, X 4 k, X k ] Alternativity (X X ) X = X (X X ) defines octonion exponential: e X k = cos k 1 + sin k k X k

74 Octonionic BCH formula

75 Octonionic BCH formula BCH formula e X k e X k = e X Bη ( k, k ) can be computed explicitly in terms of vector star sums of p, p B 7 R 7 : p η p ( = ɛ p, p 1 p 2 p + 1 p 2 p p η p )

76 Octonionic BCH formula BCH formula e X k e X k = e X Bη ( k, k ) can be computed explicitly in terms of vector star sums of p, p B 7 R 7 : p η p ( = ɛ p, p 1 p 2 p + 1 p 2 p p η p ) Noncommutativity/nonassociativity: p η p p η p = 2 p η p A η( p, p, p ) = ( p η p ) η p p η ( p η p ) = 2 3 J η( p, p, p )

77 Octonionic BCH formula BCH formula e X k e X k = e X Bη ( k, k ) can be computed explicitly in terms of vector star sums of p, p B 7 R 7 : p η p ( = ɛ p, p 1 p 2 p + 1 p 2 p p η p ) Noncommutativity/nonassociativity: p η p p η p = 2 p η p A η( p, p, p ) = ( p η p ) η p p η ( p η p ) = 2 3 J η( p, p, p ) Extend to all k R 7 : B η ( k, k ) = sin 1 p η p p η p p η p p= k sin( k )/ k

78 Octonionic BCH formula BCH formula e X k e X k = e X Bη ( k, k ) can be computed explicitly in terms of vector star sums of p, p B 7 R 7 : p η p ( = ɛ p, p 1 p 2 p + 1 p 2 p p η p ) Noncommutativity/nonassociativity: p η p p η p = 2 p η p A η( p, p, p ) = ( p η p ) η p p η ( p η p ) = 2 3 J η( p, p, p ) Extend to all k R 7 : B η ( k, k ) = sin 1 p η p p η p p η p p= k sin( k )/ k = k + k 2 k η k + O( 2 )

79 Quantization of M-theory phase space

80 Quantization of M-theory phase space Nonassociative phase space star product: (f λ g)( x ) = f ( k ) g( k ) e i B η(λ k,λ k ) Λ 1 x k, k

81 Quantization of M-theory phase space Nonassociative phase space star product: (f λ g)( x ) = f ( k ) g( k ) e i B η(λ k,λ k ) Λ 1 x k, k Nonassociative BCH formula captured by 2-group addition : ( e i k x λ e i k x ) λ e i k x = e i A η(λ k,λ k,λ k ) e i k x λ ( e i k x λ e i k x ) A η( k, k, k ) = sin 1 ( p η p ) η p ( p η p ) η p A η( p, p, p ) p= k sin( k )/ k

82 Quantization of M-theory phase space Nonassociative phase space star product: (f λ g)( x ) = f ( k ) g( k ) e i B η(λ k,λ k ) Λ 1 x k, k Nonassociative BCH formula captured by 2-group addition : ( e i k x λ e i k x ) λ e i k x = e i A η(λ k,λ k,λ k ) e i k x λ ( e i k x λ e i k x ) A η( k, k, k ) = sin 1 ( p η p ) η p ( p η p ) η p A η( p, p, p ) p= k sin( k )/ k Using x 4 λ f = x 4 f + O(λ) reduces to string star product: lim (f λ g)( x ) = (f g)(x) λ 0

83 Quantization of M-theory phase space Nonassociative phase space star product: (f λ g)( x ) = f ( k ) g( k ) e i B η(λ k,λ k ) Λ 1 x k, k Nonassociative BCH formula captured by 2-group addition : ( e i k x λ e i k x ) λ e i k x = e i A η(λ k,λ k,λ k ) e i k x λ ( e i k x λ e i k x ) A η( k, k, k ) = sin 1 ( p η p ) η p ( p η p ) η p A η( p, p, p ) p= k sin( k )/ k Using x 4 λ f = x 4 f + O(λ) reduces to string star product: lim (f λ g)( x ) = (f g)(x) λ 0 Gauge-equivalent closed, 3-cyclic star product: f λ g = D 1( Df λ Dg ), D = 1 + O(λ)

84 Spacetime quantization in M-theory

85 Spacetime quantization in M-theory Using λ we can calculate:

86 Spacetime quantization in M-theory Using λ we can calculate: Minimal areas: A ij = l3 s 3 R 4,ijk4 p k, A 4i = λ l3 s 3 R 4,1234 p i A x i,p j = δ i j x 4 + λ ε i jk x k, A x 4,p i = λ 2 x i A p i,p j = λ εijk p k

87 Spacetime quantization in M-theory Using λ we can calculate: Minimal areas: A ij = l3 s 3 R 4,ijk4 p k, A 4i = λ l3 s 3 R 4,1234 p i A x i,p j = δ i j x 4 + λ ε i jk x k, A x 4,p i = λ 2 x i A p i,p j = λ εijk p k Minimal volumes: V ijk = l3 s 2 R 4,ijk4 x 4, V ij4 = λ2 l 3 s 2 V p i,xj,x k = λ l3 s 2 V p i,p j,xk = λ 2 2 R 4,ijk4 x k R 4,1234 ( δ j i p k δ k i p j ), V p i,x j,x 4 = λ2 l 3 s 2 R 4,ijk4 p k λ k εij x 4 + δ k j x i δ k i x j p, V i,p j,x 4 = λ3 2 2 εijk x k

88 Nonassociative geometry in M-theory

89 Nonassociative geometry in M-theory Configuration space triproducts: ( f λ g λ h ) ( x ) = ( (f λ g) λ h ) (x µ, p i ) p=0 = f ( k ) g( k ) h( k ) e i TΛ ( k, k, k ) Λ 1 x k, k, k

90 Nonassociative geometry in M-theory Configuration space triproducts: ( f λ g λ h ) ( x ) = ( (f λ g) λ h ) (x µ, p i ) p=0 = f ( k ) g( k ) h( k ) e i TΛ ( k, k, k ) Λ 1 x k, k, k T Λ ( k, k, k ) = sin 1 ( p η p ) η p ( p η p ) η p + ɛ p, p 1 p η p 2 p + ɛ p, p ( Aη ( p, p, p ) + ɛ p, p 1 p η p 2 p 1 p η p 2 p ) p=λ k sin( Λ k )/ Λ k

91 Nonassociative geometry in M-theory Configuration space triproducts: ( f λ g λ h ) ( x ) = ( (f λ g) λ h ) (x µ, p i ) p=0 = f ( k ) g( k ) h( k ) e i TΛ ( k, k, k ) Λ 1 x k, k, k T Λ ( k, k, k ) = sin 1 ( p η p ) η p ( p η p ) η p + ɛ p, p 1 p η p 2 p + ɛ p, p ( Aη ( p, p, p ) + ɛ p, p 1 p η p 2 p 1 p η p 2 p ) p=λ k sin( Λ k )/ Λ k ( = Λ k + k + k + 2 ( 1 2 2Λ Aη(Λ k, Λ k, Λ k ) + Λ k + Λ k 2 k + Λ k + Λ k 2 k + Λ k + Λ k 2 ) ) k + O(λ)

92 Nonassociative geometry in M-theory Configuration space triproducts: ( f λ g λ h ) ( x ) = ( (f λ g) λ h ) (x µ, p i ) p=0 = f ( k ) g( k ) h( k ) e i TΛ ( k, k, k ) Λ 1 x k, k, k T Λ ( k, k, k ) = sin 1 ( p η p ) η p ( p η p ) η p + ɛ p, p 1 p η p 2 p + ɛ p, p ( Aη ( p, p, p ) + ɛ p, p 1 p η p 2 p 1 p η p 2 p ) p=λ k sin( Λ k )/ Λ k ( = Λ k + k + k + 2 ( 1 2 2Λ Aη(Λ k, Λ k, Λ k ) + Λ k + Λ k 2 k + Λ k + Λ k 2 k + Λ k + Λ k 2 ) ) k + O(λ) Quantizes 3-bracket [f, g, h] λ = Asym(f λ g λ h) for A 4 : [x µ, x ν, x α ] 1 = l 3 s R ε µναβ x β

93 Noncommutative M-theory momentum space

94 Noncommutative M-theory momentum space Setting x µ = 0 reveals noncommutative associative deformation of momentum space with η, independent of R-flux: (Guedes, Oriti & Raasakka 13; Kupriyanov & Vitale 15) (f λ g)(p) = l,l f (l) g(l ) e 2 i λ B( λ 2 l, λ 2 l ) p

95 Noncommutative M-theory momentum space Setting x µ = 0 reveals noncommutative associative deformation of momentum space with η, independent of R-flux: (Guedes, Oriti & Raasakka 13; Kupriyanov & Vitale 15) (f λ g)(p) = l,l f (l) g(l ) e 2 i λ B( λ 2 l, λ 2 l ) p Restrict to (x µ ) S 3 R 4 of radius 1 λ : [p i, p j ] = i λ ε ijk p k, [x i, p j ] = i λ 1 λ 2 x 2 δ i j + i λ ε i jk x k

96 Noncommutative M-theory momentum space Setting x µ = 0 reveals noncommutative associative deformation of momentum space with η, independent of R-flux: (Guedes, Oriti & Raasakka 13; Kupriyanov & Vitale 15) (f λ g)(p) = l,l f (l) g(l ) e 2 i λ B( λ 2 l, λ 2 l ) p Restrict to (x µ ) S 3 R 4 of radius 1 λ : [p i, p j ] = i λ ε ijk p k, [x i, p j ] = i λ 1 λ 2 x 2 δ i j + i λ ε i jk x k Familiar from 3D quantum gravity (Freidel & Livine 06)

97 Spin(7)-structures

98 Spin(7)-structures Triple cross product of K = (KÂ) = (k 0, k ) R 8 = R R 7 : (K φ K φ K )Â := φâ ˆBĈ ˆD K ˆB K Ĉ K ˆD φ 0ABC = η ABC, φ ABCD = η ABCD

99 Spin(7)-structures Triple cross product of K = (KÂ) = (k 0, k ) R 8 = R R 7 : (K φ K φ K )Â := φâ ˆBĈ ˆD K ˆB K Ĉ K ˆD φ 0ABC = η ABC, φ ABCD = η ABCD K φ K φ K = ( k ( k η k ), 1 12 J η( k, k, k ) k 0 ( k η k ) k 0 ( k η k ) k 0 ( k η k ) )

100 Spin(7)-structures Triple cross product of K = (KÂ) = (k 0, k ) R 8 = R R 7 : (K φ K φ K )Â := φâ ˆBĈ ˆD K ˆB K Ĉ K ˆD φ 0ABC = η ABC, φ ABCD = η ABCD K φ K φ K = ( k ( k η k ), 1 12 J η( k, k, k ) k 0 ( k η k ) k 0 ( k η k ) k 0 ( k η k ) ) Preserved by Spin(7) SO(8), extends representation [ ] X k η k = 1 2 XK, X K on octonions XK = k k A e A O: X K φ K φ K = ( ) 1 2 (XK X K ) X K (X K X K ) X K

101 Spin(7)-structures Triple cross product of K = (KÂ) = (k 0, k ) R 8 = R R 7 : (K φ K φ K )Â := φâ ˆBĈ ˆD K ˆB K Ĉ K ˆD φ 0ABC = η ABC, φ ABCD = η ABCD K φ K φ K = ( k ( k η k ), 1 12 J η( k, k, k ) k 0 ( k η k ) k 0 ( k η k ) k 0 ( k η k ) ) Preserved by Spin(7) SO(8), extends representation [ ] X k η k = 1 2 XK, X K on octonions XK = k k A e A O: X K φ K φ K = ( ) 1 2 (XK X K ) X K (X K X K ) X K Spin(7) G 2 : k η k = k φ (1, 0 ) φ k

102 Spin(7)-structures Triple cross product of K = (KÂ) = (k 0, k ) R 8 = R R 7 : (K φ K φ K )Â := φâ ˆBĈ ˆD K ˆB K Ĉ K ˆD φ 0ABC = η ABC, φ ABCD = η ABCD K φ K φ K = ( k ( k η k ), 1 12 J η( k, k, k ) k 0 ( k η k ) k 0 ( k η k ) k 0 ( k η k ) ) Preserved by Spin(7) SO(8), extends representation [ ] X k η k = 1 2 XK, X K on octonions XK = k k A e A O: X K φ K φ K = ( ) 1 2 (XK X K ) X K (X K X K ) X K Spin(7) G 2 : k η k = k φ (1, 0 ) φ k Trivector: [ξâ, ξ ˆB, ξ Ĉ ] φ = φâ ˆBĈ ˆD ξ ˆD for ξ = (ξ 0, ξ ) = (1, e A )

103 Covariant M-theory phase space 3-algebra

104 Covariant M-theory phase space 3-algebra 8D phase space coordinates X = (x µ, p µ ) = (Λ ξ, λ 2 ξ 0) have SO(4) SO(4)-symmetric 3-brackets: [x i, x j, x k ] φ = l3 s 2 R 4,ijk4 x 4, [x i, x j, x 4 ] φ = λ2 l 3 s 2 R 4,ijk4 x k [p i, x j, x k ] φ = λ2 l 3 s 2 R 4,ijk4 p 4 λ l3 s 2 R 4,ijk4 p k [p i, x j, x 4 ] φ = λ2 l 3 s 2 R 4,1234 δ j i p 4 λ2 l 3 s [p i, p j, x k ] φ = λ2 2 ε ij k x λ 2 2 R 4,ijk4 p k ( δ k j x i δ k i x j ) [p i, p j, x 4 ] φ = 2 λ 3 2 ε ijk x k, [p i, p j, p k ] φ = 2 2 λ ε ijk p 4 [p 4, x i, x j ] φ = λ l3 s 2 R 4,ijk4 p k, [p 4, x i, x 4 ] φ = λ2 l 3 s 2 R 4,1234 p i, [p 4, p i, x j ] φ = 2 λ 2 δ j i x 4 2 λ 2 2 ε i jk x k [p 4, p i, x 4 ] φ = 2 λ 3 2 x i, [p 4, p i, p j ] φ = 2 λ 2 2 ε ijk p k

105 Covariant M-theory phase space 3-algebra 8D phase space coordinates X = (x µ, p µ ) = (Λ ξ, λ 2 ξ 0) have SO(4) SO(4)-symmetric 3-brackets: [x i, x j, x k ] φ = l3 s 2 R 4,ijk4 x 4, [x i, x j, x 4 ] φ = λ2 l 3 s 2 R 4,ijk4 x k [p i, x j, x k ] φ = λ2 l 3 s 2 R 4,ijk4 p 4 λ l3 s 2 R 4,ijk4 p k [p i, x j, x 4 ] φ = λ2 l 3 s 2 R 4,1234 δ j i p 4 λ2 l 3 s [p i, p j, x k ] φ = λ2 2 ε ij k x λ 2 2 R 4,ijk4 p k ( δ k j x i δ k i x j ) [p i, p j, x 4 ] φ = 2 λ 3 2 ε ijk x k, [p i, p j, p k ] φ = 2 2 λ ε ijk p 4 [p 4, x i, x j ] φ = λ l3 s 2 R 4,ijk4 p k, [p 4, x i, x 4 ] φ = λ2 l 3 s 2 R 4,1234 p i, [p 4, p i, x j ] φ = 2 λ 2 δ j i x 4 2 λ 2 2 ε i jk x k [p 4, p i, x 4 ] φ = 2 λ 3 2 x i, [p 4, p i, p j ] φ = 2 λ 2 2 ε ijk p k [f, g] G := [f, g, G] φ for any constraint G(X ) = 0;

106 Covariant M-theory phase space 3-algebra 8D phase space coordinates X = (x µ, p µ ) = (Λ ξ, λ 2 ξ 0) have SO(4) SO(4)-symmetric 3-brackets: [x i, x j, x k ] φ = l3 s 2 R 4,ijk4 x 4, [x i, x j, x 4 ] φ = λ2 l 3 s 2 R 4,ijk4 x k [p i, x j, x k ] φ = λ2 l 3 s 2 R 4,ijk4 p 4 λ l3 s 2 R 4,ijk4 p k [p i, x j, x 4 ] φ = λ2 l 3 s 2 R 4,1234 δ j i p 4 λ2 l 3 s [p i, p j, x k ] φ = λ2 2 ε ij k x λ 2 2 R 4,ijk4 p k ( δ k j x i δ k i x j ) [p i, p j, x 4 ] φ = 2 λ 3 2 ε ijk x k, [p i, p j, p k ] φ = 2 2 λ ε ijk p 4 [p 4, x i, x j ] φ = λ l3 s 2 R 4,ijk4 p k, [p 4, x i, x 4 ] φ = λ2 l 3 s 2 R 4,1234 p i, [p 4, p i, x j ] φ = 2 λ 2 δ j i x 4 2 λ 2 2 ε i jk x k [p 4, p i, x 4 ] φ = 2 λ 3 2 x i, [p 4, p i, p j ] φ = 2 λ 2 2 ε ijk p k [f, g] G := [f, g, G] φ for any constraint G(X ) = 0; e.g. G(X ) = 2 λ p 2 4 or G(X ) = R µ,νραβ p µ

107 Covariant M-theory phase space 3-algebra 8D phase space coordinates X = (x µ, p µ ) = (Λ ξ, λ 2 ξ 0) have SO(4) SO(4)-symmetric 3-brackets: [x i, x j, x k ] φ = l3 s 2 R 4,ijk4 x 4, [x i, x j, x 4 ] φ = λ2 l 3 s 2 R 4,ijk4 x k [p i, x j, x k ] φ = λ2 l 3 s 2 R 4,ijk4 p 4 λ l3 s 2 R 4,ijk4 p k [p i, x j, x 4 ] φ = λ2 l 3 s 2 R 4,1234 δ j i p 4 λ2 l 3 s [p i, p j, x k ] φ = λ2 2 ε ij k x λ 2 2 R 4,ijk4 p k ( δ k j x i δ k i x j ) [p i, p j, x 4 ] φ = 2 λ 3 2 ε ijk x k, [p i, p j, p k ] φ = 2 2 λ ε ijk p 4 [p 4, x i, x j ] φ = λ l3 s 2 R 4,ijk4 p k, [p 4, x i, x 4 ] φ = λ2 l 3 s 2 R 4,1234 p i, [p 4, p i, x j ] φ = 2 λ 2 δ j i x 4 2 λ 2 2 ε i jk x k [p 4, p i, x 4 ] φ = 2 λ 3 2 x i, [p 4, p i, p j ] φ = 2 λ 2 2 ε ijk p k [f, g] G := [f, g, G] φ for any constraint G(X ) = 0; e.g. G(X ) = 2 λ p 2 4 or G(X ) = R µ,νραβ p µ SO(4)-invariance: S (R 4 ) (Günaydin, Lüst & Malek 16) Trivector modelled on negative chirality spinors

108 Vector trisums

109 Vector trisums Restrict X P X P = ( p 0 p 0 p p ) 1 + p 0 X p + p 0 X p + X p η p to P, P S 7 = Spin(7)/G 2 R 8 : X p η p = Im( X P X P ), ɛ p, p = sgn Re ( X P X P )

110 Vector trisums Restrict X P X P = ( p 0 p 0 p p ) 1 + p 0 X p + p 0 X p + X p η p to P, P S 7 = Spin(7)/G 2 R 8 : X p η p = Im( X P X P ), ɛ p, p = sgn Re ( X P X P ) Extend to vector trisum X p φ p φ p = Im( (X P X P ) X P ) : p φ p φ p 1 p η p 2 p + ɛ p, p 1 p η ( p ) 2 p ( = ɛ p, p, p ɛ p, p + ɛ p, p 1 p η p 2 p + A η( p, p, p ) + 1 p 2 ( p η p ) + 1 p 2 ( p η p ) + 1 p 2 ( p η p ))

111 Vector trisums Restrict X P X P = ( p 0 p 0 p p ) 1 + p 0 X p + p 0 X p + X p η p to P, P S 7 = Spin(7)/G 2 R 8 : X p η p = Im( X P X P ), ɛ p, p = sgn Re ( X P X P ) Extend to vector trisum X p φ p φ p = Im( (X P X P ) X P ) : p φ p φ p 1 p η p 2 p + ɛ p, p 1 p η ( p ) 2 p ( = ɛ p, p, p ɛ p, p + ɛ p, p 1 p η p 2 p + A η( p, p, p ) + 1 p 2 ( p η p ) + 1 p 2 ( p η p ) + 1 p 2 ( p η p )) Spin(7) G 2 : p η p = p φ 0 φ p

112 Vector trisums Restrict X P X P = ( p 0 p 0 p p ) 1 + p 0 X p + p 0 X p + X p η p to P, P S 7 = Spin(7)/G 2 R 8 : X p η p = Im( X P X P ), ɛ p, p = sgn Re ( X P X P ) Extend to vector trisum X p φ p φ p = Im( (X P X P ) X P ) : p φ p φ p 1 p η p 2 p + ɛ p, p 1 p η ( p ) 2 p ( = ɛ p, p, p ɛ p, p + ɛ p, p 1 p η p 2 p + A η( p, p, p ) + 1 p 2 ( p η p ) + 1 p 2 ( p η p ) + 1 p 2 ( p η p )) Spin(7) G 2 : p η p = p φ 0 φ p Nonassociativity: Asym( p φ p φ p ) = Im(X P φ P φ P )

113 Phase space nonassociative geometry

114 Phase space nonassociative geometry Extend vector trisum to all k R 7 R 8 : B φ ( k, k, k ) = sin 1 p φ p φ p p p φ p φ p φ p φ p p= k sin( k )/ k

115 Phase space nonassociative geometry Extend vector trisum to all k R 7 R 8 : B φ ( k, k, k ) = sin 1 p φ p φ p p p φ p φ p φ p φ p p= k sin( k )/ k = k + k + k + ( k η k + k η k + k η ) k + 2 ( 2 2 Aη( k, k, k ) k + k 2 k k + k 2 k k + k 2 ) k + O ( 3)

116 Phase space nonassociative geometry Extend vector trisum to all k R 7 R 8 : B φ ( k, k, k ) = sin 1 p φ p φ p p p φ p φ p φ p φ p p= k sin( k )/ k = k + k + k + ( k η k + k η k + k η ) k + 2 ( 2 2 Aη( k, k, k ) k + k 2 k k + k 2 k k + k 2 ) k + O ( 3) Phase space triproducts: (f λ g λ h)( x ) = k, k, k f ( k ) g( k ) h( k ) e i B φ (Λ k,λ k,λ k ) Λ 1 x

117 Phase space nonassociative geometry Extend vector trisum to all k R 7 R 8 : B φ ( k, k, k ) = sin 1 p φ p φ p p p φ p φ p φ p φ p p= k sin( k )/ k = k + k + k + ( k η k + k η k + k η ) k + 2 ( 2 2 Aη( k, k, k ) k + k 2 k k + k 2 k k + k 2 ) k + O ( 3) Phase space triproducts: (f λ g λ h)( x ) = k, k, k f ( k ) g( k ) h( k ) e i B φ (Λ k,λ k,λ k ) Λ 1 x f λ g = f λ 1 λ g, f λ g λ h = (f λ g λ h) p=0

118 Phase space nonassociative geometry Extend vector trisum to all k R 7 R 8 : B φ ( k, k, k ) = sin 1 p φ p φ p p p φ p φ p φ p φ p p= k sin( k )/ k = k + k + k + ( k η k + k η k + k η ) k + 2 ( 2 2 Aη( k, k, k ) k + k 2 k k + k 2 k k + k 2 ) k + O ( 3) Phase space triproducts: (f λ g λ h)( x ) = k, k, k f ( k ) g( k ) h( k ) e i B φ (Λ k,λ k,λ k ) Λ 1 x f λ g = f λ 1 λ g, f λ g λ h = (f λ g λ h) p=0 3-bracket [f, g, h] λ = Asym(f λ g λ h) obeys: [f, g, 1] λ = 3 [f, g] λ, lim λ 0 [x i, x j, x k ] λ p=0 = l 3 s R ijk

Higher Structures in Non-Geometric M-Theory

Higher Structures in Non-Geometric M-Theory Higher Structures in Non-Geometric M-Theory Richard Szabo Action MP 1405 Quantum Structure of Spacetime Noncommutativity and Physics: Quantum Spacetime Structures Bayrischzell April 24, 2017 Non-geometric

More information

An Introduction to Nonassociative Physics

An Introduction to Nonassociative Physics An Introduction to Nonassociative Physics Richard Szabo Action MP 1405 Quantum Structure of Spacetime Dualities and Generalized Geometries Corfu Summer Institute September 13, 2018 Outline Introduction:

More information

Non-Associative Flux Algebra in String and M-theory from Octonions

Non-Associative Flux Algebra in String and M-theory from Octonions Non-Associative Flux Algebra in String and M-theory from Octonions DIETER LÜST (LMU, MPI) Corfu, September 15th, 2016 1 Non-Associative Flux Algebra in String and M-theory from Octonions DIETER LÜST (LMU,

More information

Non-associative Deformations of Geometry in Double Field Theory

Non-associative Deformations of Geometry in Double Field Theory Non-associative Deformations of Geometry in Double Field Theory Michael Fuchs Workshop Frontiers in String Phenomenology based on JHEP 04(2014)141 or arxiv:1312.0719 by R. Blumenhagen, MF, F. Haßler, D.

More information

Membrane σ-models and quantization of non-geometric flux backgrounds

Membrane σ-models and quantization of non-geometric flux backgrounds Membrane σ-models and quantization of non-geometric flux backgrounds Peter Schupp Jacobs University Bremen ASC workshop Geometry and Physics Munich, November 19-23, 2012 joint work with D. Mylonas and

More information

Non-Commutative/Non-Associative Geometry and Non-geometric String Backgrounds

Non-Commutative/Non-Associative Geometry and Non-geometric String Backgrounds Non-Commutative/Non-Associative Geometry and Non-geometric String Backgrounds DIETER LÜST (LMU, MPI) Workshop on Non-Associativity in Physics and Related Mathematical Structures, PennState, 1st. May 2014

More information

Non-Associative Quantum Mechanics from Non-Geometric Strings. Peter Schupp

Non-Associative Quantum Mechanics from Non-Geometric Strings. Peter Schupp Non-Associative Quantum Mechanics from Non-Geometric Strings Peter Schupp Jacobs University Bremen Workshop on Non-Associativity in Physics and Related Mathematical Structures, IGS, PennState May 1-3,

More information

Non-commutative & non-associative closed string geometry from flux compactifications

Non-commutative & non-associative closed string geometry from flux compactifications Non-commutative & non-associative closed string geometry from flux compactifications Dieter Lüst, LMU (Arnold Sommerfeld Center) and MPI München Istanbul Conference, 4. August 2011 I) Introduction Closed

More information

Non-Associative Geometry and Double Field Theory

Non-Associative Geometry and Double Field Theory Non-Associative Geometry and Double Field Theory DIETER LÜST (LMU, MPI) Corfu, September 15, 2014 1 Outline: I) Introduction II) Non-geometric Backgrounds & Non-Commutativity/Non-Associativity (world sheet

More information

Quantization of 2-plectic Manifolds

Quantization of 2-plectic Manifolds School of Mathematical and Computer Sciences Heriot Watt University, Edinburgh Based on: Bayrischzell Workshop, 22.5.2011 Josh DeBellis, CS and Richard Szabo arxiv:1001.3275 (JMP), arxiv:1012.2236 (JHEP)

More information

The Algebroid Structure of Double Field Theory

The Algebroid Structure of Double Field Theory The Algebroid Structure of Double Field Theory Larisa Jonke Division of Theoretical Physics Rudjer Bošković Institute, Zagreb Based on: 1802.07003 with A. Chatzistavrakidis, F. S. Khoo and R. J. Szabo

More information

Flux Compactifications and Matrix Models for Superstrings

Flux Compactifications and Matrix Models for Superstrings Flux Compactifications and Matrix Models for Superstrings Athanasios Chatzistavrakidis Institut für Theoretische Physik, Leibniz Universität Hannover Based on: A.C., 1108.1107 [hep-th] (PRD 84 (2011))

More information

Quantum Nambu Geometry in String Theory

Quantum Nambu Geometry in String Theory in String Theory Centre for Particle Theory and Department of Mathematical Sciences, Durham University, Durham, DH1 3LE, UK E-mail: chong-sun.chu@durham.ac.uk Proceedings of the Corfu Summer Institute

More information

arxiv: v2 [hep-th] 29 Sep 2017

arxiv: v2 [hep-th] 29 Sep 2017 EMPG 17 15 Magnetic monopoles and nonassociative deformations of quantum theory 1 arxiv:1709.10080v2 [hep-th] 29 Sep 2017 Richard J. Szabo Department of Mathematics, Heriot-Watt University, Colin Maclaurin

More information

Non-Associativity, Double Field Theory and Applications

Non-Associativity, Double Field Theory and Applications Non-Associativity, Double Field Theory and Applications DIETER LÜST (LMU, MPI) Recent Developments in String Theory, Monte Verita, Ascona, July 25, 2014 1 Outline: I) Introduction II) Non-geometric Backgrounds

More information

Double Field Theory and Stringy Geometry

Double Field Theory and Stringy Geometry Double Field Theory and Stringy Geometry String/M Theory Rich theory, novel duality symmetries and exotic structures Fundamental formulation? Supergravity limit - misses stringy features Infinite set of

More information

Global Seiberg-Witten quantization for U(n)-bundles on tori

Global Seiberg-Witten quantization for U(n)-bundles on tori Global Seiberg-Witten quantization for U(n)-bundles on tori Andreas Deser 1,2 Based on arxiv:1809.05426 with Paolo Aschieri 2,3 1 Faculty of Mathematics and Physics, Charles University, Prague 2 Istituto

More information

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya The boundary state from open string fields Yuji Okawa University of Tokyo, Komaba March 9, 2009 at Nagoya Based on arxiv:0810.1737 in collaboration with Kiermaier and Zwiebach (MIT) 1 1. Introduction Quantum

More information

M-Theory and Matrix Models

M-Theory and Matrix Models Department of Mathematical Sciences, University of Durham October 31, 2011 1 Why M-Theory? Whats new in M-Theory The M5-Brane 2 Superstrings Outline Why M-Theory? Whats new in M-Theory The M5-Brane There

More information

D-branes as a single object. SIS Dubna, Edvard Musaev

D-branes as a single object. SIS Dubna, Edvard Musaev D-branes as a single object Edvard Musaev Moscow Inst of Physics and Technology; Kazan Federal University based on works with Eric Bergshoeff (Groningen U), Chris Blair (VUB), Axel Kleinschmidt (AEI MPG),

More information

Noncommutative Spacetime Geometries

Noncommutative Spacetime Geometries Munich 06.11.2008 Noncommutative Spacetime Geometries Paolo Aschieri Centro Fermi, Roma, U.Piemonte Orientale, Alessandria Memorial Conference in Honor of Julius Wess I present a general program in NC

More information

Workshop on Testing Fundamental Physics Principles Corfu, September 22-28, 2017.

Workshop on Testing Fundamental Physics Principles Corfu, September 22-28, 2017. Workshop on Testing Fundamental Physics Principles Corfu, September 22-28, 2017.. Observables and Dispersion Relations in κ-minkowski and κ-frw noncommutative spacetimes Paolo Aschieri Università del Piemonte

More information

A category theoretic framework for noncommutative and nonassociative geo

A category theoretic framework for noncommutative and nonassociative geo A category theoretic framework for noncommutative and nonassociative geometry Joint work with A. Schenkel and R. J. Szabo [arxiv:1409.6331, arxiv:1507.02792, arxiv:1601.07353] CLAP Scotland 2016, Edinburgh

More information

Spacetime Quantum Geometry

Spacetime Quantum Geometry Spacetime Quantum Geometry Peter Schupp Jacobs University Bremen 4th Scienceweb GCOE International Symposium Tohoku University 2012 Outline Spacetime quantum geometry Applying the principles of quantum

More information

THE NONCOMMUTATIVE TORUS

THE NONCOMMUTATIVE TORUS THE NONCOMMUTATIVE TORUS The noncommutative torus as a twisted convolution An ordinary two-torus T 2 with coordinate functions given by where x 1, x 2 [0, 1]. U 1 = e 2πix 1, U 2 = e 2πix 2, (1) By Fourier

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

Interacting Membranes

Interacting Membranes Branes in D.S.B., J. Bedford, N Copland, L. Tadrowski and D. C. Thompson Queen Mary College University of London Branes in Outline 1 Introduction 2 3 Branes in 4 5 6 Branes in is the strong coupling limit

More information

Universal Gauge Theory in Two Dimensions

Universal Gauge Theory in Two Dimensions Universal Gauge Theory in Two Dimensions Athanasios Chatzistavrakidis Based on: 1608.03250 with A. Deser - L. Jonke - T. Strobl 1607.00342 (JHEP) with A. Deser - L. Jonke - T. Strobl mainly this one 1604.03739

More information

Lecture 9: RR-sector and D-branes

Lecture 9: RR-sector and D-branes Lecture 9: RR-sector and D-branes José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 6, 2013 José D. Edelstein (USC) Lecture 9: RR-sector and D-branes 6-mar-2013

More information

Gravity theory on Poisson manifold with R-flux

Gravity theory on Poisson manifold with R-flux Gravity theory on Poisson manifold with R-flux Hisayoshi MURAKI (University of Tsukuba) in collaboration with Tsuguhiko ASAKAWA (Maebashi Institute of Technology) Satoshi WATAMURA (Tohoku University) References

More information

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee

Chern-Simons Theory and Its Applications. The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Chern-Simons Theory and Its Applications The 10 th Summer Institute for Theoretical Physics Ki-Myeong Lee Maxwell Theory Maxwell Theory: Gauge Transformation and Invariance Gauss Law Charge Degrees of

More information

Towards new non-geometric backgrounds

Towards new non-geometric backgrounds Towards new non-geometric backgrounds Erik Plauschinn University of Padova Ringberg 30.07.204 this talk is based on... This talk is based on T-duality revisited [arxiv:30.494], and on some work in progress

More information

Collective T-duality transformations and non-geometric spaces

Collective T-duality transformations and non-geometric spaces Collective T-duality transformations and non-geometric spaces Erik Plauschinn LMU Munich ESI Vienna 09.12.2015 based on... This talk is based on :: T-duality revisited On T-duality transformations for

More information

Nonassociative geometry and twist deformations in non-geometric string theory arxiv: v1 [hep-th] 28 Feb 2014

Nonassociative geometry and twist deformations in non-geometric string theory arxiv: v1 [hep-th] 28 Feb 2014 Nonassociative geometry and twist deformations in non-geometric string theory arxiv:1402.7306v1 [hep-th] 28 Feb 2014 Dionysios ylonas, Peter Schupp and Richard J. Szabo Heriot-Watt University, Edinburgh,

More information

Double Field Theory Double Fun?

Double Field Theory Double Fun? Double Field Theory Double Fun? Falk Haßler based on..., 1410.6374, 1502.02428, 1509.04176,... University of North Carolina at Chapel Hill City University of New York March 3, 2016 The big picture Phenomenology

More information

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/

Twistor Strings, Gauge Theory and Gravity. Abou Zeid, Hull and Mason hep-th/ Twistor Strings, Gauge Theory and Gravity Abou Zeid, Hull and Mason hep-th/0606272 Amplitudes for YM, Gravity have elegant twistor space structure: Twistor Geometry Amplitudes for YM, Gravity have elegant

More information

Singular Monopoles and Instantons on Curved Backgrounds

Singular Monopoles and Instantons on Curved Backgrounds Singular Monopoles and Instantons on Curved Backgrounds Sergey Cherkis (Berkeley, Stanford, TCD) C k U(n) U(n) U(n) Odense 2 November 2010 Outline: Classical Solutions & their Charges Relations between

More information

Double Field Theory on Group Manifolds in a Nutshell

Double Field Theory on Group Manifolds in a Nutshell in a Nutshell Ralph Blumenhagen Max-Planck-Institute for Physics, Munich E-mail: blumenha@mpp.mpg.de Max-Planck-Institute for Physics, Munich Arnold-Sommerfeld-Center for Theoretical Physics, Munich E-mail:

More information

A Landscape of Field Theories

A Landscape of Field Theories A Landscape of Field Theories Travis Maxfield Enrico Fermi Institute, University of Chicago October 30, 2015 Based on arxiv: 1511.xxxxx w/ D. Robbins and S. Sethi Summary Despite the recent proliferation

More information

On Flux Quantization in F-Theory

On Flux Quantization in F-Theory On Flux Quantization in F-Theory Raffaele Savelli MPI - Munich Bad Honnef, March 2011 Based on work with A. Collinucci, arxiv: 1011.6388 Motivations Motivations The recent attempts to find UV-completions

More information

Dynamics of branes in DFT

Dynamics of branes in DFT Dynamics of branes in DFT Edvard Musaev Moscow Inst of Physics and Technology based on works with Eric Bergshoeff, Chris Blair, Axel Kleinschmidt, Fabio Riccioni Dualities Corfu, 2018 Web of (some) branes

More information

arxiv: v2 [hep-th] 29 Mar 2018

arxiv: v2 [hep-th] 29 Mar 2018 Higher Quantum Geometry and Non-Geometric String Theory arxiv:1803.08861v2 [hep-th] 29 Mar 2018 Department of Mathematics, Heriot-Watt University, Edinburgh, United Kingdom. Maxwell Institute for Mathematical

More information

M2-brane Models. Christian Sämann. School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh

M2-brane Models. Christian Sämann. School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh School of Mathematical and Computer Sciences Heriot-Watt University, Edinburgh String Theory Seminar, University of Adelaide, 10.4.2013 Based on: Basu-Harvey Bagger-Lambert, Gustavsson, ABJM my own work

More information

U-dual branes and non-geometric string backgrounds

U-dual branes and non-geometric string backgrounds U-dual branes and non-geometric string backgrounds Athanasios Chatzistavrakidis Institut für heoretische Physik, Leibniz Universität Hannover arxiv:1309.2653 With Fridrik F Gautason, George Moutsopoulos

More information

Lecture 8: 1-loop closed string vacuum amplitude

Lecture 8: 1-loop closed string vacuum amplitude Lecture 8: 1-loop closed string vacuum amplitude José D. Edelstein University of Santiago de Compostela STRING THEORY Santiago de Compostela, March 5, 2013 José D. Edelstein (USC) Lecture 8: 1-loop vacuum

More information

Extended Space for. Falk Hassler. bases on. arxiv: and in collaboration with. Pascal du Bosque and Dieter Lüst

Extended Space for. Falk Hassler. bases on. arxiv: and in collaboration with. Pascal du Bosque and Dieter Lüst Extended Space for (half) Maximally Supersymmetric Theories Falk Hassler bases on arxiv: 1611.07978 and 1705.09304 in collaboration with Pascal du Bosque and Dieter Lüst University of North Carolina at

More information

Introduction to Modern Quantum Field Theory

Introduction to Modern Quantum Field Theory Department of Mathematics University of Texas at Arlington Arlington, TX USA Febuary, 2016 Recall Einstein s famous equation, E 2 = (Mc 2 ) 2 + (c p) 2, where c is the speed of light, M is the classical

More information

Double Field Theory at SL(2) angles

Double Field Theory at SL(2) angles Double Field Theory at SL(2) angles Adolfo Guarino Université Libre de Bruxelles Iberian Strings 207 January 7th, Lisbon Based on arxiv:62.05230 & arxiv:604.08602 Duality covariant approaches to strings

More information

Some applications of light-cone superspace

Some applications of light-cone superspace Some applications of light-cone superspace Stefano Kovacs (Trinity College Dublin & Dublin Institute for Advanced Studies) Strings and Strong Interactions LNF, 19/09/2008 N =4 supersymmetric Yang Mills

More information

Elements of Topological M-Theory

Elements of Topological M-Theory Elements of Topological M-Theory (with R. Dijkgraaf, S. Gukov, C. Vafa) Andrew Neitzke March 2005 Preface The topological string on a Calabi-Yau threefold X is (loosely speaking) an integrable spine of

More information

Snyder noncommutative space-time from two-time physics

Snyder noncommutative space-time from two-time physics arxiv:hep-th/0408193v1 25 Aug 2004 Snyder noncommutative space-time from two-time physics Juan M. Romero and Adolfo Zamora Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México Apartado

More information

On the curious spectrum of duality-invariant higher-derivative gravitational field theories

On the curious spectrum of duality-invariant higher-derivative gravitational field theories On the curious spectrum of duality-invariant higher-derivative gravitational field theories VIII Workshop on String Field Theory and Related Aspects ICTP-SAIFR 31 May 2016 Barton Zwiebach, MIT Introduction

More information

M-theory and extended geometry

M-theory and extended geometry M-theory and extended geometry D.S.B., Chris Blair, Martin Cederwall, Axel Kleinschmidt, Hadi & Mahdi Godazgar, Kanghoon Lee, Emanuel Malek, Edvard Musaev, Malcolm Perry, Felix Rudolph, Daniel Thompson,

More information

Twistors, amplitudes and gravity

Twistors, amplitudes and gravity Twistors, amplitudes and gravity From twistor strings to quantum gravity? L.J.Mason The Mathematical Institute, Oxford lmason@maths.ox.ac.uk LQG, Zakopane 4/3/2010 Based on JHEP10(2005)009 (hep-th/0507269),

More information

Quantization of the open string on exact plane waves and non-commutative wave fronts

Quantization of the open string on exact plane waves and non-commutative wave fronts Quantization of the open string on exact plane waves and non-commutative wave fronts F. Ruiz Ruiz (UCM Madrid) Miami 2007, December 13-18 arxiv:0711.2991 [hep-th], with G. Horcajada Motivation On-going

More information

arxiv: v3 [math-ph] 25 Oct 2018

arxiv: v3 [math-ph] 25 Oct 2018 September 2017 MPP-2017-209 LMU-ASC 57/17 Constructions of L algebras and their field theory realizations arxiv:1709.10004v3 [math-ph] 25 Oct 2018 Olaf Hohm 1, Vladislav Kupriyanov 2,3, Dieter Lüst 2,4,

More information

Newton s Second Law in a Noncommutative Space

Newton s Second Law in a Noncommutative Space Newton s Second Law in a Noncommutative Space Juan M. Romero, J.A. Santiago and J. David Vergara Instituto de Ciencias Nucleares, U.N.A.M., Apdo. Postal 70-543, México D.F., México sanpedro, santiago,

More information

Relating DFT to N=2 gauged supergravity

Relating DFT to N=2 gauged supergravity Relating DFT to N=2 gauged supergravity Erik Plauschinn LMU Munich Chengdu 29.07.2016 based on... This talk is based on :: Relating double field theory to the scalar potential of N=2 gauged supergravity

More information

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama

Lorentz-covariant spectrum of single-particle states and their field theory Physics 230A, Spring 2007, Hitoshi Murayama Lorentz-covariant spectrum of single-particle states and their field theory Physics 30A, Spring 007, Hitoshi Murayama 1 Poincaré Symmetry In order to understand the number of degrees of freedom we need

More information

Half BPS solutions in type IIB and M-theory

Half BPS solutions in type IIB and M-theory Half BPS solutions in type IIB and M-theory Based on work done in collaboration with Eric D Hoker, John Estes, Darya Krym (UCLA) and Paul Sorba (Annecy) E.D'Hoker, J.Estes and M.G., Exact half-bps type

More information

Instantons in string theory via F-theory

Instantons in string theory via F-theory Instantons in string theory via F-theory Andrés Collinucci ASC, LMU, Munich Padova, May 12, 2010 arxiv:1002.1894 in collaboration with R. Blumenhagen and B. Jurke Outline 1. Intro: From string theory to

More information

Spectrum of Holographic Wilson Loops

Spectrum of Holographic Wilson Loops Spectrum of Holographic Wilson Loops Leopoldo Pando Zayas University of Michigan Continuous Advances in QCD 2011 University of Minnesota Based on arxiv:1101.5145 Alberto Faraggi and LPZ Work in Progress,

More information

S-Duality for D3-Brane in NS-NS and R-R Backgrounds

S-Duality for D3-Brane in NS-NS and R-R Backgrounds S-Duality for D3-Brane in NS-NS and R-R Backgrounds Chen-Te Ma Collaborator: Pei-Ming Ho National Taiwan University arxiv:1311.3393 [hep-th] January 17, 2014 Reference P. -M. Ho and Y. Matsuo, M5 from

More information

Spin foam vertex and loop gravity

Spin foam vertex and loop gravity Spin foam vertex and loop gravity J Engle, R Pereira and C Rovelli Centre de Physique Théorique CNRS Case 907, Université de la Méditerranée, F-13288 Marseille, EU Roberto Pereira, Loops 07 Morelia 25-30

More information

SUPERSTRING REALIZATIONS OF SUPERGRAVITY IN TEN AND LOWER DIMENSIONS. John H. Schwarz. Dedicated to the memory of Joël Scherk

SUPERSTRING REALIZATIONS OF SUPERGRAVITY IN TEN AND LOWER DIMENSIONS. John H. Schwarz. Dedicated to the memory of Joël Scherk SUPERSTRING REALIZATIONS OF SUPERGRAVITY IN TEN AND LOWER DIMENSIONS John H. Schwarz Dedicated to the memory of Joël Scherk SOME FAMOUS SCHERK PAPERS Dual Models For Nonhadrons J. Scherk, J. H. Schwarz

More information

Open String Wavefunctions in Flux Compactifications. Fernando Marchesano

Open String Wavefunctions in Flux Compactifications. Fernando Marchesano Open String Wavefunctions in Flux Compactifications Fernando Marchesano Open String Wavefunctions in Flux Compactifications Fernando Marchesano In collaboration with Pablo G. Cámara Motivation Two popular

More information

3-Cocycles, Non-Associative Star-Products and the Magnetic Paradigm of R-Flux String Vacua

3-Cocycles, Non-Associative Star-Products and the Magnetic Paradigm of R-Flux String Vacua LMU-ASC 64/13 MPP-2013-255 3-Cocycles, Non-Associative Star-Products and the Magnetic Paradigm of R-Flux String Vacua Ioannis Bakas 1 and Dieter Lüst 2,3 arxiv:1309.3172v3 [hep-th] 5 Dec 2013 1 Department

More information

Yet Another Alternative to Compactification

Yet Another Alternative to Compactification Okayama Institute for Quantum Physics: June 26, 2009 Yet Another Alternative to Compactification Heterotic five-branes explain why three generations in Nature arxiv: 0905.2185 [hep-th] Tetsuji KIMURA (KEK)

More information

1 Canonical quantization conformal gauge

1 Canonical quantization conformal gauge Contents 1 Canonical quantization conformal gauge 1.1 Free field space of states............................... 1. Constraints..................................... 3 1..1 VIRASORO ALGEBRA...........................

More information

Approaches to Quantum Gravity A conceptual overview

Approaches to Quantum Gravity A conceptual overview Approaches to Quantum Gravity A conceptual overview Robert Oeckl Instituto de Matemáticas UNAM, Morelia Centro de Radioastronomía y Astrofísica UNAM, Morelia 14 February 2008 Outline 1 Introduction 2 Different

More information

LQG, the signature-changing Poincaré algebra and spectral dimension

LQG, the signature-changing Poincaré algebra and spectral dimension LQG, the signature-changing Poincaré algebra and spectral dimension Tomasz Trześniewski Institute for Theoretical Physics, Wrocław University, Poland / Institute of Physics, Jagiellonian University, Poland

More information

New Phenomena in 2d String Theory

New Phenomena in 2d String Theory New Phenomena in 2d String Theory Nathan Seiberg Rutgers 2005 N.S. hep-th/0502156 J.L. Davis, F. Larsen, N.S. hep-th/0505081, and to appear J. Maldacena, N.S. hep-th/0506141 1 Low Dimensional String Theories

More information

4d N=2 as 6d N=(2,0) compactified on C

4d N=2 as 6d N=(2,0) compactified on C Yesterday Basics of 6d N=(2,0) theory. S-duality of 4d N=4. Today 4d N=2 as 6d N=(2,0) compactified on C Tomorrow Relation with 2d CFT Yesterday s talk s summary 6d N=(2,0) theory comes in types G= A,D,E

More information

arxiv:hep-th/ v2 14 Oct 1997

arxiv:hep-th/ v2 14 Oct 1997 T-duality and HKT manifolds arxiv:hep-th/9709048v2 14 Oct 1997 A. Opfermann Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge, CB3 9EW, UK February

More information

Spinning strings and QED

Spinning strings and QED Spinning strings and QED James Edwards Oxford Particles and Fields Seminar January 2015 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Various relationships between

More information

Contact interactions in string theory and a reformulation of QED

Contact interactions in string theory and a reformulation of QED Contact interactions in string theory and a reformulation of QED James Edwards QFT Seminar November 2014 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Worldline formalism

More information

Noncommutative geometry, quantum symmetries and quantum gravity II

Noncommutative geometry, quantum symmetries and quantum gravity II Noncommutative geometry, quantum symmetries and quantum gravity II 4-7 July 2016, Wroclaw, Poland XXXVII Max Born Symposium & 2016 WG3 Meeting of COST Action MP1405 Cartan s structure equations and Levi-Civita

More information

Yet Another Alternative to Compactification by Heterotic Five-branes

Yet Another Alternative to Compactification by Heterotic Five-branes The University of Tokyo, Hongo: October 26, 2009 Yet Another Alternative to Compactification by Heterotic Five-branes arxiv: 0905.285 [hep-th] Tetsuji KIMURA (KEK) Shun ya Mizoguchi (KEK, SOKENDAI) Introduction

More information

Twistor strings for N =8. supergravity

Twistor strings for N =8. supergravity Twistor strings for N =8 supergravity David Skinner - IAS & Cambridge Amplitudes 2013 - MPI Ringberg Twistor space is CP 3 CP 3, described by co-ords R 3,1 Z a rz a X Y y x CP 1 in twistor space Point

More information

Introduction to string theory 2 - Quantization

Introduction to string theory 2 - Quantization Remigiusz Durka Institute of Theoretical Physics Wroclaw / 34 Table of content Introduction to Quantization Classical String Quantum String 2 / 34 Classical Theory In the classical mechanics one has dynamical

More information

Noncommutative Geometry for Quantum Spacetime

Noncommutative Geometry for Quantum Spacetime Noncommutative Geometry for Quantum Spacetime The view from below Fedele Lizzi Università di Napoli Federico II Institut de Ciencies del Cosmo, Barcelona SIGrav, Alessandria 2014 I think we would all agree

More information

An extended standard model and its Higgs geometry from the matrix model

An extended standard model and its Higgs geometry from the matrix model An extended standard model and its Higgs geometry from the matrix model Jochen Zahn Universität Wien based on arxiv:1401.2020 joint work with Harold Steinacker Bayrischzell, May 2014 Motivation The IKKT

More information

Symmetry and Geometry in String Theory

Symmetry and Geometry in String Theory Symmetry and Geometry in String Theory Symmetry and Extra Dimensions String/M Theory Rich theory, novel duality symmetries and exotic structures Supergravity limit - misses stringy features Infinite set

More information

A kappa deformed Clifford Algebra, Hopf Algebras and Quantum Gravity

A kappa deformed Clifford Algebra, Hopf Algebras and Quantum Gravity A kappa deformed Clifford Algebra, Hopf Algebras and Quantum Gravity Carlos Castro Perelman June 2015 Universidad Tecnica Particular de Loja, San Cayetano Alto, Loja, 1101608 Ecuador Center for Theoretical

More information

String Geometry Beyond the Torus

String Geometry Beyond the Torus String Geometry Beyond the Torus Falk Haßler based on arxiv:1410.6374 with Ralph Blumenhagen and Dieter Lüst Arnold Sommerfeld Center LMU Munich October 25, 2014 The big picture Phenomenology SUGRA target

More information

Classical-quantum Correspondence and Wave Packet Solutions of the Dirac Equation in a Curved Spacetime

Classical-quantum Correspondence and Wave Packet Solutions of the Dirac Equation in a Curved Spacetime Classical-quantum Correspondence and Wave Packet Solutions of the Dirac Equation in a Curved Spacetime Mayeul Arminjon 1,2 and Frank Reifler 3 1 CNRS (Section of Theoretical Physics) 2 Lab. Soils, Solids,

More information

ABJM Baryon Stability at Finite t Hooft Coupling

ABJM Baryon Stability at Finite t Hooft Coupling ABJM Baryon Stability at Finite t Hooft Coupling Yolanda Lozano (U. Oviedo) Santiago de Compostela, October 2011 - Motivation: Study the stability of non-singlet baryon vertex-like configurations in ABJM

More information

Heterotic Torsional Backgrounds, from Supergravity to CFT

Heterotic Torsional Backgrounds, from Supergravity to CFT Heterotic Torsional Backgrounds, from Supergravity to CFT IAP, Université Pierre et Marie Curie Eurostrings@Madrid, June 2010 L.Carlevaro, D.I. and M. Petropoulos, arxiv:0812.3391 L.Carlevaro and D.I.,

More information

Path Integral for Spin

Path Integral for Spin Path Integral for Spin Altland-Simons have a good discussion in 3.3 Applications of the Feynman Path Integral to the quantization of spin, which is defined by the commutation relations [Ŝj, Ŝk = iɛ jk

More information

Geometry and Physics. Amer Iqbal. March 4, 2010

Geometry and Physics. Amer Iqbal. March 4, 2010 March 4, 2010 Many uses of Mathematics in Physics The language of the physical world is mathematics. Quantitative understanding of the world around us requires the precise language of mathematics. Symmetries

More information

Interacting non-bps black holes

Interacting non-bps black holes Interacting non-bps black holes Guillaume Bossard CPhT, Ecole Polytechnique Istanbul, August 2011 Outline Time-like Kaluza Klein reduction From solvable algebras to solvable systems Two-centre interacting

More information

Quantum Fields in Curved Spacetime

Quantum Fields in Curved Spacetime Quantum Fields in Curved Spacetime Lecture 3 Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 22, 2016. Recap AdS 3 is an instructive application of quantum fields in curved space. The

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

Twist deformation quantization, gravity and Einstein spaces. Paolo Aschieri U.Piemonte Orientale, Alessandria

Twist deformation quantization, gravity and Einstein spaces. Paolo Aschieri U.Piemonte Orientale, Alessandria Bayrischzell 15.5.2010 Noncommutativity and Physics: Spacetime Quantum Geometry Twist deformation quantization, gravity and Einstein spaces Paolo Aschieri U.Piemonte Orientale, Alessandria I recall the

More information

Interpolating geometries, fivebranes and the Klebanov-Strassler theory

Interpolating geometries, fivebranes and the Klebanov-Strassler theory Interpolating geometries, fivebranes and the Klebanov-Strassler theory Dario Martelli King s College, London Based on: [Maldacena,DM] JHEP 1001:104,2010, [Gaillard,DM,Núñez,Papadimitriou] to appear Universitá

More information

Topological reduction of supersymmetric gauge theories and S-duality

Topological reduction of supersymmetric gauge theories and S-duality Topological reduction of supersymmetric gauge theories and S-duality Anton Kapustin California Institute of Technology Topological reduction of supersymmetric gauge theories and S-duality p. 1/2 Outline

More information

Supergeometry and unified picture of fluxes

Supergeometry and unified picture of fluxes Supergeometry and unified picture of fluxes Satoshi Watamura (Tohoku U.) based on the collaboration with T. Asakawa, N. Ikeda, Y. Kaneko, T. Kaneko, M.A. Heller, U. Carow-Watamura, H.Muraki. Ref.[JHEP02

More information

Nonspherical Giant Gravitons and Matrix Theory

Nonspherical Giant Gravitons and Matrix Theory NSF-ITP-0-59 ITEP-TH-38/0 Nonspherical Giant Gravitons and Matrix Theory Andrei Mikhailov 1 Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 E-mail: andrei@kitp.ucsb.edu

More information

Amplitudes beyond four-dimensions

Amplitudes beyond four-dimensions Amplitudes beyond four-dimensions HKIAS-Nov-204 Why? why? QFT exists in D 4 Questions rephrased in terms of physical observables Allow for application of consistency conditions: Structures based on Unitarity

More information

Exercise 1 Classical Bosonic String

Exercise 1 Classical Bosonic String Exercise 1 Classical Bosonic String 1. The Relativistic Particle The action describing a free relativistic point particle of mass m moving in a D- dimensional Minkowski spacetime is described by ) 1 S

More information