Applied Mathematical Sciences, Vol. 6, 2012, no. 77, Oana Bumbariu

Size: px
Start display at page:

Download "Applied Mathematical Sciences, Vol. 6, 2012, no. 77, Oana Bumbariu"

Transcription

1 Applied Mathematical Sciences, Vol. 6, 2012, no. 77, A Convergence Result for the B-Algorithm Oana Bumbariu North University of Baia Mare Department of Mathematics and Computer Science Victoriei 76, , Baia Mare, Romania oanabumbariu@yahoo.com Abstract Our aim in this paper is to give a convergent result for the acceleration method that we introduced in [O. Bumbariu, An acceleration method for the Picard iteration, (to appear)], for solving a nonlinear equation, called the B-algorithm. Mathematics Subject Classification: 47H10, 65B99 Keywords: Picard iterations; Aitken s Δ 2 process; order of convergence 1 Introduction Aitken s Δ 2 process [1] is a powerful algorithm for accelerating the convergence speed of a sequence that converges linearly. Using the idea of Aitken we were able to develop a new acceleration method, called the B-algorithm (3) [2]. Because Aitken s Δ 2 process accelerates the convergence speed of sequences, it is natural to use these technique and the B-algorithm for solving a nonlinear equation of the form f(x) = 0. The iteration function for Aitken s Δ 2 process is the same as for the Steffensen s method, (4), [4], [5], because of that, we will use a similar approach in case of B-algorithm for proving the convergence. In the following section, we give the rule of the B-algorithm, then, under some assumptions, we prove that if the sequence of successive approximations, x n+1 = g(x n ), is of order p 2, then the B-algorithm is of order p 2 + p 1 and if p = 1, then the B-algorithm is of order 2. And if the equation f(x) = 0 has a root, α, with the multiplicity m 3, then the B-algorithm is of order one. 2 A convergence result for the B-algorithm Consider the nonlinear equation f(x) =0. (1)

2 3822 Oana Bumbariu We assume that α is a unique root of (1) in an interval [a, b], such that x [a, b], f(x) [a, b]. Staring from an initial approximation, x 0,ofα we can build a sequence of successive approximations x n+1 = g(x n ), n =0, 1,... (2) that converges to α, under appropriate assumptions. In order to improve the converge speed of the fixed point iterative method (2) we introduced in [2] a new acceleration technique, given by the following relation B n = S n+3 [ΔS n+1][δs n+2 ] ΔS n+1 ΔS n, n,k N (3) where {S n } is the sequence to be accelerated, Δ, the forward difference operator is defined by ΔS n = S n+1 S n and we denote by Δ, the two step forward difference operator as Δ=S n+2 S n. The acceleration method given by (3) is called the B-algorithm, it consists in composing the Picard iteration, (2), and the B sequence transformation as follow: Step 0: y 0 := x 0 Step n 1: (1) set S 0 = y 0, S 1 = f(s 0 ), S 2 = f(s 1 ), S 3 = f(s 2 ), (2) compute B n by the relation (3) from S 0, S 1,S 2,S 3, (3) set y n = B n. In what follows we remind the concept of convergence order that will be used in the paper. Let {x n } R be a sequence of real numbers convergent to α R. (which is obtained by iterating a fixed point equation) Definition 2.1 [6] Let {x n } converge to α. If there exist an integer constant p, and a real positive constant C such that lim x n+1 α n (x n α) p = C, then p is called the order and C the constant of convergence. The concept of rate of convergence given by Definition 2.1 is also known as the Q-order of convergence, see the monographs by Măruşter [6] and Ortega and Rheinboldt [8]. The iteration function of the Steffensen s method [5] is g(x) = xg(g(x)) (g(x))2 g(g(x)) 2g(x)+x, (4)

3 A convergence result for the B-algorithm 3823 and let G(x) be the iteration function of the B-algorithm defined by xg(g(g(x))) g(x)g(g(x)) G(x) = g(g(g(x))) g(g(x)) g(x)+x. (5) In the sequel we present a convergence result for the acceleration method (4). Theorem 2.2 [5] (1) If the functional iteration applied to x = g(x) is of order p 2 for some root α of (1) then Steffensen s method has order 2p 1. (2) If the functional iteration applied to x = g(x) is of first order (but not necessarily convergent) for a simple root α of (1) then Steffensen s method is of second order. (3) If as in (2), the root α of (1) has multiplicity m 2, then Steffensen s method is first order with the asymptotic convergence factor C =1 1 m. The proof can be found in [5], page 107. An similar result, but for the B-algorithm, is given by the following theorem. Theorem 2.3 (1) If the functional iteration applied to x = g(x) is of order p 2 for some root α of (1) then the B-algorithm has order p 2 + p 1. (2) If the functional iteration applied to x = g(x) is of first order (but not necessarily convergent) for a simple root α of (1) then the B-algorithm is of second order. (3) If as in (2), the root α of (1) has multiplicity m 3, then B-algorithm is first order and the asymptotic convergence factor C<1 1. m 1 Proof 2.4 We recall the fact that the iteration function for the B-algorithm is given by (5) and assume that x = α is a root of (1) and that: g =g =...= g (p 1) =0; g (p) =p!a 0; (6) g (p+1) in x α ρ. These conditions imply that g(x) determines a pth order method. From Taylor s theorem [7] and (6) for every ɛ such that ɛ ρ g(α + ɛ) =α + Aɛ p + g(p+1) (α + θɛ) ɛ p+1, 0 <θ<1 (p + 1)! = α + Aɛ p + Bɛ p+1 = α + δ, (7) where B = g(p+1) (α+θɛ) (p+1)! and δ =(A + Bɛ)ɛ p g(α + δ) =α + Aδ p + B δ p+1 = α + γ, (8)

4 3824 Oana Bumbariu where B = g(p+1) (α+θδ) (p+1)!, 0 < Θ < 1 and γ =(A + B δ)δ p. where B = g(p+1) (α+γγ) (p+1)!, 0 < Γ < 1. From (7)-(9) in (5) with x = α + ɛ and ɛ 0it results g(α + γ) =α + Aγ p + B γ p+1 (9) (α + ɛ)g(g(g(α + ɛ))) g(α + ɛ)g(g(α + ɛ)) G(α + ɛ) = g(g(g(g(α + ɛ)))) g(g(g(α + ɛ)g)) g(g(α + ɛ)) + (α + ɛ) = α δγ Aɛγp B ɛγ p+1. (10) ɛ δ γ + Aγ p + B γp+1 There are two cases to be considered p 2 and p =1. First, for p 2 the expression (10) can be written G(α + ɛ) =α [A + B (A + Bɛ)ɛ p ](A + Bɛ) p+1 ɛ p2 +p 1 ( 1 Aɛ[A + B (A + Bɛ)ɛ p ] p 1 (A + Bɛ) p2 p 1 ɛ p3 p 2 p 1 [A + B (A + Bɛ)ɛ p ](A + Bɛ) p ɛ p2 1 (A + Bɛ)ɛ p 1 + B ɛ[a + B (A + Bɛ)ɛ p ] p (A + Bɛ) p2 1 ɛ p3 p +A[A + B (A + Bɛ)ɛ p ] p (A + Bɛ) p2 ɛ p3 1 + B [A + B (A + Bɛ)ɛ p ] p+1 (A + Bɛ) p2 +p ɛ ). p3 +p 2 1 When ɛ approaches 0 the expression in the parenthesis approaches 1 and so the above relation, (11), it can be written (11) G(α + ɛ) =α A p+2 ɛ p2 +p 1 + O(ɛ p2 +p ), p 2. (12) For p =1the expression (10) can be written G(α + ɛ) =α [A + B (A + Bɛ)ɛ](A + Bɛ)ɛ 2 (B A 2 B ) (ABB +A 2 B B )ɛ 2ABB B ɛ 2 B 2 B B ɛ 3 ( (1 A 2 )(1 A)+(A 4 B +A 3 B + A 2 B B AB A 2 B )ɛ +(2A 3 BB +2A 4 B B +2A 2 BB 2ABB )ɛ 2 + +(6A 3 BB B +A 4 B 2 B +A 2 B 2 B +AB 2 B B 2 B )ɛ 3 +(6A 2 B 2 B B +4A 3 BB 2 B )ɛ 4 + +(5A 2 B 2 B 2 B +2AB 3 B B +AB 2 B 2 B )ɛ 5 +4AB 3 B 2 B ɛ 6 + B 4 B 2 ). (13) B ɛ7 In general, if A 1the expression in the parenthesis approaches B 1 A B and B approach B = g and so (13) can be written as 2 G(α + ɛ) =α A2 B when ɛ 0 because 1 A ɛ2 + O(ɛ 3 ), p =1,g =A 1. (14)

5 A convergence result for the B-algorithm 3825 If g =A =1and α has multiplicity m then G(α + ɛ) =α +[1+B (1 + Bɛ)ɛ](1 + Bɛ)ɛ B B +(BB +B B )ɛ +2BB B ɛ 2 + B 2 B B ɛ 3 ( B B +2(BB +B B )ɛ +(B 2 B +B 2 B +6BB B )ɛ 2 +(6B 2 B B +4BB 2 B )ɛ 3 + ). (15) +(6B 2 B 2 B +2B 3 B B )ɛ 4 +4B 3 B 2 B ɛ 5 + B 4 B 2 B ɛ6 Let g =α, g =1,g =... = g (m 1) =0and g (m) 0. In the hypothesis that g has derivatives of order 3m, g(α + ɛ) =α + ɛ + Bɛ 3, where m 3 and B(ɛ) = g(m) ɛ m 3 + g(m+1) (m + 1)! ɛm (16) and similarly, with δ = ɛ + Bɛ 3 we have g(α + δ) =α + δ + B δ 3 where B (δ) = g(m) δ m 3 + g(m+1) (m + 1)! δm (17) be observe that δ = ɛ + Bɛ 3 = ɛ + g(m) ɛ m +... and [ ] B (δ) = g(m) g ɛ m 3 (m) 2 +(m 3) ɛ 2m (18) where γ = δ + B δ 3 = ɛ +2 g(m) ɛ m + m B (γ) = g(m) ɛ m 3 +2(m 3) and therefore B (γ) = g(m) γ m 3 + g(m+1) (m + 1)! γm (19) [ ] 2 g (m) ɛ 2m then [ ] g (m) 2 [ ] g ɛ 2m 4 (m) 3 +(m 3)(2m 4) ɛ 3m 5 m)! m)! (20) [ ] g (m) 2 B B =2(m 3) ɛ 2m (21) [ ] g BB +B (m) 2 B =2 ɛ 2m (22) m)! Introducing (21) and (22) in (15) be obtain G(α + ɛ) =α + m 3+ɛ +... m 3+2ɛ +... ɛ<α+1 1 m 1. (23)

6 3826 Oana Bumbariu References [1] A. C. Aitken, On Bernoulli s numerical solution of algebraic equations, Proc. Roy. Soc. Edinburgh, 46 (1926), [2] O. Bumbariu, An acceleration method for the Picard iteration, (to appear) [3] C. Brezinski, Convergence acceleration during the 20th century, J. Comput. Appl. Math., 122 No. 1-2 (2000), [4] A. Fdil, A new method for solving nonlinear equation with error estimations, Appl. Numer. Math., 21 (1996), [5] E. Isaacson, H. B. Keller, Analysis of numerical methods, Wiley, New York, [6] Şt. Măruşter, Metode numerice în rezolvarea ecuaţiilor neliniare, Editura Tehnica, Bucuresti, [7] D.A. Murray, A first course in infinitesimal calculus, Classic reprint series, New York, [8] J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equation in Several Variables, Academic Press, New York, Received: March, 2012

Accelerating Convergence

Accelerating Convergence Accelerating Convergence MATH 375 Numerical Analysis J. Robert Buchanan Department of Mathematics Fall 2013 Motivation We have seen that most fixed-point methods for root finding converge only linearly

More information

An Empirical Study of the ɛ-algorithm for Accelerating Numerical Sequences

An Empirical Study of the ɛ-algorithm for Accelerating Numerical Sequences Applied Mathematical Sciences, Vol 6, 2012, no 24, 1181-1190 An Empirical Study of the ɛ-algorithm for Accelerating Numerical Sequences Oana Bumbariu North University of Baia Mare Department of Mathematics

More information

Fixed point of ϕ-contraction in metric spaces endowed with a graph

Fixed point of ϕ-contraction in metric spaces endowed with a graph Annals of the University of Craiova, Mathematics and Computer Science Series Volume 374, 2010, Pages 85 92 ISSN: 1223-6934 Fixed point of ϕ-contraction in metric spaces endowed with a graph Florin Bojor

More information

Section 6.3 Richardson s Extrapolation. Extrapolation (To infer or estimate by extending or projecting known information.)

Section 6.3 Richardson s Extrapolation. Extrapolation (To infer or estimate by extending or projecting known information.) Section 6.3 Richardson s Extrapolation Key Terms: Extrapolation (To infer or estimate by extending or projecting known information.) Illustrated using Finite Differences The difference between Interpolation

More information

A FIXED POINT PROOF OF THE CONVERGENCE OF A NEWTON-TYPE METHOD

A FIXED POINT PROOF OF THE CONVERGENCE OF A NEWTON-TYPE METHOD Fixed Point Theory, Volume 7, No. 2, 2006, 235-244 http://www.math.ubbcluj.ro/ nodeacj/sfptcj.htm A FIXED POINT PROOF OF THE CONVERGENCE OF A NEWTON-TYPE METHOD VASILE BERINDE AND MĂDĂLINA PĂCURAR Department

More information

ON THE CONVERGENCE OF THE ISHIKAWA ITERATION IN THE CLASS OF QUASI CONTRACTIVE OPERATORS. 1. Introduction

ON THE CONVERGENCE OF THE ISHIKAWA ITERATION IN THE CLASS OF QUASI CONTRACTIVE OPERATORS. 1. Introduction Acta Math. Univ. Comenianae Vol. LXXIII, 1(2004), pp. 119 126 119 ON THE CONVERGENCE OF THE ISHIKAWA ITERATION IN THE CLASS OF QUASI CONTRACTIVE OPERATORS V. BERINDE Abstract. A convergence theorem of

More information

Fixed point theorems for Ćirić type generalized contractions defined on cyclic representations

Fixed point theorems for Ćirić type generalized contractions defined on cyclic representations Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 8 (2015), 1257 1264 Research Article Fixed point theorems for Ćirić type generalized contractions defined on cyclic representations Adrian Magdaş

More information

On asymptotic behavior of a finite Markov chain

On asymptotic behavior of a finite Markov chain 1 On asymptotic behavior of a finite Markov chain Alina Nicolae Department of Mathematical Analysis Probability. University Transilvania of Braşov. Romania. Keywords: convergence, weak ergodicity, strong

More information

Yunhi Cho and Young-One Kim

Yunhi Cho and Young-One Kim Bull. Korean Math. Soc. 41 (2004), No. 1, pp. 27 43 ANALYTIC PROPERTIES OF THE LIMITS OF THE EVEN AND ODD HYPERPOWER SEQUENCES Yunhi Cho Young-One Kim Dedicated to the memory of the late professor Eulyong

More information

Strong Convergence of the Mann Iteration for Demicontractive Mappings

Strong Convergence of the Mann Iteration for Demicontractive Mappings Applied Mathematical Sciences, Vol. 9, 015, no. 4, 061-068 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.015.5166 Strong Convergence of the Mann Iteration for Demicontractive Mappings Ştefan

More information

Simple Iteration, cont d

Simple Iteration, cont d Jim Lambers MAT 772 Fall Semester 2010-11 Lecture 2 Notes These notes correspond to Section 1.2 in the text. Simple Iteration, cont d In general, nonlinear equations cannot be solved in a finite sequence

More information

The equivalence of Picard, Mann and Ishikawa iterations dealing with quasi-contractive operators

The equivalence of Picard, Mann and Ishikawa iterations dealing with quasi-contractive operators Mathematical Communications 10(2005), 81-88 81 The equivalence of Picard, Mann and Ishikawa iterations dealing with quasi-contractive operators Ştefan M. Şoltuz Abstract. We show that the Ishikawa iteration,

More information

Convergence Acceleration of Logarithmically Convergent Series Avoiding Summation

Convergence Acceleration of Logarithmically Convergent Series Avoiding Summation Convergence Acceleration of Logarithmically Convergent Series Avoiding Summation Herbert H. H. Homeier Institut für Physikalische und Theoretische Chemie Universität Regensburg, D-93040 Regensburg, Germany

More information

EULER-LIKE METHOD FOR THE SIMULTANEOUS INCLUSION OF POLYNOMIAL ZEROS WITH WEIERSTRASS CORRECTION

EULER-LIKE METHOD FOR THE SIMULTANEOUS INCLUSION OF POLYNOMIAL ZEROS WITH WEIERSTRASS CORRECTION EULER-LIKE METHOD FOR THE SIMULTANEOUS INCLUSION OF POLYNOMIAL ZEROS WITH WEIERSTRASS CORRECTION Miodrag S. Petković Faculty of Electronic Engineering, Department of Mathematics P.O. Box 73, 18000 Niš,

More information

Homework 1 Solutions Math 587

Homework 1 Solutions Math 587 Homework 1 Solutions Math 587 1) Find positive functions f(x),g(x), continuous on (0, ) so that f = O(g(x)) as x 0, but lim x 0 f(x)/g(x) does not exist. One can take f(x) = sin(1/x) and g(x) = 1, for

More information

A NOTE ON Q-ORDER OF CONVERGENCE

A NOTE ON Q-ORDER OF CONVERGENCE BIT 0006-3835/01/4102-0422 $16.00 2001, Vol. 41, No. 2, pp. 422 429 c Swets & Zeitlinger A NOTE ON Q-ORDER OF CONVERGENCE L. O. JAY Department of Mathematics, The University of Iowa, 14 MacLean Hall Iowa

More information

Yuqing Chen, Yeol Je Cho, and Li Yang

Yuqing Chen, Yeol Je Cho, and Li Yang Bull. Korean Math. Soc. 39 (2002), No. 4, pp. 535 541 NOTE ON THE RESULTS WITH LOWER SEMI-CONTINUITY Yuqing Chen, Yeol Je Cho, and Li Yang Abstract. In this paper, we introduce the concept of lower semicontinuous

More information

Exam 1. (2x + 1) 2 9. lim. (rearranging) (x 1 implies x 1, thus x 1 0

Exam 1. (2x + 1) 2 9. lim. (rearranging) (x 1 implies x 1, thus x 1 0 Department of Mathematical Sciences Instructor: Daiva Pucinskaite Calculus I January 28, 2016 Name: Exam 1 1. Evaluate the it x 1 (2x + 1) 2 9. x 1 (2x + 1) 2 9 4x 2 + 4x + 1 9 = 4x 2 + 4x 8 = 4(x 1)(x

More information

CONVERGENCE OF HYBRID FIXED POINT FOR A PAIR OF NONLINEAR MAPPINGS IN BANACH SPACES

CONVERGENCE OF HYBRID FIXED POINT FOR A PAIR OF NONLINEAR MAPPINGS IN BANACH SPACES International Journal of Analysis and Applications ISSN 2291-8639 Volume 8, Number 1 2015), 69-78 http://www.etamaths.com CONVERGENCE OF HYBRID FIXED POINT FOR A PAIR OF NONLINEAR MAPPINGS IN BANACH SPACES

More information

Accumulation constants of iterated function systems with Bloch target domains

Accumulation constants of iterated function systems with Bloch target domains Accumulation constants of iterated function systems with Bloch target domains September 29, 2005 1 Introduction Linda Keen and Nikola Lakic 1 Suppose that we are given a random sequence of holomorphic

More information

FIXED POINT ITERATION

FIXED POINT ITERATION FIXED POINT ITERATION The idea of the fixed point iteration methods is to first reformulate a equation to an equivalent fixed point problem: f (x) = 0 x = g(x) and then to use the iteration: with an initial

More information

MTH 202 : Probability and Statistics

MTH 202 : Probability and Statistics MTH 202 : Probability and Statistics Lecture 9 - : 27, 28, 29 January, 203 4. Functions of a Random Variables 4. : Borel measurable functions Similar to continuous functions which lies to the heart of

More information

Order of convergence

Order of convergence Order of convergence Linear and Quadratic Order of convergence Computing square root with Newton s Method Given a > 0, p def = a is positive root of equation Newton s Method p k+1 = p k p2 k a 2p k = 1

More information

The Journal of Nonlinear Sciences and Applications

The Journal of Nonlinear Sciences and Applications J. Nonlinear Sci. Appl. 2 (2009), no. 3, 195 203 The Journal of Nonlinear Sciences Applications http://www.tjnsa.com ON MULTIPOINT ITERATIVE PROCESSES OF EFFICIENCY INDEX HIGHER THAN NEWTON S METHOD IOANNIS

More information

Fixed point theorems for Zamfirescu mappings in metric spaces endowed with a graph

Fixed point theorems for Zamfirescu mappings in metric spaces endowed with a graph CARPATHIAN J. MATH. 31 2015, No. 3, 297-305 Online version availale at http://carpathian.um.ro Print Edition: ISSN 1584-2851 Online Edition: ISSN 1843-4401 Fixed point theorems for Zamfirescu mappings

More information

Generalization Of The Secant Method For Nonlinear Equations

Generalization Of The Secant Method For Nonlinear Equations Applied Mathematics E-Notes, 8(2008), 115-123 c ISSN 1607-2510 Available free at mirror sites of http://www.math.nthu.edu.tw/ amen/ Generalization Of The Secant Method For Nonlinear Equations Avram Sidi

More information

HAIYUN ZHOU, RAVI P. AGARWAL, YEOL JE CHO, AND YONG SOO KIM

HAIYUN ZHOU, RAVI P. AGARWAL, YEOL JE CHO, AND YONG SOO KIM Georgian Mathematical Journal Volume 9 (2002), Number 3, 591 600 NONEXPANSIVE MAPPINGS AND ITERATIVE METHODS IN UNIFORMLY CONVEX BANACH SPACES HAIYUN ZHOU, RAVI P. AGARWAL, YEOL JE CHO, AND YONG SOO KIM

More information

Forward r-difference Operator and Finding Solution of Nonhomogeneous Difference Equations

Forward r-difference Operator and Finding Solution of Nonhomogeneous Difference Equations International Mathematical Forum, 2, 2007, no. 40, 957-968 Forward r-difference Operator and Finding Solution of Nonhomogeneous Difference Equations Hassan Hosseinzadeh and G. A. Afrouzi Islamic Azad University,

More information

Caculus 221. Possible questions for Exam II. March 19, 2002

Caculus 221. Possible questions for Exam II. March 19, 2002 Caculus 221 Possible questions for Exam II March 19, 2002 These notes cover the recent material in a style more like the lecture than the book. The proofs in the book are in section 1-11. At the end there

More information

Higher Order Averaging : periodic solutions, linear systems and an application

Higher Order Averaging : periodic solutions, linear systems and an application Higher Order Averaging : periodic solutions, linear systems and an application Hartono and A.H.P. van der Burgh Faculty of Information Technology and Systems, Department of Applied Mathematical Analysis,

More information

FIXED POINTS AND CONTINUITY OF ALMOST CONTRACTIONS

FIXED POINTS AND CONTINUITY OF ALMOST CONTRACTIONS FIXED POINTS AND CONTINUITY OF ALMOST CONTRACTIONS VASILE BERINDE AND MĂDĂLINA PĂCURAR Abstract. Almost contractions form a class of generalized contractions that includes several contractive type mappings

More information

Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs

Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs 2.6 Limits Involving Infinity; Asymptotes of Graphs Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs Definition. Formal Definition of Limits at Infinity.. We say that

More information

Two Point Methods For Non Linear Equations Neeraj Sharma, Simran Kaur

Two Point Methods For Non Linear Equations Neeraj Sharma, Simran Kaur 28 International Journal of Advance Research, IJOAR.org Volume 1, Issue 1, January 2013, Online: Two Point Methods For Non Linear Equations Neeraj Sharma, Simran Kaur ABSTRACT The following paper focuses

More information

CONVERGENCE THEOREMS FOR STRICTLY ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN HILBERT SPACES. Gurucharan Singh Saluja

CONVERGENCE THEOREMS FOR STRICTLY ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN HILBERT SPACES. Gurucharan Singh Saluja Opuscula Mathematica Vol 30 No 4 2010 http://dxdoiorg/107494/opmath2010304485 CONVERGENCE THEOREMS FOR STRICTLY ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN HILBERT SPACES Gurucharan Singh Saluja Abstract

More information

Chapter 9: Basic of Hypercontractivity

Chapter 9: Basic of Hypercontractivity Analysis of Boolean Functions Prof. Ryan O Donnell Chapter 9: Basic of Hypercontractivity Date: May 6, 2017 Student: Chi-Ning Chou Index Problem Progress 1 Exercise 9.3 (Tightness of Bonami Lemma) 2/2

More information

Limits and Continuity

Limits and Continuity Limits and Continuity MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Fall 2018 Objectives After this lesson we will be able to: Determine the left-hand and right-hand limits

More information

A Fractional Order of Convergence Rate for Successive Methods: Examples on Integral Equations

A Fractional Order of Convergence Rate for Successive Methods: Examples on Integral Equations International Mathematical Forum, 1, 26, no. 39, 1935-1942 A Fractional Order of Convergence Rate for Successive Methods: Examples on Integral Equations D. Rostamy V. F. 1 and M. Jabbari Department of

More information

HOMOLOGICAL LOCAL LINKING

HOMOLOGICAL LOCAL LINKING HOMOLOGICAL LOCAL LINKING KANISHKA PERERA Abstract. We generalize the notion of local linking to include certain cases where the functional does not have a local splitting near the origin. Applications

More information

Two-Step Iteration Scheme for Nonexpansive Mappings in Banach Space

Two-Step Iteration Scheme for Nonexpansive Mappings in Banach Space Mathematica Moravica Vol. 19-1 (2015), 95 105 Two-Step Iteration Scheme for Nonexpansive Mappings in Banach Space M.R. Yadav Abstract. In this paper, we introduce a new two-step iteration process to approximate

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 4.3.5, 4.3.7, 4.3.8, 4.3.9,

More information

On the Third Order Rational Difference Equation

On the Third Order Rational Difference Equation Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 27, 32-334 On the Third Order Rational Difference Equation x n x n 2 x (a+x n x n 2 ) T. F. Irahim Department of Mathematics, Faculty of Science Mansoura

More information

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6 Matthew Straughn Math 402 Homework 6 Homework 6 (p. 452) 14.3.3, 14.3.4, 14.3.5, 14.3.8 (p. 455) 14.4.3* (p. 458) 14.5.3 (p. 460) 14.6.1 (p. 472) 14.7.2* Lemma 1. If (f (n) ) converges uniformly to some

More information

Nontrivial solutions for fractional q-difference boundary value problems

Nontrivial solutions for fractional q-difference boundary value problems Electronic Journal of Qualitative Theory of Differential Equations 21, No. 7, 1-1; http://www.math.u-szeged.hu/ejqtde/ Nontrivial solutions for fractional q-difference boundary value problems Rui A. C.

More information

University of Education Lahore 54000, PAKISTAN 2 Department of Mathematics and Statistics

University of Education Lahore 54000, PAKISTAN 2 Department of Mathematics and Statistics International Journal of Pure and Applied Mathematics Volume 109 No. 2 2016, 223-232 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v109i2.5

More information

Multi-Term Linear Fractional Nabla Difference Equations with Constant Coefficients

Multi-Term Linear Fractional Nabla Difference Equations with Constant Coefficients International Journal of Difference Equations ISSN 0973-6069, Volume 0, Number, pp. 9 06 205 http://campus.mst.edu/ijde Multi-Term Linear Fractional Nabla Difference Equations with Constant Coefficients

More information

Summer Jump-Start Program for Analysis, 2012 Song-Ying Li

Summer Jump-Start Program for Analysis, 2012 Song-Ying Li Summer Jump-Start Program for Analysis, 01 Song-Ying Li 1 Lecture 6: Uniformly continuity and sequence of functions 1.1 Uniform Continuity Definition 1.1 Let (X, d 1 ) and (Y, d ) are metric spaces and

More information

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces Applied Mathematical Sciences, Vol. 11, 2017, no. 12, 549-560 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.718 The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive

More information

Fixed points of Ćirić quasi-contractive operators in normed spaces

Fixed points of Ćirić quasi-contractive operators in normed spaces Mathematical Communications 11(006), 115-10 115 Fixed points of Ćirić quasi-contractive operators in normed spaces Arif Rafiq Abstract. We establish a general theorem to approximate fixed points of Ćirić

More information

A Two-step Iterative Method Free from Derivative for Solving Nonlinear Equations

A Two-step Iterative Method Free from Derivative for Solving Nonlinear Equations Applied Mathematical Sciences, Vol. 8, 2014, no. 161, 8021-8027 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49710 A Two-step Iterative Method Free from Derivative for Solving Nonlinear

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journal of Inequalities in Pure and Applied Mathematics ON SOME APPROXIMATE FUNCTIONAL RELATIONS STEMMING FROM ORTHOGONALITY PRESERVING PROPERTY JACEK CHMIELIŃSKI Instytut Matematyki, Akademia Pedagogiczna

More information

THE NEARLY ADDITIVE MAPS

THE NEARLY ADDITIVE MAPS Bull. Korean Math. Soc. 46 (009), No., pp. 199 07 DOI 10.4134/BKMS.009.46..199 THE NEARLY ADDITIVE MAPS Esmaeeil Ansari-Piri and Nasrin Eghbali Abstract. This note is a verification on the relations between

More information

Common fixed points of two generalized asymptotically quasi-nonexpansive mappings

Common fixed points of two generalized asymptotically quasi-nonexpansive mappings An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) Tomul LXIII, 2017, f. 2 Common fixed points of two generalized asymptotically quasi-nonexpansive mappings Safeer Hussain Khan Isa Yildirim Received: 5.VIII.2013

More information

1. Bounded linear maps. A linear map T : E F of real Banach

1. Bounded linear maps. A linear map T : E F of real Banach DIFFERENTIABLE MAPS 1. Bounded linear maps. A linear map T : E F of real Banach spaces E, F is bounded if M > 0 so that for all v E: T v M v. If v r T v C for some positive constants r, C, then T is bounded:

More information

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 4 Solutions

Math 1102: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 230 Homework 4 Solutions Math 0: Calculus I (Math/Sci majors) MWF 3pm, Fulton Hall 30 Homework 4 Solutions Please write neatly, and show all work. Caution: An answer with no work is wrong! Problem A. Use Weierstrass (ɛ,δ)-definition

More information

Study of some equivalence classes of primes

Study of some equivalence classes of primes Notes on Number Theory and Discrete Mathematics Print ISSN 3-532, Online ISSN 2367-8275 Vol 23, 27, No 2, 2 29 Study of some equivalence classes of primes Sadani Idir Department of Mathematics University

More information

Fixed point iteration Numerical Analysis Math 465/565

Fixed point iteration Numerical Analysis Math 465/565 Fixed point iteration Numerical Analysis Math 465/565 1 Fixed Point Iteration Suppose we wanted to solve : f(x) = cos(x) x =0 or cos(x) =x We might consider a iteration of this type : x k+1 = cos(x k )

More information

On the mean values of an analytic function

On the mean values of an analytic function ANNALES POLONICI MATHEMATICI LVII.2 (1992) On the mean values of an analytic function by G. S. Srivastava and Sunita Rani (Roorkee) Abstract. Let f(z), z = re iθ, be analytic in the finite disc z < R.

More information

AN EXISTENCE-UNIQUENESS THEOREM FOR A CLASS OF BOUNDARY VALUE PROBLEMS

AN EXISTENCE-UNIQUENESS THEOREM FOR A CLASS OF BOUNDARY VALUE PROBLEMS Fixed Point Theory, 13(2012), No. 2, 583-592 http://www.math.ubbcluj.ro/ nodeacj/sfptcj.html AN EXISTENCE-UNIQUENESS THEOREM FOR A CLASS OF BOUNDARY VALUE PROBLEMS M.R. MOKHTARZADEH, M.R. POURNAKI,1 AND

More information

FIXED POINT THEOREMS FOR LOCAL ALMOST CONTRACTIONS

FIXED POINT THEOREMS FOR LOCAL ALMOST CONTRACTIONS Miskolc Mathematical Notes HU e-issn 1787-2413 Vol. 18 (2017), No. 1, pp. 499 506 DOI: 10.18514/MMN.2017.1905 FIXED POINT THEOREMS FOR LOCAL ALMOST CONTRACTIONS MONIKA ZAKANY Received 05 December, 2015

More information

Fixed point theorems of nondecreasing order-ćirić-lipschitz mappings in normed vector spaces without normalities of cones

Fixed point theorems of nondecreasing order-ćirić-lipschitz mappings in normed vector spaces without normalities of cones Available online at www.isr-publications.com/jnsa J. Nonlinear Sci. Appl., 10 (2017), 18 26 Research Article Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa Fixed point theorems of nondecreasing

More information

Stability of Noor Iteration for a General Class of Functions in Banach Spaces

Stability of Noor Iteration for a General Class of Functions in Banach Spaces Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 51, 2 2012 19 25 Stability of Noor Iteration for a General Class of Functions in Banach Spaces Alfred Olufemi BOSEDE Department of Mathematics,

More information

ON WEAK AND STRONG CONVERGENCE THEOREMS FOR TWO NONEXPANSIVE MAPPINGS IN BANACH SPACES. Pankaj Kumar Jhade and A. S. Saluja

ON WEAK AND STRONG CONVERGENCE THEOREMS FOR TWO NONEXPANSIVE MAPPINGS IN BANACH SPACES. Pankaj Kumar Jhade and A. S. Saluja MATEMATIQKI VESNIK 66, 1 (2014), 1 8 March 2014 originalni nauqni rad research paper ON WEAK AND STRONG CONVERGENCE THEOREMS FOR TWO NONEXPANSIVE MAPPINGS IN BANACH SPACES Pankaj Kumar Jhade and A. S.

More information

USE OF THE INTERIOR-POINT METHOD FOR CORRECTING AND SOLVING INCONSISTENT LINEAR INEQUALITY SYSTEMS

USE OF THE INTERIOR-POINT METHOD FOR CORRECTING AND SOLVING INCONSISTENT LINEAR INEQUALITY SYSTEMS An. Şt. Univ. Ovidius Constanţa Vol. 9(2), 2001, 121 128 USE OF THE INTERIOR-POINT METHOD FOR CORRECTING AND SOLVING INCONSISTENT LINEAR INEQUALITY SYSTEMS Elena Popescu Dedicated to Professor Mirela Ştefănescu

More information

IN PROBABILITY. Kragujevac Journal of Mathematics Volume 42(1) (2018), Pages

IN PROBABILITY. Kragujevac Journal of Mathematics Volume 42(1) (2018), Pages Kragujevac Journal of Mathematics Volume 4) 08), Pages 5 67. A NOTION OF -STATISTICAL CONVERGENCE OF ORDER γ IN PROBABILITY PRATULANANDA DAS, SUMIT SOM, SANJOY GHOSAL, AND VATAN KARAKAYA 3 Abstract. A

More information

Discrete dynamics on the real line

Discrete dynamics on the real line Chapter 2 Discrete dynamics on the real line We consider the discrete time dynamical system x n+1 = f(x n ) for a continuous map f : R R. Definitions The forward orbit of x 0 is: O + (x 0 ) = {x 0, f(x

More information

ACCURATE SOLUTION ESTIMATE AND ASYMPTOTIC BEHAVIOR OF NONLINEAR DISCRETE SYSTEM

ACCURATE SOLUTION ESTIMATE AND ASYMPTOTIC BEHAVIOR OF NONLINEAR DISCRETE SYSTEM Sutra: International Journal of Mathematical Science Education c Technomathematics Research Foundation Vol. 1, No. 1,9-15, 2008 ACCURATE SOLUTION ESTIMATE AND ASYMPTOTIC BEHAVIOR OF NONLINEAR DISCRETE

More information

An improved convergence theorem for the Newton method under relaxed continuity assumptions

An improved convergence theorem for the Newton method under relaxed continuity assumptions An improved convergence theorem for the Newton method under relaxed continuity assumptions Andrei Dubin ITEP, 117218, BCheremushinsaya 25, Moscow, Russia Abstract In the framewor of the majorization technique,

More information

KOREKTURY wim11203.tex

KOREKTURY wim11203.tex KOREKTURY wim11203.tex 23.12. 2005 REGULAR SUBMODULES OF TORSION MODULES OVER A DISCRETE VALUATION DOMAIN, Bandung,, Würzburg (Received July 10, 2003) Abstract. A submodule W of a p-primary module M of

More information

Math Boot Camp Functions and Algebra

Math Boot Camp Functions and Algebra Fall 017 Math Boot Camp Functions and Algebra FUNCTIONS Much of mathematics relies on functions, the pairing (relation) of one object (typically a real number) with another object (typically a real number).

More information

Infinite Limits. By Tuesday J. Johnson

Infinite Limits. By Tuesday J. Johnson Infinite Limits By Tuesday J. Johnson Suggested Review Topics Algebra skills reviews suggested: Evaluating functions Graphing functions Working with inequalities Working with absolute values Trigonometric

More information

A New Two Step Class of Methods with Memory for Solving Nonlinear Equations with High Efficiency Index

A New Two Step Class of Methods with Memory for Solving Nonlinear Equations with High Efficiency Index International Journal of Mathematical Modelling & Computations Vol. 04, No. 03, Summer 2014, 277-288 A New Two Step Class of Methods with Memory for Solving Nonlinear Equations with High Efficiency Index

More information

ON THE CONVERGENCE OF MODIFIED NOOR ITERATION METHOD FOR NEARLY LIPSCHITZIAN MAPPINGS IN ARBITRARY REAL BANACH SPACES

ON THE CONVERGENCE OF MODIFIED NOOR ITERATION METHOD FOR NEARLY LIPSCHITZIAN MAPPINGS IN ARBITRARY REAL BANACH SPACES TJMM 6 (2014), No. 1, 45-51 ON THE CONVERGENCE OF MODIFIED NOOR ITERATION METHOD FOR NEARLY LIPSCHITZIAN MAPPINGS IN ARBITRARY REAL BANACH SPACES ADESANMI ALAO MOGBADEMU Abstract. In this present paper,

More information

STRONG CONVERGENCE RESULTS FOR NEARLY WEAK UNIFORMLY L-LIPSCHITZIAN MAPPINGS

STRONG CONVERGENCE RESULTS FOR NEARLY WEAK UNIFORMLY L-LIPSCHITZIAN MAPPINGS BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org / JOURNALS / BULLETIN Vol. 6(2016), 199-208 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS

More information

A MEAN VALUE THEOREM FOR INTERNAL FUNCTIONS AND AN ESTIMATION FOR THE DIFFERENTIAL MEAN POINT

A MEAN VALUE THEOREM FOR INTERNAL FUNCTIONS AND AN ESTIMATION FOR THE DIFFERENTIAL MEAN POINT ovi Sad J. Math. Vol. 38, o. 2, 2008, 57-64 A MEA VALUE THEOREM FOR ITERAL FUCTIOS AD A ESTIMATIO FOR THE DIFFERETIAL MEA POIT Ricardo Almeida 1 Abstract. We present several results about the mean value

More information

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5 MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5.. The Arzela-Ascoli Theorem.. The Riemann mapping theorem Let X be a metric space, and let F be a family of continuous complex-valued functions on X. We have

More information

Convergence of a Third-order family of methods in Banach spaces

Convergence of a Third-order family of methods in Banach spaces International Journal of Computational and Applied Mathematics. ISSN 1819-4966 Volume 1, Number (17), pp. 399 41 Research India Publications http://www.ripublication.com/ Convergence of a Third-order family

More information

The coincidence Nielsen number for maps into real projective spaces

The coincidence Nielsen number for maps into real projective spaces F U N D A M E N T A MATHEMATICAE 140 (1992) The coincidence Nielsen number for maps into real projective spaces by Jerzy J e z i e r s k i (Warszawa) Abstract. We give an algorithm to compute the coincidence

More information

Some New Three Step Iterative Methods for Solving Nonlinear Equation Using Steffensen s and Halley Method

Some New Three Step Iterative Methods for Solving Nonlinear Equation Using Steffensen s and Halley Method British Journal of Mathematics & Computer Science 19(2): 1-9, 2016; Article no.bjmcs.2922 ISSN: 221-081 SCIENCEDOMAIN international www.sciencedomain.org Some New Three Step Iterative Methods for Solving

More information

Global Attractivity of a Higher-Order Nonlinear Difference Equation

Global Attractivity of a Higher-Order Nonlinear Difference Equation International Journal of Difference Equations ISSN 0973-6069, Volume 5, Number 1, pp. 95 101 (010) http://campus.mst.edu/ijde Global Attractivity of a Higher-Order Nonlinear Difference Equation Xiu-Mei

More information

ITERATIVE APPROXIMATION OF SOLUTIONS OF GENERALIZED EQUATIONS OF HAMMERSTEIN TYPE

ITERATIVE APPROXIMATION OF SOLUTIONS OF GENERALIZED EQUATIONS OF HAMMERSTEIN TYPE Fixed Point Theory, 15(014), No., 47-440 http://www.math.ubbcluj.ro/ nodeacj/sfptcj.html ITERATIVE APPROXIMATION OF SOLUTIONS OF GENERALIZED EQUATIONS OF HAMMERSTEIN TYPE C.E. CHIDUME AND Y. SHEHU Mathematics

More information

DETERMINATION OF AN UNKNOWN SOURCE TERM IN A SPACE-TIME FRACTIONAL DIFFUSION EQUATION

DETERMINATION OF AN UNKNOWN SOURCE TERM IN A SPACE-TIME FRACTIONAL DIFFUSION EQUATION Journal of Fractional Calculus and Applications, Vol. 6(1) Jan. 2015, pp. 83-90. ISSN: 2090-5858. http://fcag-egypt.com/journals/jfca/ DETERMINATION OF AN UNKNOWN SOURCE TERM IN A SPACE-TIME FRACTIONAL

More information

Solving Nonlinear Equations Using Steffensen-Type Methods With Optimal Order of Convergence

Solving Nonlinear Equations Using Steffensen-Type Methods With Optimal Order of Convergence Palestine Journal of Mathematics Vol. 3(1) (2014), 113 119 Palestine Polytechnic University-PPU 2014 Solving Nonlinear Equations Using Steffensen-Type Methods With Optimal Order of Convergence M.A. Hafiz

More information

EXISTENCE RESULTS FOR QUASILINEAR HEMIVARIATIONAL INEQUALITIES AT RESONANCE. Leszek Gasiński

EXISTENCE RESULTS FOR QUASILINEAR HEMIVARIATIONAL INEQUALITIES AT RESONANCE. Leszek Gasiński DISCRETE AND CONTINUOUS Website: www.aimsciences.org DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp. 409 418 EXISTENCE RESULTS FOR QUASILINEAR HEMIVARIATIONAL INEQUALITIES AT RESONANCE Leszek Gasiński Jagiellonian

More information

Worst Case Complexity of Direct Search

Worst Case Complexity of Direct Search Worst Case Complexity of Direct Search L. N. Vicente May 3, 200 Abstract In this paper we prove that direct search of directional type shares the worst case complexity bound of steepest descent when sufficient

More information

The Approximation of Some Invertible Operators Using Newton s Method in Banach Spaces

The Approximation of Some Invertible Operators Using Newton s Method in Banach Spaces Int. Journal of Math. Analysis, Vol. 2, 28, no. 15, 713-72 The Approximation of Some Invertible Operators Using Newton s Method in Banach Spaces Alexandru V. Blaga National College Mihai Eminescu 5 Mihai

More information

FIXED POINT THEOREMS FOR NONSELF SINGLE-VALUED ALMOST CONTRACTIONS

FIXED POINT THEOREMS FOR NONSELF SINGLE-VALUED ALMOST CONTRACTIONS Fixed Point Theory, 14(2013), No. 2, 301-312 http://www.math.ubbcluj.ro/ nodeacj/sfptcj.html FIXED POINT THEOREMS FOR NONSELF SINGLE-VALUED ALMOST CONTRACTIONS VASILE BERINDE AND MĂDĂLINA PĂCURAR Department

More information

ERROR AND SENSITIVTY ANALYSIS FOR SYSTEMS OF LINEAR EQUATIONS. Perturbation analysis for linear systems (Ax = b)

ERROR AND SENSITIVTY ANALYSIS FOR SYSTEMS OF LINEAR EQUATIONS. Perturbation analysis for linear systems (Ax = b) ERROR AND SENSITIVTY ANALYSIS FOR SYSTEMS OF LINEAR EQUATIONS Conditioning of linear systems. Estimating errors for solutions of linear systems Backward error analysis Perturbation analysis for linear

More information

An Application of Perturbation Methods in Evolutionary Ecology

An Application of Perturbation Methods in Evolutionary Ecology Dynamics at the Horsetooth Volume 2A, 2010. Focused Issue: Asymptotics and Perturbations An Application of Perturbation Methods in Evolutionary Ecology Department of Mathematics Colorado State University

More information

STABILITY OF n-th ORDER FLETT S POINTS AND LAGRANGE S POINTS

STABILITY OF n-th ORDER FLETT S POINTS AND LAGRANGE S POINTS SARAJEVO JOURNAL OF MATHEMATICS Vol.2 (4) (2006), 4 48 STABILITY OF n-th ORDER FLETT S POINTS AND LAGRANGE S POINTS IWONA PAWLIKOWSKA Abstract. In this article we show the stability of Flett s points and

More information

Approximate additive and quadratic mappings in 2-Banach spaces and related topics

Approximate additive and quadratic mappings in 2-Banach spaces and related topics Int. J. Nonlinear Anal. Appl. 3 (0) No., 75-8 ISSN: 008-68 (electronic) http://www.ijnaa.semnan.ac.ir Approximate additive and quadratic mappings in -Banach spaces and related topics Y. J. Cho a, C. Park

More information

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials

A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating Polynomials Applied Mathematical Sciences, Vol. 8, 2014, no. 35, 1723-1730 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4127 A Family of Optimal Multipoint Root-Finding Methods Based on the Interpolating

More information

Existence and uniqueness: Picard s theorem

Existence and uniqueness: Picard s theorem Existence and uniqueness: Picard s theorem First-order equations Consider the equation y = f(x, y) (not necessarily linear). The equation dictates a value of y at each point (x, y), so one would expect

More information

Better bounds for k-partitions of graphs

Better bounds for k-partitions of graphs Better bounds for -partitions of graphs Baogang Xu School of Mathematics, Nanjing Normal University 1 Wenyuan Road, Yadong New District, Nanjing, 1006, China Email: baogxu@njnu.edu.cn Xingxing Yu School

More information

Bisection Method. and compute f (p 1 ). repeat with p 2 = a 2+b 2

Bisection Method. and compute f (p 1 ). repeat with p 2 = a 2+b 2 Bisection Method Given continuous function f (x) on the interval [a, b] with f (a) f (b) < 0, there must be a root in (a, b). To find a root: set [a 1, b 1 ] = [a, b]. set p 1 = a 1+b 1 2 and compute f

More information

Relevant Classes of Weakly Picard Operators

Relevant Classes of Weakly Picard Operators DOI: 10.1515/awutm -2016-0019 Analele Universităţii de Vest, Timişoara Seria Matematică Informatică LIV, 2, (2016), 131 147 Relevant Classes of Weakly Picard Operators Ioan A. Rus Abstract. In this paper

More information

ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN MODULAR FUNCTION SPACES ABSTRACT

ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN MODULAR FUNCTION SPACES ABSTRACT ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN MODULAR FUNCTION SPACES T. DOMINGUEZ-BENAVIDES, M.A. KHAMSI AND S. SAMADI ABSTRACT In this paper, we prove that if ρ is a convex, σ-finite modular function satisfying

More information

Bilinear generating relations for a family of q-polynomials and generalized basic hypergeometric functions

Bilinear generating relations for a family of q-polynomials and generalized basic hypergeometric functions ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 16, Number 2, 2012 Available online at www.math.ut.ee/acta/ Bilinear generating relations for a family of -polynomials and generalized

More information

ON THE RATIONAL RECURSIVE SEQUENCE X N+1 = γx N K + (AX N + BX N K ) / (CX N DX N K ) Communicated by Mohammad Asadzadeh. 1.

ON THE RATIONAL RECURSIVE SEQUENCE X N+1 = γx N K + (AX N + BX N K ) / (CX N DX N K ) Communicated by Mohammad Asadzadeh. 1. Bulletin of the Iranian Mathematical Society Vol. 36 No. 1 (2010), pp 103-115. ON THE RATIONAL RECURSIVE SEQUENCE X N+1 γx N K + (AX N + BX N K ) / (CX N DX N K ) E.M.E. ZAYED AND M.A. EL-MONEAM* Communicated

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings Structural and Multidisciplinary Optimization P. Duysinx and P. Tossings 2018-2019 CONTACTS Pierre Duysinx Institut de Mécanique et du Génie Civil (B52/3) Phone number: 04/366.91.94 Email: P.Duysinx@uliege.be

More information