V = 1 2 (g ijχ i h j ) (2.4)

Size: px
Start display at page:

Download "V = 1 2 (g ijχ i h j ) (2.4)"

Transcription

1 4 VASILY PESTUN 2. Lecture: Localization 2.. Euler class of vector bundle, Mathai-Quillen form and Poincare-Hopf theorem. We will present the Euler class of a vector bundle can be presented in the form of an integral over fermionic variables. This presentation connects to Mathai-Quillen formalism for localization in topological or supersymmetric field theories. Let E be an oriented real vector bundle E of rank 2n over a manifold. Let x µ be local coordinates on the base, and let their differentials be denoted ψ µ = dx µ. Let h i be local coordinates on the fibers of E. Let ΠE denote the superspace obtained from the total space of the bundle E by inverting the parity of the fibers, so that the coordinates in the fibers of ΠE are odd variables χ i. Let g ij be the matrix of a Riemannian metric on the bundle E. Let A i µ be the matrix valued -form on representing a connection on the bundle E. Using the connection A we can define an odd vector field δ on the superspace ΠT (ΠE), or, equivalently, a de Rham differential on the space of differential forms Ω (ΠE). In local coordinates (x µ, ψ µ ) and (χ i, h i ) the definition of δ is δx µ = ψ µ δψ µ = 0 δχ i = h i A i jµψ µ χ j δh i = δ(a i jµψ µ χ j ) (2.) Here h i = Dχ i is the covariant de Rham differential of χ i, so that under the change of framing on E given by χ i = s i j χ j the h i transforms in the same way, that is h i = s i j h j. The odd vector field δ is nilpotent δ 2 = 0 (2.2) and is called de Rham vector field on ΠT (ΠE). Consider an element Φ Ω (ΠE), i.e. Φ is a function on ΠT (ΠE), defined by the equation where t R >0 and Φ = exp( tδv ) (2.3) (2π) 2n V = 2 (g ijχ i h j ) (2.4) Notice that since h i has been defined as Dχ i the definition (2.3) is coordinate independent. To expand the definition of Φ (2.3) we compute δ(χ, h) = (h Aχ, h) (χ, daχ A(h Aχ)) = (h, h) (χ, F A χ) (2.5) where we suppresed the indices i, j, the d denotes the de Rham differential on and F A the curvature 2-form on the connection A F A = da + A A (2.6) The Gaussian integration of the form Φ along the vertical fibers of ΠE gives [dh][dχ] exp( δ(χ, h)) = (2π) 2n 2 (2π) Pf(F A) (2.7) n which agrees with definition of the integer valued Euler class (.8). The representation of the Euler class in the form (2.3) is called the Gaussian Mathai-Quillen representation of the Thom class.

2 EQUIVARIANT COHOMOLOGY AND LOCALIZATIONWINTER SCHOOL IN LES DIABLERETSJANUARY The Euler class of the vector bundle E is an element of H 2n (, Z). If dim = 2n, the number obtained after integration of the fundamental cycle on e(e) = Φ (2.8) ΠT (ΠE) is an integer Euler characterstic of the vector bundle E. If E = T the equation (2.8) provides the Euler characteristic of the manifold in the form e() = exp( tδv ) t 0 = (2π) dim ΠT (ΠT ) (2.9) (2π) dim ΠT (ΠT ) Given a section s of the vector bundle E, we can deform the form Φ in the same δ- cohomology class by taking V s = 2 (χ, h + s) (2.0) After integrating over (h, χ) the the resulting differential form on has factor exp( 2t s2 ) (2.) so it is concentraited in a neigborhood of the locus s (0) of zeroes of the section s. exercise: write down the computation more precisely In this way the Poincare-Hopf theorem is proven: given an oriented vector bundle E on an oriented manifold, with rank E = dim, the Euler characteristic of E is equal to the number of zeroes of a generic section s of E counted with orientation e(e) = (2π) n Pf(F A ) = (2π) dim ΠT (ΠT ) exp( tδv s ) = x s (0) sign det ds x (2.2) where ds x : T x E x is the differential of the section s at a zero x s (0). The assumption that s is a generic section implies that det ds x is non-zero. More generally, let r = rank E and d = dim, with r d, take a generic section s of E and consider its set of zeroes F s (0). Then F is a subvariety of of dimension d r. Let α Ω d r () be a closed form on, equivalently α is a function on ΠT. Then the integral α, Φ E,s := α exp( tδv (2π) r s ) (2.3) ΠT (ΠE) does on deformations of section s to λs with a parameter λ R. Then by scaling the section s to λs and sending λ 0 we find α, Φ E,s = α exp( tδv (2π) r λs ) λ 0 = α e(e) (2.4) while sending λ we find α, Φ E,s = (2π) r ΠT (ΠT ) ΠT (ΠT ) α exp( tδv λs ) λ = F α (2.5)

3 6 VASILY PESTUN The equality of two expressions for α, Φ E,s can be interpreted as a localization formula α e(e) = F α (2.6) In this way we proved that cohomology class [e(e)] H r () is Poincare dual to the homology class [F ] H d r () where F is the zero set of generic section of bundle E Equivariant Atiyah-Bott-Berline-Vergne localization formula. Suppose that a compact abelian Lie group T acts equivariantly on the oriented vector bundle E, and that α Ω G () is a closed equivariant differential form on in Cartan model, that is d T α = 0. Then equivariant version of (2.6) holds α e T (E) = F α (2.7) exercise: prove (2.7) in Cartan model for equivariant cohomology replacing Euler class by equivariant Euler class Now let be an oriented real even-dimensional Riemannian manifold, E = T be the tangent bundle, and T be a compact group acting on, and suppose that the set F = T of T -fixed points has dimension 0, i.e. F is a union of discrete points. A section s of tangent bundle E is a vector field. Assume that there is a circle subgroup S T that generates a vector field s on whose set of zeroes coincide with T, i.e. F = S = T. Let α be d T -closed T -equivariant differential form on in Cartan model. Then equivariant Euler class localization formula (2.7) α e T (T ) = x T α x (2.8) Equivariant cohomologies H T () form a ring. Formally, we can consider the field of fractions of this ring, and multiply α on the left and right side of the above equality by a cohomology class which is inverse to e T (T ), then we arrive to the equation α = α x (2.9) e T (T x ) x T where e T (T x ) := e T (T ) x is equivariant Euler class of the tangent bundle to evaluated at the point x. Since x is a discrete fixed point of T -action on, the fiber T x of the tangent bundle at point x forms a T -module. Since T is compact real abelian Lie group, a real T -module splits into a direct sum of dim 2 R T x irreducible real two-dimensional modules (L i R 2 C ) i=...n on which the weights of the T action are all non-zero. Then by (.63), (.8) and we find that the equivariant Euler class is e T (T x ) = (2π) 2 dim 2 dim i= w i (2.20)

4 EQUIVARIANT COHOMOLOGY AND LOCALIZATIONWINTER SCHOOL IN LES DIABLERETSJANUARY 207 where w i t are weights. In basis (ɛ α ) α=... dim T of linear coordinate functions on t we can write explicitly e T (T x ) = (2π) 2 dim 2 dim i= w iα ɛ α (2.2) 2.3. Duistermaat-Heckman localization. A particular example where the Atiyah-Bott- Berline-Vergne localization formula can be applied is a symplectic space on which a Lie group T acts in a Hamiltonian way. Namely, let (, ω) be a real symplectic manifold of dim R = 2n with symplectic form ω and let compact connected Lie group T act on in Hamiltonian way, which means that there exists a function, called moment map or Hamiltonian µ : t (2.22) such that dµ a = i a ω (2.23) in some basis (T a ) of t where i a is the contraction operation with the vector field generated by the T a action on. The degree 2 element ω T Ω () St defined by the equation is a d T -closed equivariant differential form: ω T = ω + ɛ a µ a (2.24) d T ω T = (d + ɛ a i a )(ω + ɛ b µ b ) = ɛ a dµ a + ɛ a i a ω = 0 (2.25) This implies that the mixed-degree equivariant differential form α = e ω T (2.26) is also d T -closed, and we can apply the Atiyah-Bott-Berline-Vergne localization formula to the integral exp(ω T ) = ω n exp(ɛ a µ a ) (2.27) n! For T = SO(2) so that Lie(SO(2)) R the integral (2.27) is the typical partition function of a classical Hamiltonian mechanical system in statistical physics with Hamiltonian function µ : R and inverse temperature parameter ɛ. Suppose that T = SO(2) and that the set of fixed points T is discrete. Then the Atiyah-Bott-Berline-Vergne localization formula (2.9) implies n! ω n exp(ɛ a µ a ) = exp(ɛa µ a ) e T (ν x ) x T (2.28) where ν x is the normal bundle to a fixed point x T in and e T (ν x ) is the T -equivariant Euler class of the bundle ν x. The rank of the normal bundle ν x is 2n and the structure group is SO(2n). In notations of section.9 we evaluate the T -equivariant characteristic Euler class of the principal G- bundle for T = SO(2) and G = SO(2n) by equation (.62) for the invariant polynomial on g = so(2n) given by p = (2π) n Pf according to definition (.8).

5 8 VASILY PESTUN 2.4. Gaussian integral example. To illustrate the localization formula (2.28) suppose that = R 2n with symplectic form n ω = dx i dy i (2.29) and SO(2) action ( xi i= ) ( ) ( ) cos wi θ sin w i θ xi y i sin w i θ cos w i θ y i (2.30) where θ R/(2πZ) parametrizes SO(2) and (w,..., w n ) Z n. The point 0 is the fixed point so that T = {0}, and the normal bundle ν x = T 0 is an SO(2)-module of real dimension 2n and complex dimension n that splits into a direct sum of n irreducible SO(2) modules with weights (w,..., w n ). We identify Lie(SO(2)) with R with basis element {} and coordinate function ɛ Lie(SO(2)). The SO(2) action (2.30) is Hamiltonian with respect to the moment map µ = µ 0 + n w i (x 2 i + yi 2 ) (2.3) 2 i= Assuming that ɛ < 0 and all w i > 0 we find by direct Gaussian integration ω n (2π) n exp(ɛµ) = n! ( ɛ) n n i= w exp(ɛµ 0 ) (2.32) i and the same result by the localization formula (2.28) because e T (ν x ) = Pf(ɛρ()) (2.33) (2π) n according to the definition of the T -equivariant class (.62) and the Euler characteristic class (.8), and where ρ : Lie(SO(2)) Lie(SO(2n)) is the homomorphism in (.6) with 0 w w ρ() = (2.34) w n w n 0 according to (2.30) Example of a two-sphere. Let (, ω) be the two-sphere S 2 with coordinates (θ, α) and symplectic structure ω = sin θdθ dα (2.35) Let the Hamiltonian function be so that H = cos θ (2.36) ω = dh dα (2.37) and the Hamiltonian vector field be v H = α. The differential form ω T = ω + ɛh = sin θdθ dα ɛ cos θ

6 EQUIVARIANT COHOMOLOGY AND LOCALIZATIONWINTER SCHOOL IN LES DIABLERETSJANUARY is d T -closed for d T = d + ɛi α (2.38) Let α = e tω T (2.39) Locally there is a degree form V such that ω T = d T V, for example V = (cos θ)dα (2.40) but globally V does not exist. The d T -cohomology class [α] of the form α is non-zero. The localization formula (2.27) gives exp(ω T ) = 2π ɛ exp( ɛ) + 2π exp(ɛ) (2.4) ɛ where the first term is the contribution of the T -fixed point θ = 0 and the second term is the contribution of the T -fixed point θ = π.

k=0 /D : S + S /D = K 1 2 (3.5) consistently with the relation (1.75) and the Riemann-Roch-Hirzebruch-Atiyah-Singer index formula

k=0 /D : S + S /D = K 1 2 (3.5) consistently with the relation (1.75) and the Riemann-Roch-Hirzebruch-Atiyah-Singer index formula 20 VASILY PESTUN 3. Lecture: Grothendieck-Riemann-Roch-Hirzebruch-Atiyah-Singer Index theorems 3.. Index for a holomorphic vector bundle. For a holomorphic vector bundle E over a complex variety of dim

More information

LECTURES ON EQUIVARIANT LOCALIZATION

LECTURES ON EQUIVARIANT LOCALIZATION LECTURES ON EQUIVARIANT LOCALIZATION VASILY PESTUN Abstract. These are informal notes of the lectures on equivariant localization given at the program Geometry of Strings and Fields at The Galileo Galilei

More information

MILNOR SEMINAR: DIFFERENTIAL FORMS AND CHERN CLASSES

MILNOR SEMINAR: DIFFERENTIAL FORMS AND CHERN CLASSES MILNOR SEMINAR: DIFFERENTIAL FORMS AND CHERN CLASSES NILAY KUMAR In these lectures I want to introduce the Chern-Weil approach to characteristic classes on manifolds, and in particular, the Chern classes.

More information

THE GAUSS-BONNET THEOREM FOR VECTOR BUNDLES

THE GAUSS-BONNET THEOREM FOR VECTOR BUNDLES THE GAUSS-BONNET THEOREM FOR VECTOR BUNDLES Denis Bell 1 Department of Mathematics, University of North Florida 4567 St. Johns Bluff Road South,Jacksonville, FL 32224, U. S. A. email: dbell@unf.edu This

More information

Supersymmetry and Equivariant de Rham Theory

Supersymmetry and Equivariant de Rham Theory Supersymmetry and Equivariant de Rham Theory Bearbeitet von Victor W Guillemin, Shlomo Sternberg, Jochen Brüning 1. Auflage 1999. Buch. xxiii, 232 S. Hardcover ISBN 978 3 540 64797 3 Format (B x L): 15,5

More information

CHARACTERISTIC CLASSES

CHARACTERISTIC CLASSES 1 CHARACTERISTIC CLASSES Andrew Ranicki Index theory seminar 14th February, 2011 2 The Index Theorem identifies Introduction analytic index = topological index for a differential operator on a compact

More information

arxiv: v3 [hep-th] 15 Oct 2016

arxiv: v3 [hep-th] 15 Oct 2016 Review of localization in geometry Vasily Pestun Institut des Hautes Études Scientifique, France pestun@ihes.fr ariv:608.02954v3 [hep-th] 5 Oct 206 Abstract Review of localization in geometry: equivariant

More information

Lecture Notes on Equivariant Cohomology

Lecture Notes on Equivariant Cohomology Lecture Notes on Equivariant Cohomology atvei Libine April 26, 2007 1 Introduction These are the lecture notes for the introductory graduate course I taught at Yale during Spring 2007. I mostly followed

More information

LECTURE 26: THE CHERN-WEIL THEORY

LECTURE 26: THE CHERN-WEIL THEORY LECTURE 26: THE CHERN-WEIL THEORY 1. Invariant Polynomials We start with some necessary backgrounds on invariant polynomials. Let V be a vector space. Recall that a k-tensor T k V is called symmetric if

More information

LECTURE 4: SYMPLECTIC GROUP ACTIONS

LECTURE 4: SYMPLECTIC GROUP ACTIONS LECTURE 4: SYMPLECTIC GROUP ACTIONS WEIMIN CHEN, UMASS, SPRING 07 1. Symplectic circle actions We set S 1 = R/2πZ throughout. Let (M, ω) be a symplectic manifold. A symplectic S 1 -action on (M, ω) is

More information

Res + X F F + is defined below in (1.3). According to [Je-Ki2, Definition 3.3 and Proposition 3.4], the value of Res + X

Res + X F F + is defined below in (1.3). According to [Je-Ki2, Definition 3.3 and Proposition 3.4], the value of Res + X Theorem 1.2. For any η HH (N) we have1 (1.1) κ S (η)[n red ] = c η F. Here HH (F) denotes the H-equivariant Euler class of the normal bundle ν(f), c is a non-zero constant 2, and is defined below in (1.3).

More information

SYMPLECTIC GEOMETRY: LECTURE 5

SYMPLECTIC GEOMETRY: LECTURE 5 SYMPLECTIC GEOMETRY: LECTURE 5 LIAT KESSLER Let (M, ω) be a connected compact symplectic manifold, T a torus, T M M a Hamiltonian action of T on M, and Φ: M t the assoaciated moment map. Theorem 0.1 (The

More information

Math 550 / David Dumas / Fall Problems

Math 550 / David Dumas / Fall Problems Math 550 / David Dumas / Fall 2014 Problems Please note: This list was last updated on November 30, 2014. Problems marked with * are challenge problems. Some problems are adapted from the course texts;

More information

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1

Exercises in Geometry II University of Bonn, Summer semester 2015 Professor: Prof. Christian Blohmann Assistant: Saskia Voss Sheet 1 Assistant: Saskia Voss Sheet 1 1. Conformal change of Riemannian metrics [3 points] Let (M, g) be a Riemannian manifold. A conformal change is a nonnegative function λ : M (0, ). Such a function defines

More information

The Dirac-Ramond operator and vertex algebras

The Dirac-Ramond operator and vertex algebras The Dirac-Ramond operator and vertex algebras Westfälische Wilhelms-Universität Münster cvoigt@math.uni-muenster.de http://wwwmath.uni-muenster.de/reine/u/cvoigt/ Vanderbilt May 11, 2011 Kasparov theory

More information

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that 1 Stokes s Theorem Let D R 2 be a connected compact smooth domain, so that D is a smooth embedded circle. Given a smooth function f : D R, define fdx dy fdxdy, D where the left-hand side is the integral

More information

Modern Geometric Structures and Fields

Modern Geometric Structures and Fields Modern Geometric Structures and Fields S. P. Novikov I.A.TaJmanov Translated by Dmitry Chibisov Graduate Studies in Mathematics Volume 71 American Mathematical Society Providence, Rhode Island Preface

More information

Lecture on Equivariant Cohomology

Lecture on Equivariant Cohomology Lecture on Equivariant Cohomology Sébastien Racanière February 20, 2004 I wrote these notes for a hours lecture at Imperial College during January and February. Of course, I tried to track down and remove

More information

Qualifying Examination HARVARD UNIVERSITY Department of Mathematics Tuesday, January 19, 2016 (Day 1)

Qualifying Examination HARVARD UNIVERSITY Department of Mathematics Tuesday, January 19, 2016 (Day 1) Qualifying Examination HARVARD UNIVERSITY Department of Mathematics Tuesday, January 19, 2016 (Day 1) PROBLEM 1 (DG) Let S denote the surface in R 3 where the coordinates (x, y, z) obey x 2 + y 2 = 1 +

More information

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD () Instanton (definition) (2) ADHM construction (3) Compactification. Instantons.. Notation. Throughout this talk, we will use the following notation:

More information

Donaldson Invariants and Moduli of Yang-Mills Instantons

Donaldson Invariants and Moduli of Yang-Mills Instantons Donaldson Invariants and Moduli of Yang-Mills Instantons Lincoln College Oxford University (slides posted at users.ox.ac.uk/ linc4221) The ASD Equation in Low Dimensions, 17 November 2017 Moduli and Invariants

More information

1. Geometry of the unit tangent bundle

1. Geometry of the unit tangent bundle 1 1. Geometry of the unit tangent bundle The main reference for this section is [8]. In the following, we consider (M, g) an n-dimensional smooth manifold endowed with a Riemannian metric g. 1.1. Notations

More information

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES 1. Vector Bundles In general, smooth manifolds are very non-linear. However, there exist many smooth manifolds which admit very nice partial linear structures.

More information

E 0 0 F [E] + [F ] = 3. Chern-Weil Theory How can you tell if idempotents over X are similar?

E 0 0 F [E] + [F ] = 3. Chern-Weil Theory How can you tell if idempotents over X are similar? . Characteristic Classes from the viewpoint of Operator Theory. Introduction Overarching Question: How can you tell if two vector bundles over a manifold are isomorphic? Let X be a compact Hausdorff space.

More information

IGA Lecture I: Introduction to G-valued moment maps

IGA Lecture I: Introduction to G-valued moment maps IGA Lecture I: Introduction to G-valued moment maps Adelaide, September 5, 2011 Review: Hamiltonian G-spaces Let G a Lie group, g = Lie(G), g with co-adjoint G-action denoted Ad. Definition A Hamiltonian

More information

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4) Three Descriptions of the Cohomology of Bun G (X) (Lecture 4) February 5, 2014 Let k be an algebraically closed field, let X be a algebraic curve over k (always assumed to be smooth and complete), and

More information

Chern-Simons gauge theory The Chern-Simons (CS) gauge theory in three dimensions is defined by the action,

Chern-Simons gauge theory The Chern-Simons (CS) gauge theory in three dimensions is defined by the action, Lecture A3 Chern-Simons gauge theory The Chern-Simons (CS) gauge theory in three dimensions is defined by the action, S CS = k tr (AdA+ 3 ) 4π A3, = k ( ǫ µνρ tr A µ ( ν A ρ ρ A ν )+ ) 8π 3 A µ[a ν,a ρ

More information

Geometry and Dynamics of singular symplectic manifolds. Session 9: Some applications of the path method in b-symplectic geometry

Geometry and Dynamics of singular symplectic manifolds. Session 9: Some applications of the path method in b-symplectic geometry Geometry and Dynamics of singular symplectic manifolds Session 9: Some applications of the path method in b-symplectic geometry Eva Miranda (UPC-CEREMADE-IMCCE-IMJ) Fondation Sciences Mathématiques de

More information

Introduction to Index Theory. Elmar Schrohe Institut für Analysis

Introduction to Index Theory. Elmar Schrohe Institut für Analysis Introduction to Index Theory Elmar Schrohe Institut für Analysis Basics Background In analysis and pde, you want to solve equations. In good cases: Linearize, end up with Au = f, where A L(E, F ) is a

More information

LECTURE 5: SOME BASIC CONSTRUCTIONS IN SYMPLECTIC TOPOLOGY

LECTURE 5: SOME BASIC CONSTRUCTIONS IN SYMPLECTIC TOPOLOGY LECTURE 5: SOME BASIC CONSTRUCTIONS IN SYMPLECTIC TOPOLOGY WEIMIN CHEN, UMASS, SPRING 07 1. Blowing up and symplectic cutting In complex geometry the blowing-up operation amounts to replace a point in

More information

A Problem of Hsiang-Palais-Terng on Isoparametric Submanifolds

A Problem of Hsiang-Palais-Terng on Isoparametric Submanifolds arxiv:math/0312251v1 [math.dg] 12 Dec 2003 A Problem of Hsiang-Palais-Terng on Isoparametric Submanifolds Haibao Duan Institute of Mathematics, Chinese Academy of Sciences, Beijing 100080, dhb@math.ac.cn

More information

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM

LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM LECTURE 10: THE ATIYAH-GUILLEMIN-STERNBERG CONVEXITY THEOREM Contents 1. The Atiyah-Guillemin-Sternberg Convexity Theorem 1 2. Proof of the Atiyah-Guillemin-Sternberg Convexity theorem 3 3. Morse theory

More information

Cohomology of the Mumford Quotient

Cohomology of the Mumford Quotient Cohomology of the Mumford Quotient Maxim Braverman Abstract. Let X be a smooth projective variety acted on by a reductive group G. Let L be a positive G-equivariant line bundle over X. We use a Witten

More information

Exercises on characteristic classes

Exercises on characteristic classes Exercises on characteristic classes April 24, 2016 1. a) Compute the Stiefel-Whitney classes of the tangent bundle of RP n. (Use the method from class for the tangent Chern classes of complex projectives

More information

TRANSVERSAL DIRAC OPERATORS ON DISTRIBUTIONS, FOLIATIONS, AND G-MANIFOLDS LECTURE NOTES

TRANSVERSAL DIRAC OPERATORS ON DISTRIBUTIONS, FOLIATIONS, AND G-MANIFOLDS LECTURE NOTES TRANSVERSAL DIRAC OPERATORS ON DISTRIBUTIONS, FOLIATIONS, AND G-MANIFOLDS LECTURE NOTES KEN RICHARDSON Abstract. In these lectures, we investigate generalizations of the ordinary Dirac operator to manifolds

More information

Kähler manifolds and variations of Hodge structures

Kähler manifolds and variations of Hodge structures Kähler manifolds and variations of Hodge structures October 21, 2013 1 Some amazing facts about Kähler manifolds The best source for this is Claire Voisin s wonderful book Hodge Theory and Complex Algebraic

More information

Quaternionic Complexes

Quaternionic Complexes Quaternionic Complexes Andreas Čap University of Vienna Berlin, March 2007 Andreas Čap (University of Vienna) Quaternionic Complexes Berlin, March 2007 1 / 19 based on the joint article math.dg/0508534

More information

Patrick Iglesias-Zemmour

Patrick Iglesias-Zemmour Mathematical Surveys and Monographs Volume 185 Diffeology Patrick Iglesias-Zemmour American Mathematical Society Contents Preface xvii Chapter 1. Diffeology and Diffeological Spaces 1 Linguistic Preliminaries

More information

Generalized Topological Index

Generalized Topological Index K-Theory 12: 361 369, 1997. 361 1997 Kluwer Academic Publishers. Printed in the Netherlands. Generalized Topological Index PHILIP A. FOTH and DMITRY E. TAMARKIN Department of Mathematics, Penn State University,

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday January 20, 2015 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday January 20, 2015 (Day 1) Tuesday January 20, 2015 (Day 1) 1. (AG) Let C P 2 be a smooth plane curve of degree d. (a) Let K C be the canonical bundle of C. For what integer n is it the case that K C = OC (n)? (b) Prove that if

More information

12 Geometric quantization

12 Geometric quantization 12 Geometric quantization 12.1 Remarks on quantization and representation theory Definition 12.1 Let M be a symplectic manifold. A prequantum line bundle with connection on M is a line bundle L M equipped

More information

The Hopf Bracket. Claude LeBrun SUNY Stony Brook and Michael Taylor UNC Chapel Hill. August 11, 2013

The Hopf Bracket. Claude LeBrun SUNY Stony Brook and Michael Taylor UNC Chapel Hill. August 11, 2013 The Hopf Bracket Claude LeBrun SUY Stony Brook and ichael Taylor UC Chapel Hill August 11, 2013 Abstract Given a smooth map f : between smooth manifolds, we construct a hierarchy of bilinear forms on suitable

More information

arxiv:alg-geom/ v1 29 Jul 1993

arxiv:alg-geom/ v1 29 Jul 1993 Hyperkähler embeddings and holomorphic symplectic geometry. Mikhail Verbitsky, verbit@math.harvard.edu arxiv:alg-geom/9307009v1 29 Jul 1993 0. ntroduction. n this paper we are studying complex analytic

More information

NOTES ON DIFFERENTIAL FORMS. PART 5: DE RHAM COHOMOLOGY

NOTES ON DIFFERENTIAL FORMS. PART 5: DE RHAM COHOMOLOGY NOTES ON DIFFERENTIAL FORMS. PART 5: DE RHAM COHOMOLOGY 1. Closed and exact forms Let X be a n-manifold (not necessarily oriented), and let α be a k-form on X. We say that α is closed if dα = 0 and say

More information

Equivariant Toeplitz index

Equivariant Toeplitz index CIRM, Septembre 2013 UPMC, F75005, Paris, France - boutet@math.jussieu.fr Introduction. Asymptotic equivariant index In this lecture I wish to describe how the asymptotic equivariant index and how behaves

More information

t, H = 0, E = H E = 4πρ, H df = 0, δf = 4πJ.

t, H = 0, E = H E = 4πρ, H df = 0, δf = 4πJ. Lecture 3 Cohomologies, curvatures Maxwell equations The Maxwell equations for electromagnetic fields are expressed as E = H t, H = 0, E = 4πρ, H E t = 4π j. These equations can be simplified if we use

More information

Stable bundles on CP 3 and special holonomies

Stable bundles on CP 3 and special holonomies Stable bundles on CP 3 and special holonomies Misha Verbitsky Géométrie des variétés complexes IV CIRM, Luminy, Oct 26, 2010 1 Hyperkähler manifolds DEFINITION: A hyperkähler structure on a manifold M

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1) QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday September 21, 2004 (Day 1) Each of the six questions is worth 10 points. 1) Let H be a (real or complex) Hilbert space. We say

More information

Morse Theory and Applications to Equivariant Topology

Morse Theory and Applications to Equivariant Topology Morse Theory and Applications to Equivariant Topology Morse Theory: the classical approach Briefly, Morse theory is ubiquitous and indomitable (Bott). It embodies a far reaching idea: the geometry and

More information

WHAT IS K-HOMOLOGY? Paul Baum Penn State. Texas A&M University College Station, Texas, USA. April 2, 2014

WHAT IS K-HOMOLOGY? Paul Baum Penn State. Texas A&M University College Station, Texas, USA. April 2, 2014 WHAT IS K-HOMOLOGY? Paul Baum Penn State Texas A&M University College Station, Texas, USA April 2, 2014 Paul Baum (Penn State) WHAT IS K-HOMOLOGY? April 2, 2014 1 / 56 Let X be a compact C manifold without

More information

Linear connections on Lie groups

Linear connections on Lie groups Linear connections on Lie groups The affine space of linear connections on a compact Lie group G contains a distinguished line segment with endpoints the connections L and R which make left (resp. right)

More information

Cohomology jump loci of quasi-projective varieties

Cohomology jump loci of quasi-projective varieties Cohomology jump loci of quasi-projective varieties Botong Wang joint work with Nero Budur University of Notre Dame June 27 2013 Motivation What topological spaces are homeomorphic (or homotopy equivalent)

More information

Atiyah-Singer Revisited

Atiyah-Singer Revisited Atiyah-Singer Revisited Paul Baum Penn State Texas A&M Universty College Station, Texas, USA April 1, 2014 From E 1, E 2,..., E n obtain : 1) The Dirac operator of R n D = n j=1 E j x j 2) The Bott generator

More information

THE QUANTUM CONNECTION

THE QUANTUM CONNECTION THE QUANTUM CONNECTION MICHAEL VISCARDI Review of quantum cohomology Genus 0 Gromov-Witten invariants Let X be a smooth projective variety over C, and H 2 (X, Z) an effective curve class Let M 0,n (X,

More information

Spin(10,1)-metrics with a parallel null spinor and maximal holonomy

Spin(10,1)-metrics with a parallel null spinor and maximal holonomy Spin(10,1)-metrics with a parallel null spinor and maximal holonomy 0. Introduction. The purpose of this addendum to the earlier notes on spinors is to outline the construction of Lorentzian metrics in

More information

Equivariant cohomology of infinite-dimensional Grassmannian and shifted Schur functions

Equivariant cohomology of infinite-dimensional Grassmannian and shifted Schur functions Equivariant cohomology of infinite-dimensional Grassmannian and shifted Schur functions Jia-Ming (Frank) Liou, Albert Schwarz February 28, 2012 1. H = L 2 (S 1 ): the space of square integrable complex-valued

More information

SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS. 1. Introduction

SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS. 1. Introduction SYMPLECTIC MANIFOLDS, GEOMETRIC QUANTIZATION, AND UNITARY REPRESENTATIONS OF LIE GROUPS CRAIG JACKSON 1. Introduction Generally speaking, geometric quantization is a scheme for associating Hilbert spaces

More information

Math 797W Homework 4

Math 797W Homework 4 Math 797W Homework 4 Paul Hacking December 5, 2016 We work over an algebraically closed field k. (1) Let F be a sheaf of abelian groups on a topological space X, and p X a point. Recall the definition

More information

Reminder on basic differential geometry

Reminder on basic differential geometry Reminder on basic differential geometry for the mastermath course of 2013 Charts Manifolds will be denoted by M, N etc. One should think of a manifold as made out of points (while the elements of a vector

More information

On algebraic index theorems. Ryszard Nest. Introduction. The index theorem. Deformation quantization and Gelfand Fuks. Lie algebra theorem

On algebraic index theorems. Ryszard Nest. Introduction. The index theorem. Deformation quantization and Gelfand Fuks. Lie algebra theorem s The s s The The term s is usually used to describe the equality of, on one hand, analytic invariants of certain operators on smooth manifolds and, on the other hand, topological/geometric invariants

More information

Representations Are Everywhere

Representations Are Everywhere Representations Are Everywhere Nanghua Xi Member of Chinese Academy of Sciences 1 What is Representation theory Representation is reappearance of some properties or structures of one object on another.

More information

Instantons and Donaldson invariants

Instantons and Donaldson invariants Instantons and Donaldson invariants George Korpas Trinity College Dublin IFT, November 20, 2015 A problem in mathematics A problem in mathematics Important probem: classify d-manifolds up to diffeomorphisms.

More information

Symplectic varieties and Poisson deformations

Symplectic varieties and Poisson deformations Symplectic varieties and Poisson deformations Yoshinori Namikawa A symplectic variety X is a normal algebraic variety (defined over C) which admits an everywhere non-degenerate d-closed 2-form ω on the

More information

Instanton calculus for quiver gauge theories

Instanton calculus for quiver gauge theories Instanton calculus for quiver gauge theories Vasily Pestun (IAS) in collaboration with Nikita Nekrasov (SCGP) Osaka, 2012 Outline 4d N=2 quiver theories & classification Instanton partition function [LMNS,

More information

SOME EXERCISES IN CHARACTERISTIC CLASSES

SOME EXERCISES IN CHARACTERISTIC CLASSES SOME EXERCISES IN CHARACTERISTIC CLASSES 1. GAUSSIAN CURVATURE AND GAUSS-BONNET THEOREM Let S R 3 be a smooth surface with Riemannian metric g induced from R 3. Its Levi-Civita connection can be defined

More information

Morse theory and stable pairs

Morse theory and stable pairs Richard A. SCGAS 2010 Joint with Introduction Georgios Daskalopoulos (Brown University) Jonathan Weitsman (Northeastern University) Graeme Wilkin (University of Colorado) Outline Introduction 1 Introduction

More information

Supersymmetric gauge theory, representation schemes and random matrices

Supersymmetric gauge theory, representation schemes and random matrices Supersymmetric gauge theory, representation schemes and random matrices Giovanni Felder, ETH Zurich joint work with Y. Berest, M. Müller-Lennert, S. Patotsky, A. Ramadoss and T. Willwacher MIT, 30 May

More information

McGill University Department of Mathematics and Statistics. Ph.D. preliminary examination, PART A. PURE AND APPLIED MATHEMATICS Paper BETA

McGill University Department of Mathematics and Statistics. Ph.D. preliminary examination, PART A. PURE AND APPLIED MATHEMATICS Paper BETA McGill University Department of Mathematics and Statistics Ph.D. preliminary examination, PART A PURE AND APPLIED MATHEMATICS Paper BETA 17 August, 2018 1:00 p.m. - 5:00 p.m. INSTRUCTIONS: (i) This paper

More information

Contents. Chapter 3. Local Rings and Varieties Rings of Germs of Holomorphic Functions Hilbert s Basis Theorem 39.

Contents. Chapter 3. Local Rings and Varieties Rings of Germs of Holomorphic Functions Hilbert s Basis Theorem 39. Preface xiii Chapter 1. Selected Problems in One Complex Variable 1 1.1. Preliminaries 2 1.2. A Simple Problem 2 1.3. Partitions of Unity 4 1.4. The Cauchy-Riemann Equations 7 1.5. The Proof of Proposition

More information

Chern forms and the Fredholm determinant

Chern forms and the Fredholm determinant CHAPTER 10 Chern forms and the Fredholm determinant Lecture 10: 20 October, 2005 I showed in the lecture before last that the topological group G = G (Y ;E) for any compact manifold of positive dimension,

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday, February 25, 1997 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday, February 25, 1997 (Day 1) QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday, February 25, 1997 (Day 1) 1. Factor the polynomial x 3 x + 1 and find the Galois group of its splitting field if the ground

More information

Cup product and intersection

Cup product and intersection Cup product and intersection Michael Hutchings March 28, 2005 Abstract This is a handout for my algebraic topology course. The goal is to explain a geometric interpretation of the cup product. Namely,

More information

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim SOLUTIONS Dec 13, 218 Math 868 Final Exam In this exam, all manifolds, maps, vector fields, etc. are smooth. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each).

More information

Exact results in AdS/CFT from localization. Part I

Exact results in AdS/CFT from localization. Part I Exact results in AdS/CFT from localization Part I James Sparks Mathematical Institute, Oxford Based on work with Fernando Alday, Daniel Farquet, Martin Fluder, Carolina Gregory Jakob Lorenzen, Dario Martelli,

More information

Intersection of stable and unstable manifolds for invariant Morse functions

Intersection of stable and unstable manifolds for invariant Morse functions Intersection of stable and unstable manifolds for invariant Morse functions Hitoshi Yamanaka (Osaka City University) March 14, 2011 Hitoshi Yamanaka (Osaka City University) ()Intersection of stable and

More information

Characteristic classes and Invariants of Spin Geometry

Characteristic classes and Invariants of Spin Geometry Characteristic classes and Invariants of Spin Geometry Haibao Duan Institue of Mathematics, CAS 2018 Workshop on Algebraic and Geometric Topology, Southwest Jiaotong University July 29, 2018 Haibao Duan

More information

Section 2. Basic formulas and identities in Riemannian geometry

Section 2. Basic formulas and identities in Riemannian geometry Section 2. Basic formulas and identities in Riemannian geometry Weimin Sheng and 1. Bianchi identities The first and second Bianchi identities are R ijkl + R iklj + R iljk = 0 R ijkl,m + R ijlm,k + R ijmk,l

More information

arxiv: v1 [math.sg] 6 Nov 2015

arxiv: v1 [math.sg] 6 Nov 2015 A CHIANG-TYPE LAGRANGIAN IN CP ANA CANNAS DA SILVA Abstract. We analyse a simple Chiang-type lagrangian in CP which is topologically an RP but exhibits a distinguishing behaviour under reduction by one

More information

GEOMETRIC STRUCTURES OF SEMISIMPLE LIE ALGEBRAS

GEOMETRIC STRUCTURES OF SEMISIMPLE LIE ALGEBRAS GEOMETRIC STRUCTURES OF SEMISIMPLE LIE ALGEBRAS ANA BALIBANU DISCUSSED WITH PROFESSOR VICTOR GINZBURG 1. Introduction The aim of this paper is to explore the geometry of a Lie algebra g through the action

More information

An Invitation to Geometric Quantization

An Invitation to Geometric Quantization An Invitation to Geometric Quantization Alex Fok Department of Mathematics, Cornell University April 2012 What is quantization? Quantization is a process of associating a classical mechanical system to

More information

Topological DBI actions and nonlinear instantons

Topological DBI actions and nonlinear instantons 8 November 00 Physics Letters B 50 00) 70 7 www.elsevier.com/locate/npe Topological DBI actions and nonlinear instantons A. Imaanpur Department of Physics, School of Sciences, Tarbiat Modares University,

More information

Stable complex and Spin c -structures

Stable complex and Spin c -structures APPENDIX D Stable complex and Spin c -structures In this book, G-manifolds are often equipped with a stable complex structure or a Spin c structure. Specifically, we use these structures to define quantization.

More information

GENERALIZING THE LOCALIZATION FORMULA IN EQUIVARIANT COHOMOLOGY

GENERALIZING THE LOCALIZATION FORMULA IN EQUIVARIANT COHOMOLOGY GENERALIZING THE LOCALIZATION FORULA IN EQUIVARIANT COHOOLOGY Abstract. We give a generalization of the Atiyah-Bott-Berline-Vergne localization theorem for the equivariant cohomology of a torus action.

More information

The symplectic structure on moduli space (in memory of Andreas Floer)

The symplectic structure on moduli space (in memory of Andreas Floer) The symplectic structure on moduli space (in memory of Andreas Floer) Alan Weinstein Department of Mathematics University of California Berkeley, CA 94720 USA (alanw@math.berkeley.edu) 1 Introduction The

More information

The Canonical Sheaf. Stefano Filipazzi. September 14, 2015

The Canonical Sheaf. Stefano Filipazzi. September 14, 2015 The Canonical Sheaf Stefano Filipazzi September 14, 015 These notes are supposed to be a handout for the student seminar in algebraic geometry at the University of Utah. In this seminar, we will go over

More information

Many of the exercises are taken from the books referred at the end of the document.

Many of the exercises are taken from the books referred at the end of the document. Exercises in Geometry I University of Bonn, Winter semester 2014/15 Prof. Christian Blohmann Assistant: Néstor León Delgado The collection of exercises here presented corresponds to the exercises for the

More information

DIFFERENTIAL FORMS AND COHOMOLOGY

DIFFERENTIAL FORMS AND COHOMOLOGY DIFFERENIAL FORMS AND COHOMOLOGY ONY PERKINS Goals 1. Differential forms We want to be able to integrate (holomorphic functions) on manifolds. Obtain a version of Stokes heorem - a generalization of the

More information

t Hooft loop path integral in N = 2 gauge theories

t Hooft loop path integral in N = 2 gauge theories t Hooft loop path integral in N = 2 gauge theories Jaume Gomis (based on work with Takuya Okuda and Vasily Pestun) Perimeter Institute December 17, 2010 Jaume Gomis (Perimeter Institute) t Hooft loop path

More information

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday January 18, 2011 (Day 1)

QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday January 18, 2011 (Day 1) QUALIFYING EXAMINATION Harvard University Department of Mathematics Tuesday January 18, 2011 (Day 1) 1. (CA) Evaluate 0 x 2 + 1 x 4 + 1 dx Solution. We can consider the integration from to instead. For

More information

INTRODUCTION TO EQUIVARIANT COHOMOLOGY THEORY

INTRODUCTION TO EQUIVARIANT COHOMOLOGY THEORY INTRODUCTION TO EQUIVARIANT COHOMOLOGY THEORY YOUNG-HOON KIEM 1. Definitions and Basic Properties 1.1. Lie group. Let G be a Lie group (i.e. a manifold equipped with differentiable group operations mult

More information

Torus actions and Ricci-flat metrics

Torus actions and Ricci-flat metrics Department of Mathematics, University of Aarhus November 2016 / Trondheim To Eldar Straume on his 70th birthday DFF - 6108-00358 Delzant HyperKähler G2 http://mscand.dk https://doi.org/10.7146/math.scand.a-12294

More information

The transverse index problem for Riemannian foliations

The transverse index problem for Riemannian foliations The transverse index problem for Riemannian foliations John Lott UC-Berkeley http://math.berkeley.edu/ lott May 27, 2013 The transverse index problem for Riemannian foliations Introduction Riemannian foliations

More information

BACKGROUND IN SYMPLECTIC GEOMETRY

BACKGROUND IN SYMPLECTIC GEOMETRY BACKGROUND IN SYMPLECTIC GEOMETRY NILAY KUMAR Today I want to introduce some of the symplectic structure underlying classical mechanics. The key idea is actually quite old and in its various formulations

More information

Quantising proper actions on Spin c -manifolds

Quantising proper actions on Spin c -manifolds Quantising proper actions on Spin c -manifolds Peter Hochs University of Adelaide Differential geometry seminar Adelaide, 31 July 2015 Joint work with Mathai Varghese (symplectic case) Geometric quantization

More information

Heat Kernels, Symplectic Geometry, Moduli Spaces and Finite Groups

Heat Kernels, Symplectic Geometry, Moduli Spaces and Finite Groups Heat Kernels, Symplectic eometry, Moduli Spaces and Finite roups Kefeng Liu 1 Introduction In this note we want to discuss some applications of heat kernels in symplectic geometry, moduli spaces and finite

More information

COMPUTING THE POISSON COHOMOLOGY OF A B-POISSON MANIFOLD

COMPUTING THE POISSON COHOMOLOGY OF A B-POISSON MANIFOLD COMPUTING THE POISSON COHOMOLOGY OF A B-POISSON MANIFOLD MELINDA LANIUS 1. introduction Because Poisson cohomology is quite challenging to compute, there are only very select cases where the answer is

More information

DUISTERMAAT HECKMAN MEASURES AND THE EQUIVARIANT INDEX THEOREM

DUISTERMAAT HECKMAN MEASURES AND THE EQUIVARIANT INDEX THEOREM DUISTEAAT HECKAN EASUES AND THE EQUIVAIANT INDEX THEOE Let N be a symplectic manifold, with a Hamiltonian action of the circle group G and moment map µ : N. Assume that the level sets of µ are compact

More information

Lecture 8: More characteristic classes and the Thom isomorphism

Lecture 8: More characteristic classes and the Thom isomorphism Lecture 8: More characteristic classes and the Thom isomorphism We begin this lecture by carrying out a few of the exercises in Lecture 1. We take advantage of the fact that the Chern classes are stable

More information

Cohomology and Vector Bundles

Cohomology and Vector Bundles Cohomology and Vector Bundles Corrin Clarkson REU 2008 September 28, 2008 Abstract Vector bundles are a generalization of the cross product of a topological space with a vector space. Characteristic classes

More information

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE JOHANNES EBERT 1.1. October 11th. 1. Recapitulation from differential topology Definition 1.1. Let M m, N n, be two smooth manifolds

More information