Robust control of resistive wall modes using pseudospectra

Size: px
Start display at page:

Download "Robust control of resistive wall modes using pseudospectra"

Transcription

1 Robust control of resistive wall modes using pseudospectra M. Sempf, P. Merkel, E. Strumberger, C. Tichmann, and S. Günter Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, Germany GOTiT Seminar, January 2009 Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

2 Outline 1 Code package for resistive wall mode feedback stabilization 2 Controller optimization: eigenvalues vs. pseudospectra 3 ITER-like test case 4 Conclusions Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

3 STARWALL code An external kink mode can be stabilized by an ideally conducting wall close to the plasma; if the wall is not superconducting, the mode grows on the resistive time scale of the wall resistive wall mode (RWM) STARWALL [1, 2]: 3D ideal MHD stability code specialized to RWMs (E kin neglected) feedback coil system included to stabilize RWMs coupling between different toroidal mode numbers n (3D effect) Inputs to STARWALL: plasma equilibrium 3D wall and coil geometries sensor positions and orientations feedback controller logics Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

4 General controller model Coils and sensors are grouped into toroidal arrays, respectively. Voltage vector applied to k-th coil array: s l G kl L R k i k L u k = G kl s l R k i k l=1 magnetic field perturbation vector measured by l-th sensor array proportional gain matrix linking coil array k to sensor array l number of sensor arrays artificial additional coil resistance (to make coils faster ) vector of coil currents in array k Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

5 Structure of the gain matrix G kl G kl is strucured in such a way that the coil array produces a field with toroidal mode number n in response to a perturbation with the same n: G kl ij = ( ) α kl n cos(nϕkl ij ) + βn kl sin(nϕkl ij ), n } {{ } in-phase response }{{} (90/n) phase-shifted response ϕ kl ij = toroidal angle between coil i of array k and sensor j of array l. The sum runs over all n s to be simultaneously controlled. Remaining free parameters defining the feedback logics: α kl n βn kl R k cosine gains sine gains additional coil resistances Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

6 Structure of the STARWALL equation Dynamics of the plasma-wall-coils system: Lẋ = Rx, R = R 0 + ( ) α kl n Rkl n,α + βkl n Rkl n,β n,k,l k R k Rk x L R 0 R kl n,α, R kl n,β, R k α kl n, β kl n, R k state vector (coil currents, wall current potentials) inductance matrix + plasma contribution resistance matrix matrices describing the effect of feedback free parameters x(t) e γt parametrized eigenvalue problem (R, L N N ): L 1 Rx i = γ i x i ; stability Re γ i < 0 i = 1,..., N Stabilizing parameter set OPTIM code [1, 3] Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

7 Automatic controller design procedure STARWALL compute matrices L, R 0, R kl n,α, Rkl n,β, R k TRANSFORM (model reduction) construct orthogonal pattern matrix P (details on next slide) transform each matrix M computed by STARWALL as M = P 1 MP in each M, retain only upper left N red N red block (N red N) OPTIM (feedback optimization in reduced system) find {α kl n, βkl n, R k } so that L 1 R is optimally stable (details later) Cross-check against full-sized system using the optimal set {α kl n, βkl n, R k }, compare properties of L 1 R with those of L 1 R (eigenvalues, pseudospectra,... ; details later) Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

8 Model reduction: isometric truncation The robust stability concept introduced later requires orthogonality of the projection underlying the model reduction = newly developed isometric truncation procedure: projection onto leading columns of the pattern matrix P Properties of the pattern matrix P = (p 1 p 2... p N ): each column p i represents a system state (current pattern) ohmic loss orthogonality: p T i R 0p j = δ ij, i = 1,..., N, j = 1,..., N first columns are unstable eigenvectors of L 1 R 0 (system without feedback), i., e., RWMs the remaining columns represent physical processes in the stable subspace of L 1 R 0, ordered according to decreasing controllability and observability Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

9 What does optimal stability mean? ẋ = Ax = x(t) = e ta x(0) = N ξ i x i e γ it i=1 here: A = L 1 R (asymptotic) stability: lim t x(t) = 0 Re γ i < 0 i = 1,..., N Basic objectives for stability optimization good asymptotic stability: Re γ i < q i = 1,..., N, q > 0 large robust stability: A stable = A + E stable for any moderate E With feedback, A is non-normal, i.e., the x i s are far from orthogonal. Exclusive features which non-normal matrices can have: extreme eigenvalue sensitivity (affects robustness) transient growth ( e ta 1 for some t > 0, although A is stable) another optimization objective: keep sup t>0 e ta small! Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

10 Measures of asymptotic stability The traditional measure of asymptotic stability: σ(a) = max i=1,...,n Re γ i (spectral abscissa) Minimization of σ(a) pushes the leading eigenvalue(s) as far as possible into the left complex halfplane. Another stability measure, seeing not only the leading eigenvalues: η(a) = N exp(re γ i ) i=1 ( exponential spectral function ) Minimization of η(a) pushes all the eigenvalues as far as possible to the left. However, neither σ(a) nor η(a) guarantee robustness of stability, because sensitivity of eigenvalues is not taken into account. Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

11 Eigenvalue sensitivity and robust stability An idea of sensitivity of the entire eigenvalue spectrum: γ ɛ (A) is the set of z such that z is an eigenvalue of A + E for some E N N with E < ɛ (ɛ-pseudospectrum) Measure for robustness of stability: ρ(a) = sup{ɛ : A + E is stable for all E N N with E < ɛ} (complex stability radius) Measure of stability for perturbations of maximum allowable ɛ : σ ɛ (A) = sup{re z : z γ ɛ (A)} (ɛ-pseudospectral abscissa) In particular, σ ρ(a) (A) = 0. Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

12 Relationship between σ ɛ (A) and e ta σ ɛ (A) and e ta are related by various theorems. One of them [4] : sup e ta σ ɛ (A)/ɛ ɛ > 0. t 0 That means, if the eigenvalues of A are so sensitive that σ ɛ (A)/ɛ > 1 for some ɛ, there must be transient growth. Tradeoff: optimize σ ɛ (A) for small ɛ = good asymptotic stability optimize σ ɛ (A) for large ɛ = temperate transient behavior Is optimization of ρ(a) a good compromise? Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

13 OPTIM s functionality Parallel eigenvalue optimization code for parametrized matrices A OPTIM s objective functions F 1 = σ(a) spectral abscissa F 2 = η(a) exponential spectral function F 3 = ρ(a) neg. complex stability radius ( two-step algorithm [5]) F 4 = σ ɛ (A) ɛ-pseudospectral abscissa ( criss-cross algorithm [6]) Minimization algorithm: gradient bundle method [7], suitable for non-smooth, non-lipschitz functions Additional features for given A: computation of ɛ-pseudospectra boundaries (contour plots in ) computation of e ta plots Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

14 ITER-like test case [3] plasma: Scenario 4 equilibrium, β = 2.29%, n = 1 perturbations only wall: interior wall only, simplified geometry coils: single array, 7 port plug coils (2 coils missing due to collision with NBI) sensors: single array, 18 sensors, z orientation 6 4 Z [m] plasma sensor coil 4 wall R [m] Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

15 Two unstable RWMs growth rates not exactly equal due to broken axisymmetry current patterns (φ isolines, j = n φ) almost equal, but toroidally phase-shifted by 90 RWM 1 (γ 1 = 21.9 s 1 ) RWM 2 (γ 2 = 21.7 s 1 ) Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

16 Model reduction: stable subspace patterns 1-4 Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

17 Model reduction: stable subspace patterns 5-8 Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

18 Model reduction: stable subspace patterns 9-12 Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

19 Stability optimization Only n = 1 plasma perturbations accounted for, single coil and sensor array = 3 free parameters: α, β, R Full model dimension: N = 5190; reduced model dimension: N red = 58 Optimization of F 1 = σ(a), F 2 = η(a), F 3 = ρ(a), F 4 = σ ɛ (A), where ɛ = 2ρ opt with ρ opt being the optimal value of ρ(a) obtained after optimizing F 3 Very good agreement between reduced and full model [3] Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

20 Pseudospectra after stability optimization boundaries of γ ɛ (A), ɛ indicated by contour labels, dots = eigenvalues angular frequency [1/s] angular frequency [1/s] growth rate [1/s] F 1, full model growth rate [1/s] F 3, full model angular frequency [1/s] angular frequency [1/s] growth rate [1/s] F 2, full model growth rate [1/s] F 4, full model 10 Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

21 Transient amplification ( e ta curves) e ta F 1 F 2 F 3 F t [10 1 s] Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

22 Conclusions Optimization of F 1 = σ(a) or F 2 = η(a) does not produce very robust stability, compared to optimization of F 3 = ρ(a) or F 3 = σ ɛ (A) Optimization of F 2 gives a catastrophic transient peak Even for the F 3 - and F 4 -optimal solutions, the transient behavior is not entirely satisfactory, but there are strategies to improve this further [3] Robustness and transient peaks might be an issue for ITER Robustness and transient behavior should generally be taken into account when designing and rating plasma scenarios to be RWM stabilized Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

23 Plans for the near future Improvement of the approximation used when taking a time delay between sensors and actuators into account Include the voltage loss in the busbar (this is simple) Realistic ITER modeling including the double wall with port extensions and blanket support, the blanket modules, and in-vessel coils AUG modeling Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

24 References P. Merkel and M. Sempf. Feedback stabilization of resistive wall modes in the presence of multiply-connected wall structures. 21st IAEA Fusion Energy Conference 2006, Chengdu, China, paper TH/P3-8, E. Strumberger, P. Merkel, M. Sempf, and S. Günter. On fully three-dimensional resistive wall mode and feedback stabilization studies. Phys. Plasmas, 15:056110, DOI: / M. Sempf, P. Merkel, E. Strumberger, C. Tichmann, and S. Günter. Robust control of resistive wall modes using pseudospectra. New J. Phys., 2009, submitted. L. N. Trefethen and M. Embree. Spectra and Pseudospectra - The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton and Oxford, 2005, 606 pp. N. A. Bruinsma and M. Steinbuch. A fast algorithm to compute the H -norm of a transfer function matrix. Syst. Contr. Lett., 14: , J. V. Burke, A. S. Lewis, and M. L. Overton. Robust stability and a criss-cross algorithm for pseudospectra. IMA J. Numer. Anal., 23: , J. V. Burke, A. S. Lewis, and M. L. Overton. Two numerical methods for optimizing matrix stability. Linear Algebra Appl., : , Mario Sempf (IPP Garching) Robust RWM control using pseudospectra GOTiT Seminar, January / 24

Three Dimensional Effects in Tokamaks How Tokamaks Can Benefit From Stellarator Research

Three Dimensional Effects in Tokamaks How Tokamaks Can Benefit From Stellarator Research 1 TH/P9-10 Three Dimensional Effects in Tokamaks How Tokamaks Can Benefit From Stellarator Research S. Günter, M. Garcia-Munoz, K. Lackner, Ph. Lauber, P. Merkel, M. Sempf, E. Strumberger, D. Tekle and

More information

A NONSMOOTH, NONCONVEX OPTIMIZATION APPROACH TO ROBUST STABILIZATION BY STATIC OUTPUT FEEDBACK AND LOW-ORDER CONTROLLERS

A NONSMOOTH, NONCONVEX OPTIMIZATION APPROACH TO ROBUST STABILIZATION BY STATIC OUTPUT FEEDBACK AND LOW-ORDER CONTROLLERS A NONSMOOTH, NONCONVEX OPTIMIZATION APPROACH TO ROBUST STABILIZATION BY STATIC OUTPUT FEEDBACK AND LOW-ORDER CONTROLLERS James V Burke,1 Adrian S Lewis,2 Michael L Overton,3 University of Washington, Seattle,

More information

Resistive Wall Mode Control in DIII-D

Resistive Wall Mode Control in DIII-D Resistive Wall Mode Control in DIII-D by Andrea M. Garofalo 1 for G.L. Jackson 2, R.J. La Haye 2, M. Okabayashi 3, H. Reimerdes 1, E.J. Strait 2, R.J. Groebner 2, Y. In 4, M.J. Lanctot 1, G.A. Navratil

More information

Non-linear MHD Simulations of Edge Localized Modes in ASDEX Upgrade. Matthias Hölzl, Isabel Krebs, Karl Lackner, Sibylle Günter

Non-linear MHD Simulations of Edge Localized Modes in ASDEX Upgrade. Matthias Hölzl, Isabel Krebs, Karl Lackner, Sibylle Günter Non-linear MHD Simulations of Edge Localized Modes in ASDEX Upgrade Matthias Hölzl, Isabel Krebs, Karl Lackner, Sibylle Günter Matthias Hölzl Nonlinear ELM Simulations DPG Spring Meeting, Jena, 02/2013

More information

The Effects of Noise and Time Delay on RWM Feedback System Performance

The Effects of Noise and Time Delay on RWM Feedback System Performance The Effects of Noise and Time Delay on RWM Feedback System Performance O. Katsuro-Hopkins, J. Bialek, G. Navratil (Department of Applied Physics and Applied Mathematics, Columbia University, New York,

More information

Effects of Noise in Time Dependent RWM Feedback Simulations

Effects of Noise in Time Dependent RWM Feedback Simulations Effects of Noise in Time Dependent RWM Feedback Simulations O. Katsuro-Hopkins, J. Bialek, G. Navratil (Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY USA) Building

More information

Optimization based robust control

Optimization based robust control Optimization based robust control Didier Henrion 1,2 Draft of March 27, 2014 Prepared for possible inclusion into The Encyclopedia of Systems and Control edited by John Baillieul and Tariq Samad and published

More information

NORMS ON SPACE OF MATRICES

NORMS ON SPACE OF MATRICES NORMS ON SPACE OF MATRICES. Operator Norms on Space of linear maps Let A be an n n real matrix and x 0 be a vector in R n. We would like to use the Picard iteration method to solve for the following system

More information

RWM Control in FIRE and ITER

RWM Control in FIRE and ITER RWM Control in FIRE and ITER Gerald A. Navratil with Jim Bialek, Allen Boozer & Oksana Katsuro-Hopkins MHD Mode Control Workshop University of Texas-Austin 3-5 November, 2003 OUTLINE REVIEW OF VALEN MODEL

More information

Pseudospectra and Nonnormal Dynamical Systems

Pseudospectra and Nonnormal Dynamical Systems Pseudospectra and Nonnormal Dynamical Systems Mark Embree and Russell Carden Computational and Applied Mathematics Rice University Houston, Texas ELGERSBURG MARCH 1 Overview of the Course These lectures

More information

On existence of resistive magnetohydrodynamic equilibria

On existence of resistive magnetohydrodynamic equilibria arxiv:physics/0503077v1 [physics.plasm-ph] 9 Mar 2005 On existence of resistive magnetohydrodynamic equilibria H. Tasso, G. N. Throumoulopoulos Max-Planck-Institut für Plasmaphysik Euratom Association

More information

RWM FEEDBACK STABILIZATION IN DIII D: EXPERIMENT-THEORY COMPARISONS AND IMPLICATIONS FOR ITER

RWM FEEDBACK STABILIZATION IN DIII D: EXPERIMENT-THEORY COMPARISONS AND IMPLICATIONS FOR ITER GA A24759 RWM FEEDBACK STABILIZATION IN DIII D: EXPERIMENT-THEORY COMPARISONS AND IMPLICATIONS FOR ITER by A.M. GAROFALO, J. BIALEK, M.S. CHANCE, M.S. CHU, D.H. EDGELL, G.L. JACKSON, T.H. JENSEN, R.J.

More information

Modelling of wall currents excited by plasma wall-touching kink and vertical modes during a tokamak disruption, with application to ITER

Modelling of wall currents excited by plasma wall-touching kink and vertical modes during a tokamak disruption, with application to ITER Modelling of wall currents excited by plasma wall-touching kink and vertical modes during a tokamak disruption, with application to ITER C.V. Atanasiu 1, L.E. Zakharov 2,K. Lackner 3, M. Hoelzl 3, F.J.

More information

Plasma Response Control Using Advanced Feedback Techniques

Plasma Response Control Using Advanced Feedback Techniques Plasma Response Control Using Advanced Feedback Techniques by M. Clement 1 with J. M. Hanson 1, J. Bialek 1 and G. A. Navratil 1 1 Columbia University Presented at 59 th Annual APS Meeting Division of

More information

Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak

Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak Roberto Ambrosino 1 Gianmaria De Tommasi 2 Massimiliano Mattei 3 Alfredo Pironti 2 1 CREATE, Università

More information

RESISTIVE WALL MODE STABILIZATION RESEARCH ON DIII D STATUS AND RECENT RESULTS

RESISTIVE WALL MODE STABILIZATION RESEARCH ON DIII D STATUS AND RECENT RESULTS RESISTIVE WALL MODE STABILIZATION RESEARCH ON STATUS AND RECENT RESULTS by A.M. Garofalo1 in collaboration with J. Bialek,1 M.S. Chance,2 M.S. Chu,3 T.H. Jensen,3 L.C. Johnson,2 R.J. La Haye,3 G.A. Navratil,1

More information

MHD limits and plasma response in high beta hybrid operations in ASDEX Upgrade

MHD limits and plasma response in high beta hybrid operations in ASDEX Upgrade EUROFUSION WPMST1-CP(16) 15178 V Igochine et al. MHD limits and plasma response in high beta hybrid operations in ASDEX Upgrade Preprint of Paper to be submitted for publication in Proceedings of 26th

More information

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission

Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission Analysis and modelling of MHD instabilities in DIII-D plasmas for the ITER mission by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, C. Paz-Soldan 2, F. Carpanese 3, C.C. Petty 2, T.C.

More information

FIXED POINT ITERATIONS

FIXED POINT ITERATIONS FIXED POINT ITERATIONS MARKUS GRASMAIR 1. Fixed Point Iteration for Non-linear Equations Our goal is the solution of an equation (1) F (x) = 0, where F : R n R n is a continuous vector valued mapping in

More information

Securing High β N JT-60SA Operational Space by MHD Stability and Active Control Modelling

Securing High β N JT-60SA Operational Space by MHD Stability and Active Control Modelling 1 TH/P1-18 Securing High β N JT-60SA Operational Space by MHD Stability and Active Control Modelling T. Bolzonella 1, P. Bettini 1, L. Figini 2, S.C. Guo 1, Y.Q. Liu 3, G. Marchiori 1, G. Matsunaga 4,

More information

Singular Value Decomposition of the frequency response operator

Singular Value Decomposition of the frequency response operator Measures of input-output amplification (across frequency) Largest singular value Hilbert-Schmidt norm (power spectral density) Systems with one spatial variable Two point boundary value problems EE 8235:

More information

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation -

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation - 15TH WORKSHOP ON MHD STABILITY CONTROL: "US-Japan Workshop on 3D Magnetic Field Effects in MHD Control" U. Wisconsin, Madison, Nov 15-17, 17, 2010 LHD experiments relevant to Tokamak MHD control - Effect

More information

Resistive Wall Mode Observation and Control in ITER-Relevant Plasmas

Resistive Wall Mode Observation and Control in ITER-Relevant Plasmas Resistive Wall Mode Observation and Control in ITER-Relevant Plasmas J. P. Levesque April 12, 2011 1 Outline Basic Resistive Wall Mode (RWM) model RWM stability, neglecting kinetic effects Sufficient for

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

RWM Control Code Maturity

RWM Control Code Maturity RWM Control Code Maturity Yueqiang Liu EURATOM/CCFE Fusion Association Culham Science Centre Abingdon, Oxon OX14 3DB, UK Work partly funded by UK EPSRC and EURATOM. The views and opinions expressed do

More information

A method for calculating active feedback system to provide vertical position control of plasma in a tokamak

A method for calculating active feedback system to provide vertical position control of plasma in a tokamak PRAMANA c Indian Academy of Sciences Vol. 68, No. 4 journal of April 2007 physics pp. 591 602 A method for calculating active feedback system to provide vertical position control of plasma in a tokamak

More information

High-m Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows

High-m Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows TH/P3-3 High-m Multiple Tearing Modes in Tokamaks: MHD Turbulence Generation, Interaction with the Internal Kink and Sheared Flows A. Bierwage 1), S. Benkadda 2), M. Wakatani 1), S. Hamaguchi 3), Q. Yu

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Requirements for Active Resistive Wall Mode (RWM) Feedback Control

Requirements for Active Resistive Wall Mode (RWM) Feedback Control Requirements for Active Resistive Wall Mode (RWM) Feedback Control Yongkyoon In 1 In collaboration with M.S. Chu 2, G.L. Jackson 2, J.S. Kim 1, R.J. La Haye 2, Y.Q. Liu 3, L. Marrelli 4, M. Okabayashi

More information

Nonlinear equations. Norms for R n. Convergence orders for iterative methods

Nonlinear equations. Norms for R n. Convergence orders for iterative methods Nonlinear equations Norms for R n Assume that X is a vector space. A norm is a mapping X R with x such that for all x, y X, α R x = = x = αx = α x x + y x + y We define the following norms on the vector

More information

Numerical Methods for Differential Equations Mathematical and Computational Tools

Numerical Methods for Differential Equations Mathematical and Computational Tools Numerical Methods for Differential Equations Mathematical and Computational Tools Gustaf Söderlind Numerical Analysis, Lund University Contents V4.16 Part 1. Vector norms, matrix norms and logarithmic

More information

Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade

Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade 1 TH/P1-26 Non-linear modeling of the Edge Localized Mode control by Resonant Magnetic Perturbations in ASDEX Upgrade F.Orain 1, M.Hölzl 1, E.Viezzer 1, M.Dunne 1, M.Bécoulet 2, P.Cahyna 3, G.T.A.Huijsmans

More information

GA A27857 IMPACT OF PLASMA RESPONSE ON RMP ELM SUPPRESSION IN DIII-D

GA A27857 IMPACT OF PLASMA RESPONSE ON RMP ELM SUPPRESSION IN DIII-D GA A27857 IMPACT OF PLASMA RESPONSE ON RMP ELM SUPPRESSION IN DIII-D by A. WINGEN, N.M. FERRARO, M.W. SHAFER, E.A. UNTERBERG, T.E. EVANS, D.L. HILLIS, and P.B. SNYDER JULY 2014 DISCLAIMER This report was

More information

1 Sylvester equations

1 Sylvester equations 1 Sylvester equations Notes for 2016-11-02 The Sylvester equation (or the special case of the Lyapunov equation) is a matrix equation of the form AX + XB = C where A R m m, B R n n, B R m n, are known,

More information

Analytical Study of RWM Feedback Stabilisation with Application to ITER

Analytical Study of RWM Feedback Stabilisation with Application to ITER CT/P- Analytical Study of RWM Feedback Stabilisation with Application to ITER Y Gribov ), VD Pustovitov ) ) ITER International Team, ITER Naka Joint Work Site, Japan ) Nuclear Fusion Institute, Russian

More information

An Iteration-Domain Filter for Controlling Transient Growth in Iterative Learning Control

An Iteration-Domain Filter for Controlling Transient Growth in Iterative Learning Control 21 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July 2, 21 WeC14.1 An Iteration-Domain Filter for Controlling Transient Growth in Iterative Learning Control Qing Liu and Douglas

More information

Model based estimation of the Eddy currents for the ITER tokamak *

Model based estimation of the Eddy currents for the ITER tokamak * Model based estimation of the Eddy currents for the ITER tokamak * Alfredo Pironti 1 Consorzio CREATE - University of Naples Federico II Via Claudio 21, 80125 Napoli, Italy E-mail: pironti@unina.it Roberto

More information

Flow Instability Matlab Tutorial Bangalore, January 2010 Matthew Juniper, Dan Henningson, Peter Schmid 1

Flow Instability Matlab Tutorial Bangalore, January 2010 Matthew Juniper, Dan Henningson, Peter Schmid 1 Flow Instability Matlab Tutorial Bangalore, January Matthew Juniper, Dan Henningson, Peter Schmid Simple differentiation matrices Imagine a vector that represents the values of a function y at N equispaced

More information

Evaluation of Chebyshev pseudospectral methods for third order differential equations

Evaluation of Chebyshev pseudospectral methods for third order differential equations Numerical Algorithms 16 (1997) 255 281 255 Evaluation of Chebyshev pseudospectral methods for third order differential equations Rosemary Renaut a and Yi Su b a Department of Mathematics, Arizona State

More information

Rotation and Neoclassical Ripple Transport in ITER

Rotation and Neoclassical Ripple Transport in ITER Rotation and Neoclassical Ripple Transport in ITER Elizabeth J. Paul 1 Matt Landreman 1 Francesca Poli 2 Don Spong 3 Håkan Smith 4 William Dorland 1 1 University of Maryland 2 Princeton Plasma Physics

More information

On the transient behaviour of stable linear systems

On the transient behaviour of stable linear systems On the transient behaviour of stable linear systems D. Hinrichsen Institut für Dynamische Systeme Universität Bremen D-28334 Bremen Germany dh@math.uni-bremen.de A. J. Pritchard Mathematics Institute University

More information

Evaluation of CT injection to RFP for performance improvement and reconnection studies

Evaluation of CT injection to RFP for performance improvement and reconnection studies Evaluation of CT injection to RFP for performance improvement and reconnection studies S. Masamune A. Sanpei, T. Nagano, S. Nakanobo, R. Tsuboi, S. Kunita, M. Emori, H. Makizawa, H. Himura, N. Mizuguchi

More information

Upon successful completion of MATH 220, the student will be able to:

Upon successful completion of MATH 220, the student will be able to: MATH 220 Matrices Upon successful completion of MATH 220, the student will be able to: 1. Identify a system of linear equations (or linear system) and describe its solution set 2. Write down the coefficient

More information

Global Mode Control and Stabilization for Disruption Avoidance in High-β NSTX Plasmas *

Global Mode Control and Stabilization for Disruption Avoidance in High-β NSTX Plasmas * 1 EX/P8-07 Global Mode Control and Stabilization for Disruption Avoidance in High-β NSTX Plasmas * J.W. Berkery 1, S.A. Sabbagh 1, A. Balbaky 1, R.E. Bell 2, R. Betti 3, J.M. Bialek 1, A. Diallo 2, D.A.

More information

Course Summary Math 211

Course Summary Math 211 Course Summary Math 211 table of contents I. Functions of several variables. II. R n. III. Derivatives. IV. Taylor s Theorem. V. Differential Geometry. VI. Applications. 1. Best affine approximations.

More information

Numerical Computation of Structured Complex Stability Radii of Large-Scale Matrices and Pencils

Numerical Computation of Structured Complex Stability Radii of Large-Scale Matrices and Pencils 51st IEEE onference on Decision and ontrol December 10-13, 01. Maui, Hawaii, USA Numerical omputation of Structured omplex Stability Radii of Large-Scale Matrices and Pencils Peter Benner and Matthias

More information

ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER

ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER D. BOUCHER 1, D. MOREAU 2, G. VAYAKIS 1, I. VOITSEKHOVITCH 3, J.M. ANÉ 2, X. GARBET 2, V. GRANDGIRARD 2, X. LITAUDON 2, B. LLOYD

More information

Gramians based model reduction for hybrid switched systems

Gramians based model reduction for hybrid switched systems Gramians based model reduction for hybrid switched systems Y. Chahlaoui Younes.Chahlaoui@manchester.ac.uk Centre for Interdisciplinary Computational and Dynamical Analysis (CICADA) School of Mathematics

More information

Characterization of the Perpendicular Rotation Velocity of the Turbulence by Reflectometry in the Stellarator TJ-II

Characterization of the Perpendicular Rotation Velocity of the Turbulence by Reflectometry in the Stellarator TJ-II 1 EX/P5-31 Characterization of the Perpendicular Rotation Velocity of the Turbulence by Reflectometry in the Stellarator TJ-II T. Estrada 1), T. Happel 1), C. Hidalgo 1) 1) Laboratorio Nacional de Fusión.

More information

VISUALIZING PSEUDOSPECTRA FOR POLYNOMIAL EIGENVALUE PROBLEMS. Adéla Klimentová *, Michael Šebek ** Czech Technical University in Prague

VISUALIZING PSEUDOSPECTRA FOR POLYNOMIAL EIGENVALUE PROBLEMS. Adéla Klimentová *, Michael Šebek ** Czech Technical University in Prague VSUALZNG PSEUDOSPECTRA FOR POLYNOMAL EGENVALUE PROBLEMS Adéla Klimentová *, Michael Šebek ** * Department of Control Engineering Czech Technical University in Prague ** nstitute of nformation Theory and

More information

Magnetic Flux Surface Measurements at Wendelstein 7-X

Magnetic Flux Surface Measurements at Wendelstein 7-X EUROFUSION WPS1-PR(16) 15578 M. Otte et al. Magnetic Flux Surface Measurements at Wendelstein 7-X Preprint of Paper to be submitted for publication in 43rd European Physical Society Conference on Plasma

More information

Fast Linear Iterations for Distributed Averaging 1

Fast Linear Iterations for Distributed Averaging 1 Fast Linear Iterations for Distributed Averaging 1 Lin Xiao Stephen Boyd Information Systems Laboratory, Stanford University Stanford, CA 943-91 lxiao@stanford.edu, boyd@stanford.edu Abstract We consider

More information

MATH 581D FINAL EXAM Autumn December 12, 2016

MATH 581D FINAL EXAM Autumn December 12, 2016 MATH 58D FINAL EXAM Autumn 206 December 2, 206 NAME: SIGNATURE: Instructions: there are 6 problems on the final. Aim for solving 4 problems, but do as much as you can. Partial credit will be given on all

More information

Princeton Plasma Physics Laboratory. Multi-mode analysis of RWM feedback with the NMA Code

Princeton Plasma Physics Laboratory. Multi-mode analysis of RWM feedback with the NMA Code Princeton Plasma Physics Laboratory Multi-mode analysis of RWM feedback with the NMA Code M. S. Chance, M.Okabayashi, M. S. Chu 12 th Workshop on MHD Stability Control: Improved MHD Control Configurations

More information

Strong stability of neutral equations with dependent delays

Strong stability of neutral equations with dependent delays Strong stability of neutral equations with dependent delays W Michiels, T Vyhlidal, P Zitek, H Nijmeijer D Henrion 1 Introduction We discuss stability properties of the linear neutral equation p 2 ẋt +

More information

MHD. Jeff Freidberg MIT

MHD. Jeff Freidberg MIT MHD Jeff Freidberg MIT 1 What is MHD MHD stands for magnetohydrodynamics MHD is a simple, self-consistent fluid description of a fusion plasma Its main application involves the macroscopic equilibrium

More information

The performance of improved H-modes at ASDEX Upgrade and projection to ITER

The performance of improved H-modes at ASDEX Upgrade and projection to ITER EX/1-1 The performance of improved H-modes at ASDEX Upgrade and projection to George Sips MPI für Plasmaphysik, EURATOM-Association, D-85748, Germany G. Tardini 1, C. Forest 2, O. Gruber 1, P. Mc Carthy

More information

Performance limits. Ben Dudson. 24 th February Department of Physics, University of York, Heslington, York YO10 5DD, UK

Performance limits. Ben Dudson. 24 th February Department of Physics, University of York, Heslington, York YO10 5DD, UK Performance limits Ben Dudson Department of Physics, University of York, Heslington, York YO10 5DD, UK 24 th February 2014 Ben Dudson Magnetic Confinement Fusion (1 of 24) Previously... In the last few

More information

Critical Physics Issues for DEMO

Critical Physics Issues for DEMO Max-Planck-Institut für Plasmaphysik Critical Physics Issues for DEMO L.D. Horton with thanks to the contributors to the EFDA DEMO physics tasks in 2006 and to D.J. Campbell, who organized this effort

More information

The Kernel Trick, Gram Matrices, and Feature Extraction. CS6787 Lecture 4 Fall 2017

The Kernel Trick, Gram Matrices, and Feature Extraction. CS6787 Lecture 4 Fall 2017 The Kernel Trick, Gram Matrices, and Feature Extraction CS6787 Lecture 4 Fall 2017 Momentum for Principle Component Analysis CS6787 Lecture 3.1 Fall 2017 Principle Component Analysis Setting: find the

More information

ROBUST STABLE NONLINEAR CONTROL AND DESIGN OF A CSTR IN A LARGE OPERATING RANGE. Johannes Gerhard, Martin Mönnigmann, Wolfgang Marquardt

ROBUST STABLE NONLINEAR CONTROL AND DESIGN OF A CSTR IN A LARGE OPERATING RANGE. Johannes Gerhard, Martin Mönnigmann, Wolfgang Marquardt ROBUST STABLE NONLINEAR CONTROL AND DESIGN OF A CSTR IN A LARGE OPERATING RANGE Johannes Gerhard, Martin Mönnigmann, Wolfgang Marquardt Lehrstuhl für Prozesstechnik, RWTH Aachen Turmstr. 46, D-5264 Aachen,

More information

MHD Induced Fast-Ion Losses in ASDEX Upgrade

MHD Induced Fast-Ion Losses in ASDEX Upgrade Max-Planck-Insititut für Plasmaphysik MHD Induced Fast-Ion Losses in ASDEX Upgrade Manuel García-Muñoz1 H.-U. Fahrbach1, M. Bruedgam1, V. Bobkov1, A. Flaws1, M. Gobbin2, S. Günter1, P. Lauber1, M. Mantsinen1,4,

More information

Course Notes: Week 1

Course Notes: Week 1 Course Notes: Week 1 Math 270C: Applied Numerical Linear Algebra 1 Lecture 1: Introduction (3/28/11) We will focus on iterative methods for solving linear systems of equations (and some discussion of eigenvalues

More information

Derivation of dynamo current drive in a closed current volume and stable current sustainment in the HIT SI experiment

Derivation of dynamo current drive in a closed current volume and stable current sustainment in the HIT SI experiment Derivation of dynamo current drive and stable current sustainment in the HIT SI experiment 1 Derivation of dynamo current drive in a closed current volume and stable current sustainment in the HIT SI experiment

More information

DIII D. by F. Turco 1. New York, January 23 rd, 2015

DIII D. by F. Turco 1. New York, January 23 rd, 2015 Modelling and Experimenting with ITER: the MHD Challenge by F. Turco 1 with J.M. Hanson 1, A.D. Turnbull 2, G.A. Navratil 1, F. Carpanese 3, C. Paz-Soldan 2, C.C. Petty 2, T.C. Luce 2, W.M. Solomon 4,

More information

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK

More information

Predictive Study on High Performance Modes of Operation in HL-2A 1

Predictive Study on High Performance Modes of Operation in HL-2A 1 1 EX/P-0 Predictive Study on High Performance Modes of Oration in HL-A 1 Qingdi GAO 1), R. V. BUDNY ), Fangzhu LI 1), Jinhua ZHANG 1), Hongng QU 1) 1) Southwestern Institute of Physics, Chengdu, Sichuan,

More information

Mitigation of ELMs and Disruptions by Pellet Injection

Mitigation of ELMs and Disruptions by Pellet Injection TH/P4-5 Mitigation of ELMs and Disruptions by Pellet Injection K. Gál ), T. Fehér ), T. Fülöp ), P. T. Lang 3), H. M. Smith 4), ASDEX Upgrade Team 5) and JET-EFDA contributors 3) ) KFKI-RMKI, Association

More information

Feedback stabilization of the resistive shell mode in a tokamak fusion reactor

Feedback stabilization of the resistive shell mode in a tokamak fusion reactor Feedback stabilization of the resistive shell mode in a tokamak fusion reactor Institute for Fusion Studies, Department of Physics, The University of Texas at Austin, Austin, Texas 78712 Received 16 September

More information

Modeling of resistive wall mode and its control in experiments and ITER a

Modeling of resistive wall mode and its control in experiments and ITER a Modeling of resistive wall mode and its control in experiments and ITER a Yueqiang Liu b Department of Applied Mechanics, EURATOM/VR Fusion Association, Chalmers University of Technology, Göteborg, Sweden

More information

A Lagrangian approach to the kinematic dynamo

A Lagrangian approach to the kinematic dynamo 1 A Lagrangian approach to the kinematic dynamo Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc/ 5 March 2001 with Allen

More information

Perturbation Theory for Self-Adjoint Operators in Krein spaces

Perturbation Theory for Self-Adjoint Operators in Krein spaces Perturbation Theory for Self-Adjoint Operators in Krein spaces Carsten Trunk Institut für Mathematik, Technische Universität Ilmenau, Postfach 10 05 65, 98684 Ilmenau, Germany E-mail: carsten.trunk@tu-ilmenau.de

More information

Section 3.9. Matrix Norm

Section 3.9. Matrix Norm 3.9. Matrix Norm 1 Section 3.9. Matrix Norm Note. We define several matrix norms, some similar to vector norms and some reflecting how multiplication by a matrix affects the norm of a vector. We use matrix

More information

Phase ramping and modulation of reflectometer signals

Phase ramping and modulation of reflectometer signals 4th Intl. Reflectometry Workshop - IRW4, Cadarache, March 22nd - 24th 1999 1 Phase ramping and modulation of reflectometer signals G.D.Conway, D.V.Bartlett, P.E.Stott JET Joint Undertaking, Abingdon, Oxon,

More information

Supported by. Role of plasma edge in global stability and control*

Supported by. Role of plasma edge in global stability and control* NSTX Supported by College W&M Colorado Sch Mines Columbia U CompX General Atomics INL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U

More information

Extended Lumped Parameter Model of Resistive Wall Mode and The Effective Self-Inductance

Extended Lumped Parameter Model of Resistive Wall Mode and The Effective Self-Inductance Extended Lumped Parameter Model of Resistive Wall Mode and The Effective Self-Inductance M.Okabayashi, M. Chance, M. Chu* and R. Hatcher A. Garofalo**, R. La Haye*, H. Remeirdes**, T. Scoville*, and T.

More information

NIMROD FROM THE CUSTOMER S PERSPECTIVE MING CHU. General Atomics. Nimrod Project Review Meeting July 21 22, 1997

NIMROD FROM THE CUSTOMER S PERSPECTIVE MING CHU. General Atomics. Nimrod Project Review Meeting July 21 22, 1997 NIMROD FROM THE CUSTOMER S PERSPECTIVE MING CHU General Atomics Nimrod Project Review Meeting July 21 22, 1997 Work supported by the U.S. Department of Energy under Grant DE-FG03-95ER54309 and Contract

More information

Analysis of Transient Behavior in Linear Differential Algebraic Equations

Analysis of Transient Behavior in Linear Differential Algebraic Equations Analysis of Transient Behavior in Linear Differential Algebraic Equations Dr. Mark Embree and Blake Keeler May 6, 5 Abstract The linearized Navier-Stokes equations form a type of system called a differential

More information

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This

More information

Feedback Control Systems

Feedback Control Systems ME Homework #0 Feedback Control Systems Last Updated November 06 Text problem 67 (Revised Chapter 6 Homework Problems- attached) 65 Chapter 6 Homework Problems 65 Transient Response of a Second Order Model

More information

Performance, Heating, and Current Drive Scenarios of ASDEX Upgrade Advanced Tokamak Discharges

Performance, Heating, and Current Drive Scenarios of ASDEX Upgrade Advanced Tokamak Discharges Performance, Heating, and Current Drive Scenarios of ASDEX Upgrade Advanced Tokamak Discharges R. C. Wolf, J. Hobirk, G. Conway, O. Gruber, A. Gude, S. Günter, K. Kirov, B. Kurzan, M. Maraschek, P. J.

More information

Beam Driven Alfvén Eigenmodes and Fast Ion Transport in the DIII-D and ASDEX Upgrade (AUG) Tokamaks

Beam Driven Alfvén Eigenmodes and Fast Ion Transport in the DIII-D and ASDEX Upgrade (AUG) Tokamaks Beam Driven Alfvén Eigenmodes and Fast Ion Transport in the DIII-D and ASDEX Upgrade (AUG) Tokamaks by M.A. Van Zeeland 1 M. García-Muñoz 2, W.W. Heidbrink 3, I. Classen 4, R.K. Fisher 1, B. Geiger 2,

More information

AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES

AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES AN ELEMENTARY PROOF OF THE SPECTRAL RADIUS FORMULA FOR MATRICES JOEL A. TROPP Abstract. We present an elementary proof that the spectral radius of a matrix A may be obtained using the formula ρ(a) lim

More information

April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v.

April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v. April 3, 005 - Hyperbolic Sets We now extend the structure of the horseshoe to more general kinds of invariant sets. Let r, and let f D r (M) where M is a Riemannian manifold. A compact f invariant set

More information

Effect of Resonant and Non-resonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas

Effect of Resonant and Non-resonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas 1 EX/5-3Ra Effect of Resonant and Non-resonant Magnetic Braking on Error Field Tolerance in High Beta Plasmas H. Reimerdes 1), A.M. Garofalo 2), E.J. Strait 2), R.J. Buttery 3), M.S. Chu 2), Y. In 4),

More information

Iterative Solution of a Matrix Riccati Equation Arising in Stochastic Control

Iterative Solution of a Matrix Riccati Equation Arising in Stochastic Control Iterative Solution of a Matrix Riccati Equation Arising in Stochastic Control Chun-Hua Guo Dedicated to Peter Lancaster on the occasion of his 70th birthday We consider iterative methods for finding the

More information

Analysis of different Lyapunov function constructions for interconnected hybrid systems

Analysis of different Lyapunov function constructions for interconnected hybrid systems Analysis of different Lyapunov function constructions for interconnected hybrid systems Guosong Yang 1 Daniel Liberzon 1 Andrii Mironchenko 2 1 Coordinated Science Laboratory University of Illinois at

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 1. Linear systems Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Linear systems 1.1 Differential Equations 1.2 Linear flows 1.3 Linear maps

More information

Global particle-in-cell simulations of Alfvénic modes

Global particle-in-cell simulations of Alfvénic modes Global particle-in-cell simulations of Alfvénic modes A. Mishchenko, R. Hatzky and A. Könies Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-749 Greifswald, Germany Rechenzentrum der Max-Planck-Gesellschaft

More information

Stabilization of Distributed Parameter Systems by State Feedback with Positivity Constraints

Stabilization of Distributed Parameter Systems by State Feedback with Positivity Constraints Stabilization of Distributed Parameter Systems by State Feedback with Positivity Constraints Joseph Winkin Namur Center of Complex Systems (naxys) and Dept. of Mathematics, University of Namur, Belgium

More information

Finding normalized and modularity cuts by spectral clustering. Ljubjana 2010, October

Finding normalized and modularity cuts by spectral clustering. Ljubjana 2010, October Finding normalized and modularity cuts by spectral clustering Marianna Bolla Institute of Mathematics Budapest University of Technology and Economics marib@math.bme.hu Ljubjana 2010, October Outline Find

More information

An efficient algorithm to compute the real perturbation values of a matrix

An efficient algorithm to compute the real perturbation values of a matrix An efficient algorithm to compute the real perturbation values of a matrix Simon Lam and Edward J. Davison 1 Abstract In this paper, an efficient algorithm is presented for solving the nonlinear 1-D optimization

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 3: Iterative Methods PD

More information

Multi-Robotic Systems

Multi-Robotic Systems CHAPTER 9 Multi-Robotic Systems The topic of multi-robotic systems is quite popular now. It is believed that such systems can have the following benefits: Improved performance ( winning by numbers ) Distributed

More information

GA A26247 EFFECT OF RESONANT AND NONRESONANT MAGNETIC BRAKING ON ERROR FIELD TOLERANCE IN HIGH BETA PLASMAS

GA A26247 EFFECT OF RESONANT AND NONRESONANT MAGNETIC BRAKING ON ERROR FIELD TOLERANCE IN HIGH BETA PLASMAS GA A26247 EFFECT OF RESONANT AND NONRESONANT MAGNETIC BRAKING ON ERROR FIELD TOLERANCE IN HIGH BETA PLASMAS by H. REIMERDES, A.M. GAROFALO, E.J. STRAIT, R.J. BUTTERY, M.S. CHU, Y. In, G.L. JACKSON, R.J.

More information

Modeling of active control of external magnetohydrodynamic instabilities*

Modeling of active control of external magnetohydrodynamic instabilities* PHYSICS OF PLASMAS VOLUME 8, NUMBER 5 MAY 2001 Modeling of active control of external magnetohydrodynamic instabilities* James Bialek, Allen H. Boozer, M. E. Mauel, and G. A. Navratil Department of Applied

More information

Properties of Matrices and Operations on Matrices

Properties of Matrices and Operations on Matrices Properties of Matrices and Operations on Matrices A common data structure for statistical analysis is a rectangular array or matris. Rows represent individual observational units, or just observations,

More information

BOUNDS OF MODULUS OF EIGENVALUES BASED ON STEIN EQUATION

BOUNDS OF MODULUS OF EIGENVALUES BASED ON STEIN EQUATION K Y BERNETIKA VOLUM E 46 ( 2010), NUMBER 4, P AGES 655 664 BOUNDS OF MODULUS OF EIGENVALUES BASED ON STEIN EQUATION Guang-Da Hu and Qiao Zhu This paper is concerned with bounds of eigenvalues of a complex

More information

Plasma models for the design of the ITER PCS

Plasma models for the design of the ITER PCS Plasma models for the design of the ITER PCS G. De Tommasi 1,2 on behalf of the CREATE team 1 Consorzio CREATE, Naples, Italy 2 Department of Electrical Engineering and Information Technology, University

More information

arxiv: v1 [physics.plasm-ph] 24 Nov 2017

arxiv: v1 [physics.plasm-ph] 24 Nov 2017 arxiv:1711.09043v1 [physics.plasm-ph] 24 Nov 2017 Evaluation of ideal MHD mode stability of CFETR baseline scenario Debabrata Banerjee CAS Key Laboratory of Geospace Environment and Department of Modern

More information