An explicit nite element method for convection-dominated compressible viscous Stokes system with inow boundary

Size: px
Start display at page:

Download "An explicit nite element method for convection-dominated compressible viscous Stokes system with inow boundary"

Transcription

1 Journal of Computational and Applied Mathematics 156 (2003) An explicit nite element method for convection-dominated compressible viscous Stokes system with inow boundary Jae Ryong weon a;1, Philsu im b; ;2 a Department of Mathematics, Pohang University of Science and Technology, Pohang , South orea b Major in Mathematics, Dong-A University, 840, Hadan-2 Dong, Saha-u, Pusan , South orea Received 28 May 2002; received in revised form 30 October 2002 Abstract A linearized steady-state compressible viscous Stokes system with inow boundary is considered on a plane domain. An explicit nite element method for the system is presented with convection-dominance and O(h) viscous numbers where h is a given mesh size. With small viscous numbers it is a degenerate hyperbolic problem and also the Dirichlet boundary condition may generate a layer near the outowboundary. The method is applied over a triangulation of the domain in an explicit fashion from triangle to triangle and gives a continuous nth degree piecewise polynomial approximation. We show a local stability and a global one for the method and derive error estimates for each variable of velocity, pressure and their derivatives. It is observed that the compressibility number := = is an essential ingredient in showing our stability results. c 2003 Elsevier B.V. All rights reserved. eywords: Convection-dominance; Compressible viscous Stokes ow 1. Introduction and results In this paper we consider a steady-state compressible viscous Stokes system which can be obtained by linearizing the stationary compressible viscous Navier Stokes equations around an ambient ow [5,6]. The system contains not only convection terms in the momentum equation and the continuity one, respectively but also the viscous terms in the momentum one. With convection dominance and small viscous numbers we are interested in solving the corresponding discrete problem explicitly. Corresponding author. addresses: kweon@postech.ac.kr (J.R. weon), kimps@donga.ac.kr (P. im). 1 Partially supported by Com 2 MaC-OSEF. 2 This paper was supported by orea Research Foundation grand RF C /03/$ - see front matter c 2003 Elsevier B.V. All rights reserved. doi: /s (02)

2 320 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) The considered equations in this paper are u div u + U u + p = f in ; div u + U p = g in ; u = u 0 on ; p = p 0 on ; (1.1) where is a domain in R 2 with boundary := 9; u =(u 1 ;u 2 ) and p are the unknown velocity and pressure variables, respectively; = (P) is a strictly increasing positive function that provides density as a C 1 function of pressure; = (P) := (P)=(P), =d=dp; U := (U; V ) and P are given functions that describe the ambient ow; u 0 and p 0 are given boundary data; f and g are given functions; and are the viscous constants with 0 and + 0. For simplicity we let := U and denote by w = w. Throughout this paper it is assumed that is a unit vector function and, are positive constant functions, for simplicity. The inow and outowboundaries, and + are dened by = {(x; y) : n 0}; + = {(x; y) : n 0}; (1.2) where n =(n 1 ;n 2 ) denotes the unit outward normal to. The nonzero ambient velocity eld appearing in the continuity equation of (1.1) gives the characteristic direction for the equation (see (1.7)), and values of the pressure are specied on those portions of the boundary where the ambient velocity vector points into the region. As an illustration a jet of liquid owing into a region can be such a phenomenon [1]. Also it is seen that the system (1.1) is an elliptic hyperbolic system. When the viscous numbers and are zero, it is a linearized compressible Euler system while it is regarded a degenerate hyperbolic system when the viscous numbers become small. For the existence of solution of (1.1) on smooth domains we refer to [5, Theorem 2.1] and [6, Lemma ]. The uniqueness and existence results for (1.1) are given there, and its regularity results are shown under condition that guarantee that the ambient ow is close to a constant ow. Recently in [7] an analysis for a very simple form of the system (1.1) was given on (concave or convex) polygonal domains. So far the explicit nite element method with respect to convection has been applied to several types of PDEs. Especially, Falk and Richter [3] applied the method to the rst-order scalar hyperbolic equation, and Richter [8] considered it for convection-diusion equations. In addition, Falk and Richter [4] applied to the linear symmetric and hyperbolic system in the time and space variable the method by a generalization of the discontinuous Galerkin method, and showed that the method is explicit in time variable. More specically it is seen in [3,8] that the nite element method is applied over a triangulation of the domain and can be developed in an explicit fashion from triangle to triangle and gives a continuous piecewise polynomial approximation. In doing so, the following method was applied to the convection-diusion equation with the Dirichlet boundary condition [8]: ( u h + u h ;v h ) =(f; v h ) ; v h P n &() (); (1.3)

3 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) where ( ; ) denotes the L 2 inner product on, &() is the number of inowsides that has, P n () is the space of polynomials of degree 6 n on. There the method was shown to be stable under the condition h 1 q 0 (q 0 0) and the assumption that the triangles can be ordered explicitly with respect to the convection term, and then the following estimates were derived: u u h L 2 ( ) 6 Ch n u H n+1 ( ); (u u h ) L 2 ( ) 6 Ch n 1=2 u H n+1 ( ); where is any sub-triangulation for which ( ) (). One may wonder if a similar stability result for (1.1) can be obtained with the method like (1.3). So the purpose of this paper is to present an explicit nite element method for (1.1) and showa unique existence of the discrete problem and derive error estimates for the velocity and pressure variables and their tangential derivatives over sub-domains staying away from the outow boundary. Let T h be a quasi-uniform triangulation for, which was constructed in such a way that no triangle has a side parallel to the characteristic direction at any point. For a triangle T h, let P n ()=P n () P n (), Mh n = { C(): P n ()} and Vh n = M h n M h n. We dene the following bilinear forms on each triangle T h as follows: a (u; v)= (u; v) ( div u; v) + ( u; v) ; b (v;)=( ; v) ; c (p; )=( p; ) ; d (u;) = (div u;) : (1.4) Note that the bilinear form a can be regarded a bilinear form for the convection-diusion equation and the form c a bilinear form for the pure hyperbolic equation. With an interpolation [u h ;p h ]of the initial data [u 0 ;p 0 ]on, we seek a nite element solution [u h ;p h ] Vh n M h n such that a (u h ; v)+b (v;p h )=(f; v) ; v P n &() (); c (p h ;)+d (u h ;)=(g; ) ; P n &() (): (1.5) The discrete solution [u h ;p h ] starts as an interpolation of [u 0 ;p 0 ]on and the triangles are ordered explicitly with respect to the convection term. We see that the approximate solution [u h ;p h ]of(1.5) has a total of 3% n degrees of freedom in each triangle where % n =(n + 1)(n +2)=2. In an one-inowside triangle, there are 3(n + 1) degrees of freedom in [u h ;p h ] along the inow, leaving a total of 3% n 1 to be determined from (1.5) with &() = 1. In a two-inow side triangle, there are 3(2n + 1) degrees of freedom in [u h ;p h ] along the inow, leaving 3% n 2 to be determined from (1.5) with &() = 2. Thus the number of equations in (1.5) equals the number of unknowns. It is assumed in this paper that n 2 even though the case n = 1 is of some interest. The latter is a degenerate case in which (1.5) with &() = 2 is vacuous and (1.5) with &() = 1 completely determines the approximate solution.

4 322 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) As is the case given in [8], we show that the method (1.5) is stable provided a condition of the form 1 := 1 h 6 0 (1.6) is satised where 1 = +. In addition, we require the triangle sides to be bounded away from the characteristic direction, i.e., n c 0: (1.7) Note that conditions (1.6) (1.7) are needed because the convection-dominated case is considered. In showing our stability we need to impose a condition on the compressibility number: := 1 ; (1.8) where is a positive constant to be given later. Let D be a domain in R 2 and a line segment. Dene, respectively ( 1=2 ( 1=2 f D = f dx) 2 and f = f ds) 2 : D Denote by l;d and l; the corresponding norms for the Sobolev spaces H l (D) and H l ( ), respectively. For simplicity, we dene the following notations for the norms: [ av; b] 2 := a v 2 + b 2, [ av; b] 2 D := a v 2 D + b 2 D; [ av; b] 2 := a v 2 + b 2 ; (1.9) where a and b are positive numbers. Denote by P k f the L 2 projection over D into P k (D). We here give a main result in this paper, which is shown in Section 4. Let [u;p] and [u h ;p h ]be the solutions of (1.1) and (1.5), respectively. Assume that the solution [u;p] satises the a priori estimate M := h u n+1; + p n; 6 C. Let be any subtriangulation of such that ( ) (). If (1.6) (1.8) hold, we then have [u u h ;p p h ] 6 Ch n 1 M; [ (u u h ) ; 0 (p p h ) ] 6 Ch n 1 M; { [ (u u h ); 1=2 0 (p p h )] 2 n ds} 6 Ch n 1 M; +( ) [ (u u h ); (p p h )] 6 Ch n 3=2 M; { [ (u u h ) t ; 1=2 0 (p p h ) t ] 2 n ds} 1 6 Ch n 3=2 M; +( ) where 0 := with a constant = C(; c ; 0 ) with a minimum angle 0 in the triangulation T h, v t := t v is the tangential derivative along and n is the unit normal vector on and C is a generic constant not depending on h.

5 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) Note that the a priori estimate for (1.1) can be obtained with a large condition on, not assuming a large condition on (see [5, Theorem 2.1]). Note that the constant is a positive number depending on only ; c and 0 (see (3.10), (3.28), (4.6), etc.) and 0 can be positive under the condition (1.8). With condition (1.6), system (1.1) can be viewed a degenerate hyperbolic system. For small viscous numbers and the boundary condition on + () may generate a boundary layer which has width O( 1 ) with 1 := +. The layer cannot be resolved in the regime 1 h. Consider a reduced problem: system (1.1) with = = 0 and u not specied on +. In fact, the solution of the reduced problem does not have a boundary layer. However, if the values attained by the solution u of the reduced problem on the outowboundary + do not coincide with the boundary value specied in the full problem, the solution of the full problem may have a boundary layer at +. Let be any triangle in a given triangulation T h. For i =1; 2; 3, we denote by 9 i the sides of numbered counterclockwise, by a i the vertices of opposite 9 i,byn i the unit outward normals to 9 i, and by t i the unit tangents along 9 i taken in a counterclockwise direction (see Fig. 1). We always take 9 3 to be the inow(outow) side of a type I (type II) triangle. In addition, the layers consisting of the triangles in the triangulation T h are dened as follows S 1 = { T h 9 ()}; ( S i+1 = { T h 9 )} S k ; k6i i=1; 2;::: : (1.10) With this partition of T h, the approximate solution may be obtained in an explicit fashion, rst in S 1, then in S 2, etc. Within each layer, the approximate solution can be obtained in parallel since the solution in any of triangles within a layer does not depend on the solution in other triangles in that layer. In the triangulation in Fig. 1, the number 1 indicates the triangles for the layer S 1 and 2 the ones for the layer S 2, and so on. Also, the dark area of Fig. 1 indicates a layer near the outowboundary. In our analysis, it is assumed that T h is a given triangulation of satisfying the following conditions [2,3]: (i) all angles of triangles satises a minimum angle condition: 0 0 and (ii) the triangles in T h can be partitioned into O(h 1 ) layers. Fig. 1.

6 324 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) The paper is organized as follows: In Section 2 a local stability for (1.5) is established and in Section 3 a global stability is shown and nally in Section 4 error estimates are derived. In our proofs, C denote a generic constant, depending on certain quantities. We shall make this dependence explicitly, for example, writing C() if C depends only on (for example, in the Sobolev inequalities) or C(c ; 0 ;)ifc depends both on c ; 0, and, and so on. 2. Local stability This section shows that the solution [u h ;p h ]of(1.5) is well dened and satises local estimates (see Theorem 2.1 below). To do this we rst introduce a reference triangle ˆ with vertices â 1 =(1; 0), â 2 =(0; 1) and â 3 =(0; 0). Let x =(x; y) and ˆx =(ˆx; ŷ) ˆ. The reference triangle ˆ can be mapped into the triangle by the ane transformation x = B ˆx + a 3 ; B=( 9 1 t 1 ; 9 2 t 2 ); which is mapped into the triangle, where 9 i denotes the length of 9 i. Let û(ˆx; ŷ) = u(x(ˆx; ŷ);y(ˆx; ŷ)) and h = max Th h where h is the diameter of the triangle. Since the ane mapping is invertible, we may also have u(x; y) =û(ˆx(x; y); ŷ(x; y)). Let J =(9(x; y)=9(ˆx; ŷ)) T be the transpose of the Jacobian and ˆ =(9=9 ˆx; 9=9ŷ) T. Then the gradient, divergence and Laplacian operators are transformed over the reference triangle ˆ as follows: u = J 1 ˆ û := h 1 û; div v = ˆv ˆx ˆx + ˆvŷ ŷ := h 1 div ˆv; u = ˆx T x Ĥ 1û ˆx x + ˆx T yĥ 1û ˆx y := h 2 û; where ˆv ˆx =(û ˆx ; ˆv ˆx ), ˆx x =(ˆx x ; ŷ x ) T and Ĥ 1 = ˆx ˆx9ŷ ˆx9ŷ 9 2 9ŷ 2 : Also one can see that div v=h 2 div ˆv. Hence problem (1.5) can be transformed over the reference triangle ˆ as follows: ( ûh div û h + û h + ˆp h ) ˆv h d ˆx ˆ ˆ =h ˆf ˆv h d ˆx; ˆ ( divû h + ˆp h )ˆ h d ˆx = h ˆv h P n &( ˆ ) ( ˆ); (2.1) ˆ g ˆ h d ˆx; ˆ h P n &( ˆ ) ( ˆ); (2.2) where = =h and = =h. In ˆ we derive a linear algebraic system for (2.1) (2.2) by expressing the approximate solution in a linear combination of the Lagrange basis functions. The functions û h

7 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) and ˆp h can be expressed in the form % n % n % n û h =[û h ; ˆv h ]= û j j ; ˆv j j and ˆp h = j=1 j=1 j=1 ˆp j j ; where û j := [û j ; ˆv j ]=[û h (P j ); ˆv h (P j )], ˆp j = ˆp h (P j ), P j are the usual (equispaced) nodes for nth degree interpolation in ˆ and j (x) are the corresponding Lagrange basis functions for P n ( ˆ) and % n =(n + 1)(n +2)=2. Recalling that (2.1) and (2.2) are true for each basis function i for P n &( ˆ ) ( ˆ) and letting u j = û h (P j ), p j =ˆp h (P j ) for P j ( ˆ), they can be written in the following equations: for each i =1;:::;% n &( ˆ ) and on ˆ, % n j=1 % n j=1 {A ji û j + B ji ˆp j } = f i := h( ˆf; i ) ˆ ; (2.3) {C ji ˆp j + D ji û j } = g i := h(ĝ; i ) ˆ ; (2.4) û j ; ˆp j are given for P j ( ˆ); (2.5) where i =( i ; 0) is chosen for the rst equation of (2.3), i =(0; i ) for the second equation of (2.3) and A ji = A ;ji + A 1;ji with A ;ji û j = (û j j ) i d ˆx 1 div(û j j ) i d ˆx ˆ and A 1;ji = ( j ; i ) ˆ, C ji = ( j ; i ) ˆ, and B ji and D ji are given by B ji ˆp j =ˆp j j i d ˆx and D ji û j = div(û j j ) i d ˆx: ˆ ˆ ˆ Denoting by û =(û 1 ;:::;û %n ) t, ˆp =(ˆp 1 ;:::; ˆp %n ) t, f =(f 1 ;:::;f %n ), g =(g 1 ;:::;g %n ), and ẑ =(û; ˆp) t, ẑ =(û ; ˆp ) t, F =[f;g] t,(2.3) (2.5) can be written in a matrix form: (S + T )ẑ = M; (2.6) where ( ) ( ) A1 B A 0 S = ; T = D C 0 0 ( A ) B and M = F + D C ẑ : We recall that A is a block matrix generated by A ;ji and similarly A 1, B, C and D are such matrices. Hence (2.6) is a linear algebraic system with as many equations as unknowns, and S, T are uniformly bounded and also M is bounded (see Theorem 2.1 below).

8 326 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) If the matrix S is invertible, a unique existence of the solution of (2.6) easily follows under a condition of the form 1 := ; h where 0 0 is to be chosen later. For this, let Q denote the centroid of and 0 = (Q) with (x) 0 6 Ch 1;. So the matrix S can be split into S = S 0 + hs 1, where ( ) ( ) A0 B h 1 (A 1 A 0 ) 0 S 0 = ; S 1 = D C 0 0 h 1 (C C 0 ) with the block matrices A 0 and C 0 generated by A 0;ji = ( 0 ˆ j ; i ) ˆ, C 0;ji = ( 0 ˆ j ; i ) ˆ, respectively. We observe that the invertibility of S 0 is equivalent to showthat the only solution to (1.5) with replaced by 0 and =0=, u h 9 =0, p h 9 =0, f = 0 and g =0 is u h = 0 and p h =0: in other words, the following problem has only trivial solution: nd [u;p] P n () P n () such that a 1 (u; v)+b (v;p)=0; c (p; )+d (u;)=0; v P n &() (); P n &() (); u =0; p=0 on 9 ; (2.7) where a 1 (u; v)=(u 0 ; v) and c (p; )=(p 0 ;). For solving (2.7), we construct a function, which will be used later, having zero value on the inowsides of T h. Dene a function : R by (x)= 1 ( 1 n n 2 ) (x a 3 ) n 1 t (n 1 (x a 3 ))(n 2 (x a 3 )) (n 1 t 2 ) (type I triangle); (type II triangle); where n i and t i are the unit normal and tangential vectors to i = 9 i, respectively and i is the length of i. Then the function has the following properties: (2.8) Lemma 2.1. Let 0 = (Q) with Q the centroid of. The function (x) dened in (2.8) satises the following properties: (a) (x) P &() () where &() is the number of inow sides of, and (b) (x) 0 on, and (c) (x)=0 on 9, and (d) 0 (x) 0 on if h is small enough. Proof. (a) (c) easily followfrom the denition of (x). Next the gradient of (x) is given by 1 ( ) n 1 n 1 t n2 (type I triangle); 1 (x)= (2.9) n 1 n 2 (x a 3 )+n 2 n 1 (x a 3 ) (type II triangle): (n 1 t 2 ) 2 1 2

9 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) For type I triangle, we have n 1 t 2 0 and n i 0 0(i =1; 2). For type II triangle, we have 0 n i 0 and n i (x a 3 ) 0(i =1; 2). Hence (d) follows. Using Lemma 2.1 and a large condition on the coecient (see (1.8)), we obtain Lemma 2.2. Let 0 be given in Lemma 2.1. Assume that (1.6) (1.8) hold. Then if 2=c 2 and the mesh size h is small enough (2.7) has only trivial solution. Proof. From the boundary conditions in (2.7), the solutions u P n () and p P n () can be factored into u = w and p = q, where is dened in (2.8) and (w;q) P n &() () P n &() (). Now taking v = w, = q in (2.9), and letting A 1 = a 1 (w; w)+c (q; q), A 2 = b (w;q)+d (w;q), we have A 1 + A 2 = 0. Since (w) 0 = 0 w + w 0, the integration by parts and Lemma 2.1 yields A 1 = [ w; q] 2 0 dx + w 0 w dx + qq 0 dx = 1 ( [ w; q] 2 0 dx + [ w; ) q] n ds 9 + w q 0 dx + w q 0 n ds; (2.10) 9 + where = = was used in the above inequality. Again using Lemma 2.1 and the integration by parts, we have A 2 = q w dx + qw n ds 9 + q w dx q w ds: (2.11) 9 + Noting that 0 n c with h small, the above two inequalities gives 0=A 1 + A 2 ( q w 0 ) ( dx + w q 0 n 1 ) ds: (2.12) c From (2.9), we see that for type I triangle, 2 2 ( 0 ) = i=1 ( 1 n 1 i + 2 n 2 i ) 2 2 ( 1 0 n n 2 ) 6 2 (2.13) 2 c 2 and for type II triangle, 2 2 ( ) ( 0 ) = n1 e i n 2 (x a 3 )+n 2 e i n 1 (x a 3 2 ) 2 0 n 1 n 2 (x a 3 )+ 0 n 2 n 1 (x a 3 ) = i=1 2 i=1 ( ) n1 e i + n 2 e i 2 ; (2.14) 0 n n 2

10 328 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) where e 1 =(1; 0), e 2 =(0; 1) and := (n 1 (x a 3 )=n 2 (x a 3 )) 0on. Recalling that ( 0 n 1 ) ( 0 n 2 ) 0 and h() := n1 e i + n 2 e i 0 n n 2 is a function over (0; ), we have { } n 1 e i + n 2 e i 0 n n 2 6 max n 1 e i 0 n 1 ; n 2 e i 0 n : c Indeed, the absolute value of the above function h() can be rephrased by h() := a + b c + d = b c=d d 1+a=b + c=d ; where a; b; c and d are real numbers with cd 0. We then have two cases: rst, if a=b c=d 0, then h() is decreasing on (0; ) and so h() 6 h(0) = a, and second, if a=b c=d 0, then c h() is increasing on (0; ) and h() 6 h( ) = b. Hence the required inequality follows. d Hence, for type II triangle, we have 2 ( 0 ) 6 2 : (2.15) 2 c 2 Combining (2.12) (2.15), we get ( ) 2 0 q w 0 c ( dx + q w 0 n 1 ) ds 0; 9 + c provided that 2c 2. Then w q =0 in 9 +. Using (2.11), we have A 2 0, and 0 = A 1 + A 2 A 1. Thus it follows from (2.10) that w and q are identically zero on. Note that condition (1.8) is essential in showing Lemma 2.2. Since the uniqueness for a matrix problem of a nite order is equivalent to its invertibility, it follows from Lemma 2.2 that if 2c 2 is positive, the matrix S 0 dened above has a bounded inverse S 1 0 with S C, where is a matrix norm and C is a constant independent of h. SoS = S 0 + hs 1 has a bounded inverse if h is small enough. If 0 is suciently small such that ( + )=h 6 0, then S 1 T 1 with = =h, so problem (2.6) is solved uniquely, with its coecient matrix S + T having a bounded inverse (S + T ) 1 6 S 1 1 S 1 T 6 C 1; (2.16) where C 1 is a constant not depending on the mesh size h. From the above arguments we see that the solution [u h ;p h ]of(2.6) is well dened with small conditions on 0 and h. We next showthat the solution and its derivative are bounded by the data f;g, and their values on the inowsides of the triangle. Theorem 2.1. Let T h be any triangle. Let u h and p h be given on 9. Assume that S 1 T 1 where = =h and that (1.6) (1.8) hold. Then problem (1.5) has a unique solution

11 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) [u h ;p h ] P n () P n (). Furthermore there is a constant C such that the inequalities hold: [u h ;p h ] 6 C(h 1=2 [u h ;p h ] 9 + h [f;g] ); (2.17) [ u h ; p h ] 6 C(h 1=2 [u ht ;p ht ] 9 + [f;g] ); (2.18) where v t = t v with the tangential vector t on 9, and the norms [ ; ] and [ ; ] 9 are dened in (1.9). Proof. If is small so that S 1 T 1, then S + T has a uniformly bounded inverse and using (2.6), z =(S + T ) 1 M =(S + T ) 1 F + z. Hence max i z i 6 C 1 max F i + max z i ; (2.19) i i where C 1 is the constant given in (2.16) and F i =[f i ;g i ]. Since F i 6 Ch( f 0; + g 0; ) and z i 6 C [û h ; ˆp h ] 9 ˆ, we have, using (2.19) and transforming back ˆ to, [u h ;p h ] 6 C(h 1=2 [u h ;p h ] 9 + h [f;g] ): (2.20) For showing (2.18), for P 0 9 let u h = u h (P 0 )+v h and p h = p h (P 0 )+q h. Since [v h ;q h ] satises equations in (1.5) like [u h ;p h ], we have, applying (2.20), [v h ;q h ] 6 C(h 1=2 [v h ;q h ] 9 + h [f;g] ): (2.21) Hence the inequality (2.18) follows from the following inequalities: u h = v h 6 Ch 1 v h and v h 9 6 Ch v ht 9 = Ch u ht 9. Similar for q h. From Theorem 2.1 we see that (1.5) is uniquely solvable on each triangle T h under the data [f;g] and [u h ;p h ]on9. In next section we will show that (1.5) is solvable in a global sense. 3. Global stability This section shows that (1.5) is solvable in a global sense and the approximate solution can be estimated by its values on the inowboundary, the data f and g (see Theorem 3.2). This section can be summarized into ve steps. Step 1: Lemma 3.1, an identity for the bilinear forms a 1 and c. Step 2: Lemma 3.2 is shown for a lower bound for the form B 1 given in (3.1) and Lemma 3.3 is for a lower bound for the form B 1 plus the viscous terms in each type triangle. Step 3: Lemma 3.4 and Lemma 3.5; local estimations for the solution [u h ;p h ]of(1.5), combining the results obtained in each type triangle. Step 4: Theorem 3.1, a stability result for the discrete solution on each layer. Step 5: Theorem 3.2, a global stability for the discrete solution [u h ;p h ]of (1.5). For simplicity, throughout this section, u and p will be used instead of u h and p h. Using the local stability result Theorem 2.1, we will establish a global stability for (1.5). To write in a compact form, we denote B 1 by a bilinear form on V n h M n h : B 1 ([u;p]; [v;]) := a 1 (u; v)+b (v;p)+c (p; )+d (u;); (3.1)

12 330 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) where a 1 (u; v)=( u; v). Note that a 1 (u; v) and c (p; ) can be analyzed in a usual way [3] but one has to be careful in computing b (v;p) and d (u;). Let Q be the centroid of the triangle and let 0 = (Q) be a unit constant vector. In order to control the interelement tangential derivatives of u and p we use the following test functions [8]: v 2u t 1 t 2 ( 0 n 1 )( 0 n 2 ) ; 2 p t 1 t 2 ( 0 n 1 )( 0 n 2 ) ; (3.2) where t i and n i denote the tangential and normal vectors to i (), respectively. Since 0 is constant, [v ; ] belongs to P n 2 () P n 2 () and is a valid test function for a triangle of either type. We next give some identity and inequality which are used in controlling the interelement tangential derivatives u t and p t (see [3,8]). Lemma 3.1. (a) Let be the unit vector obtained by rotating counterclockwise through =2. Then the function in (3.2) can be represented in the form = ( 2p + ) with 6 C(h 1 p + p ); (3.3) similar for v, and a 1 (u; v )+c (p; ) [ u t ; p t ] 2 n 9 ds +! [ u ; p ] 2 ds C [ u; p] 2 ; (3.4) 3 where and! are dened in (3.6) and (3.8) respectively, 3 := 9 3 denotes the inow (outow) side in type I (type II) triangles and C is a constant not depending on h. (b) If T h is a type II triangle and P n (), we have 6 C(h 1= P n 2 + h ): (3.5) Proof. Using the formula t i = t i + t i and t i = n i, the function can be written by [ ( t 1 = 2p 2 n + ) t1 p 1 n 1 2 ( ] t1 )( t 2 ) ( n 1 )( n 2 ) p 2 ( 0 n 1 )( 0 n 2 ) (p t 2 ( t 1 )+p t 2 ( t 1 )); where is dened by = ( n1 )( n 2 ) ( 0 n 1 )( 0 n 2 ) : (3.6) Since 1 is of order h, the function = ( 2p + ) where the function can be estimated as follows: under the assumptions on the triangulation, 6 C( p + p + p ) 6 C(h 1 p + p ):

13 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) Finally we show (3.4). Using [3, Lemma 4.2] and letting 12 =( 0 n 1 )( 0 n 2 ), we have a 1 (u; v )+c (p; ) = [ u t ; p t ] 2 9 n + ds +! [ u ; p ] 2 ds ((z 1 ) t2 [ u t1 ; p t1 ] 2 +(z 2 ) t1 [ u t2 ; p t2 ] 2 ) dx( R); (3.7) where is given in (3.6) and! is dened by! = (t 1 n 3 )(t 2 n 3 ) 1 (3.8) ( 0 n 1 )( 0 n 2 ) n 3 and z 1 ;z 2 are dened by (z 1 ;z 2 )= 1 t 1 n 2 ( n2 ; n 1 ): Note that! has the same sign as n 3 since t 1 n 3 0 and t 2 n 3 0. So! 0( 0) for type I triangle (type II triangle). Since the quantity R in (3.7) can be estimated by C [ u; p] 2,(3.4) easily follows from (3.7). Finally (3.5) was given in [3, Lemma 3.3]. We next compute the term b (v ;p)+d (u; ) and combining it with (3.4), estimate the bilinear form B 1 below: Lemma 3.2. If (1.7) (1.8) hold, then the solution [u;p] of (1.5) satises B 1 ([u;p]; [v ; ]) 9 [ c 1 u t ; c 2 p t ] 2 n ds +! [ c 3 u ; c 4 p ] 2 ds C [ u; p] 2 ; (3.9) 3 where ;! are given in (3.6) and (3.8), respectively, and the constants c i (i =1;:::;4) are dened by c 1 = 2 ( 2 n ) ; c 3 = ( 2! n 2! c 2 = 16 n sin2 0 ) ( n + ) ; c 4 =! ! sin2 0 with 123 =( n 1 )( n 2 )( n 3 ) 2 and 0 the minimum angle in T h. ( n + ) ;! (3.10)

14 332 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) Proof. We rst write the gradient of p and the divergence of u in terms of the t i -directional derivatives as follows: ( ) ( ) px = 1 pt t 2 n 1 ( n2 ; n 1 1 ) and div u = 1 t 2 n (u 1 t 2 n1 u t 1 n 2 ): p y p t 2 Using the functions in (3.2) and letting 12 := 0 n 1 0 n 2, we have b (v ;p)+d (u; ) 2 = (u 12 t 2 n 1 t 1 t 2 (n1 p t 2 n 2 p t 1)+(u t 2 n 1 u t 1 n 2 )p t 1 t 2)dx = 2 12 t 2 n 1 (p t 2u t 2 n 1 t 1 n p t 1u t 1 n 2 t 2 n)ds: (3.11) 9 If is the unit vector obtained by rotating counterclockwise through =2, we have where t i = a i t 3 + b i (i =1; 2); a i = ti t 3 and b i = ti n 3 ; i=1; 2: n3 Using the above relations, for i =1; 2 we have p t iu t i n 3 i =((a 2 i p t 3 + a i b i p )u t 3 +(b 2 i p + a i b i p t 3)u ) n 3 i ; where the upper subscript of a k i written as follows: b (v ;p)+d (u; )= 2 12 where ij are given by means a 0 i =1; a 1 i = a i ; a 2 i =(a i ) 2, etc. Hence Eq. (3.11) can be ( 2 ij = a i 2b j 2 (t1 n 3 )n 1 a i 1b j 1 (t2 n 3 )n 2 : p t i u t i n 3 i ds i=1 9 i 1 ) [p t 2 n 1 t 3u t p u 02 +(p u t 3+p t 3 u ) 11 ]ds ; 9 3 (3.12) Since a i 6 1= t 3 =1= n 3 and b i 6 1= n 3,(i =1; 2), we have ij 6 2( n 3 ) 2 : (3.13)

15 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) Noting that 12 =( 0 n 1 )( 0 n 2 ) 0 and n 1 t 2 = sin := ( n 1 )( n 2 )( n 3 ) 2 and 3 = 9 3, we have and using (3.12) (3.13), and letting b (v ;p)+d (u; ) i=1 6 2 sin p t i u t i ds i sin 3 ( [ 1 u ; [ 1 u t ; p t] 2 ds ) p ] 2 ds 123 ( u t 3 + u )( p t 3 + p )ds (3.14) for arbitrary positive numbers 1 and 2, where and! are dened in (3.6) and (3.8), respectively. Combining (3.4) and (3.14), we obtain B 1 ([u;p]; [v ; ]) [ c 1 u t ; c 2 p t ] 2 n 9 where t is the unit tangential vector to 9, and c 1 = c 3 = 4 n 1 ; c 2 = 2 n 123 sin sin ! sin 0 2 ; ds +! [ c 3 u ; c 4 p ] 2 ds C [ u; p] 2 ; 3 ( 1 ) ; ( 2 1 c 4 = ! sin Finally, taking 1 =( 123 sin 0 =8 n ) and 2 =( 123! sin 0 =8), the required inequality (3.9) follows. It is seen that the constants c 2 and c 4 dened in (3.10) can be positive with a large condition on. So the condition (1.8) is needed in showing (3.9). We next compute the viscous terms and combine it with inequality (3.10) in each type of triangles. ) : Lemma 3.3. Let [u;p] be the solution of (1.5). Suppose (1.6) (1.8) hold. If 0 := 0=h is small enough with 0 := +, then for type I triangles, [ c 1 u t ; c 2 p t ] 2 ds + 0 u 2 n 9 6 C(! 1 h 1 [ c 3 u ; c 4 p ] 2 + [ u; p] 2 + [ h 1 P n 2 f; h 21 P n 2 g] 2 ) (3.15)

16 334 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) and for type II triangles, [ c 1 u t ; c 2 p t ] 2 ds +! 0 [ c 3 u ; c 4 p ] 2 9 n u C( 0h 1 u 2 + [ u; p] 2 + [ h 1 P n 2 f; h 2 P n 2 g] 2 ); (3.16) where! 0 ;! 1 are some positive numbers, and c 3 ;c 4 are given in (3.10) and C is a constant not depending on h. Proof. We rst compute the viscous term (u + div u; v ). Writing u = u + u div u = u + u, we write the viscous terms as follows: and u + div u = 0 (u + u + u (div + )+u (div + )): (3.17) Using (3.3) for v and an inverse inequality: u 6 Ch 1 u, we have ( u + div u; v ) C( 0 u 2 0h 1 u 2 0 u 2 ); (3.18) where C is a positive constant not depending on h. Again using (3.3) for v and, respectively, we have (f; v ) +(g; ) = (P n 2 f; v ) +(P n 2 g; ) 6 2 P n 2 f u + P n 2 f + Ch 1 P n 2 g p t1 6 1 u h 1 u 2 + [ 2 u; p] 2 +C [ h 1 P n 2 f; 1 h 2 P n 2 g] 2 (3.19) for 0; i 0. Since t 1 n 3 0 and t 2 n 3 0 from (3.8), we see that! has the same sign as n 3. That is,! 0( 0) for type I triangles (type II triangles), there exist constants! 0 ;! 1 such that {! 6!1 for a triangle of either type; (3.20)!! 0 0 for a type II triangle: For type I triangle we apply the inequality: v 9 6 Ch 1=2 v to the right-hand side of (3.9). So recalling that (u; v ) ( div u; v ) + B 1 ([u;p]; [v ; ])=(f; v ) +(g; ) ; (3.21) and using (3.18) (3.20), we obtain inequalities (3.15) (3.16). We next pick some similar test functions used in [3] to combine (3.15) and (3.16).

17 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) Lemma 3.4. Assume that (1.6) (1.8) hold. Then if 0 := 0=h is small enough, then the solution [u;p] of (1.5) satises the inequality 0 u 2 + h 1 [ 1 u ; 1 p ] 2 [ c 1 u t ; c 2 p t ] 2 + ds n 6 C(h 2r 1 [u;p] [ u; p] 2 + h 1 [f;g] [ h 1 P n 2 f; h 2 P n 2 g] 2 ); (3.22) where c 1 ;c 2 are given in (3.10) and 1 ; 1 are given in (3.28), and r 0 is to be chosen later and C is a generic constant not depending on h. Proof. We rst denote by P = P n &() for simplicity. Applying the test functions v = Pu 0 and = Pp 0 in (1.5), we have where [ Pu 0 ; Pp 0 ] 2 = A 1 + A 2 + A 3 ; (3.23) A 1 =(u + div u + f; Pu 0 ) +(g; Pp 0 ) ; A 2 = ( p; Pu 0 ) (div u; Pp 0 ) ; A 3 = (( 0 ) u; Pu 0 ) (( 0 ) p; Pp 0 ) : Using (3.17) and the inequality u 6 u 0 +ch u, the term A 1 can be estimated as follows: A 1 6 ( 0 u k + C( 0 h 1 u + 1 u )+ Pf ) u 0 + Pg p 0 6 C( u 2 +( 1 + 0h) u 2 )+ [ C 0 + 1u 0 ; 2 p 0 ] 2 +C( 1 ; 2 ) [Pf; Pg] ; i 0: (3.24) Recall that the -directional derivatives u and p of the discrete solution [u;p]of(1.5) must not vanish on each triangle. Otherwise, (1.5) cannot be developed explicitly from triangle to triangle (see Theorem 2.1). In addition, if h is small, then u 0 and p 0 will not be zero. Hence, using an argument of norm equivalence, we can have, for any v Mh n with 0 v 0, v + h r v 9 6 C( 0 v + h r v 9 ); (3.25) where r will be chosen later and C is a constant not depending on h. Using the Schwartz s inequality, we obtain an upper bound for A 2 : A 2 6 C( p Pu 0 + u Pp 0 ) (using (3:26)) 6 C( [ 4 u 0 ; 1 3 p 0 ] 2 + [ 3 Pu 0 ; 1 4 Pp 0 ] 2 + h 2r [ 4 u; 1 3 p] 2 9 ); (3.26)

18 336 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) where r 0 is chosen later and i 0 is arbitrary. Since A 3 6 Ch [ u; p] 2, a combination of (3.23), (3.24) and (3.26) gives [ C 3 Pu 0 ; C= 4 Pp 0 ] 2 6 C( u 2 + h 2r [ h u; h p] [ 2 1 Pf; 1 2 Pg] 2 ) + [ C( h)+ 1 u 0 ; 2 + C( h)p 0 ] 2 : (3.27) For type I triangles, Pv 0 = v 0, while for type II triangles, v 0 6 C(h 1=2 v Pv 0 ). Taking, in (3.27), we have 1 =( C( 0 + h)); 3 = 4 = 1 8C [ C( 0 + h)]; 2 =[ 16C 2 =( C( 0 + h)) Ch]; 1 = C( 0 + h) ; 1 = 1 4C 2 [ 16C2 =( C( 0 + h)) Ch]; (3.28) [ 1 Pu 0 ; 1 Pp 0 ] 2 6 C { A (type I triangle) A + h [u 0 ;p 0 ] (type II triangle); (3.29) where A =20 2 u 2 + h2r [u;p] [Pf; Pg] 2. Using v 6 v 0 + Ch v, and (3.15) and (3.29), we have, for type I triangles, (1 c 5 0) 0 u 2 [ c 1 u t ; c 2 p t ] 2 + ds 9 n 6 C( [ u; p] 2 + h 2r 1 [u;p] [ h 1 P n 2 f; h 2 P n 2 g] 2 ); (3.30) where c 5 = C! 1 max{c 3 ;c 4 }=min{ 1 ; 1 } and C is a constant not depending on h. Also we see that h 1 [ 1 u ; 1 p ] 2 can be bounded by the right-hand side of (3.30). So inequality (3.22) has been shown in the case of type I triangles. For type II triangle, since v 0 6 C(h 1=2 v P n 2 v 0 ), inequality (3.29) becomes 0h 1 u 2 6 C 0( u h 1 P n 2 u u 2 ) 6 C 0( 0 0 u 2 + u 2 + h 2r 1 [u;p] 2 9 +h 1 [P n 2 f; P n 2 g] [u 0 ;p 0 ] ):

19 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) Similar for 0 h 1 p 2. Finally, using v v 9+ + Ch 1=2 v and inserting the above inequality into (3.16), we obtain (1 C(0) 2 ) 0 u 2 + [ 3 u 0 ; 3 p 0 ] 2 [ c 1 u t ; c 2 p t ] ds 9 n 6 C( [ u; p] 2 + 0h 2r 1 [u;p] [ h 1 P n 2 f; h 2 P n 2 g] 2 ); where 3 =! 0 c 3 C 0 and 3 =! 0 c 4 C 0 with c 3 and c 4 given in (3.10). So in the case of type II triangles (3.22) follows from (3.30) and the above inequality. It is seen that 3 and 3 can be positive if 0 is small enough and if = = is large. We next choose some test functions to bound u and p over the boundary of T h. Lemma 3.5. Suppose (1.6) (1.8) hold. Then the solution [u;p] of (1.5) satises [ u; p] 2 n ds u [u ;p ] 2 [ ] h +C (h 2 [u t ;p t ] [u; p] h [f;g] 2 )+ [P n 2 f; P n 2 g] 2 ; (3.31) for 0; 0, where C is a generic constant not depending on h. Proof. We rst denote by P = P n 2 for simplicity. Considering the test functions v =2Pu and =2Pp, we have, from (1.5) [ u; p] 2 n ds =2(A 1 + A 2 ); (3.32) 9 where A 1 and A 2 are given by A 1 =(u + div u; u) + (u ; (I P)u) + (p ; (I P)p) +(f; Pu) +(g; Pp) ; A 2 = ( p; Pu) (div u; Pp) : Using (3.17) and an inverse inequality v 6 Ch 1 v, we have A 1 6 ( 0 u + 0 u + Ch 1 u ) u +h( u u k + p k p )+C [Pf; Pg] 2 + [u;p] 2 (using the Schwartz s inequality and (2:17) (2:18))

20 338 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) ( 2 0 u 2 +( 0) 2 u 2 + [u ;p ] 2 )+C [Pf; Pg] 2 +C 1 (h 3 [u t ;p t ] h [u;p] h 2 [f;g] 2 ); 0: Using (1.5) and (3.17), the second term A 2 is estimated as follows: A 2 6 C( 0 u + 0 u + 1h u )+ Pu + Pf ] u +( Pg + Pp ) p (using the Schwartz s inequality and (2:17) (2:18)) 6 4( 2 0 u 2 +( 0) 2 u 2 + C( 1) 2 h 3 [u t ;p t ] [Pu ; Pp ] 2 + [Pf; Pg] 2 )+C 1 (h 2 [f;g] 2 + h [u;p] 2 9 ); 0: Hence, we have that A 1 + A u [u ;p ] 2 + C[ 1 (h 3 [u t ;p t ] 2 9 +h [u; p] h 2 [f;g] 2 )+ [Pf; Pg 2 ]; (3.33) where =4( + ) and =4((( 0 )2 +1)+(( 0 )2 + C). Thus, combining (3.32) and (3.33), the required inequality follows. The local results of Lemmas 3.4 and 3.5 lead to the global stability for u; p;u t and p t along interelement boundaries. To show this, we unify the two inequalities given in Lemmas 3.4 and 3.5, and use Theorem 2.1. First multiplying h to both sides of (3.22) and adding the resulted inequality to (3.31) and taking = 1 =2; = 1, we obtain 9 ds + [ 1 =2u ; 1 1 =2p ] 2 +(1 0) 0 h u 2 6 C(h 2r [u;p] h [ u; p] 2 + h 3 [u t ;p t ] h [u;p] 2 9 )+R (using (2:21) and taking r =1=2) 6 Ch ds + R ; 9 (3.34) where C = C(; ; c 1 ;c 2 ;c ), and 1 ; 1 are given in (3.28) and = h [ c 1 u t ; c 2 p t ] 2 n + [ u; p] 2 n; R = C(h [f;g] 2 + P n 2 f 2 + h 1 P n 2 g 2 ):

21 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) From (3.34) one can derive an inequality of the following type: [ ds u ; 1 ] p 6 (1 + Ch) 9 ds + R ; (3.35) where C is a positive constant. We next dene fronts F j which describe the forward boundary of the solution after it has progressed through the rst j layers. More specically, they can be expressed as follows: F 0 = (); F j = F j 1 + (S j ) (S j ) ; j =1; 2;:::: Summing inequality (3.35) over all triangles S j, we obtain the following main result of this section. Theorem 3.1. Suppose (1.6) (1.8) hold. If [u;p] is the solution of (1.5), then [ ds + 1 F j 2 u ; 1 ] p 6 C ds + R j ; (3.36) j F 0 where C is a generic constant and j = k6j S k with layers S j dened in (1.10). Proof. Summing (3.35) over all triangles S j, we have p j + a j 6 (1 + Ch)p j 1 + d j ; (3.37) where d j = R Sj and p j = ds; a j = F j [ 1 2 u ; 1 ] p S j : The solution of inequality (3.37) is given by ( j ) ( p j 6 (1 + Ch) j d i a i + p (1 + Ch) i 0 6 (1 + Ch) j p 0 + i=1 ) j d j i=1 j a i : i=1 Since (1 + Ch) j 6 e Cjh follows. and there are only O(h 1 ) layers, the required inequality (3.36) easily Letting be any subtriangulation of such that ( ) (), summing (3.35) layer by layer, following the same procedures used in the proof of Theorem 3.1, it can be derived from (3.36) that +( ) ds + [ 1 2 u ; 1 ] p

22 340 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) C ( ) ds + R 6 C(h [u t ;p t ] 2 ( ) + [u;p] 2 ( ) + h [f;g] 2 + [Pf; h 1 Pg] 2 ); (3.38) where P = P n 2, c 1 ;c 2 are given in (3.10), 1 and 1 are given in (3.28) and C is a constant not depending on h. Finally, combining Theorems 2.1 and 3.1, and setting u =u h and p=p h again and letting = h, we establish the following global stability. Theorem 3.2. Let be any subtriangulation of such that ( ) (). Suppose (1.6) (1.8) hold. Then the solution [u h ;p h ] satises [ [u h ;p h ] 2 + h [ u h; p h ] u h; 1 ] p h h ds + +( ) 6 C(h [u ht ;p ht ] 2 ( ) + [u h ;p h ] 2 ( ) + h [f;g] 2 + [Pf; h 1 Pg] 2 ); where P =P n 2, C =C(c 1 ;c 2 ;; ), c 1 and c 2 are given in (3.10), 1 and 1 are given in (3.28). Proof. Applying Theorem 2.1 over each layer S j, we have [u h ;p h ] 2 S j + h [ u h ; p h ] 2 S j 6 Ch(h [u ht ;p ht ] 2 F j 1 + [u h ;p h ] 2 F j 1 + [f;g] 2 S j ) 6 Ch h ds + Ch [f;g] 2 S j ; (3.39) F j 1 where C is the constant given in (3.34). Applying Theorem 3.1 to the right-hand side of (3.39), we obtain [u h ;p h ] 2 S j + h [ u h ; p h ] 2 S j 6 Ch h ds + R j ; (3.40) F 0 where R j is dened in (3.34). Summing over all layers S j and recalling that the number of S j is O(h 1 ), we have [u h ;p h ] 2 + h [ u h; p h ] 2 6 C h ds + R ; ( ) where C is a positive constant not depending on h. Hence the required inequality follows from the results of (3.38) and (3.34). 4. Error estimates In this section we are going to derive error estimates of the solution [u h ;p h ] for (1.5). In order to derive error estimates for (1.5), we dene an interpolation u I M n h = { C(): P n ()} as

23 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) follows: in a triangle with vertices a i and sides 9 i, (u u I )(a i )=0; i=1; 2; 3; (u u I )v ds =0; v P n 2 (); i=1; 2; 3; 9 i (u u I )w ds =0; w P n 3 (): (4.1) Let [u;p] (H n+1 ( )) 2 H n ( ) where is given as in Theorem 3.2. We assume the following interpolation error estimates (cf. see [2, p. 124, 146] [8, (4.2)]): u u I m; 6 Ch n+1 m u n+1; ; u u I m;9 6 Ch n m+1=2 u n+1; ; (4.2) m =0; 1;:::;n. Furthermore the above interpolation u I has the additional properties P( 0 (u u I ))=0; P( (u u I ))=0; P(div(u u I ))=0; (4.3) where Pv denotes the L 2 projection over into P n 2 () and 0 = (Q) with Q the centroid of. We next dene the following quantities: r = (u u I ) div(u u I )+ (u u I )+ (p p I ); s = div(u u I )+ (p p I ); e u = u h u I ; e p = p h p I : Using the above quantities, for problem (1.5) becomes { a (e u ; v)+b (v;e p )=(r; v) ; v P n &() (); (4.4) b (e p ;)+d (e u ;)=(s; ) ; P n &() (): We are nowready to obtain the error estimate for the discrete solution of (1.5). We apply Theorem 3.2 with [u;p] replaced by [e u ;e p ], and [f;g] replaced by [r;s] and use the triangle inequality. Since u h = u I and p h = p I on ( ) and since v t = t v is the tangential derivative on ( ) we note that the following quantities: (u h u I ) t ( ); (p h p I ) t ( ); u h u I ( ); p h p I ( ) (4.5) are zero. The quantities r and s can be bounded by C( (u u I ) + (p p I ) ). Using (4.3) we have Ps = ( 0 ) (p p I ) and Pr = P((u u I )+ div(u u I )+ ( 0 ) (u u I )). So 6 Ch (p p I ) and Pr 6 C (u u I ) for a constant C. Consequently, applying the solution [e u ;e p ]of(4.4) to Theorem 3.2 and using the triangle inequality, we obtain [u u h ;p p h ] + [ 1 (u u h ) ; 0 (p p h ) ] + h 1=2 [ (u u h ); (p p h )] { + h 1=2 [ c 1 (u u h ) t ; } 1=2 c 2 (p p h ) t ] 2 n 1 ds +( )

24 342 J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) { + [ (u u h ); } 1=2 (p p h )] 2 n ds +( ) 6 C [ (u u I ); (p p I )] ; (4.6) where 0 := 1 1 =2, c 1 ;c 2 are given in (3.10) and 1 ; 1 are given in (3.28). Note that the error estimate (4.6) has been obtained independently regardless of the degree ( 2) of the polynomials. Finally, computing the right-hand side of (4.6) from (4.2), we obtain: Theorem 4.1. Let [u;p] be the solution of (1.1) and [u h ;p h ] the solution of (1.5), respectively. Let be given as in Theorem 3.2 and M = [ (u u I ); (p p I )]. Suppose (1.6) (1.8) hold. Then [u u h ;p p h ] 6 C M; [ (u u h ) ; 0 (p p h ) ] 6 C M; { [ (u u h ); 1=2 0 (p p h )] 2 n ds} 6 C M; +( ) [ (u u h ); (p p h )] 6 Ch 1=2 M; { [ (u u h ) t ; 1=2 0 (p p h ) t ] 2 n ds} 1 6 Ch 1=2 M; (4.7) +( ) where 0 := with a positive constant =C(; c ; 0 ), v t := t v is the tangential derivative along and n is the unit normal vector on and C is a constant not depending on h. Proof. The inequalities in (4.7) followfrom (4.6). Note that the constant is a positive constant depending on only ; c and 0 (see (3.10), (3.28), (4.6), etc.) and 0 can be positive under condition (1.8). 5. Conclusion In this paper we have applied to a compressible viscous Stokes system the (continuous) Galerkin nite element method which can be solved explicitly with respect to convection. When the viscous numbers are small, the considered system is regarded a degenerate hyperbolic one. However, with the method the nite element solution has not been completely determined in the regime near outow boundary because the boundary condition may cause a layer. In our forthcoming papers we will analyze this singular problem.

25 References J.R. weon, P. im / Journal of Computational and Applied Mathematics 156 (2003) [1] J.D. Anderson Jr., Fundamentals of Aerodynamics, 2nd Edition, McGraw-Hill, Inc., New York, [2] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, [3] R.S. Falk, G.R. Richter, Analysis of a continuous nite element method for hyperbolic equations, SIAM J. Numer. Anal. 24 (1987) [4] R.S. Falk, G.R. Richter, Explicit nite element method for symmetric hyperbolic equations, SIAM J. Numer. Anal. 36 (1999) [5] J.R. weon, R.B. ellogg, Compressible Navier Stokes equations in a bounded domain with inow boundary condition, SIAM J. Math. Anal. 28 (1997) [6] J.R. weon, R.B. ellogg, Smooth solution of the compressible Navier Stokes equations in an unbounded domain with inow boundary condition, J. Math. Anal. Appl. 220 (1998) [7] J.R. weon, R.B. ellogg, Compressible Stokes problem on nonconvex polygon, J. Dierential Equations 176 (2001) [8] G.R. Richter, An explicit nite element method for convection-dominated steady-state convection-diusion equations, SIAM J. Numer. Anal. 28 (1991)

On an Approximation Result for Piecewise Polynomial Functions. O. Karakashian

On an Approximation Result for Piecewise Polynomial Functions. O. Karakashian BULLETIN OF THE GREE MATHEMATICAL SOCIETY Volume 57, 010 (1 7) On an Approximation Result for Piecewise Polynomial Functions O. arakashian Abstract We provide a new approach for proving approximation results

More information

Finite element approximation on quadrilateral meshes

Finite element approximation on quadrilateral meshes COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2001; 17:805 812 (DOI: 10.1002/cnm.450) Finite element approximation on quadrilateral meshes Douglas N. Arnold 1;, Daniele

More information

QUADRILATERAL H(DIV) FINITE ELEMENTS

QUADRILATERAL H(DIV) FINITE ELEMENTS QUADRILATERAL H(DIV) FINITE ELEMENTS DOUGLAS N. ARNOLD, DANIELE BOFFI, AND RICHARD S. FALK Abstract. We consider the approximation properties of quadrilateral finite element spaces of vector fields defined

More information

b i (x) u + c(x)u = f in Ω,

b i (x) u + c(x)u = f in Ω, SIAM J. NUMER. ANAL. Vol. 39, No. 6, pp. 1938 1953 c 2002 Society for Industrial and Applied Mathematics SUBOPTIMAL AND OPTIMAL CONVERGENCE IN MIXED FINITE ELEMENT METHODS ALAN DEMLOW Abstract. An elliptic

More information

A Mixed Nonconforming Finite Element for Linear Elasticity

A Mixed Nonconforming Finite Element for Linear Elasticity A Mixed Nonconforming Finite Element for Linear Elasticity Zhiqiang Cai, 1 Xiu Ye 2 1 Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-1395 2 Department of Mathematics and Statistics,

More information

A mixed nite volume element method based on rectangular mesh for biharmonic equations

A mixed nite volume element method based on rectangular mesh for biharmonic equations Journal of Computational and Applied Mathematics 7 () 7 3 www.elsevier.com/locate/cam A mixed nite volume element method based on rectangular mesh for biharmonic equations Tongke Wang College of Mathematical

More information

A Finite Element Method for an Ill-Posed Problem. Martin-Luther-Universitat, Fachbereich Mathematik/Informatik,Postfach 8, D Halle, Abstract

A Finite Element Method for an Ill-Posed Problem. Martin-Luther-Universitat, Fachbereich Mathematik/Informatik,Postfach 8, D Halle, Abstract A Finite Element Method for an Ill-Posed Problem W. Lucht Martin-Luther-Universitat, Fachbereich Mathematik/Informatik,Postfach 8, D-699 Halle, Germany Abstract For an ill-posed problem which has its origin

More information

Lecture Note III: Least-Squares Method

Lecture Note III: Least-Squares Method Lecture Note III: Least-Squares Method Zhiqiang Cai October 4, 004 In this chapter, we shall present least-squares methods for second-order scalar partial differential equations, elastic equations of solids,

More information

A Least-Squares Finite Element Approximation for the Compressible Stokes Equations

A Least-Squares Finite Element Approximation for the Compressible Stokes Equations A Least-Squares Finite Element Approximation for the Compressible Stokes Equations Zhiqiang Cai, 1 Xiu Ye 1 Department of Mathematics, Purdue University, 1395 Mathematical Science Building, West Lafayette,

More information

INTRODUCTION TO FINITE ELEMENT METHODS

INTRODUCTION TO FINITE ELEMENT METHODS INTRODUCTION TO FINITE ELEMENT METHODS LONG CHEN Finite element methods are based on the variational formulation of partial differential equations which only need to compute the gradient of a function.

More information

A P4 BUBBLE ENRICHED P3 DIVERGENCE-FREE FINITE ELEMENT ON TRIANGULAR GRIDS

A P4 BUBBLE ENRICHED P3 DIVERGENCE-FREE FINITE ELEMENT ON TRIANGULAR GRIDS A P4 BUBBLE ENRICHED P3 DIVERGENCE-FREE FINITE ELEMENT ON TRIANGULAR GRIDS SHANGYOU ZHANG DEDICATED TO PROFESSOR PETER MONK ON THE OCCASION OF HIS 6TH BIRTHDAY Abstract. On triangular grids, the continuous

More information

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50

AMS subject classifications. Primary, 65N15, 65N30, 76D07; Secondary, 35B45, 35J50 A SIMPLE FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU AND XIU YE Abstract. The goal of this paper is to introduce a simple finite element method to solve the Stokes equations. This method is in

More information

MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS

MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS MIXED FINITE ELEMENT METHODS FOR PROBLEMS WITH ROBIN BOUNDARY CONDITIONS JUHO KÖNNÖ, DOMINIK SCHÖTZAU, AND ROLF STENBERG Abstract. We derive new a-priori and a-posteriori error estimates for mixed nite

More information

On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1

On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1 On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1 Jie Shen Department of Mathematics, Penn State University University Park, PA 1682 Abstract. We present some

More information

arxiv: v1 [math.na] 29 Feb 2016

arxiv: v1 [math.na] 29 Feb 2016 EFFECTIVE IMPLEMENTATION OF THE WEAK GALERKIN FINITE ELEMENT METHODS FOR THE BIHARMONIC EQUATION LIN MU, JUNPING WANG, AND XIU YE Abstract. arxiv:1602.08817v1 [math.na] 29 Feb 2016 The weak Galerkin (WG)

More information

HEXAHEDRAL H(DIV) AND H(CURL) FINITE ELEMENTS

HEXAHEDRAL H(DIV) AND H(CURL) FINITE ELEMENTS HEXAHEDRAL H(DIV) AND H(CURL) FINITE ELEMENTS RICHARD S. FAL, PAOLO GATTO, AND PETER MON Abstract. We study the approximation properties of some finite element subspaces of H(div; Ω) and H(curl ; Ω) defined

More information

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS A. RÖSCH AND R. SIMON Abstract. An optimal control problem for an elliptic equation

More information

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM Finite Elements February 22, 2019 In the previous sections, we introduced the concept of finite element spaces, which contain certain functions defined on a domain. Finite element spaces are examples of

More information

It is known that Morley element is not C 0 element and it is divergent for Poisson equation (see [6]). When Morley element is applied to solve problem

It is known that Morley element is not C 0 element and it is divergent for Poisson equation (see [6]). When Morley element is applied to solve problem Modied Morley Element Method for a ourth Order Elliptic Singular Perturbation Problem Λ Wang Ming LMAM, School of Mathematical Science, Peking University Jinchao u School of Mathematical Science, Peking

More information

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS PARTITION OF UNITY FOR THE STOES PROBLEM ON NONMATCHING GRIDS CONSTANTIN BACUTA AND JINCHAO XU Abstract. We consider the Stokes Problem on a plane polygonal domain Ω R 2. We propose a finite element method

More information

Rening the submesh strategy in the two-level nite element method: application to the advection diusion equation

Rening the submesh strategy in the two-level nite element method: application to the advection diusion equation INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2002; 39:161 187 (DOI: 10.1002/d.219) Rening the submesh strategy in the two-level nite element method: application to

More information

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1

Scientific Computing WS 2018/2019. Lecture 15. Jürgen Fuhrmann Lecture 15 Slide 1 Scientific Computing WS 2018/2019 Lecture 15 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 15 Slide 1 Lecture 15 Slide 2 Problems with strong formulation Writing the PDE with divergence and gradient

More information

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods Discontinuous Galerkin Methods Joachim Schöberl May 20, 206 Discontinuous Galerkin (DG) methods approximate the solution with piecewise functions (polynomials), which are discontinuous across element interfaces.

More information

PAijpam.eu NEW H 1 (Ω) CONFORMING FINITE ELEMENTS ON HEXAHEDRA

PAijpam.eu NEW H 1 (Ω) CONFORMING FINITE ELEMENTS ON HEXAHEDRA International Journal of Pure and Applied Mathematics Volume 109 No. 3 2016, 609-617 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v109i3.10

More information

Error estimates for moving least square approximations

Error estimates for moving least square approximations Applied Numerical Mathematics 37 (2001) 397 416 Error estimates for moving least square approximations María G. Armentano, Ricardo G. Durán 1 Departamento de Matemática, Facultad de Ciencias Exactas y

More information

An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes

An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes An interpolation operator for H 1 functions on general quadrilateral and hexahedral meshes with hanging nodes Vincent Heuveline Friedhelm Schieweck Abstract We propose a Scott-Zhang type interpolation

More information

Chapter 12. Partial di erential equations Di erential operators in R n. The gradient and Jacobian. Divergence and rotation

Chapter 12. Partial di erential equations Di erential operators in R n. The gradient and Jacobian. Divergence and rotation Chapter 12 Partial di erential equations 12.1 Di erential operators in R n The gradient and Jacobian We recall the definition of the gradient of a scalar function f : R n! R, as @f grad f = rf =,..., @f

More information

1. Introduction. We consider the model problem that seeks an unknown function u = u(x) satisfying

1. Introduction. We consider the model problem that seeks an unknown function u = u(x) satisfying A SIMPLE FINITE ELEMENT METHOD FOR LINEAR HYPERBOLIC PROBLEMS LIN MU AND XIU YE Abstract. In this paper, we introduce a simple finite element method for solving first order hyperbolic equations with easy

More information

Convergence of A Galerkin Method for 2-D Discontinuous Euler Flows Jian-Guo Liu 1 Institute for Physical Science andtechnology and Department of Mathe

Convergence of A Galerkin Method for 2-D Discontinuous Euler Flows Jian-Guo Liu 1 Institute for Physical Science andtechnology and Department of Mathe Convergence of A Galerkin Method for 2-D Discontinuous Euler Flows Jian-Guo Liu 1 Institute for Physical Science andtechnology and Department of Mathematics University of Maryland College Park, MD 2742

More information

Local discontinuous Galerkin methods for elliptic problems

Local discontinuous Galerkin methods for elliptic problems COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING Commun. Numer. Meth. Engng 2002; 18:69 75 [Version: 2000/03/22 v1.0] Local discontinuous Galerkin methods for elliptic problems P. Castillo 1 B. Cockburn

More information

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying

1. Introduction. The Stokes problem seeks unknown functions u and p satisfying A DISCRETE DIVERGENCE FREE WEAK GALERKIN FINITE ELEMENT METHOD FOR THE STOKES EQUATIONS LIN MU, JUNPING WANG, AND XIU YE Abstract. A discrete divergence free weak Galerkin finite element method is developed

More information

LECTURE 15 + C+F. = A 11 x 1x1 +2A 12 x 1x2 + A 22 x 2x2 + B 1 x 1 + B 2 x 2. xi y 2 = ~y 2 (x 1 ;x 2 ) x 2 = ~x 2 (y 1 ;y 2 1

LECTURE 15 + C+F. = A 11 x 1x1 +2A 12 x 1x2 + A 22 x 2x2 + B 1 x 1 + B 2 x 2. xi y 2 = ~y 2 (x 1 ;x 2 ) x 2 = ~x 2 (y 1 ;y 2  1 LECTURE 5 Characteristics and the Classication of Second Order Linear PDEs Let us now consider the case of a general second order linear PDE in two variables; (5.) where (5.) 0 P i;j A ij xix j + P i,

More information

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS Proceedings of ALGORITMY 2009 pp. 1 10 SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS MILOSLAV VLASÁK Abstract. We deal with a numerical solution of a scalar

More information

MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* Dedicated to Professor Jim Douglas, Jr. on the occasion of his seventieth birthday.

MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* Dedicated to Professor Jim Douglas, Jr. on the occasion of his seventieth birthday. MULTIGRID PRECONDITIONING IN H(div) ON NON-CONVEX POLYGONS* DOUGLAS N ARNOLD, RICHARD S FALK, and RAGNAR WINTHER Dedicated to Professor Jim Douglas, Jr on the occasion of his seventieth birthday Abstract

More information

1 Introduction. J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods

1 Introduction. J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods 1 Introduction Achieving high order time-accuracy in the approximation of the incompressible Navier Stokes equations by means of fractional-step

More information

Hamburger Beiträge zur Angewandten Mathematik

Hamburger Beiträge zur Angewandten Mathematik Hamburger Beiträge zur Angewandten Mathematik Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations Klaus Deckelnick and Michael

More information

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov,

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov, LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES Sergey Korotov, Institute of Mathematics Helsinki University of Technology, Finland Academy of Finland 1 Main Problem in Mathematical

More information

Weak Formulation of Elliptic BVP s

Weak Formulation of Elliptic BVP s Weak Formulation of Elliptic BVP s There are a large number of problems of physical interest that can be formulated in the abstract setting in which the Lax-Milgram lemma is applied to an equation expressed

More information

Robust linear optimization under general norms

Robust linear optimization under general norms Operations Research Letters 3 (004) 50 56 Operations Research Letters www.elsevier.com/locate/dsw Robust linear optimization under general norms Dimitris Bertsimas a; ;, Dessislava Pachamanova b, Melvyn

More information

Absolute value equations

Absolute value equations Linear Algebra and its Applications 419 (2006) 359 367 www.elsevier.com/locate/laa Absolute value equations O.L. Mangasarian, R.R. Meyer Computer Sciences Department, University of Wisconsin, 1210 West

More information

Lecture Notes: African Institute of Mathematics Senegal, January Topic Title: A short introduction to numerical methods for elliptic PDEs

Lecture Notes: African Institute of Mathematics Senegal, January Topic Title: A short introduction to numerical methods for elliptic PDEs Lecture Notes: African Institute of Mathematics Senegal, January 26 opic itle: A short introduction to numerical methods for elliptic PDEs Authors and Lecturers: Gerard Awanou (University of Illinois-Chicago)

More information

Projected Surface Finite Elements for Elliptic Equations

Projected Surface Finite Elements for Elliptic Equations Available at http://pvamu.edu/aam Appl. Appl. Math. IN: 1932-9466 Vol. 8, Issue 1 (June 2013), pp. 16 33 Applications and Applied Mathematics: An International Journal (AAM) Projected urface Finite Elements

More information

1 Discretizing BVP with Finite Element Methods.

1 Discretizing BVP with Finite Element Methods. 1 Discretizing BVP with Finite Element Methods In this section, we will discuss a process for solving boundary value problems numerically, the Finite Element Method (FEM) We note that such method is a

More information

Yongdeok Kim and Seki Kim

Yongdeok Kim and Seki Kim J. Korean Math. Soc. 39 (00), No. 3, pp. 363 376 STABLE LOW ORDER NONCONFORMING QUADRILATERAL FINITE ELEMENTS FOR THE STOKES PROBLEM Yongdeok Kim and Seki Kim Abstract. Stability result is obtained for

More information

A priori error analysis of the BEM with graded meshes for the electric eld integral equation on polyhedral surfaces

A priori error analysis of the BEM with graded meshes for the electric eld integral equation on polyhedral surfaces A priori error analysis of the BEM with graded meshes for the electric eld integral equation on polyhedral surfaces A. Bespalov S. Nicaise Abstract The Galerkin boundary element discretisations of the

More information

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation A local-structure-preserving local discontinuous Galerkin method for the Laplace equation Fengyan Li 1 and Chi-Wang Shu 2 Abstract In this paper, we present a local-structure-preserving local discontinuous

More information

PART IV Spectral Methods

PART IV Spectral Methods PART IV Spectral Methods Additional References: R. Peyret, Spectral methods for incompressible viscous flow, Springer (2002), B. Mercier, An introduction to the numerical analysis of spectral methods,

More information

Construction of `Wachspress type' rational basis functions over rectangles

Construction of `Wachspress type' rational basis functions over rectangles Proc. Indian Acad. Sci. (Math. Sci.), Vol. 110, No. 1, February 2000, pp. 69±77. # Printed in India Construction of `Wachspress type' rational basis functions over rectangles P L POWAR and S S RANA Department

More information

Abstract. 1. Introduction

Abstract. 1. Introduction Journal of Computational Mathematics Vol.28, No.2, 2010, 273 288. http://www.global-sci.org/jcm doi:10.4208/jcm.2009.10-m2870 UNIFORM SUPERCONVERGENCE OF GALERKIN METHODS FOR SINGULARLY PERTURBED PROBLEMS

More information

quantitative information on the error caused by using the solution of the linear problem to describe the response of the elastic material on a corner

quantitative information on the error caused by using the solution of the linear problem to describe the response of the elastic material on a corner Quantitative Justication of Linearization in Nonlinear Hencky Material Problems 1 Weimin Han and Hong-ci Huang 3 Abstract. The classical linear elasticity theory is based on the assumption that the size

More information

An Optimal Finite Element Mesh for Elastostatic Structural. Analysis Problems. P.K. Jimack. University of Leeds. Leeds LS2 9JT, UK.

An Optimal Finite Element Mesh for Elastostatic Structural. Analysis Problems. P.K. Jimack. University of Leeds. Leeds LS2 9JT, UK. An Optimal Finite Element Mesh for Elastostatic Structural Analysis Problems P.K. Jimack School of Computer Studies University of Leeds Leeds LS2 9JT, UK Abstract This paper investigates the adaptive solution

More information

Finite Elements. Colin Cotter. January 18, Colin Cotter FEM

Finite Elements. Colin Cotter. January 18, Colin Cotter FEM Finite Elements January 18, 2019 The finite element Given a triangulation T of a domain Ω, finite element spaces are defined according to 1. the form the functions take (usually polynomial) when restricted

More information

Variational Formulations

Variational Formulations Chapter 2 Variational Formulations In this chapter we will derive a variational (or weak) formulation of the elliptic boundary value problem (1.4). We will discuss all fundamental theoretical results that

More information

ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR THE POINTWISE GRADIENT ERROR ON EACH ELEMENT IN IRREGULAR MESHES. PART II: THE PIECEWISE LINEAR CASE

ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR THE POINTWISE GRADIENT ERROR ON EACH ELEMENT IN IRREGULAR MESHES. PART II: THE PIECEWISE LINEAR CASE MATEMATICS OF COMPUTATION Volume 73, Number 246, Pages 517 523 S 0025-5718(0301570-9 Article electronically published on June 17, 2003 ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR TE POINTWISE GRADIENT

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Nonconformity and the Consistency Error First Strang Lemma Abstract Error Estimate

More information

FINITE ELEMENT APPROXIMATION OF ELLIPTIC DIRICHLET OPTIMAL CONTROL PROBLEMS

FINITE ELEMENT APPROXIMATION OF ELLIPTIC DIRICHLET OPTIMAL CONTROL PROBLEMS Numerical Functional Analysis and Optimization, 28(7 8):957 973, 2007 Copyright Taylor & Francis Group, LLC ISSN: 0163-0563 print/1532-2467 online DOI: 10.1080/01630560701493305 FINITE ELEMENT APPROXIMATION

More information

Finite Element Method for Ordinary Differential Equations

Finite Element Method for Ordinary Differential Equations 52 Chapter 4 Finite Element Method for Ordinary Differential Equations In this chapter we consider some simple examples of the finite element method for the approximate solution of ordinary differential

More information

PDEs, part 1: Introduction and elliptic PDEs

PDEs, part 1: Introduction and elliptic PDEs PDEs, part 1: Introduction and elliptic PDEs Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2013 Partial di erential equations The solution depends on several variables,

More information

High order, finite volume method, flux conservation, finite element method

High order, finite volume method, flux conservation, finite element method FLUX-CONSERVING FINITE ELEMENT METHODS SHANGYOU ZHANG, ZHIMIN ZHANG, AND QINGSONG ZOU Abstract. We analyze the flux conservation property of the finite element method. It is shown that the finite element

More information

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS

ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS CHARALAMBOS MAKRIDAKIS AND RICARDO H. NOCHETTO Abstract. It is known that the energy technique for a posteriori error analysis

More information

Multigrid Methods for Saddle Point Problems

Multigrid Methods for Saddle Point Problems Multigrid Methods for Saddle Point Problems Susanne C. Brenner Department of Mathematics and Center for Computation & Technology Louisiana State University Advances in Mathematics of Finite Elements (In

More information

Linearized methods for ordinary di erential equations

Linearized methods for ordinary di erential equations Applied Mathematics and Computation 104 (1999) 109±19 www.elsevier.nl/locate/amc Linearized methods for ordinary di erential equations J.I. Ramos 1 Departamento de Lenguajes y Ciencias de la Computacion,

More information

PREPRINT 2010:25. Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method ERIK BURMAN PETER HANSBO

PREPRINT 2010:25. Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method ERIK BURMAN PETER HANSBO PREPRINT 2010:25 Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method ERIK BURMAN PETER HANSBO Department of Mathematical Sciences Division of Mathematics CHALMERS

More information

Overlapping Schwarz preconditioners for Fekete spectral elements

Overlapping Schwarz preconditioners for Fekete spectral elements Overlapping Schwarz preconditioners for Fekete spectral elements R. Pasquetti 1, L. F. Pavarino 2, F. Rapetti 1, and E. Zampieri 2 1 Laboratoire J.-A. Dieudonné, CNRS & Université de Nice et Sophia-Antipolis,

More information

An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element

An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element Calcolo manuscript No. (will be inserted by the editor) An a posteriori error estimate and a Comparison Theorem for the nonconforming P 1 element Dietrich Braess Faculty of Mathematics, Ruhr-University

More information

A posteriori error estimation for elliptic problems

A posteriori error estimation for elliptic problems A posteriori error estimation for elliptic problems Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in

More information

Euler Equations: local existence

Euler Equations: local existence Euler Equations: local existence Mat 529, Lesson 2. 1 Active scalars formulation We start with a lemma. Lemma 1. Assume that w is a magnetization variable, i.e. t w + u w + ( u) w = 0. If u = Pw then u

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

A Finite Element Method for the Surface Stokes Problem

A Finite Element Method for the Surface Stokes Problem J A N U A R Y 2 0 1 8 P R E P R I N T 4 7 5 A Finite Element Method for the Surface Stokes Problem Maxim A. Olshanskii *, Annalisa Quaini, Arnold Reusken and Vladimir Yushutin Institut für Geometrie und

More information

Priority Program 1253

Priority Program 1253 Deutsche Forschungsgemeinschaft Priority Program 1253 Optimization with Partial Differential Equations Klaus Deckelnick and Michael Hinze A note on the approximation of elliptic control problems with bang-bang

More information

on! 0, 1 and 2 In the Zienkiewicz-Zhu SPR p 1 and p 2 are obtained by solving the locally discrete least-squares p

on! 0, 1 and 2 In the Zienkiewicz-Zhu SPR p 1 and p 2 are obtained by solving the locally discrete least-squares p Analysis of a Class of Superconvergence Patch Recovery Techniques for Linear and Bilinear Finite Elements Bo Li Zhimin Zhang y Abstract Mathematical proofs are presented for the derivative superconvergence

More information

Numerical Methods for the Navier-Stokes equations

Numerical Methods for the Navier-Stokes equations Arnold Reusken Numerical Methods for the Navier-Stokes equations January 6, 212 Chair for Numerical Mathematics RWTH Aachen Contents 1 The Navier-Stokes equations.............................................

More information

10 The Finite Element Method for a Parabolic Problem

10 The Finite Element Method for a Parabolic Problem 1 The Finite Element Method for a Parabolic Problem In this chapter we consider the approximation of solutions of the model heat equation in two space dimensions by means of Galerkin s method, using piecewise

More information

Week 6 Notes, Math 865, Tanveer

Week 6 Notes, Math 865, Tanveer Week 6 Notes, Math 865, Tanveer. Energy Methods for Euler and Navier-Stokes Equation We will consider this week basic energy estimates. These are estimates on the L 2 spatial norms of the solution u(x,

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

New DPG techniques for designing numerical schemes

New DPG techniques for designing numerical schemes New DPG techniques for designing numerical schemes Jay Gopalakrishnan University of Florida Collaborator: Leszek Demkowicz October 2009 Massachusetts Institute of Technology, Boston Thanks: NSF Jay Gopalakrishnan

More information

A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATIONS

A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATIONS A WEAK GALERKIN MIXED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATIONS LIN MU, JUNPING WANG, YANQIU WANG, AND XIU YE Abstract. This article introduces and analyzes a weak Galerkin mixed finite element method

More information

A posteriori error estimates applied to flow in a channel with corners

A posteriori error estimates applied to flow in a channel with corners Mathematics and Computers in Simulation 61 (2003) 375 383 A posteriori error estimates applied to flow in a channel with corners Pavel Burda a,, Jaroslav Novotný b, Bedřich Sousedík a a Department of Mathematics,

More information

Maximum norm estimates for energy-corrected finite element method

Maximum norm estimates for energy-corrected finite element method Maximum norm estimates for energy-corrected finite element method Piotr Swierczynski 1 and Barbara Wohlmuth 1 Technical University of Munich, Institute for Numerical Mathematics, piotr.swierczynski@ma.tum.de,

More information

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) Contents 1 Vector Spaces 1 1.1 The Formal Denition of a Vector Space.................................. 1 1.2 Subspaces...................................................

More information

ON LIQUID CRYSTAL FLOWS WITH FREE-SLIP BOUNDARY CONDITIONS. Chun Liu and Jie Shen

ON LIQUID CRYSTAL FLOWS WITH FREE-SLIP BOUNDARY CONDITIONS. Chun Liu and Jie Shen DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Volume 7, Number2, April2001 pp. 307 318 ON LIQUID CRYSTAL FLOWS WITH FREE-SLIP BOUNDARY CONDITIONS Chun Liu and Jie Shen Department

More information

EXISTENCE AND REGULARITY OF SOLUTIONS FOR STOKES SYSTEMS WITH NON-SMOOTH BOUNDARY DATA IN A POLYHEDRON

EXISTENCE AND REGULARITY OF SOLUTIONS FOR STOKES SYSTEMS WITH NON-SMOOTH BOUNDARY DATA IN A POLYHEDRON Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 147, pp. 1 10. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE AND REGULARITY OF SOLUTIONS FOR

More information

IMPROVED LEAST-SQUARES ERROR ESTIMATES FOR SCALAR HYPERBOLIC PROBLEMS, 1

IMPROVED LEAST-SQUARES ERROR ESTIMATES FOR SCALAR HYPERBOLIC PROBLEMS, 1 Computational Methods in Applied Mathematics Vol. 1, No. 1(2001) 1 8 c Institute of Mathematics IMPROVED LEAST-SQUARES ERROR ESTIMATES FOR SCALAR HYPERBOLIC PROBLEMS, 1 P.B. BOCHEV E-mail: bochev@uta.edu

More information

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses P. Boyanova 1, I. Georgiev 34, S. Margenov, L. Zikatanov 5 1 Uppsala University, Box 337, 751 05 Uppsala,

More information

Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems

Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems Analysis of a DG XFEM Discretization for a Class of Two Phase Mass Transport Problems Christoph Lehrenfeld and Arnold Reusken Bericht Nr. 340 April 2012 Key words: transport problem, Nitsche method, XFEM,

More information

MULTIGRID PRECONDITIONING FOR THE BIHARMONIC DIRICHLET PROBLEM M. R. HANISCH

MULTIGRID PRECONDITIONING FOR THE BIHARMONIC DIRICHLET PROBLEM M. R. HANISCH MULTIGRID PRECONDITIONING FOR THE BIHARMONIC DIRICHLET PROBLEM M. R. HANISCH Abstract. A multigrid preconditioning scheme for solving the Ciarlet-Raviart mixed method equations for the biharmonic Dirichlet

More information

An Equal-order DG Method for the Incompressible Navier-Stokes Equations

An Equal-order DG Method for the Incompressible Navier-Stokes Equations An Equal-order DG Method for the Incompressible Navier-Stokes Equations Bernardo Cockburn Guido anschat Dominik Schötzau Journal of Scientific Computing, vol. 40, pp. 188 10, 009 Abstract We introduce

More information

Bilinear Stochastic Elliptic Equations

Bilinear Stochastic Elliptic Equations Bilinear Stochastic Elliptic Equations S. V. Lototsky and B. L. Rozovskii Contents 1. Introduction (209. 2. Weighted Chaos Spaces (210. 3. Abstract Elliptic Equations (212. 4. Elliptic SPDEs of the Full

More information

MIXED FINITE ELEMENT APPROXIMATION OF THE VECTOR LAPLACIAN WITH DIRICHLET BOUNDARY CONDITIONS

MIXED FINITE ELEMENT APPROXIMATION OF THE VECTOR LAPLACIAN WITH DIRICHLET BOUNDARY CONDITIONS MIXED FINITE ELEMENT APPROXIMATION OF THE VECTOR LAPLACIAN WITH DIRICHLET BOUNDARY CONDITIONS DOUGLAS N. ARNOLD, RICHARD S. FALK, AND JAY GOPALAKRISHNAN Abstract. We consider the finite element solution

More information

WEAK GALERKIN FINITE ELEMENT METHODS ON POLYTOPAL MESHES

WEAK GALERKIN FINITE ELEMENT METHODS ON POLYTOPAL MESHES INERNAIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 12, Number 1, Pages 31 53 c 2015 Institute for Scientific Computing and Information WEAK GALERKIN FINIE ELEMEN MEHODS ON POLYOPAL MESHES LIN

More information

A POSTERIORI ERROR ESTIMATES OF TRIANGULAR MIXED FINITE ELEMENT METHODS FOR QUADRATIC CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEMS

A POSTERIORI ERROR ESTIMATES OF TRIANGULAR MIXED FINITE ELEMENT METHODS FOR QUADRATIC CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEMS A POSTERIORI ERROR ESTIMATES OF TRIANGULAR MIXED FINITE ELEMENT METHODS FOR QUADRATIC CONVECTION DIFFUSION OPTIMAL CONTROL PROBLEMS Z. LU Communicated by Gabriela Marinoschi In this paper, we discuss a

More information

Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients

Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients Superconvergence of discontinuous Galerkin methods for -D linear hyperbolic equations with degenerate variable coefficients Waixiang Cao Chi-Wang Shu Zhimin Zhang Abstract In this paper, we study the superconvergence

More information

2 Ben Schweizer As Hocking describes in [5], a discussion focused on the following question: Can one assume that the dynamic contact angle is a consta

2 Ben Schweizer As Hocking describes in [5], a discussion focused on the following question: Can one assume that the dynamic contact angle is a consta A well-posed model for dynamic contact angles Ben Schweizer February 27, 1998 Abstract We consider uid systems with a free boundary and with a point of contact of the free boundary with a solid wall. We

More information

Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts 1 and Stephan Matthai 2 3rd Febr

Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts 1 and Stephan Matthai 2 3rd Febr HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts and Stephan Matthai Mathematics Research Report No. MRR 003{96, Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL

More information

PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED

PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED PIECEWISE LINEAR FINITE ELEMENT METHODS ARE NOT LOCALIZED ALAN DEMLOW Abstract. Recent results of Schatz show that standard Galerkin finite element methods employing piecewise polynomial elements of degree

More information

NONCONFORMING MIXED ELEMENTS FOR ELASTICITY

NONCONFORMING MIXED ELEMENTS FOR ELASTICITY Mathematical Models and Methods in Applied Sciences Vol. 13, No. 3 (2003) 295 307 c World Scientific Publishing Company NONCONFORMING MIXED ELEMENTS FOR ELASTICITY DOUGLAS N. ARNOLD Institute for Mathematics

More information

Nedelec elements for computational electromagnetics

Nedelec elements for computational electromagnetics Nedelec elements for computational electromagnetics Per Jacobsson, June 5, 2007 Maxwell s equations E = jωµh () H = jωεe + J (2) (εe) = ρ (3) (µh) = 0 (4) J = jωρ (5) Only three of the equations are needed,

More information

Local flux mimetic finite difference methods

Local flux mimetic finite difference methods Local flux mimetic finite difference methods Konstantin Lipnikov Mikhail Shashkov Ivan Yotov November 4, 2005 Abstract We develop a local flux mimetic finite difference method for second order elliptic

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (997) 76: 479 488 Numerische Mathematik c Springer-Verlag 997 Electronic Edition Exponential decay of C cubic splines vanishing at two symmetric points in each knot interval Sang Dong Kim,,

More information

A posteriori error estimates for non conforming approximation of eigenvalue problems

A posteriori error estimates for non conforming approximation of eigenvalue problems A posteriori error estimates for non conforming approximation of eigenvalue problems E. Dari a, R. G. Durán b and C. Padra c, a Centro Atómico Bariloche, Comisión Nacional de Energía Atómica and CONICE,

More information