INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

Size: px
Start display at page:

Download "INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY"

Transcription

1 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY CFD SIMULATION AND EXPERIMENTAL VERIFICATION OF AIR FLOW THROUGH HEATED PIPE Jamuna A B*, Somashekar V *Asst. Professor, Department of Aeronautical Engineering, Visvesvaraya Technological University, India ABSTRACT The aim of this work is to validate the Dittus-Boelter equation by experimental, correlation and Simulation method. It used to find the value of heat transfer coefficient h for turbulent flow in many fluid transfer systems. This work discusses how the Dittus-Boelter equation is applied to the problem of circular pipe. In CFD simulation ICEM CFD for modeling and CFX13 for analysis are used. Results of CFD simulation will be obtained by CFD-POST. Here heat transfer coefficient value is compared by correlations, experiment and CFD simulations for various model, finally the aim of this work is to validate Dittus-Boelter equation. KEYWORDS: CFD, Correlation Method, Experimental Method, Heat Transfer Coefficient, Simulation Method. INTRODUCTION In the study of thermodynamics the average heat transfer coefficient, is used in calculating the convection heat transfer between a moving fluid and a solid. This is the single most important factor for evaluating convective heat loss or gain. Knowledge of h is necessary for heat transfer design and calculation and is widely used in manufacturing processes, oil and gas flow processes and airconditioning and refrigeration systems. The heat ransfer coefficient is critical for designing and developing better flow process control resulting in reduced energy consumption and enhanced energy conservation. It is also influenced by flow velocity and surface geometry. It may be noted that the physical or thermal properties of the surface material play no part in the process of convective heat transfer. As the fluid properties vary with the temperature and locations the value of convective heat transfer coefficient vary from point to point, this leads to the situation that analytically derived equation are applicable only to a limited extent. [] A. Dittus Boelter relation The conventional expression for calculating the heat transfer coefficient in fully developed turbulent flow in smooth pipes is the Dittus-Boelter equation. N u = C R e mp r n Where C, m and n are constant determined experimentally. We will use these values - C=0.03, m=0.8 and n = 0.4 for heating of the fluid n = 0.3 for cooling of the fluid The properties of this relation have been calculated at the average fluid bulk temperatures. Equation is valid for single phase heat transfer in fully developed turbulent flows in smooth pipes for fluids with Prandtl number ranging from 0.6 to 100 at low heat fluxes. At high fluxes the fluid properties changes resulting in higher errors. At higher heat fluxes the Sieder-Tate equation is used to reduce the error. The work presented is about designing and acquiring data from an experimental setup to verify the Dittus- Boelter empirical relation by finding the heat transfer coefficient. The value of the heat transfer coefficient has been calculated from theory, experiment and CFD simulation to compare the results. This research work uses different approaches to calculate two very important performance considerations, heat transfer rate and pressure drop in turbulent duct flow, using R e P r and N u. [] For laminar flow in pipes the heat transfer coefficient (h) can be found by solving the governed differential equations analytically. But in the case of turbulent flow things become chaotic and it is impossible to solve differential equation analytically. For turbulent flow we rely on experiments and develop correlations. One such correlations Dittus- Boelter equation. [40]

2 METHODOLOGY the delivery side of blower along with orifice to measure flow of air through the pipe. Input to the heater through dimmer stat and measured by voltmeter and ammeter. Air flow is controlled by gate valve and is measured with the help of orifice meter and the manometer fitted on board. [1] Specifications: Length of hallow pipe =500 m Pipe inner diameter = m Orifice diameter = 0.05 m B. Lay Out Of Experimental Set Up The above flow chart represents the step by step working procedure of this work. The standard procedure for ICEM-CFD work follows the above components. For the present work, in case of pipe creating the geometry then computational domain is constructed around the pipe geometry, later set the mesh parameters then generates the mesh. Later this mesh is exported in the fluent readable format. The standard procedure for ANSYS CFX work follows the above components. For the present work, in this case to ensure that 3D, later this mesh file is imported into ANSYS CFX for analysis. In the CFX, the analysis will be carried out. The post processing is carried according to the requirements. [1] s A. Experimental Set Up Fig. 3.1 Experimental Set Up Of Forced Convention The experimental set up consists of a blower unit fitted with the rest pipe. The test section pipe is copper surrounded by band heater. Six thermocouples are embedded on the test section and two thermocouples are placed in the air stream at the entrance and exit of the test section to measure air inlet and outlet temperature. Test pipe is connected to Fig. 3. Lay Out Of Experimental Set Up C. Calculation of Heat Transfer Coefficient (Model- 1) Results obtained by experimental set up For heat input of 80watts (1350 w/m ). T 1 = 85c, T = 88c, T 3 = 90c, T 4 = 91c, T 5 = 9c, T 6 = 9c T air inlet = 38c, T air outlet = 41c, Head of water = 0mm T s = (T 1 + T + T 3 + T 4 + T 5 + T 6 ) = 89.66c 6 T a = T a1 + T a ( ) = = 39.5c Q = ha(h s h a ) where Q = VI = = 80 watts A = πdl = m h = Q A(T s T a ) = ( ) = 6.55 w/m k D. Calculation of Heat Transfer Coefficient by Correlation Method By correlation method at T mean temp (39.5) Properties of air: Density = kg/m3, γ = , K = 0.07, P r = 0.69, A=area of inlet is m Discharge through orifice q = C d A o gh a [5]

3 Where C d = 0.65, A o is the area of orifice which is m. (Diameter of orifice = 0.05 m) (density of water head of water) h a = Density of air = 1. = 16.66m(Head of air) q = = (Discharge in orifice) Velocity = q 5, = = 5 m/s A R e = VD γ = = γ is kinematic viscosity obtained from data hand book properties of air which is R e = based on R e no correlation has been chosen that is Dittus-Boelter equation N u = R e 0.8P r 0.4 = = 35.8 We know N u = hd, where h is heat transfer K coefficient, D is pipe inner diameter and k is thermal Conductivity of air at mean temperature obtained from properties. N u = hd K = h = N u k = D = 5.5 w/m k Experimental h = 6.55 w/m k. Now validate the correlation using CFD simulation. length of pipe is 500 mm and inner diameter is m. Fig. 4. Wire Frame of Pipe Using ICEM CFD C. Meshing The computational model is created in ICEM-CFD as per the dimensions shown in Figure 4.3. Later the Tetrahedral Mesh with Smooth Transition grid is generated. CFD SIMULATION A. CFD Analysis of Pipe There are four basic steps involved in the CFD analysis of pipe. They are given as below Creating geometry and meshing Pre-processing Solver Post processing. Fig. 4.1 Modelling of Pipe Using ICEM CFD B. Geometry Model ANSYS ICEM is used to build a 3D geometry for CFD analysis is shown in Figure 4.. The geometry is created and Meshed using ANSYS ICEM CFD. The Fig. 4.3 Unstructured Mesh Generated Using ICEM CFD [1] D. CFD Simulation in CFX-13 The computational model is created in ICEM-CFD as per the dimensions shown in Figure 4.. Later the Tetrahedral Mesh with Smooth Transition grid is generated. The solver and the boundary conditions [53]

4 are specified in CFX-13 i.e. used segregated solver with asymmetric space and k-epsilon for turbulent modelling. The boundary conditions and reference values are shown below. [1] Boundary Conditions: Location = inlet Boundary details, subsonic Normal speed = 5 m/s Medium intensity = 5 % Heat transfer: Static temp = 311 k Location outlet Boundary details Relative pressure = 1 Pa Wall Wall heat flux = 1350 w/mk Option: no slip wall Smooth wall E. CFD Results Fig. 4.4 Temperature Plane Fig. 4.5 Turbulence kinetic energy Fig. 4.6 Heat Transfer Coefficient CFD simulation h = 3.0 w/m k (From Fig. 4.6), from this the value obtained by CFD is very nearer to correlation and experimental hence Dittus-Boelter equation is validated. CALCULATION OF HEAT TRANSFER COEFFICIENT (MODEL-) A. Results obtained by experimental set up For heat input of 104 watts (heat flux 1750 w/m). T 1 = 90, T = 94c, T 3 = 95, T 4 = 98c, T 5 = 98, T 6 = 101c, T airinlet = 40c, T airoutlet = 43c Head of water = 0mm T s = (T 1T T 3 T 4 T 5 T 6 ) = 96C 6 T a = (T a1 + T a ) ( ) = = 41.5C Q = ha(t s T a ) Where Q = VI = = 104watta, A = πdl = = m h = Q A(T s T a ) = ( ) = w/m k B. Calculation of Heat Transfer Coefficient by Correlation Method By correlation method at T mean temp (41.5c) Properties of air Density = kg m 3, γ = , k = 0.07, P r = Discharge through orifice q = C d A o gh a Where C d = 0.65, A o is the area of orifice which is m. (Diameter of orifice = 0.05 m) (density of water head of water) h a = Density of air = = 16.66m(Head of air) 1. q = = (Discharge in orifice) Velocity = q 5, = = 5 m/s A R e = VD γ = = γ is kinematic viscosity obtained from data hand book properties of air which is R e = 114 based on R e no correlation has been chosen that is Dittus-Boelter equation N u = R e 0.8P r 0.4 = = 35 [54]

5 We know N u = hd, where h is heat transfer K coefficient, D is pipe inner diameter and k is thermal Conductivity of air at mean temperature obtained from properties. N u = hd K = h = N u k D = = 5 w/m k Experimental h = w/m k. Now validate the correlation using CFD simulation. C. CFD Results Fig. 5.1 Temperature plane Fig 5. Turbulence kinetic energy plane Fig 5.3 Wall heat transfer coefficient CFD simulation h = 34 w/m k (From Fig. 5.3), from this the value obtained by CFD is very nearer to correlation and experimental hence Dittus-Boelter equation is validated. CALCULATION OF HEAT TRANSFER COEFFICIENT (MODEL-3) A. Results obtained by experimental set up For heat input of 17.5 watts (heat flux 150 w/m). T 1 = 10, T = 104c, T 3 = 105, T 4 = 106c, T 5 = 106, T 6 = 108c, T airinlet = 40c, T airoutlet = 44c Head of water = 0mm T s = (T 1T T 3 T 4 T 5 T 6 ) = 105.1c 6 T a = (T a1 + T a ) ( ) = = 4C Q = ha(t s T a ) Where Q = VI = = 17.5 watts, A = πdl = = m h = Q A(T s T a ) = ( ) = 33.9 w/m k B. Calculation of Heat Transfer Coefficient by Correlation Method By correlation method at T mean temp (4c) Properties of air Density = kg m 3, γ = , k = 0.08, P r = 0.7 Discharge through orifice q = C d A o gh a Where C d = 0.65, A o is the area of orifice which is m. (Diameter of orifice = 0.05 m) (density of water head of water) h a = Density of air = = 16.66m(Head of air) 1. q = = (Discharge in orifice) Velocity = q 5, = = 5 m/s A R e = VD γ = = γ is kinematic viscosity obtained from data hand book properties of air which is R e = based on R e no correlation has been chosen that is Dittus-Boelter equation N u = R e 0.8P r 0.4 = = We know N u = hd, where h is heat transfer K coefficient, D is pipe inner diameter and k is thermal Conductivity of air at mean temperature obtained from properties. N u = hd K = h = N u k D [55]

6 = = 6 w/m k 0.08 Experimental h = 33.9 w/m k. Now validate the correlation using CFD simulation. C. CFD Results Fig. 6.1 Temperature plane Fig. 6. Turbulence kinetic energy plane Fig. 6.3 Wall heat transfer coefficient CFD simulation h = 36 w/m k (From Fig. 6.3), from this the value obtained by CFD is very nearer to correlation and experimental hence Dittus-Boelter equation is validated. VALIDATION OF EXPERIMENTAL, CFD AND CORRELATION The primary objective of this work is to determine heat transfer coefficients (local and average) for different flow geometries and this heat transfer coefficient (h) may be obtained by experimental or theoretical methods. Theoretical methods involve solution of the boundary layer equations to get the Nusselt number. On the other hand the experimental methods involve performing heat transfer measurement under controlled laboratory conditions and correlating data in dimensionless parameters. Many correlations for finding the convective heat transfer coefficient are based on experimental data which needs uncertainty analysis, although the experiments are performed under carefully controlled conditions. The causes of the uncertainty are many. Actual situations rarely conform completely to the experimental situations for which the correlations are applicable. Whatever the value obtained by experimental, correlation and CFD simulation agree with each other with an error less than 8 %. Hence Dittus-Boelter has been validated. CONCLUSION By carrying out experiment, simulation and calculation, it is conclude that these correlations give an error well within the range 8 % and usually less in controlled environment. The results clearly validate the use of Dittus-Boelter correlation in many industrial applications. There are many reasons which contribute to the errors. The heat loss does account for errors, but the value of heat loss is negligible as compared to total heat flux. The heaters are local made and do not provide constant surface heat flux although it has been tried to control wattage of each heater. Secondly all sensors (temperature) are attached in a close proximity of 0 V AC lines coming from heaters. Therefore signals from sensors are distorted and give an error. If somehow these problems are overcome results may improve. Another thing is correlation results must be more but here it is less because this has been taking the property of air at mean temperature of inlet and out let obtained by experiment. REFERENCES 1. Jamuna A B, Somashekar V, CFD Simulation and Experimental verification of [56]

7 Air Flow through Heated Pipe, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: ,p-ISSN: X, Volume 10, Issue 3 (Nov. - Dec. 013), PP Dittus, F. W., and L. M. K. Boelter. University of California (Berkley) Pub. Eng., vol., p. 443, Holman, J. P., Heat Transfer, 9th edition, Mc Graw Hill, p Diane L. Linne, Michael L. Meyer, Tim Edwards, and David A. Eitman. Evaluation of Heat Transfer and Thermal Stability of Supercritical JP 7 Fuel. NASA Technical Memorandum Incropera, Fundamentals of Heat and Mass Transfer, 5th edition, John Wiley and Sons 6. J. R. Lamarsh & Anthony B., Intro to Nuclear Engineering, 3rd edition, Wiley 7. Munson, Young, Okishi, Fundamentals of Fluid Dynamics, 4th edition, Wiley 8. Tichakorn, Forced Convection, research paper, Cornell University, Nov Mechanical and Aerospace Engineering Laboratory, Forced Convection Heat Transfer, State University of New Jersey 10. Application note, Active Filter Design, Texas instrument 11. Application note, AN699, AN83, AN990, AN68, AN685, AN687, AN684 Microchip Technology Inc 1. Hilpert, R. Heat Transfer from Cylinders, Forsch. Geb. Ingenieurwes, 4: Fand, R. M. and K. K. Keswani. A Continuous Correlation Equation for Heat Transfer from cylinders to Air in Crossflow for Reynold s Numbers from 10- to (10)5, International Journal of Heat and Mass Transfer, 15: Fand, R.M. and K. K. Keswani. Recalculation of Hilpert s Constants, Transactions of ASME,pp Zukauskas, A. Heat Transfer from Tubes in Crossflow, Advances in Heat Transfer, 8: Churchill, S.W. and H. H. S. Chu. Correlating Equations for Laminar and Turbulent Free Convection from a Horizontal Cylinder, International Journal of Heat and Mass Transfer, 18: Churchill, S. W. and M. Bernstein. A correlating Equation for Forced Convection from Gases and Liquids to a Circular Cylinder in Crossflow, J. Heat Transfer, 99: Morgan, V. Heat Transfer from Cylinders, Advances in Heat Transfer, 11: Manohar, K., Yarbrough, D. W. and Booth, J. R. Measurement of Apparent Thermal Conductivity by the Thermal Probe Method, Journal of Testing and Evaluation, 8(5): [57]

Cfd Simulation and Experimentalverification of Air Flow through Heated Pipe

Cfd Simulation and Experimentalverification of Air Flow through Heated Pipe IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 10, Issue 3 (Nov. - Dec. 2013), PP 30-35 Cfd Simulation and Experimentalverification of Air Flow

More information

EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR HEAT EXCHANGER

EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR HEAT EXCHANGER EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR HEAT EXCHANGER HESHAM G. IBRAHIM Assist. Prof., Department of Mechanical Engineering, Faculty of Marine Resources, Al-Asmarya Islamic

More information

EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR EXCHANGER

EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR EXCHANGER EXPERIMENTAL AND CFD ANALYSIS OF TURBULENT FLOW HEAT TRANSFER IN TUBULAR EXCHANGER HESHAM G. IBRAHIM Assist. Prof., Department of Mechanical Engineering, Faculty of Marine Resources, Al-Asmarya Islamic

More information

Heat Transfer F12-ENG Lab #4 Forced convection School of Engineering, UC Merced.

Heat Transfer F12-ENG Lab #4 Forced convection School of Engineering, UC Merced. 1 Heat Transfer F12-ENG-135 - Lab #4 Forced convection School of Engineering, UC Merced. October 23, 2012 1 General purpose of the Laboratory To gain a physical understanding of the behavior of the average

More information

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

Convection Heat Transfer. Introduction

Convection Heat Transfer. Introduction Convection Heat Transfer Reading Problems 12-1 12-8 12-40, 12-49, 12-68, 12-70, 12-87, 12-98 13-1 13-6 13-39, 13-47, 13-59 14-1 14-4 14-18, 14-24, 14-45, 14-82 Introduction Newton s Law of Cooling Controlling

More information

Natural Convection from a Long Horizontal Cylinder

Natural Convection from a Long Horizontal Cylinder Natural Convection from a Long Horizontal Cylinder Hussein Awad Kurdi Saad Engineering Technical College of Al Najaf, Al-Furat Al-Awsat Technical University, Iraq ABSTRACT: Natural convection from a Long

More information

Heat Augmentation Using Non-metallic Flow Divider Type Inserts in Forced Convection

Heat Augmentation Using Non-metallic Flow Divider Type Inserts in Forced Convection IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP. 62-67 www.iosrjournals.org Heat Augmentation Using Non-metallic Flow Divider Type Inserts in Forced

More information

Comparative Analysis of Heat Transfer and Friction Characteristics in a Corrugated Tube

Comparative Analysis of Heat Transfer and Friction Characteristics in a Corrugated Tube International Journal of Current Engineering and Technology E-ISSN 2277 416, P-ISSN 2347 5161 216 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Comparative

More information

Evaluation of Convective Heat Transfer Coefficient of Air Flowing Through an Inclined Square Duct

Evaluation of Convective Heat Transfer Coefficient of Air Flowing Through an Inclined Square Duct Evaluation of Convective Heat Transfer Coefficient of Air Flowing Through an Inclined Square Duct Sunil S [1], [1] Assistant Professor, Sri Venkateshwara College of Engineering, Bangalore. Basavaraj. H.

More information

EFFECT OF STAGGERED RIB LENGTH ON PERFORMANCE OF SOLAR AIR HEATER USING V-RIB WITH SYMMETRICAL GAP AND STAGGERED RIB

EFFECT OF STAGGERED RIB LENGTH ON PERFORMANCE OF SOLAR AIR HEATER USING V-RIB WITH SYMMETRICAL GAP AND STAGGERED RIB EFFECT OF STAGGERED RIB LENGTH ON PERFORMANCE OF SOLAR AIR HEATER USING V-RIB WITH SYMMETRICAL GAP AND STAGGERED RIB Piyush Kumar Jain and Atul Lanjewar Department of Mechanical Engineering, Maulana Azad

More information

Experimental Heat transfer study of Turbulent Square duct flow through V type turbulators

Experimental Heat transfer study of Turbulent Square duct flow through V type turbulators IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 6 Ver. II (Nov. - Dec. 2016), PP 26-31 www.iosrjournals.org Experimental Heat transfer

More information

Computational Fluid Dynamics Based Analysis of Angled Rib Roughened Solar Air Heater Duct

Computational Fluid Dynamics Based Analysis of Angled Rib Roughened Solar Air Heater Duct Research Article International Journal of Thermal Technologies ISSN 2277-4114 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijtt Computational Fluid Dynamics Based Analysis

More information

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 06, 2015 ISSN (online): 2321-0613 Experimental Investigation for Enhancement of Heat Transfer in Two Pass Solar Air Heater

More information

Heat Transfer Enhancement Through Perforated Fin

Heat Transfer Enhancement Through Perforated Fin IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP. 72-78 www.iosrjournals.org Heat Transfer Enhancement Through Perforated Fin Noaman Salam, Khan Rahmatullah,

More information

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB University of Technology Department Mechanical engineering Baghdad, Iraq ABSTRACT - This paper presents numerical investigation of heat

More information

Lecture 30 Review of Fluid Flow and Heat Transfer

Lecture 30 Review of Fluid Flow and Heat Transfer Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in

More information

Journal of Engineering Research and Studies E-ISSN

Journal of Engineering Research and Studies E-ISSN Research Article EXPERIMENTAL AND COMPUTATIONAL ANALYSIS AND OPTIMIZATION FOR HEAT TRANSFER THROUGH FINS WITH DIFFERENT TYPES OF NOTCH S.H. Barhatte 1, M. R. Chopade 2, V. N. Kapatkar 3 Address for Correspondence

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION 2016 IJSRSET Volume 2 Issue 4 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Analysis of Compressible Effect in the Flow Metering By Orifice Plate Using Prasanna

More information

Experimental and Numerical Analysis of Turbulent Flow Heat Transfer Enhancement in a Horizontal Circular Tube Using Mesh Inserts

Experimental and Numerical Analysis of Turbulent Flow Heat Transfer Enhancement in a Horizontal Circular Tube Using Mesh Inserts July 2010, Volume 4, No.7 (Serial No.32) Journal of Energy and Power Engineering, ISSN 1934-8975, USA Experimental and Numerical Analysis of Turbulent Flow Heat Transfer Enhancement in a Horizontal Circular

More information

A numerical study of heat transfer and fluid flow over an in-line tube bank

A numerical study of heat transfer and fluid flow over an in-line tube bank Fluid Structure Interaction VI 295 A numerical study of heat transfer and fluid flow over an in-line tube bank Z. S. Abdel-Rehim Mechanical Engineering Department, National Research Center, Egypt Abstract

More information

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness

Exergy Analysis of Solar Air Collector Having W Shaped Artificial Roughness Advances in Materials Science and Mechanical Engineering Research Volume 1, Number 1 (2015), pp. 25-32 International Research Publication House http://www.irphouse.com Exergy Analysis of Solar Air Collector

More information

Heat Transfer Convection

Heat Transfer Convection Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection

More information

Enhancement of Heat Transfer in Heat Exchanger using Punched and V-cut Twisted Tape Inserts

Enhancement of Heat Transfer in Heat Exchanger using Punched and V-cut Twisted Tape Inserts ISSN 2395-1621 Enhancement of Heat Transfer in Heat Exchanger using Punched and V-cut Twisted Tape Inserts #1 Imran Quazi, Prof. #2 V.R.Mohite, #3 Prof. J Bali 1 imranquazi1987@gmail.com 2 vrmohite@gmail.com

More information

Numerical Investigation of Multijet Air Impingement on Pin Fin Heat Sink with Effusion Slots

Numerical Investigation of Multijet Air Impingement on Pin Fin Heat Sink with Effusion Slots , 23-25 October, 2013, San Francisco, USA Numerical Investigation of Multijet Air Impingement on Pin Fin Heat Sink with Effusion Slots N. K. Chougule G. V. Parishwad A. R. Nadgire Abstract The work reported

More information

Thermo-Hydraulic Performance of a Roughened Square Duct Having Inclined Ribs with a Gap on Two Opposite Walls

Thermo-Hydraulic Performance of a Roughened Square Duct Having Inclined Ribs with a Gap on Two Opposite Walls International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 7, Issue 10 (July 2013), PP. 55-63 Thermo-Hydraulic Performance of a Roughened Square

More information

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ For performing this tutorial, it is necessary to have already studied the tutorial on the upward bend. In fact, after getting abilities

More information

PHYSICAL MECHANISM OF CONVECTION

PHYSICAL MECHANISM OF CONVECTION Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter

More information

A CFD Analysis Of A Solar Air Heater Having Triangular Rib Roughness On The Absorber Plate

A CFD Analysis Of A Solar Air Heater Having Triangular Rib Roughness On The Absorber Plate International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.2, pp 964-971, April-June 2013 ICGSEE-2013[14th 16th March 2013] International Conference on Global Scenario in

More information

Heat Transfer Enhancement with Different Square Jagged Twisted Tapes and CuO Nano fluid

Heat Transfer Enhancement with Different Square Jagged Twisted Tapes and CuO Nano fluid Heat Transfer Enhancement with Different Square Jagged Twisted Tapes and CuO Nano fluid 1 Krishna S. Borate, 2 A.V. Gawandare, 3 P.M. Khanwalkar 1,2,3 Department of Mechanical Engineering, Sinhgad College

More information

CFD Analysis of Multi-jet Air Impingement on Flat Plate

CFD Analysis of Multi-jet Air Impingement on Flat Plate , July 6-8, 2011, London, U.K. CFD Analysis of Multi-jet Air Impingement on Flat Plate Chougule N.K., Parishwad G.V., Gore P.R., Pagnis S., Sapali S.N. Abstract Jet impingement is one of the intensive

More information

Validation 3. Laminar Flow Around a Circular Cylinder

Validation 3. Laminar Flow Around a Circular Cylinder Validation 3. Laminar Flow Around a Circular Cylinder 3.1 Introduction Steady and unsteady laminar flow behind a circular cylinder, representing flow around bluff bodies, has been subjected to numerous

More information

Piping Systems and Flow Analysis (Chapter 3)

Piping Systems and Flow Analysis (Chapter 3) Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution

More information

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER THERMAL SCIENCE: Year 2018, Vol. 22, No. 2, pp. 963-972 963 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER by Jitesh RANA, Anshuman SILORI, Rajesh MAITHANI *, and

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

Experimental investigation of heat transfer characteristics of pulsating turbulent flow in a pipe

Experimental investigation of heat transfer characteristics of pulsating turbulent flow in a pipe Volume: 02 Issue: 04 July-2015 www.irjet.net p-issn: 2395-0072 Experimental investigation of heat transfer characteristics of pulsating turbulent flow in a pipe Siddhanath V. Nishandar 1, R.H.Yadav 2 *Student,

More information

Performance Investigation of Artificially Roughened Duct used in Solar Air Heaters

Performance Investigation of Artificially Roughened Duct used in Solar Air Heaters International Performance Journal Investigation of Product of Artificially Design Roughened Duct used in Solar Air Heaters January-June 2011, Volume 1, Number 1, pp. 45 62 Performance Investigation of

More information

Chapter 3 NATURAL CONVECTION

Chapter 3 NATURAL CONVECTION Fundamentals of Thermal-Fluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGraw-Hill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGraw-Hill Companies,

More information

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer Principles of Food and Bioprocess Engineering (FS 1) Problems on Heat Transfer 1. What is the thermal conductivity of a material 8 cm thick if the temperature at one end of the product is 0 C and the temperature

More information

Experimental Investigation of Heat Transfer Enhancement by Using Clockwise and Counter -clockwise Corrugated Twisted Tape Inserts

Experimental Investigation of Heat Transfer Enhancement by Using Clockwise and Counter -clockwise Corrugated Twisted Tape Inserts Experimental Investigation of Heat Transfer Enhancement by Using Clockwise and Counter -clockwise Corrugated Twisted Tape Inserts K.G.KULKARNI Appearing in ME ( HEAT POWER), PES s Modern College Of Engineering

More information

Heat transfer coefficient of near boiling single phase flow with propane in horizontal circular micro channel

Heat transfer coefficient of near boiling single phase flow with propane in horizontal circular micro channel IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Heat transfer coefficient of near boiling single phase flow with propane in horizontal circular micro channel To cite this article:

More information

Analysis, Design and Fabrication of Forced Convection Apparatus

Analysis, Design and Fabrication of Forced Convection Apparatus Analysis, Design and Fabrication of Forced Convection Apparatus Shajan K. Thomas 1, Vishnukumar C M 2, Vishnu C J 3, Alex Baby 4 Assistant Professor, Dept. of Mechanical Engineering, Toc H Institute of

More information

CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations

CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations CFD Analysis on Flow Through Plate Fin Heat Exchangers with Perforations 1 Ganapathi Harish, 2 C.Mahesh, 3 K.Siva Krishna 1 M.Tech in Thermal Engineering, Mechanical Department, V.R Siddhartha Engineering

More information

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 6 th Edition, John Wiley and Sons Chapter 7 External

More information

International Journal of Engineering, Business and Enterprise Applications (IJEBEA)

International Journal of Engineering, Business and Enterprise Applications (IJEBEA) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Engineering, Business and Enterprise

More information

Practical Analysis Of Turbulent Flow In A Pipe Using Computational Fluid Dynamics

Practical Analysis Of Turbulent Flow In A Pipe Using Computational Fluid Dynamics International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 3, Issue 12 [December. 2014] PP: 77-81 Practical Analysis Of Turbulent Flow In A Pipe Using Computational Fluid

More information

Numerical Heat Transfer Study of Turbulent Square Duct Flow through W-Type Turbulators

Numerical Heat Transfer Study of Turbulent Square Duct Flow through W-Type Turbulators search Article International Journal of Thermal Technologies E-ISSN 2277 4114 214 INPRESSCO, All Rights served Available at http://inpressco.com/category/ijtt/ merical Heat Transfer Study of Turbulent

More information

Research Article. Kaustubh G. Kulkarni * and Mandar M. Lele. Abstract

Research Article. Kaustubh G. Kulkarni * and Mandar M. Lele. Abstract International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2017 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Enhancement

More information

Experimental investigation of heat transfer augmentation in triangular duct with rectangular wing

Experimental investigation of heat transfer augmentation in triangular duct with rectangular wing ISSN 2395-1621 Experimental investigation of heat transfer augmentation in triangular duct with rectangular wing #1 Atole Santosh, #2 Channapattana S.V 1 santoshatole10@gmail.com 1 svchanna@yahoo.co.in

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

Department of Mechanical Engineering, VTU, Basveshwar Engineering college, Bagalkot, Karnataka, India

Department of Mechanical Engineering, VTU, Basveshwar Engineering college, Bagalkot, Karnataka, India International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Optimization

More information

Investigation of Jet Impingement on Flat Plate Using Triangular and Trapezoid Vortex Generators

Investigation of Jet Impingement on Flat Plate Using Triangular and Trapezoid Vortex Generators ISSN 2395-1621 Investigation of Jet Impingement on Flat Plate Using Triangular and Trapezoid Vortex Generators #1 Sonali S Nagawade, #2 Prof. S Y Bhosale, #3 Prof. N K Chougule 1 Sonalinagawade1@gmail.com

More information

UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

More information

External Forced Convection :

External Forced Convection : External Forced Convection : Flow over Bluff Objects (Cylinders, Spheres, Packed Beds) and Impinging Jets Chapter 7 Sections 7.4 through 7.8 7.4 The Cylinder in Cross Flow Conditions depend on special

More information

TUBE BANKS TEST PROBLEMS

TUBE BANKS TEST PROBLEMS TUBE BANKS TEST PROBLEMS The non-proprietary tests used to validate INSTED analysis of flow and heat transfer over tube banks are presented in this section. You may need to consult the original sources

More information

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition

Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition Sādhanā Vol. 40, Part 2, April 2015, pp. 467 485. c Indian Academy of Sciences Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition RAMBIR BHADOURIYA,

More information

Thermo-Hydraulic performance of Internal finned tube Automobile Radiator

Thermo-Hydraulic performance of Internal finned tube Automobile Radiator Thermo-Hydraulic performance of Internal finned tube Automobile Radiator Dr.Kailash Mohapatra 1, Deepiarani Swain 2 1 Department of Mechanical Engineering, Raajdhani Engineering College, Bhubaneswar, 751017,

More information

Numerical study of forced convection around heated horizontal triangular ducts

Numerical study of forced convection around heated horizontal triangular ducts Advanced Computational Methods and Experiments in Heat Transfer XI 0 Numerical study of forced convection around heated horizontal triangular ducts O. Zeitoun, M. E. Ali & A. Nuhait King Saud University,

More information

6 Empirical and Practical

6 Empirical and Practical 6 Empirical and Practical Forced-Convection Relations for Heat Transfer CHAPTER 6-1 INTRODUCTION The discussion and analyses of Chapter 5 have shown how forced-convection heat transfer may be calculated

More information

Theoretical and Experimental Studies on Transient Heat Transfer for Forced Convection Flow of Helium Gas over a Horizontal Cylinder

Theoretical and Experimental Studies on Transient Heat Transfer for Forced Convection Flow of Helium Gas over a Horizontal Cylinder 326 Theoretical and Experimental Studies on Transient Heat Transfer for Forced Convection Flow of Helium Gas over a Horizontal Cylinder Qiusheng LIU, Katsuya FUKUDA and Zheng ZHANG Forced convection transient

More information

W-Discrete Rib for Enhancing the Thermal Performance of Solar Air Heater

W-Discrete Rib for Enhancing the Thermal Performance of Solar Air Heater W-Discrete Rib for Enhancing the Thermal Performance of Solar Air Heater Alok Kumar Rohit 1, A.M. Lanjewar 2 1PhD Scholar, Mechanical Engineering Department, AISECT University Bhopal, M.P. - 462024 India

More information

Experimental Validation of Heat Transfer Enhancement in plate Heat Exchanger with Non Conventional Shapes of Rib

Experimental Validation of Heat Transfer Enhancement in plate Heat Exchanger with Non Conventional Shapes of Rib Experimental Validation of Heat Transfer Enhancement in plate Heat Exchanger with Non Conventional Shapes of Rib 1 Miss. Ashwini Vasant Thakare, 2 Dr. J. A. Hole 1 M.Tech Student of JSPM Narhe Technical

More information

THE APPLICATION OF CFD TO VENTILATION CALCULATIONS AT YUCCA MOUNTAIN

THE APPLICATION OF CFD TO VENTILATION CALCULATIONS AT YUCCA MOUNTAIN THE APPLICATION OF CFD TO VENTILATION CALCULATIONS AT YUCCA MOUNTAIN G Danko, and D Bahrami, Mackay School of Mines University of Nevada, Reno Reno, NV 89557, (775) 784 4284 ABSTRACT This paper presents

More information

Experimental Investigation of Forced Convection Heat Transfer Augmentation from a Dimpled Surface

Experimental Investigation of Forced Convection Heat Transfer Augmentation from a Dimpled Surface www.ierjournal.org International Engineering search Journal (IERJ) Volume 1 Issue 6 Page 42-47, 21, ISSN 239-1621 ISSN 239-1621 Experimental Investigation of Forced Convection Heat Transfer Augmentation

More information

LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS

LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS LECTURE 6- ENERGY LOSSES IN HYDRAULIC SYSTEMS SELF EVALUATION QUESTIONS AND ANSWERS 1. What is the head loss ( in units of bars) across a 30mm wide open gate valve when oil ( SG=0.9) flow through at a

More information

EXPERIMENTAL STUDY OF DEVELOPING TURBULENT FLOW AND HEAT TRANSFER IN RIBBED CONVERGENT/DIVERGENT RECTANGULAR DUCTS

EXPERIMENTAL STUDY OF DEVELOPING TURBULENT FLOW AND HEAT TRANSFER IN RIBBED CONVERGENT/DIVERGENT RECTANGULAR DUCTS THERMAL SCIENCE, Year 015, Vol. 19, No. 6, pp. 19-31 19 EXPERIMENTAL STUDY OF DEVELOPING TURBULENT FLOW AND HEAT TRANSFER IN RIBBED CONVERGENT/DIVERGENT RECTANGULAR DUCTS by Sivakumar KARTHIKEYAN a*, Natarajan

More information

HEAT TRANSFER AND FRICTION FACTOR CHARACTERISTICS OF COMPOUND TURBULATORS IN RECTANGULAR DUCTS OF SOLAR AIR HEATER

HEAT TRANSFER AND FRICTION FACTOR CHARACTERISTICS OF COMPOUND TURBULATORS IN RECTANGULAR DUCTS OF SOLAR AIR HEATER HEAT TRANSFER AND FRICTION FACTOR CHARACTERISTICS OF COMPOUND TURBULATORS IN RECTANGULAR DUCTS OF SOLAR AIR HEATER C.B.Pawar*, K.R.Aharwal 1 and Alok Chaube 2 1. Department of Mechanical Engineering, Shri

More information

EFFECT OF BAFFLES GEOMETRY ON HEAT TRANSFER ENHANCEMENT INSIDE CORRUGATED DUCT

EFFECT OF BAFFLES GEOMETRY ON HEAT TRANSFER ENHANCEMENT INSIDE CORRUGATED DUCT International Journal of Mechanical Engineering and Technology (IJMET) Volume 10, Issue 03, March 2019, pp. 555-566. Article ID: IJMET_10_03_057 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=10&itype=3

More information

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k)

Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k) Tutorial 1 1. Explain in detail the mechanism of forced convection. Show by dimensional analysis (Rayleigh method) that data for forced convection may be correlated by an equation of the form Nu = φ (Re,

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 28 CFD BASED HEAT TRANSFER ANALYSIS OF SOLAR AIR HEATER DUCT PROVIDED WITH ARTIFICIAL ROUGHNESS Vivek Rao, Dr. Ajay

More information

Experimental Analysis on Pin Fin Heat Exchanger Using Different Shapes of the Same Material

Experimental Analysis on Pin Fin Heat Exchanger Using Different Shapes of the Same Material DOI 10.4010/2016.890 ISSN 2321 3361 2016 IJESC Research Article Volume 6 Issue No. 4 Experimental Analysis on Pin Fin Heat Exchanger Using Different Shapes of the Same Material Zaharaddeen Aminu Bello

More information

HEAT TRANSFER IN THE LAMINAR AND TRANSITIONAL FLOW REGIMES OF SMOOTH VERTICAL TUBE FOR UPFLOW DIRECTION

HEAT TRANSFER IN THE LAMINAR AND TRANSITIONAL FLOW REGIMES OF SMOOTH VERTICAL TUBE FOR UPFLOW DIRECTION HEAT TRANSFER IN THE LAMINAR AND TRANSITIONAL FLOW REGIMES OF SMOOTH VERTICAL TUBE FOR UPFLOW DIRECTION Bashir A.I. and Meyer J.P.* *Author for correspondence Department of Mechanical and Aeronautical

More information

[Prasanna m a*et al., 5(6): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Prasanna m a*et al., 5(6): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY NUMERICAL ANALYSIS OF COMPRESSIBLE EFFECT IN THE FLOW METERING BY CLASSICAL VENTURIMETER Prasanna M A *, Dr V Seshadri, Yogesh

More information

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer

Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer Forced Convection Outlines To examine the methods of calculating convection heat transfer (particularly, the ways of predicting the value of convection heat transfer coefficient, h) Convection heat transfer

More information

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES B.M. Lingade a*, Elizabeth Raju b, A Borgohain a, N.K. Maheshwari a, P.K.Vijayan a a Reactor Engineering

More information

SSRG International Journal of Mechanical Engineering ( SSRG IJME ) Volume 2 Issue 5 May 2015

SSRG International Journal of Mechanical Engineering ( SSRG IJME ) Volume 2 Issue 5 May 2015 Heat Transfer Enhancement in a Tube using Elliptical-Cut Twisted Tape Inserts Pratik P. Ganorkar 1, R.M. Warkhedkar 2 1 Heat power Engineering, Department of Mechanical Engineering, Govt. collage of engineering

More information

Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number

Keywords: Spiral plate heat exchanger, Heat transfer, Nusselt number EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER Dr.RAJAVEL RANGASAMY Professor and Head, Department of Mechanical Engineering Velammal Engineering College,Chennai -66,India Email:rajavelmech@gmail.com

More information

FORCED CONVECTION HEAT TRANSFER FROM THREE DIMENSIONAL BODIES IN CROSS-FLOW

FORCED CONVECTION HEAT TRANSFER FROM THREE DIMENSIONAL BODIES IN CROSS-FLOW FORCED CONVECTION HEAT TRANSFER FROM THREE DIMENSIONAL BODIES IN CROSS-FLOW M. A. Abd-Rabbo*, N. S. Berbish**, M. A. Mohammad* and M. M. Mandour***. * Mechanical Engineering Department, Faculty of Engineering,

More information

CFD Investigation of Heat Transfer and Flow Patterns in Tube Side Laminar Flow and the Potential for Enhancement

CFD Investigation of Heat Transfer and Flow Patterns in Tube Side Laminar Flow and the Potential for Enhancement A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 35, 2013 Guest Editors: Petar Varbanov, Jiří Klemeš, Panos Seferlis, Athanasios I. Papadopoulos, Spyros Voutetakis Copyright 2013, AIDIC Servizi

More information

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 18 Forced Convection-1 Welcome. We now begin our study of forced convection

More information

Numerical Analysis of Fe 3 O 4 Nanofluid Flow in a Double Pipe U-Bend Heat Exchanger

Numerical Analysis of Fe 3 O 4 Nanofluid Flow in a Double Pipe U-Bend Heat Exchanger International Journal of Engineering Studies. ISSN 0975-6469 Volume 8, Number 2 (2016), pp. 211-224 Research India Publications http://www.ripublication.com Numerical Analysis of Fe 3 O 4 Nanofluid Flow

More information

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + OUTLINE u Introduction and Dimensionless Numbers u Heat Transfer Coefficient for Laminar Flow inside a Pipe u Heat Transfer Coefficient for Turbulent

More information

Experimental and CFD analysis of flow through venturimeter to determine the coefficient of discharge

Experimental and CFD analysis of flow through venturimeter to determine the coefficient of discharge Experimental and CFD analysis of flow through venturimeter to determine the coefficient of discharge Nikhil Tamhankar Amar Pandhare Ashwinkumar Joglekar Vaibhav Bansode Abstract- The pressure distribution

More information

Experimental Investigations on the Local Distribution of wall static pressure coefficient Due To an Impinging Slot Air Jet on a Confined Rough Surface

Experimental Investigations on the Local Distribution of wall static pressure coefficient Due To an Impinging Slot Air Jet on a Confined Rough Surface Experimental Investigations on the Local Distribution of wall static pressure coefficient Due To an Impinging Slot Air Jet on a Confined Rough Surface 1 Adimurthy. M 1 BLDEA s VP DR. P G Halakatti college

More information

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE Polymers Research Journal ISSN: 195-50 Volume 6, Number 01 Nova Science Publishers, Inc. THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE E. Poursaeidi, M. Mohammadi and S. S. Khamesi University

More information

Numerical analysis of fluid flow and heat transfer in 2D sinusoidal wavy channel

Numerical analysis of fluid flow and heat transfer in 2D sinusoidal wavy channel Numerical analysis of fluid flow and heat transfer in 2D sinusoidal wavy channel Arunanshu Chakravarty 1* 1 CTU in Prague, Faculty of Mechanical Engineering, Department of Process Engineering,Technická

More information

Performance Analyses of a Multiple Horizontal Tubes for Steam Condensation

Performance Analyses of a Multiple Horizontal Tubes for Steam Condensation IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 78-1684 Volume 5, Issue 4 (Jan. - Feb. 013), PP 1-18 Performance Analyses of a Multiple Horizontal Tubes for Steam Condensation Dharmendra

More information

Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions Using CFD

Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions Using CFD International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-3, Issue-5, May 2015 Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions

More information

Convection. U y. U u(y) T s. T y

Convection. U y. U u(y) T s. T y Convection Heat transfer in the presence of a fluid motion on a solid surface Various mechanisms at play in the fluid: - advection physical transport of the fluid - diffusion conduction in the fluid -

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

CONCENTRIC EXCHANGER TEST PROBLEMS

CONCENTRIC EXCHANGER TEST PROBLEMS CONCENTRIC EXCHANGER TEST PROBLEMS Introduction The tests used to validate INSTED analysis of concentric exchanger module are presented here. You may need to consult the original sources of the various

More information

In order to optimize the shell and coil heat exchanger design using the model presented in Chapter

In order to optimize the shell and coil heat exchanger design using the model presented in Chapter 1 CHAPTER FOUR The Detailed Model In order to optimize the shell and coil heat exchanger design using the model presented in Chapter 3, one would have to build several heat exchanger prototypes, and then

More information

Numerical Analysis of a Helical Coiled Heat Exchanger using CFD

Numerical Analysis of a Helical Coiled Heat Exchanger using CFD International Journal of Thermal Technologies ISSN 2277-4114 213 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijtt Research Article Numerical Analysis of a Helical Coiled

More information

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 09, SEPTEMBER 2016 ISSN

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 5, ISSUE 09, SEPTEMBER 2016 ISSN Numerical Analysis Of Heat Transfer And Fluid Flow Characteristics In Different V-Shaped Roughness Elements On The Absorber Plate Of Solar Air Heater Duct Jitesh Rana, Anshuman Silori, Rohan Ramola Abstract:

More information

DESIGN AND CFD ANALYSIS OF A CENTRIFUGAL PUMP

DESIGN AND CFD ANALYSIS OF A CENTRIFUGAL PUMP DESIGN AND CFD ANALYSIS OF A CENTRIFUGAL PUMP 1 CH.YADAGIRI, 2 P.VIJAYANAND 1 Pg Scholar, Department of MECH, Holymary Institute of Technology, Ranga Reddy, Telangana, India. 2 Assistant Professor, Department

More information

COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES OF DIFFERENT ASPECT RATIOS

COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES OF DIFFERENT ASPECT RATIOS HEFAT214 1 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 214 Orlando, Florida COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES

More information

Heat Transfer Measurements for a Horizontal Micro-Tube Using Liquid Crystal Thermography

Heat Transfer Measurements for a Horizontal Micro-Tube Using Liquid Crystal Thermography TC02-007 Heat Transfer Measurements for a Horizontal Micro-Tube Using Liquid Crystal Thermography Lap Mou Tam 1,2, Hou Kuan Tam 1*, Afshin J. Ghajar 3, Wa San Ng 1 1 Department of Electromechanical Engineering,

More information

Experimental Analysis for Natural Convection Heat Transfer through Vertical Cylinder

Experimental Analysis for Natural Convection Heat Transfer through Vertical Cylinder Experimental Analysis for Natural Convection Heat Transfer through Vertical Cylinder 1 Shyam S. Kanwar, 2 Manoj K. Yadav, Saurabh Sharma 3 1,2,3 Assistant Professor 1 Department of Mechanical Engg. 1 Institute

More information

A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined Circular Ribs as Artificial Roughness

A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined Circular Ribs as Artificial Roughness Bonfring International Journal of Industrial Engineering and Management Science, Vol. 4, No. 3, August 2014 115 A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined

More information