All models are wrong but some are useful. George Box (1979)

Size: px
Start display at page:

Download "All models are wrong but some are useful. George Box (1979)"

Transcription

1 All models are wrong but some are useful. George Box (1979) The problem of model selection is overrun by a serious difficulty: even if a criterion could be settled on to determine optimality, it is hard to know even what class of models to consider We will now discuss some criteria for assessing which models are better, but there is not necessarily a unique best criterion, just as there is not necessarily a unique best model (or at least, we ll leave that to the philosophers) As someone once pointed out to me, there may not be a unique worst model either (?!) 1

2 Let s just keep in mind that the answer we get will depend on the question we ask, so we should ask a suitable question (in this case, this means we should choose a suitable criterion) For example, when deciding how many types of restrooms to build, we usually consider gender as a criterion for similarity, not height or weight or some other such thing 2

3 To begin with, suppose we have a process which is governed by some (unknown) probability distribution f We might consider modeling that distribution with a regression model, an ARIMA model, a GARCH model, etc. It may not be clear which model or models will give us the best possible approximation to f In order to have any chance of answering this question, we need a way of evaluating how far off g is from f : we call this a discrepancy, and we are free to assign it in any number of different ways Whatever rule we use to assign it, the discrepancy should be a number that reflects in some way how far off g is from f 3

4 Simply by the way that the discrepancy is defined, model selection now amounts to finding the model from the class of models we re investigating that minimizes the discrepancy So we will have three models in the picture: the ideal f, which is simply a distribution (no parameters or anything); the best possible approximation g best to f within the set of models that we are considering (relative to the discrepancy function we have defined); and the fitted model g, which is our best estimate of g best Now we generally have to estimate the parameters for g based on the sample, and in addition, we don t even know what the correct f is, so finding g best is no easy task Therefore we resort to a model selection criterion, which we define as an estimator of the expected (over all samples) discrepancy 4

5 There are several general-purpose discrepancy functions The Kullback-Leibler discrepancy is given by: D KL (f, g) = (log g(x))f (x)dx, which is closely related to the information (in the technical sense of the word) lost by using g to approximate f The Pearson chi-squared discrepancy is given by: D P (f, g) = (f (x) g(x)) 2, g(x) x and is particularly useful for discrete data or grouped data The Gauss discrepancy is given by: D G (f, g) = x ((f (x) g(x)) 2, which is essentially the mean squared error (for maximization purposes) 5

6 Having decided on a discrepancy, our next step will be to find a criterion with which to estimate the expected discrepancy There are three general methods for this: 1. Asymptotic methods 2. Bootstrap methods 3. Cross-validation methods We will focus only on the first one here 6

7 Usually, one would like to obtain a criterion by first deriving a formula for the expected discrepancy and then finding a way to estimate it Deriving such a formula, however, is usually not possible (which makes estimating it rather difficult!) In many cases though, it is possible to derive an expression for the asymptotic value of expected discrepancy (i.e., its limiting value as the sample size approaches infinity) and to find an unbiased estimator of that value, called an asymptotic criterion Of course the asymptotic part causes some real problems, since: We only deal with finite samples The standard error of these asymptotic criteria can be quite large Assessing their performance can generally only be done through tedious Monte Carlo simulations (if at all) 7

8 Asymptotic methods applied to the Kullback-Leibler discrepancy give rise to the Akaike information criterion (AIC) (Akaike, 1973), defined by: AIC = 2 log(l) + 2p, where L is the likelihood of the model (given the data) and p is the number of parameters in the model Remember that a criterion is an estimate of the expected discrepancy, and a low discrepancy is desired, so we should seek to minimize the AIC if we use it as the criterion There are different conventions as to what (if any) constant should be added to the above definition, but these are irrelvant when comparisons are being made between models 8

9 It is also important to keep in mind that it might not be best to select the model with the lowest AIC Having some sense of what AIC differences of various sizes may mean: An AIC difference of 2 indicates almost no evidence of a difference between the fit of the models An AIC difference of about 2 to 10 indicates moderate evidence of a difference between the fit of the models An AIC difference of more than 10 indicates strong evidence of a difference between the fit of the models 9

10 The Schwarz crietrion (Schwarz, 1978) or Bayesian information criterion (BIC) is also arrived at by asymptotic methods, although rather different ones It has a similar form to the AIC, with the last 2p (the parameter penalty ) being replaced by p log n: BIC = 2 log L + p log n, where L is the likelihood of the model (given the data), p is the number of parameters in the model, and n is the number of observations The BIC is obtained by an asymptotic expansion of the Bayes factor which gives the posterior odds that the second model (versus the first model) is correct, assuming that beforehand they were assumed to be equally likely 10

11 Both AIC and BIC are widely used and are part of essentially every statistics software package Tests of the performance of AIC versus BIC have been unrevealing at best You should feel free to use either one, with perhaps a few words of advice First, BIC has the harsher penalty (much more so) for additional parameters, so if you are feeling parsimonious, that might be the criterion to use 11

12 From a less practical and more philosophical perspective, you should understand that: AIC is more often what frequentists prefer. It is built upon information-theoretic grounds and seeks to answer which model among those being considered leads to a better fit on average (if sampling were to be done again and again). BIC is more often what Bayesians prefer. It attempts to answer the question of which of the models being considered is more likely to be the actual model, assuming they were viewed as equally likely before the data were collected. But again, these are not usually issues from a practical standpoint the issue of how much weight to assign to model parsimony tends to override such considerations 12

13 It is also worth repeating that AIC and BIC are readily accessible in all the standard statistical software packages In particular, comparing several different ARIMA(p, d, q)-garch(p, Q) models is quite straightforward (for example, there is no difficulty fitting and comparing all GARCH(P, Q) models where P < 3 and Q < 5, say) In addition, there are generally stepwise regression implementations in which, for example, variables are thrown out one at a time, AIC (or BIC) is computed for each such reduced model, and if a better model is found, the process is repeated on it until a model is arrived at for which the AIC (or BIC) isn t lowered by removing any single variable 13

14 A word of caution is in order: it is highly recommended that you do as much of the model selection as you can by using graphical and other analytical tools, rather than feeding a huge number of models to the computer and just going with the best AIC or BIC AIC and BIC are useful tools to use in conjunction with all of the other ways we have developed for finding good models; AIC and BIC are certainly not a substitute for these other ways In short, avoid turning model selection over to the computer if possible! 14

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

1 Introduction. 2 AIC versus SBIC. Erik Swanson Cori Saviano Li Zha Final Project

1 Introduction. 2 AIC versus SBIC. Erik Swanson Cori Saviano Li Zha Final Project Erik Swanson Cori Saviano Li Zha Final Project 1 Introduction In analyzing time series data, we are posed with the question of how past events influences the current situation. In order to determine this,

More information

Lecture 6: Model Checking and Selection

Lecture 6: Model Checking and Selection Lecture 6: Model Checking and Selection Melih Kandemir melih.kandemir@iwr.uni-heidelberg.de May 27, 2014 Model selection We often have multiple modeling choices that are equally sensible: M 1,, M T. Which

More information

MASM22/FMSN30: Linear and Logistic Regression, 7.5 hp FMSN40:... with Data Gathering, 9 hp

MASM22/FMSN30: Linear and Logistic Regression, 7.5 hp FMSN40:... with Data Gathering, 9 hp Selection criteria Example Methods MASM22/FMSN30: Linear and Logistic Regression, 7.5 hp FMSN40:... with Data Gathering, 9 hp Lecture 5, spring 2018 Model selection tools Mathematical Statistics / Centre

More information

MLR Model Selection. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project

MLR Model Selection. Author: Nicholas G Reich, Jeff Goldsmith. This material is part of the statsteachr project MLR Model Selection Author: Nicholas G Reich, Jeff Goldsmith This material is part of the statsteachr project Made available under the Creative Commons Attribution-ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en

More information

How the mean changes depends on the other variable. Plots can show what s happening...

How the mean changes depends on the other variable. Plots can show what s happening... Chapter 8 (continued) Section 8.2: Interaction models An interaction model includes one or several cross-product terms. Example: two predictors Y i = β 0 + β 1 x i1 + β 2 x i2 + β 12 x i1 x i2 + ɛ i. How

More information

Model Selection. Frank Wood. December 10, 2009

Model Selection. Frank Wood. December 10, 2009 Model Selection Frank Wood December 10, 2009 Standard Linear Regression Recipe Identify the explanatory variables Decide the functional forms in which the explanatory variables can enter the model Decide

More information

10. Alternative case influence statistics

10. Alternative case influence statistics 10. Alternative case influence statistics a. Alternative to D i : dffits i (and others) b. Alternative to studres i : externally-studentized residual c. Suggestion: use whatever is convenient with the

More information

7. Estimation and hypothesis testing. Objective. Recommended reading

7. Estimation and hypothesis testing. Objective. Recommended reading 7. Estimation and hypothesis testing Objective In this chapter, we show how the election of estimators can be represented as a decision problem. Secondly, we consider the problem of hypothesis testing

More information

Univariate ARIMA Models

Univariate ARIMA Models Univariate ARIMA Models ARIMA Model Building Steps: Identification: Using graphs, statistics, ACFs and PACFs, transformations, etc. to achieve stationary and tentatively identify patterns and model components.

More information

Model selection and checking

Model selection and checking CHAPTER 6 Model selection and checking In the basic HMM with m states, increasing m always improves the fit of the model (as judged by the likelihood). But along with the improvement comes a quadratic

More information

Model Comparison. Course on Bayesian Inference, WTCN, UCL, February Model Comparison. Bayes rule for models. Linear Models. AIC and BIC.

Model Comparison. Course on Bayesian Inference, WTCN, UCL, February Model Comparison. Bayes rule for models. Linear Models. AIC and BIC. Course on Bayesian Inference, WTCN, UCL, February 2013 A prior distribution over model space p(m) (or hypothesis space ) can be updated to a posterior distribution after observing data y. This is implemented

More information

Chapter 3, Part V: More on Model Identification; Examples

Chapter 3, Part V: More on Model Identification; Examples Chapter 3, Part V: More on Model Identification; Examples Automatic Model Identification Through AIC As mentioned earlier, there is a clear need for automatic, objective methods of identifying the best

More information

DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling

DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling DS-GA 1003: Machine Learning and Computational Statistics Homework 7: Bayesian Modeling Due: Tuesday, May 10, 2016, at 6pm (Submit via NYU Classes) Instructions: Your answers to the questions below, including

More information

1.5 Testing and Model Selection

1.5 Testing and Model Selection 1.5 Testing and Model Selection The EViews output for least squares, probit and logit includes some statistics relevant to testing hypotheses (e.g. Likelihood Ratio statistic) and to choosing between specifications

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Seminar über Statistik FS2008: Model Selection

Seminar über Statistik FS2008: Model Selection Seminar über Statistik FS2008: Model Selection Alessia Fenaroli, Ghazale Jazayeri Monday, April 2, 2008 Introduction Model Choice deals with the comparison of models and the selection of a model. It can

More information

Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model

Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School of Population

More information

Selection Criteria Based on Monte Carlo Simulation and Cross Validation in Mixed Models

Selection Criteria Based on Monte Carlo Simulation and Cross Validation in Mixed Models Selection Criteria Based on Monte Carlo Simulation and Cross Validation in Mixed Models Junfeng Shang Bowling Green State University, USA Abstract In the mixed modeling framework, Monte Carlo simulation

More information

TDA231. Logistic regression

TDA231. Logistic regression TDA231 Devdatt Dubhashi dubhashi@chalmers.se Dept. of Computer Science and Engg. Chalmers University February 19, 2016 Some data 5 x2 0 5 5 0 5 x 1 In the Bayes classifier, we built a model of each class

More information

Tuning Parameter Selection in L1 Regularized Logistic Regression

Tuning Parameter Selection in L1 Regularized Logistic Regression Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2012 Tuning Parameter Selection in L1 Regularized Logistic Regression Shujing Shi Virginia Commonwealth University

More information

STAT 100C: Linear models

STAT 100C: Linear models STAT 100C: Linear models Arash A. Amini June 9, 2018 1 / 21 Model selection Choosing the best model among a collection of models {M 1, M 2..., M N }. What is a good model? 1. fits the data well (model

More information

2.2 Classical Regression in the Time Series Context

2.2 Classical Regression in the Time Series Context 48 2 Time Series Regression and Exploratory Data Analysis context, and therefore we include some material on transformations and other techniques useful in exploratory data analysis. 2.2 Classical Regression

More information

Determining the number of components in mixture models for hierarchical data

Determining the number of components in mixture models for hierarchical data Determining the number of components in mixture models for hierarchical data Olga Lukočienė 1 and Jeroen K. Vermunt 2 1 Department of Methodology and Statistics, Tilburg University, P.O. Box 90153, 5000

More information

Ch 6. Model Specification. Time Series Analysis

Ch 6. Model Specification. Time Series Analysis We start to build ARIMA(p,d,q) models. The subjects include: 1 how to determine p, d, q for a given series (Chapter 6); 2 how to estimate the parameters (φ s and θ s) of a specific ARIMA(p,d,q) model (Chapter

More information

Analysis Methods for Supersaturated Design: Some Comparisons

Analysis Methods for Supersaturated Design: Some Comparisons Journal of Data Science 1(2003), 249-260 Analysis Methods for Supersaturated Design: Some Comparisons Runze Li 1 and Dennis K. J. Lin 2 The Pennsylvania State University Abstract: Supersaturated designs

More information

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 EPSY 905: Intro to Bayesian and MCMC Today s Class An

More information

Nested Sampling. Brendon J. Brewer. brewer/ Department of Statistics The University of Auckland

Nested Sampling. Brendon J. Brewer.   brewer/ Department of Statistics The University of Auckland Department of Statistics The University of Auckland https://www.stat.auckland.ac.nz/ brewer/ is a Monte Carlo method (not necessarily MCMC) that was introduced by John Skilling in 2004. It is very popular

More information

Regression I: Mean Squared Error and Measuring Quality of Fit

Regression I: Mean Squared Error and Measuring Quality of Fit Regression I: Mean Squared Error and Measuring Quality of Fit -Applied Multivariate Analysis- Lecturer: Darren Homrighausen, PhD 1 The Setup Suppose there is a scientific problem we are interested in solving

More information

Stat 451 Lecture Notes Monte Carlo Integration

Stat 451 Lecture Notes Monte Carlo Integration Stat 451 Lecture Notes 06 12 Monte Carlo Integration Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapter 6 in Givens & Hoeting, Chapter 23 in Lange, and Chapters 3 4 in Robert & Casella 2 Updated:

More information

Outlier detection in ARIMA and seasonal ARIMA models by. Bayesian Information Type Criteria

Outlier detection in ARIMA and seasonal ARIMA models by. Bayesian Information Type Criteria Outlier detection in ARIMA and seasonal ARIMA models by Bayesian Information Type Criteria Pedro Galeano and Daniel Peña Departamento de Estadística Universidad Carlos III de Madrid 1 Introduction The

More information

Model comparison: Deviance-based approaches

Model comparison: Deviance-based approaches Model comparison: Deviance-based approaches Patrick Breheny February 19 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/23 Model comparison Thus far, we have looked at residuals in a fairly

More information

Introduction to Statistical modeling: handout for Math 489/583

Introduction to Statistical modeling: handout for Math 489/583 Introduction to Statistical modeling: handout for Math 489/583 Statistical modeling occurs when we are trying to model some data using statistical tools. From the start, we recognize that no model is perfect

More information

FEEG6017 lecture: Akaike's information criterion; model reduction. Brendan Neville

FEEG6017 lecture: Akaike's information criterion; model reduction. Brendan Neville FEEG6017 lecture: Akaike's information criterion; model reduction Brendan Neville bjn1c13@ecs.soton.ac.uk Occam's razor William of Occam, 1288-1348. All else being equal, the simplest explanation is the

More information

The subjective worlds of Frequentist and Bayesian statistics

The subjective worlds of Frequentist and Bayesian statistics Chapter 2 The subjective worlds of Frequentist and Bayesian statistics 2.1 The deterministic nature of random coin throwing Suppose that, in an idealised world, the ultimate fate of a thrown coin heads

More information

Statistical Distribution Assumptions of General Linear Models

Statistical Distribution Assumptions of General Linear Models Statistical Distribution Assumptions of General Linear Models Applied Multilevel Models for Cross Sectional Data Lecture 4 ICPSR Summer Workshop University of Colorado Boulder Lecture 4: Statistical Distributions

More information

Standard Errors & Confidence Intervals. N(0, I( β) 1 ), I( β) = [ 2 l(β, φ; y) β i β β= β j

Standard Errors & Confidence Intervals. N(0, I( β) 1 ), I( β) = [ 2 l(β, φ; y) β i β β= β j Standard Errors & Confidence Intervals β β asy N(0, I( β) 1 ), where I( β) = [ 2 l(β, φ; y) ] β i β β= β j We can obtain asymptotic 100(1 α)% confidence intervals for β j using: β j ± Z 1 α/2 se( β j )

More information

Measures of Fit from AR(p)

Measures of Fit from AR(p) Measures of Fit from AR(p) Residual Sum of Squared Errors Residual Mean Squared Error Root MSE (Standard Error of Regression) R-squared R-bar-squared = = T t e t SSR 1 2 ˆ = = T t e t p T s 1 2 2 ˆ 1 1

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Bayesian Assessment of Hypotheses and Models

Bayesian Assessment of Hypotheses and Models 8 Bayesian Assessment of Hypotheses and Models This is page 399 Printer: Opaque this 8. Introduction The three preceding chapters gave an overview of how Bayesian probability models are constructed. Once

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

ST440/540: Applied Bayesian Statistics. (9) Model selection and goodness-of-fit checks

ST440/540: Applied Bayesian Statistics. (9) Model selection and goodness-of-fit checks (9) Model selection and goodness-of-fit checks Objectives In this module we will study methods for model comparisons and checking for model adequacy For model comparisons there are a finite number of candidate

More information

Open Problems in Mixed Models

Open Problems in Mixed Models xxiii Determining how to deal with a not positive definite covariance matrix of random effects, D during maximum likelihood estimation algorithms. Several strategies are discussed in Section 2.15. For

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Model selection in penalized Gaussian graphical models

Model selection in penalized Gaussian graphical models University of Groningen e.c.wit@rug.nl http://www.math.rug.nl/ ernst January 2014 Penalized likelihood generates a PATH of solutions Consider an experiment: Γ genes measured across T time points. Assume

More information

Week 8 Hour 1: More on polynomial fits. The AIC

Week 8 Hour 1: More on polynomial fits. The AIC Week 8 Hour 1: More on polynomial fits. The AIC Hour 2: Dummy Variables Hour 3: Interactions Stat 302 Notes. Week 8, Hour 3, Page 1 / 36 Interactions. So far we have extended simple regression in the following

More information

Penalized Loss functions for Bayesian Model Choice

Penalized Loss functions for Bayesian Model Choice Penalized Loss functions for Bayesian Model Choice Martyn International Agency for Research on Cancer Lyon, France 13 November 2009 The pure approach For a Bayesian purist, all uncertainty is represented

More information

Model Selection in GLMs. (should be able to implement frequentist GLM analyses!) Today: standard frequentist methods for model selection

Model Selection in GLMs. (should be able to implement frequentist GLM analyses!) Today: standard frequentist methods for model selection Model Selection in GLMs Last class: estimability/identifiability, analysis of deviance, standard errors & confidence intervals (should be able to implement frequentist GLM analyses!) Today: standard frequentist

More information

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures

9. Model Selection. statistical models. overview of model selection. information criteria. goodness-of-fit measures FE661 - Statistical Methods for Financial Engineering 9. Model Selection Jitkomut Songsiri statistical models overview of model selection information criteria goodness-of-fit measures 9-1 Statistical models

More information

Class Notes: Week 8. Probit versus Logit Link Functions and Count Data

Class Notes: Week 8. Probit versus Logit Link Functions and Count Data Ronald Heck Class Notes: Week 8 1 Class Notes: Week 8 Probit versus Logit Link Functions and Count Data This week we ll take up a couple of issues. The first is working with a probit link function. While

More information

Resampling-Based Information Criteria for Adaptive Linear Model Selection

Resampling-Based Information Criteria for Adaptive Linear Model Selection Resampling-Based Information Criteria for Adaptive Linear Model Selection Phil Reiss January 5, 2010 Joint work with Joe Cavanaugh, Lei Huang, and Amy Krain Roy Outline Motivating application: amygdala

More information

1 Hypothesis Testing and Model Selection

1 Hypothesis Testing and Model Selection A Short Course on Bayesian Inference (based on An Introduction to Bayesian Analysis: Theory and Methods by Ghosh, Delampady and Samanta) Module 6: From Chapter 6 of GDS 1 Hypothesis Testing and Model Selection

More information

CS 124 Math Review Section January 29, 2018

CS 124 Math Review Section January 29, 2018 CS 124 Math Review Section CS 124 is more math intensive than most of the introductory courses in the department. You re going to need to be able to do two things: 1. Perform some clever calculations to

More information

Topic Contents. Factoring Methods. Unit 3: Factoring Methods. Finding the square root of a number

Topic Contents. Factoring Methods. Unit 3: Factoring Methods. Finding the square root of a number Topic Contents Factoring Methods Unit 3 The smallest divisor of an integer The GCD of two numbers Generating prime numbers Computing prime factors of an integer Generating pseudo random numbers Raising

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

Linear Models (continued)

Linear Models (continued) Linear Models (continued) Model Selection Introduction Most of our previous discussion has focused on the case where we have a data set and only one fitted model. Up until this point, we have discussed,

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 6: Model complexity scores (v3) Ramesh Johari ramesh.johari@stanford.edu Fall 2015 1 / 34 Estimating prediction error 2 / 34 Estimating prediction error We saw how we can estimate

More information

DYNAMIC ECONOMETRIC MODELS Vol. 9 Nicolaus Copernicus University Toruń Mariola Piłatowska Nicolaus Copernicus University in Toruń

DYNAMIC ECONOMETRIC MODELS Vol. 9 Nicolaus Copernicus University Toruń Mariola Piłatowska Nicolaus Copernicus University in Toruń DYNAMIC ECONOMETRIC MODELS Vol. 9 Nicolaus Copernicus University Toruń 2009 Mariola Piłatowska Nicolaus Copernicus University in Toruń Combined Forecasts Using the Akaike Weights A b s t r a c t. The focus

More information

AST 418/518 Instrumentation and Statistics

AST 418/518 Instrumentation and Statistics AST 418/518 Instrumentation and Statistics Class Website: http://ircamera.as.arizona.edu/astr_518 Class Texts: Practical Statistics for Astronomers, J.V. Wall, and C.R. Jenkins Measuring the Universe,

More information

An Introduction to Path Analysis

An Introduction to Path Analysis An Introduction to Path Analysis PRE 905: Multivariate Analysis Lecture 10: April 15, 2014 PRE 905: Lecture 10 Path Analysis Today s Lecture Path analysis starting with multivariate regression then arriving

More information

Subject CS1 Actuarial Statistics 1 Core Principles

Subject CS1 Actuarial Statistics 1 Core Principles Institute of Actuaries of India Subject CS1 Actuarial Statistics 1 Core Principles For 2019 Examinations Aim The aim of the Actuarial Statistics 1 subject is to provide a grounding in mathematical and

More information

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course Bayesian Inference Chris Mathys Wellcome Trust Centre for Neuroimaging UCL London SPM Course Thanks to Jean Daunizeau and Jérémie Mattout for previous versions of this talk A spectacular piece of information

More information

The connection of dropout and Bayesian statistics

The connection of dropout and Bayesian statistics The connection of dropout and Bayesian statistics Interpretation of dropout as approximate Bayesian modelling of NN http://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf Dropout Geoffrey Hinton Google, University

More information

Introductory Econometrics

Introductory Econometrics Based on the textbook by Wooldridge: : A Modern Approach Robert M. Kunst robert.kunst@univie.ac.at University of Vienna and Institute for Advanced Studies Vienna November 23, 2013 Outline Introduction

More information

Model Estimation Example

Model Estimation Example Ronald H. Heck 1 EDEP 606: Multivariate Methods (S2013) April 7, 2013 Model Estimation Example As we have moved through the course this semester, we have encountered the concept of model estimation. Discussions

More information

Testing Restrictions and Comparing Models

Testing Restrictions and Comparing Models Econ. 513, Time Series Econometrics Fall 00 Chris Sims Testing Restrictions and Comparing Models 1. THE PROBLEM We consider here the problem of comparing two parametric models for the data X, defined by

More information

Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices.

Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices. Quiz 1. Name: Instructions: Closed book, notes, and no electronic devices. 1. What is the difference between a deterministic model and a probabilistic model? (Two or three sentences only). 2. What is the

More information

Model comparison. Patrick Breheny. March 28. Introduction Measures of predictive power Model selection

Model comparison. Patrick Breheny. March 28. Introduction Measures of predictive power Model selection Model comparison Patrick Breheny March 28 Patrick Breheny BST 760: Advanced Regression 1/25 Wells in Bangladesh In this lecture and the next, we will consider a data set involving modeling the decisions

More information

Alfredo A. Romero * College of William and Mary

Alfredo A. Romero * College of William and Mary A Note on the Use of in Model Selection Alfredo A. Romero * College of William and Mary College of William and Mary Department of Economics Working Paper Number 6 October 007 * Alfredo A. Romero is a Visiting

More information

Model selection for good estimation or prediction over a user-specified covariate distribution

Model selection for good estimation or prediction over a user-specified covariate distribution Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2010 Model selection for good estimation or prediction over a user-specified covariate distribution Adam Lee

More information

Mixture Modeling. Identifying the Correct Number of Classes in a Growth Mixture Model. Davood Tofighi Craig Enders Arizona State University

Mixture Modeling. Identifying the Correct Number of Classes in a Growth Mixture Model. Davood Tofighi Craig Enders Arizona State University Identifying the Correct Number of Classes in a Growth Mixture Model Davood Tofighi Craig Enders Arizona State University Mixture Modeling Heterogeneity exists such that the data are comprised of two or

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

ISQS 5349 Spring 2013 Final Exam

ISQS 5349 Spring 2013 Final Exam ISQS 5349 Spring 2013 Final Exam Name: General Instructions: Closed books, notes, no electronic devices. Points (out of 200) are in parentheses. Put written answers on separate paper; multiple choices

More information

Outline. Mixed models in R using the lme4 package Part 3: Longitudinal data. Sleep deprivation data. Simple longitudinal data

Outline. Mixed models in R using the lme4 package Part 3: Longitudinal data. Sleep deprivation data. Simple longitudinal data Outline Mixed models in R using the lme4 package Part 3: Longitudinal data Douglas Bates Longitudinal data: sleepstudy A model with random effects for intercept and slope University of Wisconsin - Madison

More information

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models Thomas Kneib Department of Mathematics Carl von Ossietzky University Oldenburg Sonja Greven Department of

More information

Lecture 13 Fundamentals of Bayesian Inference

Lecture 13 Fundamentals of Bayesian Inference Lecture 13 Fundamentals of Bayesian Inference Dennis Sun Stats 253 August 11, 2014 Outline of Lecture 1 Bayesian Models 2 Modeling Correlations Using Bayes 3 The Universal Algorithm 4 BUGS 5 Wrapping Up

More information

TESTING FOR NORMALITY IN THE LINEAR REGRESSION MODEL: AN EMPIRICAL LIKELIHOOD RATIO TEST

TESTING FOR NORMALITY IN THE LINEAR REGRESSION MODEL: AN EMPIRICAL LIKELIHOOD RATIO TEST Econometrics Working Paper EWP0402 ISSN 1485-6441 Department of Economics TESTING FOR NORMALITY IN THE LINEAR REGRESSION MODEL: AN EMPIRICAL LIKELIHOOD RATIO TEST Lauren Bin Dong & David E. A. Giles Department

More information

Bayesian Statistics Adrian Raftery and Jeff Gill One-day course for the American Sociological Association August 15, 2002

Bayesian Statistics Adrian Raftery and Jeff Gill One-day course for the American Sociological Association August 15, 2002 Bayesian Statistics Adrian Raftery and Jeff Gill One-day course for the American Sociological Association August 15, 2002 Bayes Course, ASA Meeting, August 2002 c Adrian E. Raftery 2002 1 Outline 1. Bayes

More information

CS Homework 3. October 15, 2009

CS Homework 3. October 15, 2009 CS 294 - Homework 3 October 15, 2009 If you have questions, contact Alexandre Bouchard (bouchard@cs.berkeley.edu) for part 1 and Alex Simma (asimma@eecs.berkeley.edu) for part 2. Also check the class website

More information

Chapter 1 Statistical Inference

Chapter 1 Statistical Inference Chapter 1 Statistical Inference causal inference To infer causality, you need a randomized experiment (or a huge observational study and lots of outside information). inference to populations Generalizations

More information

Choosing among models

Choosing among models Eco 515 Fall 2014 Chris Sims Choosing among models September 18, 2014 c 2014 by Christopher A. Sims. This document is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported

More information

Niche Modeling. STAMPS - MBL Course Woods Hole, MA - August 9, 2016

Niche Modeling. STAMPS - MBL Course Woods Hole, MA - August 9, 2016 Niche Modeling Katie Pollard & Josh Ladau Gladstone Institutes UCSF Division of Biostatistics, Institute for Human Genetics and Institute for Computational Health Science STAMPS - MBL Course Woods Hole,

More information

Regression modeling for categorical data. Part II : Model selection and prediction

Regression modeling for categorical data. Part II : Model selection and prediction Regression modeling for categorical data Part II : Model selection and prediction David Causeur Agrocampus Ouest IRMAR CNRS UMR 6625 http://math.agrocampus-ouest.fr/infogluedeliverlive/membres/david.causeur

More information

MLMED. User Guide. Nicholas J. Rockwood The Ohio State University Beta Version May, 2017

MLMED. User Guide. Nicholas J. Rockwood The Ohio State University Beta Version May, 2017 MLMED User Guide Nicholas J. Rockwood The Ohio State University rockwood.19@osu.edu Beta Version May, 2017 MLmed is a computational macro for SPSS that simplifies the fitting of multilevel mediation and

More information

CS 361: Probability & Statistics

CS 361: Probability & Statistics March 14, 2018 CS 361: Probability & Statistics Inference The prior From Bayes rule, we know that we can express our function of interest as Likelihood Prior Posterior The right hand side contains the

More information

Latent Variable Analysis

Latent Variable Analysis Latent Variable Analysis Path Analysis Recap I. Path Diagram a. Exogeneous vs. Endogeneous Variables b. Dependent vs, Independent Variables c. Recursive vs. on-recursive Models II. Structural (Regression)

More information

An Introduction to Mplus and Path Analysis

An Introduction to Mplus and Path Analysis An Introduction to Mplus and Path Analysis PSYC 943: Fundamentals of Multivariate Modeling Lecture 10: October 30, 2013 PSYC 943: Lecture 10 Today s Lecture Path analysis starting with multivariate regression

More information

Illustrating the Implicit BIC Prior. Richard Startz * revised June Abstract

Illustrating the Implicit BIC Prior. Richard Startz * revised June Abstract Illustrating the Implicit BIC Prior Richard Startz * revised June 2013 Abstract I show how to find the uniform prior implicit in using the Bayesian Information Criterion to consider a hypothesis about

More information

Testing and Model Selection

Testing and Model Selection Testing and Model Selection This is another digression on general statistics: see PE App C.8.4. The EViews output for least squares, probit and logit includes some statistics relevant to testing hypotheses

More information

A MULTIVARIATE MODEL FOR COMPARISON OF TWO DATASETS AND ITS APPLICATION TO FMRI ANALYSIS

A MULTIVARIATE MODEL FOR COMPARISON OF TWO DATASETS AND ITS APPLICATION TO FMRI ANALYSIS A MULTIVARIATE MODEL FOR COMPARISON OF TWO DATASETS AND ITS APPLICATION TO FMRI ANALYSIS Yi-Ou Li and Tülay Adalı University of Maryland Baltimore County Baltimore, MD Vince D. Calhoun The MIND Institute

More information

Structure Learning: the good, the bad, the ugly

Structure Learning: the good, the bad, the ugly Readings: K&F: 15.1, 15.2, 15.3, 15.4, 15.5 Structure Learning: the good, the bad, the ugly Graphical Models 10708 Carlos Guestrin Carnegie Mellon University September 29 th, 2006 1 Understanding the uniform

More information

Bayesian Estimation An Informal Introduction

Bayesian Estimation An Informal Introduction Mary Parker, Bayesian Estimation An Informal Introduction page 1 of 8 Bayesian Estimation An Informal Introduction Example: I take a coin out of my pocket and I want to estimate the probability of heads

More information

Föreläsning /31

Föreläsning /31 1/31 Föreläsning 10 090420 Chapter 13 Econometric Modeling: Model Speci cation and Diagnostic testing 2/31 Types of speci cation errors Consider the following models: Y i = β 1 + β 2 X i + β 3 X 2 i +

More information

MCMC notes by Mark Holder

MCMC notes by Mark Holder MCMC notes by Mark Holder Bayesian inference Ultimately, we want to make probability statements about true values of parameters, given our data. For example P(α 0 < α 1 X). According to Bayes theorem:

More information

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models Thomas Kneib Department of Mathematics Carl von Ossietzky University Oldenburg Sonja Greven Department of

More information

AIC Scores as Evidence a Bayesian Interpretation. Malcolm Forster and Elliott Sober University of Wisconsin, Madison

AIC Scores as Evidence a Bayesian Interpretation. Malcolm Forster and Elliott Sober University of Wisconsin, Madison AIC Scores as Evidence a Bayesian Interpretation Malcolm Forster and Elliott Sober University of Wisconsin, Madison Abstract: Bayesians often reject the Akaike Information Criterion (AIC) because it introduces

More information

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models

On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models On the Behavior of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models Thomas Kneib Institute of Statistics and Econometrics Georg-August-University Göttingen Department of Statistics

More information

Discrepancy-Based Model Selection Criteria Using Cross Validation

Discrepancy-Based Model Selection Criteria Using Cross Validation 33 Discrepancy-Based Model Selection Criteria Using Cross Validation Joseph E. Cavanaugh, Simon L. Davies, and Andrew A. Neath Department of Biostatistics, The University of Iowa Pfizer Global Research

More information

i=1 h n (ˆθ n ) = 0. (2)

i=1 h n (ˆθ n ) = 0. (2) Stat 8112 Lecture Notes Unbiased Estimating Equations Charles J. Geyer April 29, 2012 1 Introduction In this handout we generalize the notion of maximum likelihood estimation to solution of unbiased estimating

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information