I. Gas Laws A. Four properties of gases 1. Volume - V

Size: px
Start display at page:

Download "I. Gas Laws A. Four properties of gases 1. Volume - V"

Transcription

1 Gas Laws

2 Learning Objectives TLW know the variables that influence the behavior of gases (TEKS 9) TLW be able to describe interrelationships between temperature, number of moles, pressure, and volume of gases in an enclosed system (TEKS 9.A) TLW perform stoichiometric calculations to determine mass and volume relationships between reactants and products involving gases (TEKS 9.B) TLW describe the postulates of kinetic molecular theory (TEKS 9.C)

3 I. Gas Laws A. Four properties of gases 1. Volume - V gases do not have a defined volume particles of a gas expand to fill their container volume is measured in L (liters) 2. Pressure P collisions of particles with a surface P measured in atm, kpa, torr, mm Hg

4 3. Temperature T the measure of average particle speed or kinetic energy gas particles are in constant motion T o for gases are measured in K (Kelvin) 4. Quantity n measure of how much there is of a gas MOLES!!!!! 22.4 L of gas = 1 mole

5 Postulates of Kinetic Molecular Theory Gases are composed of a large number of particles that behave like hard, spherical objects in a state of constant, random motion. These particles are much smaller than the distance between particles. Most of the volume of a gas is therefore empty space. There is no force of attraction between gas particles or between the particles and the walls of the container. These particles move in a straight line until they collide with another particle or the walls of the container. Collisions between gas particles or collisions with the walls of the container are perfectly elastic. None of the energy of a gas particle is lost when it collides with another particle or with the walls of the container. The average kinetic energy of a collection of gas particles depends on the temperature of the gas and nothing else.

6 Postulates of Kinetic Molecular Theory Check out this interactive tool which demonstrates the postulates in action eculartheory/basicconcepts.html

7 B. Gas laws are based mathematically on the relationship of the four properties of gas volume pressure temperature quantity

8 II. The Gas Laws (4 major ones) A. Boyle s Law 1. Discovered that gas pressure and volume are related 2. If pressure is increased then volume decreases 3. Pressure and volume are inversely related 4. Meaning = whatever pressure does volume does the opposite

9

10 NASA Video

11 Boyle s Law P 1 V 1 = P 2 V 2 P V

12 V 2 = 2.1 L 5. Example of Boyle s Law A sample of gas has a volume of 4.2 L and a pressure of 0.95 atm. If the pressure on the balloon increases to 1.90 atm what will the new volume be? 0.95 atm 1.90 atm P 1 V 1 = P 2 V L V =? (.95 atm)(4.2l) = (1.90 atm)v 2

13 B. Charles Law 1. Discovered the relationship between volume and temperature 2. If T o increases then the volume increases 3. T o and volume are directly proportional 4. Meaning = whatever volume does T o does the exact same thing

14

15 NASA Video

16 Charles Law V 1 /T 1 = V 2 /T 2 V NOTE: All T o must be Kelvin!!!! T o C = K

17

18 V 2 = 2.54 L KELVIN!!!!!!!! 5. Example of Charles Law Another sample of gas has a volume of 2.0 L and a T o of 100 o C. If the T o is increased to 200 o C, what will the new volume be? V = 2.0L V =? V 100ºC 200ºC 1 /T 1 = V 2 /T 2 2.0L/(100 o C + 273) = V 2 /(200 o C + 273)

19 C. Gay-Lussac s Law 1. Discovered the relationship between Pressure and T o 2. If T o increases then Pressure increases 3. T o and P are directly proportional 4. Meaning = whatever T o does pressure does the exact same thing

20 Gay-Lussac s Law P 1 /T 1 = P 2 /T 2 P T

21 Example of Gay-Lussac s Law Another sample of gas has a volume of 2.0 L a T o of 25 o C, and a pressure of 2.00 atm. If the T o is increased to 75 o C, what will the new pressure be? 2.00 atm P =? P 1 /T 1 = P 2 /T 2 V = 2.0L 25ºC V = 2.0L 75ºC 2.00 atm/(25 o C + 273) = P 2 /(75 o C + 273) P 2 = 2.34 atm

22 D. Avogadro s Law If pressure and temperature are kept constant, the volume of a gas is directly proportional to number of moles of a gas This is why a balloon gets larger as you blow it up not the pressure 1 mole of gas = 22.4 L Mathematically speaking.. V 1 = V 2 n 1 n 2

23 Example of Avogadro s Law I have a balloon with 0.25 moles of air in it and its volume is 0.30 L. If I blow it up more to 0.75 L, how many moles have I added of air? V 1 /n 1 = V 2 /n L = 0.75 L = 0.63 moles 0.25 moles n 2 moles

24 E. Combined Gas Law 1. Sometimes the pressure (P in atm, kpa, torr, mm Hg), temperature (T in K), volume (V in L), and/or moles (n for number) change 2. So must combine formulas from all four dudes. 3. Looks like this P 1 V 1 = P 2 V 2 T 1 n 1 T 2 n 2

25 Example of combined gas law 8.0L of neon gas at 23 o C and 900 mm Hg is then compressed to 2.0 L and the T o is raised to 225 o C. What will the new P be? n is constant P V /T n = P V /T n (900 mm Hg)(8.0 L)/(23 ºC + 273) = P 2 (2.0 L)/(225 ºC + 273) P = 6057 mm Hg 2

26 F. Ideal Gas Law PV = nrt R = ideal gas constant L atm mol K 8.31 L kpa mol K 62.4 L mmhg mol K

27 Web Exploration ASPIRE Animation Activity (link) Gas Law Investigation (link) Data Collection Sheet (link)

28 Khan Academy Tutoring on Gas Laws

29 More Practice on Following Slides

30 Sample problem #1 A gas occupies a volume of 400. ml at 500. mm Hg pressure. What will be its volume, at constant temperature, if the pressure is changed to 250 torr? (1 mm Hg = 1 torr *) We will use Boyle s Law: P 1 V 1 = P 2 V 2 V 2 = P 1 V 1 / P 2 V 2 = (500. mm Hg)(400. ml) (250 mm Hg *) = 800. ml

31 Sample #2 A gas occupies 473 cm 3 at 36 C. Find its volume at 94 C. CHARLES LAW GIVEN: T V V 1 = 473 cm 3 T 1 = 36 C = 309K V 2 =? T 2 = 94 C = 367K WORK: V 1 /T 1 = V 2 /T 2 V 2 = (V 1 T 2 )/T 1 V2 = (473 cm 3 ) (367K) / (309 K) V 2 = 562 cm 3

32 Sample #3 A gas pressure is 765 torr at 23 C. At what temperature will the pressure be 560. torr? GAY-LUSSAC S LAW GIVEN: P 1 = 765 torr T 1 = 23 C = 296K P 2 = 560. torr T 2 =? P T WORK: P 1 /T 1 = P 2 /T 2 T 2 = (P 2 T 1 )/P 1 = (506 torr)(296k) / 765 torr T 2 = 217 K

33 Sample problem #4 A gas occupies a volume of 410 ml at 27 C and 740 mm Hg pressure. Calculate the volume the gas would occupy at STP. (0 o C & 760 mm Hg). Moles remain constant We will use the combined gas law: P1 V n T 1 1 PV 2 1 n2t 2 2 V V P1 V T1 Oops use Kelvin P1 V T1 T P T P 27 C=300K; 0 C=273K (740mm)(410mL) 273K (300K) 760mm (740mm)(410mL) 0 C (27 C) 760mm ? 363mL

34 Independent Practice Calculations using four Gas Law Formulas Remember: o K = o C STP (Standard Temperature and Pressure) is 0 o C and 760 mm Hg = 1 atm = kpa = 14.7 psi. 1 torr = 1 mm Hg 22.4 L = 1 mole of gas R = L atm/mol K

35 Dalton s Law of Partial Pressure Sum of the pressures of each gas equals total pressure of system P 1 + P 2 + P P n = P total A gas is 48% O 2 & 52% N 2. Total pressure is 100 kpa. What is the pressure of each gas? 100(.48) = 48 kpa for O 2 and 100(.52) = 52 kpa for N 2

36 Lab Gas Law Smorgasbord (link) In Periodic Groups, read the entire procedure Determine potential hazards, precautions to take, PPE that might be needed

Unit 3 - Part 2: Gas Laws. Objective - learn the main gas laws that all molecules follow.

Unit 3 - Part 2: Gas Laws. Objective - learn the main gas laws that all molecules follow. Unit 3 - Part 2: Gas Laws Objective - learn the main gas laws that all molecules follow. Pressure - Pressure = Force / Area Created by collisions of the gas molecules with each other and with surfaces.

More information

Unit 13 Gas Laws. Gases

Unit 13 Gas Laws. Gases Unit 13 Gas Laws Gases The Gas Laws Kinetic Theory Revisited 1. Particles are far apart and have negligible volume. 2. Move in rapid, random, straight-line motion. 3. Collide elastically. 4. No attractive

More information

Gases! n Properties! n Kinetic Molecular Theory! n Variables! n The Atmosphere! n Gas Laws!

Gases! n Properties! n Kinetic Molecular Theory! n Variables! n The Atmosphere! n Gas Laws! Gases n Properties n Kinetic Molecular Theory n Variables n The Atmosphere n Gas Laws Properties of a Gas n No definite shape or volume n Gases expand to fill any container n Thus they take the shape of

More information

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams.

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams. CHM 111 Chapter 9 Worksheet and Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory Ideal gas: a gas in which all collisions between atoms or molecules are perfectly elastic (no energy lost) there are no intermolecular attractive forces Think of an ideal gas as a collection of perfectly

More information

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties 5.1 Elements That Exist as Gases at 25 C, 1 atm Chapter 5 The Gaseous State YOU READ AND BE RESPONSIBLE FOR THIS SECTION! Gaseous compounds include CH 4, NO, NO 2, H 2 S, NH 3, HCl, etc. Gas Properties

More information

Kinetic Molecular Theory and Gas Law Honors Packet. Name: Period: Date: Requirements for honors credit: Read all notes in packet

Kinetic Molecular Theory and Gas Law Honors Packet. Name: Period: Date: Requirements for honors credit: Read all notes in packet Kinetic Molecular Theory and Gas Law Honors Packet Name: Period: Date: Requirements for honors credit: Read all notes in packet Watch the 10 Brighstorm videos shown on the right and take Cornell notes

More information

Comparison of Solids, Liquids, and Gases

Comparison of Solids, Liquids, and Gases CHAPTER 8 GASES Comparison of Solids, Liquids, and Gases The density of gases is much less than that of solids or liquids. Densities (g/ml) Solid Liquid Gas H O 0.97 0.998 0.000588 CCl 4.70.59 0.00503

More information

CHEMISTRY Matter and Change. Chapter 13: Gases

CHEMISTRY Matter and Change. Chapter 13: Gases CHEMISTRY Matter and Change Chapter 13: Gases CHAPTER 13 Table Of Contents Section 13.1 Section 13.2 Section 13.3 The Gas Laws The Ideal Gas Law Gas Stoichiometry Click a hyperlink to view the corresponding

More information

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Laws Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws Gas Properties 1) Gases have mass - the density of the gas is very low in comparison to solids and liquids, which make it

More information

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas The Gas Laws Apparatus for Studying the Relationship Between Pressure and Volume of a Gas As P (h) increases V decreases Boyle s Law P x V = constant P 1 x V 1 = P 2 x V 2 Constant temperature Constant

More information

The Gaseous State of Matter

The Gaseous State of Matter The Gaseous State of Matter Chapter 12 Hein and Arena Version 1.1 Dr. Eugene Passer Chemistry Department Bronx Community 1 College John Wiley and Company The Kinetic- Molecular Theory 2 The Kinetic-Molecular

More information

Centimeters of mercury

Centimeters of mercury CHAPTER 11 PROPERTIES OF GASES Gases have an indefinite shape: a gas takes the shape of its container and fills it uniformly. If the shape of the container changes, so does the shape of the gas. Gases

More information

Ch. 12 Notes - GASES NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Ch. 12 Notes - GASES NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. Ch. 12 Notes - GASES NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. STANDARD ATMOSPHERIC PRESSURE: 1* atm 760* mm Hg 760* torr 101.3 kpa 14.7 psi * atm, mm Hg,

More information

Gases. What are the four variables needed to describe a gas?

Gases. What are the four variables needed to describe a gas? Gases What are the four variables needed to describe a gas? 1 Gases The simplest state of matter K.E. >> intermolecular forces Random motion Predictable behavior 2 Gases at STP Few Elements: H 2 N 2 O

More information

The Gas Laws. Learning about the special behavior of gases

The Gas Laws. Learning about the special behavior of gases The Gas Laws Learning about the special behavior of gases The States of Matter What are the 3 states of matter that chemists work with? Solids, liquids, and gases We will explain the behavior of gases

More information

CHAPTER 14: The Behavior of Gases

CHAPTER 14: The Behavior of Gases Name: CHAPTER 14: The Behavior of Gases Period: RELATIONSHIPS BETWEEN PRESSURE, VOLUME & TEMPERATURE OF A GAS Boyle s Law-Pressure and Volume Volume (ml) Pressure ( ) 60 50 40 30 20 10 Practice problem:

More information

STP : standard temperature and pressure 0 o C = 273 K kpa

STP : standard temperature and pressure 0 o C = 273 K kpa GAS LAWS Pressure can be measured in different units. For our calculations, we need Pressure to be expressed in kpa. 1 atm = 760. mmhg = 101.3 kpa R is the Universal Gas Constant. Take note of the units:

More information

Section Using Gas Laws to Solve Problems

Section Using Gas Laws to Solve Problems Gases and Gas Laws Section 13.2 Using Gas Laws to Solve Problems Kinetic Molecular Theory Particles of matter are ALWAYS in motion Volume of individual particles is zero. Consists of large number of particles

More information

Gases. Section 13.1 The Gas Laws Section 13.2 The Ideal Gas Law Section 13.3 Gas Stoichiometry

Gases. Section 13.1 The Gas Laws Section 13.2 The Ideal Gas Law Section 13.3 Gas Stoichiometry Gases Section 13.1 The Gas Laws Section 13.2 The Ideal Gas Law Section 13.3 Gas Stoichiometry Click a hyperlink or folder tab to view the corresponding slides. Exit Section 13.1 The Gas Laws State the

More information

CHEMISTRY NOTES Chapter 12. The Behavior of Gases

CHEMISTRY NOTES Chapter 12. The Behavior of Gases Goals : To gain an understanding of : 1. The kinetic theory of matter. 2. Avogadro's hypothesis. 3. The behavior of gases and the gas laws. NOTES: CHEMISTRY NOTES Chapter 12 The Behavior of Gases The kinetic

More information

Chapter 10 Notes: Gases

Chapter 10 Notes: Gases Chapter 10 Notes: Gases Watch Bozeman Videos & other videos on my website for additional help: Big Idea 2: Gases 10.1 Characteristics of Gases Read p. 398-401. Answer the Study Guide questions 1. Earth

More information

Mind Catalyst Stick It!

Mind Catalyst Stick It! Mind Catalyst Stick It! O With a partner, use the following scenarios as a guide to come up with the relationships of the gas properties. For each scenario, write the two properties and their relationship

More information

density (in g/l) = molar mass in grams / molar volume in liters (i.e., 22.4 L)

density (in g/l) = molar mass in grams / molar volume in liters (i.e., 22.4 L) Unit 9: The Gas Laws 9.5 1. Write the formula for the density of any gas at STP. Name: KEY Text Questions from Corwin density (in g/l) = molar mass in grams / molar volume in liters (i.e., 22.4 L) Ch.

More information

Unit 10: Gases. Section 1: Kinetic Molecular Theory and the Combined Gas Law

Unit 10: Gases. Section 1: Kinetic Molecular Theory and the Combined Gas Law Unit 10: Gases Section 1: Kinetic Molecular Theory and the Combined Gas Law Introduction Molecules in a gas behave uniquely Gas molecules move rapidly and expand to fill their space Kinetic Molecular Theory:

More information

Gases: Their Properties & Behavior. Chapter 09 Slide 1

Gases: Their Properties & Behavior. Chapter 09 Slide 1 9 Gases: Their Properties & Behavior Chapter 09 Slide 1 Gas Pressure 01 Chapter 09 Slide 2 Gas Pressure 02 Units of pressure: atmosphere (atm) Pa (N/m 2, 101,325 Pa = 1 atm) Torr (760 Torr = 1 atm) bar

More information

Boyle's Law. Solution: P 1 (0.6L)=(4atm)(2.4L) P 1 = 16atm

Boyle's Law. Solution: P 1 (0.6L)=(4atm)(2.4L) P 1 = 16atm Page1 Boyle's Law Boyle's Law, a principle that describes the relationship between the pressure and volume of a gas. According to this law, the pressure exerted by a gas held at a constant temperature

More information

Boyle s law states the relationship between the pressure and the volume of a sample of gas.

Boyle s law states the relationship between the pressure and the volume of a sample of gas. The Ideal Gas Law Boyle s law states the relationship between the pressure and the volume of a sample of gas. Charles s law states the relationship between the volume and the absolute temperature of a

More information

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion Chapter 3 Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion The motion has consequences Behavior of Gases Physical Properties of Gases Ideal Gas an imaginary

More information

Engr. Yvonne Ligaya F. Musico Chemical Engineering Department

Engr. Yvonne Ligaya F. Musico Chemical Engineering Department GASEOUS STATE Engr. Yvonne Ligaya F. Musico Chemical Engineering Department TOPICS Objective Properties of Gases Kinetic Molecular Theory of Gases Gas Laws OBJECTIVES Determine how volume, pressure and

More information

Chapter 11 Gases 1 Copyright McGraw-Hill 2009

Chapter 11 Gases 1 Copyright McGraw-Hill 2009 Chapter 11 Gases Copyright McGraw-Hill 2009 1 11.1 Properties of Gases The properties of a gas are almost independent of its identity. (Gas molecules behave as if no other molecules are present.) Compressible

More information

Gas Density. Standard T & P (STP) 10/29/2011. At STP, 1 mol of any ideal gas occupies 22.4 L. T = 273 K (0 o C) P = 1 atm = kpa = 1.

Gas Density. Standard T & P (STP) 10/29/2011. At STP, 1 mol of any ideal gas occupies 22.4 L. T = 273 K (0 o C) P = 1 atm = kpa = 1. Standard T & P (STP) T = 73 K (0 o C) P = 1 atm = 101.35 kpa = 1.0135 bar At STP, 1 mol of any ideal gas occupies.4 L.4 L Gas Density We can use PV = nrt to determine the density of gases. What are the

More information

Properties of Gases. 5 important gas properties:

Properties of Gases. 5 important gas properties: Gases Chapter 12 Properties of Gases 5 important gas properties: 1) Gases have an indefinite shape 2) Gases have low densities 3) Gases can compress 4) Gases can expand 5) Gases mix completely with other

More information

Chapter 10. Chapter 10 Gases

Chapter 10. Chapter 10 Gases Chapter 10 Gases Earth is surrounded by a layer of gaseous molecules - the atmosphere - extending out to about 50 km. 10.1 Characteristics of Gases Gases low density; compressible volume and shape of container

More information

Properties of Gases. Properties of Gases. Pressure. Three phases of matter. Definite shape and volume. solid. Definite volume, shape of container

Properties of Gases. Properties of Gases. Pressure. Three phases of matter. Definite shape and volume. solid. Definite volume, shape of container Properties of Gases Properties of Gases Three phases of matter solid Definite shape and volume liquid Definite volume, shape of container gas Shape and volume of container Properties of Gases A gas is

More information

Chapter 8 Gases. 8.1 Kinetic Theory of Gases. 8.2 Barometer. Properties of Gases. 8.1 Gases and Kinetic Theory 8.2 Gas Pressure 8.

Chapter 8 Gases. 8.1 Kinetic Theory of Gases. 8.2 Barometer. Properties of Gases. 8.1 Gases and Kinetic Theory 8.2 Gas Pressure 8. Chapter 8 Gases 8.1 Gases and Kinetic Theory 8.2 Gas Pressure 8.8 Ideal Gas Law * You do not need to know Boyle s (8.3), Charles (8.4), Gay-Lussac s (8.5), Avogadro s (8.7) or the Combined gas (8.6) laws.

More information

UNIT 10.

UNIT 10. UNIT 10 Pressure: F/A http://chemlab.truman.edu/chem130labs/calorimetryfiles/thermobackground.asp There are four variable needed to define the physical state of a gas. They are: o Temperature o Pressure

More information

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings.

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Chapter 5 Gases Chapter 5 A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Copyright Cengage Learning. All rights reserved

More information

Gas Volumes and the Ideal Gas Law

Gas Volumes and the Ideal Gas Law SECTION 11.3 Gas Volumes and the Ideal Gas Law Section 2 presented laws that describe the relationship between the pressure, temperature, and volume of a gas. The volume of a gas is also related to the

More information

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Gases Chapter 5 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Elements that exist as gases at 25 0 C and 1 atmosphere 2 3 Physical Characteristics of Gases

More information

Conceptual Chemistry

Conceptual Chemistry Conceptual Chemistry Objective 1 Describe, at the molecular level, the difference between a gas, liquid, and solid phase. Solids Definite shape Definite volume Particles are vibrating and packed close

More information

Gases, Liquids, and Solids. Chapter 5

Gases, Liquids, and Solids. Chapter 5 Gases, Liquids, and Solids Chapter 5 Educational Goals 1. Define, compare, contrast the terms specific heat, heat of fusion, and heat of vaporization. Know the equations that involve these concepts and

More information

Chapter 10. Gases. The Gas Laws

Chapter 10. Gases. The Gas Laws Page 1 of 12 10.1 Characteristics of Gases. Chapter 10. Gases. All substances have three phases; solid, liquid and gas. Substances that are liquids or solids under ordinary conditions may also exist as

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State Contents and Concepts Gas Laws We will investigate the quantitative relationships that describe the behavior of gases. 1. Gas Pressure and Its Measurement 2. Empirical Gas Laws

More information

TOPIC 2. Topic 2. States of Matter (I) - Gases. 1

TOPIC 2. Topic 2. States of Matter (I) - Gases. 1 Chemistry TOPIC 2 States of Matter (I) - Gases Topic 2. States of Matter (I) - Gases. 1 Contents 1. Introduction 2. Pressure measurement 3. The Ideal Gas equation 4. Efusion and Diffusion 5. Kinetic Molecular

More information

Properties of Gases. assume the volume and shape of their containers. most compressible of the states of matter

Properties of Gases. assume the volume and shape of their containers. most compressible of the states of matter Gases Properties of Gases assume the volume and shape of their containers most compressible of the states of matter mix evenly and completely with other gases much lower density than other forms of matter

More information

The Behaviour of Gases

The Behaviour of Gases INTRAMOLECULAR VS. INTERMOLECULAR FORCES LEARNING GOAL: to understand why gases behave the way they do The Behaviour of Gases intramolecular chemical changes: breaking and forming of INTRAMOLECULAR FORCES

More information

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures

Chapter 11. Preview. Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures Preview Lesson Starter Objectives Pressure and Force Dalton s Law of Partial Pressures Section 1 Gases and Pressure Lesson Starter Make a list of gases you already know about. Separate your list into elements,

More information

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 5 GASES INSTR : FİLİZ ALSHANABLEH

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 5 GASES INSTR : FİLİZ ALSHANABLEH C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 5 GASES 0 1 INSTR : FİLİZ ALSHANABLEH CHAPTER 5 GASES Properties of Gases Pressure History and Application of the Gas Laws Partial Pressure Stoichiometry of

More information

Chapter 5 The Gaseous State

Chapter 5 The Gaseous State Chapter 5 The Gaseous State Contents and Concepts Gas Laws We will investigate the quantitative relationships that describe the behavior of gases. 1. Gas Pressure and Its Measurement 2. Empirical Gas Laws

More information

Gas Volumes and the Ideal Gas Law

Gas Volumes and the Ideal Gas Law Section 3, 9B s Gases react in whole-number ratios. Equal volumes of gases under the same conditions contain equal numbers of molecules. All gases have a volume of 22.4 L under standard conditions. In

More information

Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different

Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different *STUDENT* Unit Objectives: Absolute Zero Avogadro s Law Normal Boiling Point Compound Cooling Curve Deposition Energy Element Evaporation Heat Heat of Fusion Heat of Vaporization Unit 6 Unit Vocabulary:

More information

Gases, Their Properties and the Kinetic Molecular Theory

Gases, Their Properties and the Kinetic Molecular Theory Up to this point of the school year we have covered mostly just two of the four states of matter we mentioned at the beginning. Those, of course, are solids and liquids. While plasmas are pretty neat,

More information

Gas laws. Relationships between variables in the behaviour of gases

Gas laws. Relationships between variables in the behaviour of gases Gas laws Relationships between variables in the behaviour of gases Learning objectives Describe physical basis for pressure in a gas Describe the basic features of the kinetic theory Distinguish among

More information

Unit 08 Review: The KMT and Gas Laws

Unit 08 Review: The KMT and Gas Laws Unit 08 Review: The KMT and Gas Laws It may be helpful to view the animation showing heating curve and changes of state: http://cwx.prenhall.com/petrucci/medialib/media_portfolio/text_images/031_changesstate.mov

More information

CHAPTER 13 Gases The Gas Laws

CHAPTER 13 Gases The Gas Laws CHAPTER 13 Gases 13.1 The Gas Laws The gas laws apply to ideal gases, which are described by the kinetic theory in the following five statements. Gas particles do not attract or repel each other. Gas particles

More information

States of Matter. The Solid State. Particles are tightly packed, very close together (strong cohesive forces) Low kinetic energy (energy of motion)

States of Matter. The Solid State. Particles are tightly packed, very close together (strong cohesive forces) Low kinetic energy (energy of motion) States of Matter The Solid State Particles are tightly packed, very close together (strong cohesive forces) Low kinetic energy (energy of motion) Fixed shape and volume Crystalline or amorphous structure

More information

UNIT 7: The Gas Laws. Mrs. Howland Chemistry 10 Rev. April 2016

UNIT 7: The Gas Laws. Mrs. Howland Chemistry 10 Rev. April 2016 UNIT 7: The Gas Laws ì Mrs. Howland Chemistry 10 Rev. April 2016 ì Learners will be able to ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì Unit 7: Gas Laws Describe atmospheric pressure and explain how a barometer works

More information

Gases, Liquids and Solids

Gases, Liquids and Solids Chapter 5 Gases, Liquids and Solids The States of Matter Gases Pressure Forces between one molecule and another are called intermolecular forces. Intermolecular forces hold molecules together and kinetic

More information

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period.

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period. Chapter 11 Gases Energy order of the p p and s p orbitals changes across the period. Due to lower nuclear charge of B, C & N there is no s-p orbitals interaction Due to high nuclear charge of O, F& Ne

More information

Chapter 3. States of Matter

Chapter 3. States of Matter Chapter 3 States of Matter 1. Solid 2. Liquid 3. Gas States of Matter Two More (discuss later) Plasma Bose-Einstein condensate States of Matter Solid (definite shape and volume) Particles are tightly packed

More information

Warm-Up. 1)Convert the following pressures to pressures in standard atmospheres:

Warm-Up. 1)Convert the following pressures to pressures in standard atmospheres: Warm-Up 1)Convert the following pressures to pressures in standard atmospheres: A. 151.98 kpa B. 456 torr Conversions 1 atm=101.3 kpa= 760 mm Hg= 760 torr Standard temp. & pressure = 1 atm & 0 C (STP)

More information

Introduction to Gases Guided Inquiry

Introduction to Gases Guided Inquiry Introduction to Gases Guided Inquiry Part 1 - The Kinetic Molecular Theory Adapted from a POGIL authored by Linda Padwa and David Hanson, Stony Brook University Why? The kinetic-molecular theory is a model

More information

Gases. Chapter 11. Preview. 27-Nov-11

Gases. Chapter 11. Preview. 27-Nov-11 Chapter 11 Gases Dr. A. Al-Saadi 1 Preview Properties and measurements of gases. Effects of temperature, pressure and volume. Boyle s law. Charles s law, and Avogadro s law. The ideal gas equation. Gas

More information

Ch10.4 Attractive Forces

Ch10.4 Attractive Forces Ch10.4 Attractive Forces Intermolecular Forces are the forces holding molecules to each other. Solids have strong forces Gases (vapor) have weak forces Intermolecular forces determine the phase of matter.

More information

Practice Problems. Unit 11 - Gas Laws. CRHS Academic Chemistry. Due Date Assignment On-Time (100) Late (70)

Practice Problems. Unit 11 - Gas Laws. CRHS Academic Chemistry. Due Date Assignment On-Time (100) Late (70) Name Period CRHS Academic Chemistry Unit 11 - Gas Laws Practice Problems Due Date Assignment On-Time (100) Late (70) 11.1 11.2 11.3 11.4 Warm-Up EC Notes, Homework, Exam Reviews and Their KEYS located

More information

Student Review Packet Answer Key

Student Review Packet Answer Key Student Review acket Answer Key. Convert the following temperatures as indicated. a 0 o C to K 73 K e atm to ka 0.3 ka (s.f. = 00 b -0 o C to K 63 K f 0.878 atm to ka 88.9 ka c 45 o C to K 38 K g 3. atm

More information

Importance of Gases Airbags fill with N gas in an accident. Gas is generated by the decomposition of sodium azide, NaN.

Importance of Gases Airbags fill with N gas in an accident. Gas is generated by the decomposition of sodium azide, NaN. Gas Laws Importance of Gases Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of sodium azide, NaN 3. 2 NaN 3 (s) 2 Na (s) + 3 N 2 (g) 2 Importance of Gases C 6 H 12 O 6

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Sixth Edition by Charles H. Corwin Chapter 11 The Gaseous State by Christopher Hamaker 2011 Pearson Education, Inc. Chapter 11 1 Properties of Gases

More information

Chapter 5 Gases and the Kinetic-Molecular Theory

Chapter 5 Gases and the Kinetic-Molecular Theory Chapter 5 Gases and the Kinetic-Molecular Theory Name (Formula) Methane (CH 4 ) Ammonia (NH 3 ) Chlorine (Cl 2 ) Oxygen (O 2 ) Ethylene (C 2 H 4 ) Origin and Use natural deposits; domestic fuel from N

More information

Part One: The Gas Laws. gases (low density, easy to compress)

Part One: The Gas Laws. gases (low density, easy to compress) CHAPTER FIVE: THE GASEOUS STATE Part One: The Gas Laws A. Introduction. 1. Comparison of three states of matter: fluids (flow freely) solids condensed states liquids (high density, hard to compress) gases

More information

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI.

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Unit 10: Gases Unit Outline I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI. Real Gases I. Opening thoughts Have you ever: Seen a hot air balloon?

More information

Standard T & P (STP) At STP, 1 mol of any ideal gas occupies 22.4 L. The standard temperature and pressure for gases is:

Standard T & P (STP) At STP, 1 mol of any ideal gas occupies 22.4 L. The standard temperature and pressure for gases is: Standard T & P (STP) The standard temperature and pressure for gases is: At STP, 1 mol of any ideal gas occupies 22.4 L T = 273 K (0 o C) P = 1 atm = 101.325 kpa = 1.01325 bar 22.4 L Using STP in problems

More information

10/15/2015. Why study gases? An understanding of real world phenomena. An understanding of how science works.

10/15/2015. Why study gases? An understanding of real world phenomena. An understanding of how science works. 0/5/05 Kinetic Theory and the Behavior of Ideal & Real Gases Why study gases? An understanding of real world phenomena. An understanding of how science works. 0/5/05 A Gas fills any container. completely

More information

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter Chapter 6 The States of Matter Examples of Physical Properties of Three States of Matter 1 Three States of Matter Solids: Fixed shape, fixed volume, particles are held rigidly in place. Liquids: Variable

More information

The Gas Laws-Part I The Gaseous State

The Gas Laws-Part I The Gaseous State The Gas Laws-Part I The Gaseous State The States of Matter The Distinction of Gases from Liquids and Solids 1. Gas volume changes greatly with pressure. 2. Gas volume changes greatly with temperature.

More information

Name: Regents Chemistry: Notes: Unit 8 Gases.

Name: Regents Chemistry: Notes: Unit 8 Gases. Name: Regents Chemistry: Notes: Unit 8 Gases 1 Name: KEY IDEAS The concept of an ideal gas is a model to explain the behavior of gases. A real gas is most like an ideal gas when the real gas is at low

More information

Chapter 5. Gases and the Kinetic-Molecular Theory

Chapter 5. Gases and the Kinetic-Molecular Theory Chapter 5 Gases and the Kinetic-Molecular Theory Macroscopic vs. Microscopic Representation Kinetic Molecular Theory of Gases 1. Gas molecules are in constant motion in random directions. Collisions among

More information

SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws. The States of Matter Characteristics of. Solids, Liquids and Gases

SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws. The States of Matter Characteristics of. Solids, Liquids and Gases SCH 3UI Unit 08 Outline: Kinetic Molecular Theory and the Gas Laws Lesson Topics Covered Handouts to Print 1 Note: The States of Matter solids, liquids and gases state and the polarity of molecules the

More information

Chapter Ten- Gases. STUDY GUIDE AP Chemistry

Chapter Ten- Gases. STUDY GUIDE AP Chemistry STUDY GUIDE AP Chemistry Chapter Ten- Gases Lecture Notes 10.1 Characteristics of Gases All substances have three phases: solid, liquid and gas. Substances that are liquids or solids under ordinary conditions

More information

HOMEWORK 11-1 (pp )

HOMEWORK 11-1 (pp ) CHAPTER 11 HOMEWORK 11-1 (pp. 333 335) VOCABULARY Define. 1. Gay-Lussac s law of combining volumes of gases 2. Avogadro s law Answer each question. 3. Write and explain the equation that expresses the

More information

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Gases Chapter 5 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Elements that exist as gases at 250C and 1 atmosphere 2 3 Physical Characteristics of Gases

More information

Unit 8 Kinetic Theory of Gases. Chapter 13-14

Unit 8 Kinetic Theory of Gases. Chapter 13-14 Unit 8 Kinetic Theory of Gases Chapter 13-14 This tutorial is designed to help students understand scientific measurements. Objectives for this unit appear on the next slide. Each objective is linked to

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl & Donald J. DeCoste University of Illinois Chapter 13 Gases Properties of

More information

D g << D R < D s. Chapter 10 Gases & Kinetic Molecular Theory. I) Gases, Liquids, Solids Gases Liquids Solids. Particles far apart

D g << D R < D s. Chapter 10 Gases & Kinetic Molecular Theory. I) Gases, Liquids, Solids Gases Liquids Solids. Particles far apart Chapter 10 Gases & Kinetic Molecular Theory I) Gases, Liquids, Solids Gases Liquids Solids Particles far apart Particles touching Particles closely packed very compressible slightly comp. Incomp. D g

More information

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas Apparatus for Studying the Relationship Between Pressure and Volume of a Gas As P (h) increases V decreases 1 Boyle s Law P α 1/V P x V = constant P 1 x V 1 = P 2 x V 2 Constant temperature Constant amount

More information

ANNOUNCEMENTS. Exam 3 Score will update soon. Chapter 9 home work due Dec. 7th. Chapter 10 and 11 home work due Dec. 14th.

ANNOUNCEMENTS. Exam 3 Score will update soon. Chapter 9 home work due Dec. 7th. Chapter 10 and 11 home work due Dec. 14th. ANNOUNCEMENTS Exam 3 Score will update soon. Chapter 9 home work due Dec. 7th. Chapter 10 and 11 home work due Dec. 14th. Final exam is on Dec 15th, 7:30-9:30 pm LECTURE OBJECTIVES Chapter 9.1-9.3 Describe

More information

All gases display distinctive properties compared with liquid or solid. Among them, five properties are the most important and listed below:

All gases display distinctive properties compared with liquid or solid. Among them, five properties are the most important and listed below: CHEM 1111 117 Experiment 8 Ideal gas Objective: 1. Advance core knowledge of ideal gas law; 2. Construct the generator to produce gases; 3. Collect the gas under ambient temperature. Introduction: An ideal

More information

The following gas laws describes an ideal gas, where

The following gas laws describes an ideal gas, where Alief ISD Chemistry STAAR Review Reporting Category 4: Gases and Thermochemistry C.9.A Describe and calculate the relations between volume, pressure, number of moles, and temperature for an ideal gas as

More information

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY . Pressure CHAPER GASES AND KINEIC-MOLECULAR HEORY. Boyle s Law: he -P Relationship 3. Charles Law: he - Relationship 4. Standard &P 5. he Combined Gas Law Equation 6. Avogadro s Law and the Standard Molar

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin Lecture INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin Gases by Christopher G. Hamaker Illinois State University Properties of Gases There are five important

More information

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages )

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages ) Name Date Class 13 STATES OF MATTER SECTION 13.1 THE NATURE OF GASES (pages 385 389) This section introduces the kinetic theory and describes how it applies to gases. It defines gas pressure and explains

More information

Chapter 7. Gases, liquids, and solids. Water coexisting in three states H 2 O (g) in air H 2 O (l) ocean H 2 O (s) iceberg

Chapter 7. Gases, liquids, and solids. Water coexisting in three states H 2 O (g) in air H 2 O (l) ocean H 2 O (s) iceberg Chapter 7 Gases, liquids, and solids Water coexisting in three states H 2 O (g) in air H 2 O (l) ocean H 2 O (s) iceberg What s crack a lackin? Kinetic-molecular theory of gases Physical states and the

More information

Gases. A gas. Difference between gas and vapor: Why Study Gases?

Gases. A gas. Difference between gas and vapor: Why Study Gases? Gases Chapter 5 Gases A gas Uniformly fills any container. Is easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings. Difference between gas and vapor: A gas is a substance

More information

Why study gases? A Gas 10/17/2017. An understanding of real world phenomena. An understanding of how science works.

Why study gases? A Gas 10/17/2017. An understanding of real world phenomena. An understanding of how science works. Kinetic Theory and the Behavior of Ideal & Real Gases Why study gases? n understanding of real world phenomena. n understanding of how science works. Gas Uniformly fills any container. Mixes completely

More information

FTF Day 9. April 9, 2012 HW: Assessment Questions 13.1 (Wed) Folder Check Quiz on Wednesday Topic: Gas laws Question: What are gasses like?

FTF Day 9. April 9, 2012 HW: Assessment Questions 13.1 (Wed) Folder Check Quiz on Wednesday Topic: Gas laws Question: What are gasses like? Gas Laws Ch 13 FTF Day 9 April 9, 2012 HW: Assessment Questions 13.1 (Wed) Folder Check Quiz on Wednesday Topic: Gas laws Question: What are gasses like? Describe motion of particles, compressibility,

More information

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc. Lecture Presentation Chapter 10 James F. Kirby Quinnipiac University Hamden, CT Characteristics of Physical properties of gases are all similar. Composed mainly of nonmetallic elements with simple formulas

More information

pv = nrt Where n is the number of moles of gas and R, the molar constant of gases, with a value of

pv = nrt Where n is the number of moles of gas and R, the molar constant of gases, with a value of Experiment 11 IDEAL GAS Objectives 1. To set up a thermal machine laboratory model, 2. To raise an object of a given mass using the thermal machine model, and 3. To describe and explain the operation of

More information

4. 1 mole = 22.4 L at STP mole/volume interconversions at STP

4. 1 mole = 22.4 L at STP mole/volume interconversions at STP Ch. 10 Gases and the Ideal Gas Law(s) Chem 210 Jasperse Ch. 10 Handouts 1 10.1 The Atmosphere 1. Earth surrounded by gas 2. Major components: Nitrogen 78% Oxygen 21% Miscellaneous: All

More information

10/16/2018. Why study gases? An understanding of real world phenomena. An understanding of how science works.

10/16/2018. Why study gases? An understanding of real world phenomena. An understanding of how science works. 10/16/018 Kinetic Theory and the Behavior of Ideal & Real Gases Why study gases? An understanding of real world phenomena. An understanding of how science works. 1 10/16/018 A Gas Uniformly fills any container.

More information