Tutorials. Algorithms and Data Structures Strassen s Algorithm. The Master Theorem for solving recurrences. The Master Theorem (cont d)

Size: px
Start display at page:

Download "Tutorials. Algorithms and Data Structures Strassen s Algorithm. The Master Theorem for solving recurrences. The Master Theorem (cont d)"

Transcription

1 DS 2018/19 Lecture 4 slide 3 DS 2018/19 Lecture 4 slide 4 Tutorials lgorithms and Data Structures Strassen s lgorithm Start in week week 3 Tutorial allocations are linked from the course webpage DS 2018/19 Lecture 4 slide 1 The Master Theorem for solving recurrences Theorem Let n 0 N, k N 0 and a, b R with a > 0 and b > 1, and let T : N R satisfy the following recurrence: { Θ1 if n < n 0, T n a T n/b + Θn k if n n 0. Let c log b a; we call c the critical exponent. Then Θn c if k < c I, T n Θn c lgn if k c II, Θn k if k > c III. Theorem also holds if we replace a T n/b above by a 1 T n/b + a 2 T n/b for any a 1, a 2 0 with a 1 + a 2 a. The Master Theorem cont d DS 2018/19 Lecture 4 slide 2 We don t have time to prove the Master Theorem in class. You can find the proof in Section 4.6 of [CLRS]. Section 4.4 of [CLRS], 2nd ed. Their version of the M.T. is a bit more general than ours. Consider the following examples: T n 4T n/2 + n, T n 4T n/2 + n 2, T n 4T n/2 + n 3. Could alternatively unfold-and-sum to prove the first and third of these and to get an estimate for the second. CLSS EXERCISE

2 DS 2018/19 Lecture 4 slide 6 DS 2018/19 Lecture 4 slide 7 Matrix Multiplication Matrix Multiplication Recall The product of two n n-matrices b2j a i1 a i2 a in a ij 1 i,j n and b ij 1 i,j n is the n n-matrix C where C 1 i,j n with entries n a ik b kj. k1 The Matrix Multiplication Problem Input: n n-matrices and Output: the n n-matrix Matrix Multiplication DS 2018/19 Lecture 4 slide 5 straightforward algorithm DS 2018/19 Lecture 4 slide 6 - n multiplications and n additions for each. - there are n 2 different entries. b2j a i1 a i2 a in lgorithm MatMult, 1. n number of rows of 2. for i 1 to n do 3. for j 1 to n do for k 1 to n do 6. + a ik b kj 7. return C 1 i,j n Requires Θn 3 arithmetic operations additions and multiplications.

3 DS 2018/19 Lecture 4 slide 9 DS 2018/19 Lecture 4 slide 10 näive divide-and-conquer algorithm näive divide-and-conquer algorithm Observe If a i1 a i2 a in b 2j and for n/2 n/2-submatrices ij and ij then note: We are assuming n is a power of 2. DS 2018/19 Lecture 4 slide 8 näive divide-and-conquer algorithm a i1 a i2 a in b 2j Suppose i n/2 and j > n/2. Then n/2 n n a ik b kj a ik b kj + a ik b kj k1 k1 kn/ DS 2018/19 Lecture 4 slide 9 näive divide-and-conquer algorithm cont d ssume n is a power of 2. lgorithm D&C-MatMult, 1. n number of rows of 2. if n 1 then return a 11 b else 4. Let ij, ij for i, j 1, 2 be n/2 n/2-submatrices s.th and Recursively compute 11 11, 12 21, 11 12, 12 22, 21 11, 22 21, 21 12, Compute C , C , 7. return C , C C11 C 12 C 21 C 22

4 DS 2018/19 Lecture 4 slide 12 DS 2018/19 Lecture 4 slide 13 nalysis of D&C-MatMult T n is the number of operations done by D&C-MatMult. Lines 1, 2, 3, 4, 7 require Θ1 arithmetic operations Line 5 requires 8T n/2 arithmetic operations Line 6 requires 4n/2 2 Θn 2 arithmetic operations. Remember! Size of matrices is Θn 2, NOT Θn We get the recurrence T n 8T n/2 + Θn 2. Since log 2 8 3, the Master Theorem yields T n Θn 3. nalysis of D&C-MatMult T n is the number of operations done by D&C-MatMult. Lines 1, 2, 3, 4, 7 require Θ1 arithmetic operations Line 5 requires 8T n/2 arithmetic operations Line 6 requires 4n/2 2 Θn 2 arithmetic operations. Remember! Size of matrices is Θn 2, NOT Θn We get the recurrence T n 8T n/2 + Θn 2. Since log 2 8 3, the Master Theorem yields T n Θn 3. No improvement over MatMult... why? CLSS?... Strassen s algorithm 1969 DS 2018/19 Lecture 4 slide 11 ssume n is a power of 2. Let and We want to compute C11 C 12. C 21 C 22 Strassen s algorithm uses a trick in applying Divide-and-Conquer. Let Strassen s algorithm cont d P P P P P P P DS 2018/19 Lecture 4 slide 11

5 Let Strassen s algorithm cont d P Strassen s algorithm computes C 11 P1 + P4 P5 + P7. We have P P P P P P P P P P Then C 11 P 1 + P 4 P 5 + P 7 C 12 P 3 + P 5 C 21 P 2 + P 4 C 22 P 1 + P 3 P 2 + P 6 DS 2018/19 Lecture 4 slide 13 Strassen s algorithm computes C 11 P1 + P4 P5 + P7. We have P P P P Then P1 + P DS 2018/19 Lecture 4 slide 14 Strassen s algorithm computes C 11 P1 + P4 P5 + P7. We have P P P P Then P1 + P Then P1 + P4 P DS 2018/19 Lecture 4 slide 14 DS 2018/19 Lecture 4 slide 14

6 DS 2018/19 Lecture 4 slide 15 DS 2018/19 Lecture 4 slide 16 Strassen s algorithm computes C 11 P1 + P4 P5 + P7. We have P P P P Then P1 + P Then P1 + P4 P Then P1 + P4 P5 + P , which is C11. Strassen s algorithm computes C 11 P1 + P4 P5 + P7. We have P P P P Then P1 + P Then P1 + P4 P Then P1 + P4 P5 + P , which is C11. homework: check other 3 equations. Strassen s algorithm cont d DS 2018/19 Lecture 4 slide 14 Crucial Observation Only 7 multiplications of n/2 n/2-matrices are needed to compute. lgorithm Strassen, 1. n number of rows of 2. if n 1 then return a 11 b else 4. Determine ij and ij for i, j 1, 2 as before 5. Compute P 1,..., P 7 as in 6. Compute C 11, C 12, C 21, C 22 as in C11 C return C 21 C 22 nalysis of Strassen s algorithm DS 2018/19 Lecture 4 slide 14 Let T n be the number of arithmetic operations performed by Strassen. Lines 1 4 and 7 require Θ1 arithmetic operations Line 5 requires 7T n/2 + Θn 2 arithmetic operations Line 6 requires Θn 2 arithmetic operations. remember. We get the recurrence T n 7T n/2 + Θn 2. Since log > 2, the Master Theorem yields T n Θn log 2 7.

7 DS 2018/19 Lecture 4 slide 19 reakthroughs on matrix multiplication Coppersmith & Winograd 1987 came up with an improved algorithm with running time of... many years of silence... Θn Then in his 2010 PhD thesis, ndrew Stothers from the School of Maths, at the University of Edinburgh got an algorithm with Θn c for c < Coppersmith/Winograd not optimal. ut Stothers didn t publish. Remarks on Matrix Multiplication In practice, the school MatMult algorithm tends to outperform Strassen s algorithm, unless the matrices are huge. The best known lower bound for matrix multiplication is Ωn 2. This is a trivial lower bound need to look at all entries of each matrix. mazingly, Ωn 2 is believed to be the truth! Open problem: Can we find a On 2+o1 -algorithm for Matrix Multiplication of n n matrices? In December 2011, Virginia Vassilevska Williams of Stanford, came up with a Θn c algoithm, for c < partly, but not only, making use of some of Stothers ideas Reading ssignment DS 2018/19 Lecture 4 slide 17 [CLRS] 3rd ed Section 4.5 The Master method for solving recurrences Section 4.3 Using the Master method of [CLRS], 2nd ed [CLRS] 3rd ed Section 4.2 Section 28.2 of [CLRS], 2nd ed DS 2018/19 Lecture 4 slide 18 Problems 1. Exercise of [CLRS] 3rd ed Exercise of [CLRS], 2nd ed. 2. Exercise of [CLRS], 3rd ed. Exercise [CLRS], 2nd ed. 3. Week 3 tutorial sheet :-

The Master Theorem for solving recurrences. Algorithms and Data Structures Strassen s Algorithm. Tutorials. The Master Theorem (cont d)

The Master Theorem for solving recurrences. Algorithms and Data Structures Strassen s Algorithm. Tutorials. The Master Theorem (cont d) The Master Theorem for solving recurrences lgorithms and Data Structures Strassen s lgorithm 23rd September, 2014 Theorem Let n 0 N, k N 0 and a, b R with a > 0 and b > 1, and let T : N R satisfy the following

More information

Algorithms and Data Structures Strassen s Algorithm. ADS (2017/18) Lecture 4 slide 1

Algorithms and Data Structures Strassen s Algorithm. ADS (2017/18) Lecture 4 slide 1 Algorithms and Data Structures Strassen s Algorithm ADS (2017/18) Lecture 4 slide 1 Tutorials Start in week (week 3) Tutorial allocations are linked from the course webpage http://www.inf.ed.ac.uk/teaching/courses/ads/

More information

CMPSCI611: Three Divide-and-Conquer Examples Lecture 2

CMPSCI611: Three Divide-and-Conquer Examples Lecture 2 CMPSCI611: Three Divide-and-Conquer Examples Lecture 2 Last lecture we presented and analyzed Mergesort, a simple divide-and-conquer algorithm. We then stated and proved the Master Theorem, which gives

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication Matrix Multiplication Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB. n c ij = a ik b kj k=1 c 11 c 12 c 1n c 21 c 22 c 2n c n1 c n2 c nn = a 11 a 12 a 1n

More information

The Divide-and-Conquer Design Paradigm

The Divide-and-Conquer Design Paradigm CS473- Algorithms I Lecture 4 The Divide-and-Conquer Design Paradigm CS473 Lecture 4 1 The Divide-and-Conquer Design Paradigm 1. Divide the problem (instance) into subproblems. 2. Conquer the subproblems

More information

Chapter 4 Divide-and-Conquer

Chapter 4 Divide-and-Conquer Chapter 4 Divide-and-Conquer 1 About this lecture (1) Recall the divide-and-conquer paradigm, which we used for merge sort: Divide the problem into a number of subproblems that are smaller instances of

More information

Class Note #14. In this class, we studied an algorithm for integer multiplication, which. 2 ) to θ(n

Class Note #14. In this class, we studied an algorithm for integer multiplication, which. 2 ) to θ(n Class Note #14 Date: 03/01/2006 [Overall Information] In this class, we studied an algorithm for integer multiplication, which improved the running time from θ(n 2 ) to θ(n 1.59 ). We then used some of

More information

Divide and Conquer. Andreas Klappenecker. [based on slides by Prof. Welch]

Divide and Conquer. Andreas Klappenecker. [based on slides by Prof. Welch] Divide and Conquer Andreas Klappenecker [based on slides by Prof. Welch] Divide and Conquer Paradigm An important general technique for designing algorithms: divide problem into subproblems recursively

More information

Introduction to Algorithms 6.046J/18.401J/SMA5503

Introduction to Algorithms 6.046J/18.401J/SMA5503 Introduction to Algorithms 6.046J/8.40J/SMA5503 Lecture 3 Prof. Piotr Indyk The divide-and-conquer design paradigm. Divide the problem (instance) into subproblems. 2. Conquer the subproblems by solving

More information

Inf 2B: Sorting, MergeSort and Divide-and-Conquer

Inf 2B: Sorting, MergeSort and Divide-and-Conquer Inf 2B: Sorting, MergeSort and Divide-and-Conquer Lecture 7 of ADS thread Kyriakos Kalorkoti School of Informatics University of Edinburgh The Sorting Problem Input: Task: Array A of items with comparable

More information

CS60020: Foundations of Algorithm Design and Machine Learning. Sourangshu Bhattacharya

CS60020: Foundations of Algorithm Design and Machine Learning. Sourangshu Bhattacharya CS60020: Foundations of Algorithm Design and Machine Learning Sourangshu Bhattacharya Matrix multiplication September 14, 2005 L2.27 Standard algorithm for i 1 to n do for j 1 ton do c ij 0 for k 1 to

More information

Fast Convolution; Strassen s Method

Fast Convolution; Strassen s Method Fast Convolution; Strassen s Method 1 Fast Convolution reduction to subquadratic time polynomial evaluation at complex roots of unity interpolation via evaluation at complex roots of unity 2 The Master

More information

Complexity of Matrix Multiplication and Bilinear Problems

Complexity of Matrix Multiplication and Bilinear Problems Complexity of Matrix Multiplication and Bilinear Problems François Le Gall Graduate School of Informatics Kyoto University ADFOCS17 - Lecture 3 24 August 2017 Overview of the Lectures Fundamental techniques

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Asymptotic Analysis, recurrences Date: 9/7/17

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Asymptotic Analysis, recurrences Date: 9/7/17 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Asymptotic Analysis, recurrences Date: 9/7/17 2.1 Notes Homework 1 will be released today, and is due a week from today by the beginning

More information

Divide-and-conquer algorithm

Divide-and-conquer algorithm Divide-and-conquer algorithm IDEA: n n matrix = 2 2 matrix of (n/2) (n/2) submatrices: r=ae+bg s=af+bh t =ce+dh u=cf+dg r t s u = a c e g September 15, 2004 Introduction to Algorithms L3.31 b d C = A B

More information

CS 577 Introduction to Algorithms: Strassen s Algorithm and the Master Theorem

CS 577 Introduction to Algorithms: Strassen s Algorithm and the Master Theorem CS 577 Introduction to Algorithms: Jin-Yi Cai University of Wisconsin Madison In the last class, we described InsertionSort and showed that its worst-case running time is Θ(n 2 ). Check Figure 2.2 for

More information

1 Caveats of Parallel Algorithms

1 Caveats of Parallel Algorithms CME 323: Distriuted Algorithms and Optimization, Spring 2015 http://stanford.edu/ reza/dao. Instructor: Reza Zadeh, Matroid and Stanford. Lecture 1, 9/26/2015. Scried y Suhas Suresha, Pin Pin, Andreas

More information

Chapter 5. Divide and Conquer CLRS 4.3. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 5. Divide and Conquer CLRS 4.3. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 5 Divide and Conquer CLRS 4.3 Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 Divide-and-Conquer Divide-and-conquer. Break up problem into several parts. Solve

More information

Divide and Conquer. Arash Rafiey. 27 October, 2016

Divide and Conquer. Arash Rafiey. 27 October, 2016 27 October, 2016 Divide the problem into a number of subproblems Divide the problem into a number of subproblems Conquer the subproblems by solving them recursively or if they are small, there must be

More information

1.1 Administrative Stuff

1.1 Administrative Stuff 601.433 / 601.633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Introduction, Karatsuba/Strassen Date: 9/4/18 1.1 Administrative Stuff Welcome to Algorithms! In this class you will learn the

More information

Grade 11/12 Math Circles Fall Nov. 5 Recurrences, Part 2

Grade 11/12 Math Circles Fall Nov. 5 Recurrences, Part 2 1 Faculty of Mathematics Waterloo, Ontario Centre for Education in Mathematics and Computing Grade 11/12 Math Circles Fall 2014 - Nov. 5 Recurrences, Part 2 Running time of algorithms In computer science,

More information

Dynamic Programming: Matrix chain multiplication (CLRS 15.2)

Dynamic Programming: Matrix chain multiplication (CLRS 15.2) Dynamic Programming: Matrix chain multiplication (CLRS.) The problem Given a sequence of matrices A, A, A,..., A n, find the best way (using the minimal number of multiplications) to compute their product.

More information

Dynamic Programming (CLRS )

Dynamic Programming (CLRS ) Dynamic Programming (CLRS.-.) Today we discuss a technique called dynamic programming. It is neither especially dynamic nor especially programming related. We will discuss dynamic programming by looking

More information

Chapter 5. Divide and Conquer CLRS 4.3. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 5. Divide and Conquer CLRS 4.3. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 5 Divide and Conquer CLRS 4.3 Slides by Kevin Wayne. Copyright 25 Pearson-Addison Wesley. All rights reserved. Divide-and-Conquer Divide-and-conquer. Break up problem into several parts. Solve

More information

CSE 613: Parallel Programming. Lectures ( Analyzing Divide-and-Conquer Algorithms )

CSE 613: Parallel Programming. Lectures ( Analyzing Divide-and-Conquer Algorithms ) CSE 613: Parallel Programming Lectures 13 14 ( Analyzing Divide-and-Conquer Algorithms ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2015 A Useful Recurrence Consider the

More information

Chapter 2. Recurrence Relations. Divide and Conquer. Divide and Conquer Strategy. Another Example: Merge Sort. Merge Sort Example. Merge Sort Example

Chapter 2. Recurrence Relations. Divide and Conquer. Divide and Conquer Strategy. Another Example: Merge Sort. Merge Sort Example. Merge Sort Example Recurrence Relations Chapter 2 Divide and Conquer Equation or an inequality that describes a function by its values on smaller inputs. Recurrence relations arise when we analyze the running time of iterative

More information

Linear Methods (Math 211) - Lecture 2

Linear Methods (Math 211) - Lecture 2 Linear Methods (Math 211) - Lecture 2 David Roe September 11, 2013 Recall Last time: Linear Systems Matrices Geometric Perspective Parametric Form Today 1 Row Echelon Form 2 Rank 3 Gaussian Elimination

More information

CMPS 2200 Fall Divide-and-Conquer. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Divide-and-Conquer. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fall 2017 Divide-and-Conquer Carola Wenk Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk 1 The divide-and-conquer design paradigm 1. Divide the problem (instance)

More information

COMP 382: Reasoning about algorithms

COMP 382: Reasoning about algorithms Fall 2014 Unit 4: Basics of complexity analysis Correctness and efficiency So far, we have talked about correctness and termination of algorithms What about efficiency? Running time of an algorithm For

More information

Computational Complexity. This lecture. Notes. Lecture 02 - Basic Complexity Analysis. Tom Kelsey & Susmit Sarkar. Notes

Computational Complexity. This lecture. Notes. Lecture 02 - Basic Complexity Analysis. Tom Kelsey & Susmit Sarkar. Notes Computational Complexity Lecture 02 - Basic Complexity Analysis Tom Kelsey & Susmit Sarkar School of Computer Science University of St Andrews http://www.cs.st-andrews.ac.uk/~tom/ twk@st-andrews.ac.uk

More information

Divide and Conquer Algorithms

Divide and Conquer Algorithms Divide and Conquer Algorithms Introduction There exist many problems that can be solved using a divide-and-conquer algorithm. A divide-andconquer algorithm A follows these general guidelines. Divide Algorithm

More information

CSE 613: Parallel Programming. Lecture 8 ( Analyzing Divide-and-Conquer Algorithms )

CSE 613: Parallel Programming. Lecture 8 ( Analyzing Divide-and-Conquer Algorithms ) CSE 613: Parallel Programming Lecture 8 ( Analyzing Divide-and-Conquer Algorithms ) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2012 A Useful Recurrence Consider the following

More information

Ma/CS 6b Class 12: Graphs and Matrices

Ma/CS 6b Class 12: Graphs and Matrices Ma/CS 6b Class 2: Graphs and Matrices 3 3 v 5 v 4 v By Adam Sheffer Non-simple Graphs In this class we allow graphs to be nonsimple. We allow parallel edges, but not loops. Incidence Matrix Consider a

More information

Computational Complexity - Pseudocode and Recursions

Computational Complexity - Pseudocode and Recursions Computational Complexity - Pseudocode and Recursions Nicholas Mainardi 1 Dipartimento di Elettronica e Informazione Politecnico di Milano nicholas.mainardi@polimi.it June 6, 2018 1 Partly Based on Alessandro

More information

Divide and Conquer. CSE21 Winter 2017, Day 9 (B00), Day 6 (A00) January 30,

Divide and Conquer. CSE21 Winter 2017, Day 9 (B00), Day 6 (A00) January 30, Divide and Conquer CSE21 Winter 2017, Day 9 (B00), Day 6 (A00) January 30, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Merging sorted lists: WHAT Given two sorted lists a 1 a 2 a 3 a k b 1 b 2 b 3 b

More information

Powers of Tensors and Fast Matrix Multiplication

Powers of Tensors and Fast Matrix Multiplication Powers of Tensors and Fast Matrix Multiplication François Le Gall Department of Computer Science Graduate School of Information Science and Technology The University of Tokyo Simons Institute, 12 November

More information

CSE548, AMS542: Analysis of Algorithms, Fall 2017 Date: October 11. In-Class Midterm. ( 7:05 PM 8:20 PM : 75 Minutes )

CSE548, AMS542: Analysis of Algorithms, Fall 2017 Date: October 11. In-Class Midterm. ( 7:05 PM 8:20 PM : 75 Minutes ) CSE548, AMS542: Analysis of Algorithms, Fall 2017 Date: October 11 In-Class Midterm ( 7:05 PM 8:20 PM : 75 Minutes ) This exam will account for either 15% or 30% of your overall grade depending on your

More information

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages:

CS100: DISCRETE STRUCTURES. Lecture 3 Matrices Ch 3 Pages: CS100: DISCRETE STRUCTURES Lecture 3 Matrices Ch 3 Pages: 246-262 Matrices 2 Introduction DEFINITION 1: A matrix is a rectangular array of numbers. A matrix with m rows and n columns is called an m x n

More information

MATH10212 Linear Algebra B Homework Week 5

MATH10212 Linear Algebra B Homework Week 5 MATH Linear Algebra B Homework Week 5 Students are strongly advised to acquire a copy of the Textbook: D C Lay Linear Algebra its Applications Pearson 6 (or other editions) Normally homework assignments

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CSE 5311 Lecture 5 Divide and Conquer: Fast Fourier Transform Junzhou Huang, Ph.D. Department of Computer Science and Engineering CSE5311 Design and Analysis of Algorithms

More information

University of the Virgin Islands, St. Thomas January 14, 2015 Algorithms and Programming for High Schoolers. Lecture 5

University of the Virgin Islands, St. Thomas January 14, 2015 Algorithms and Programming for High Schoolers. Lecture 5 University of the Virgin Islands, St. Thomas January 14, 2015 Algorithms and Programming for High Schoolers Numerical algorithms: Lecture 5 Today we ll cover algorithms for various numerical problems:

More information

Outline. 1 Introduction. Merging and MergeSort. 3 Analysis. 4 Reference

Outline. 1 Introduction. Merging and MergeSort. 3 Analysis. 4 Reference Outline Computer Science 331 Sort Mike Jacobson Department of Computer Science University of Calgary Lecture #25 1 Introduction 2 Merging and 3 4 Reference Mike Jacobson (University of Calgary) Computer

More information

Dot Products, Transposes, and Orthogonal Projections

Dot Products, Transposes, and Orthogonal Projections Dot Products, Transposes, and Orthogonal Projections David Jekel November 13, 2015 Properties of Dot Products Recall that the dot product or standard inner product on R n is given by x y = x 1 y 1 + +

More information

Solving recurrences. Frequently showing up when analysing divide&conquer algorithms or, more generally, recursive algorithms.

Solving recurrences. Frequently showing up when analysing divide&conquer algorithms or, more generally, recursive algorithms. Solving recurrences Frequently showing up when analysing divide&conquer algorithms or, more generally, recursive algorithms Example: Merge-Sort(A, p, r) 1: if p < r then 2: q (p + r)/2 3: Merge-Sort(A,

More information

Lecture 6 & 7. Shuanglin Shao. September 16th and 18th, 2013

Lecture 6 & 7. Shuanglin Shao. September 16th and 18th, 2013 Lecture 6 & 7 Shuanglin Shao September 16th and 18th, 2013 1 Elementary matrices 2 Equivalence Theorem 3 A method of inverting matrices Def An n n matrice is called an elementary matrix if it can be obtained

More information

Divide and Conquer CPE 349. Theresa Migler-VonDollen

Divide and Conquer CPE 349. Theresa Migler-VonDollen Divide and Conquer CPE 349 Theresa Migler-VonDollen Divide and Conquer Divide and Conquer is a strategy that solves a problem by: 1 Breaking the problem into subproblems that are themselves smaller instances

More information

Divide and Conquer. Maximum/minimum. Median finding. CS125 Lecture 4 Fall 2016

Divide and Conquer. Maximum/minimum. Median finding. CS125 Lecture 4 Fall 2016 CS125 Lecture 4 Fall 2016 Divide and Conquer We have seen one general paradigm for finding algorithms: the greedy approach. We now consider another general paradigm, known as divide and conquer. We have

More information

FFT: Fast Polynomial Multiplications

FFT: Fast Polynomial Multiplications FFT: Fast Polynomial Multiplications Jie Wang University of Massachusetts Lowell Department of Computer Science J. Wang (UMass Lowell) FFT: Fast Polynomial Multiplications 1 / 20 Overview So far we have

More information

I. Approaches to bounding the exponent of matrix multiplication

I. Approaches to bounding the exponent of matrix multiplication I. Approaches to bounding the exponent of matrix multiplication Chris Umans Caltech Based on joint work with Noga Alon, Henry Cohn, Bobby Kleinberg, Amir Shpilka, Balazs Szegedy Modern Applications of

More information

Methods for solving recurrences

Methods for solving recurrences Methods for solving recurrences Analyzing the complexity of mergesort The merge function Consider the following implementation: 1 int merge ( int v1, int n1, int v, int n ) { 3 int r = malloc ( ( n1+n

More information

Complexity Theory of Polynomial-Time Problems

Complexity Theory of Polynomial-Time Problems Complexity Theory of Polynomial-Time Problems Lecture 8: (Boolean) Matrix Multiplication Karl Bringmann Recall: Boolean Matrix Multiplication given n n matrices A, B with entries in {0,1} compute matrix

More information

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2

We could express the left side as a sum of vectors and obtain the Vector Form of a Linear System: a 12 a x n. a m2 Week 22 Equations, Matrices and Transformations Coefficient Matrix and Vector Forms of a Linear System Suppose we have a system of m linear equations in n unknowns a 11 x 1 + a 12 x 2 + + a 1n x n b 1

More information

COE428 Notes Week 4 (Week of Jan 30, 2017)

COE428 Notes Week 4 (Week of Jan 30, 2017) COE428 Lecture Notes: Week 4 1 of 9 COE428 Notes Week 4 (Week of Jan 30, 2017) Table of Contents Announcements...2 Answers to last week's questions...2 Review...3 Big-O, Big-Omega and Big-Theta analysis

More information

Recommended readings: Description of Quicksort in my notes, Ch7 of your CLRS text.

Recommended readings: Description of Quicksort in my notes, Ch7 of your CLRS text. Chapter 1 Quicksort 1.1 Prerequisites You need to be familiar with the divide-and-conquer paradigm, standard notations for expressing the time-complexity of an algorithm, like the big-oh, big-omega notations.

More information

A = , A 32 = n ( 1) i +j a i j det(a i j). (1) j=1

A = , A 32 = n ( 1) i +j a i j det(a i j). (1) j=1 Lecture Notes: Determinant of a Square Matrix Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk 1 Determinant Definition Let A [a ij ] be an

More information

What if the characteristic equation has complex roots?

What if the characteristic equation has complex roots? MA 360 Lecture 18 - Summary of Recurrence Relations (cont. and Binomial Stuff Thursday, November 13, 01. Objectives: Examples of Recurrence relation solutions, Pascal s triangle. A quadratic equation What

More information

Introduction to Algorithms

Introduction to Algorithms Lecture 1 Introduction to Algorithms 1.1 Overview The purpose of this lecture is to give a brief overview of the topic of Algorithms and the kind of thinking it involves: why we focus on the subjects that

More information

Data Structures and Algorithms CMPSC 465

Data Structures and Algorithms CMPSC 465 Data Structures and Algorithms CMPSC 465 LECTURE 9 Solving recurrences Substitution method Adam Smith S. Raskhodnikova and A. Smith; based on slides by E. Demaine and C. Leiserson Review question Draw

More information

Analysis of Algorithms I: Asymptotic Notation, Induction, and MergeSort

Analysis of Algorithms I: Asymptotic Notation, Induction, and MergeSort Analysis of Algorithms I: Asymptotic Notation, Induction, and MergeSort Xi Chen Columbia University We continue with two more asymptotic notation: o( ) and ω( ). Let f (n) and g(n) are functions that map

More information

! Break up problem into several parts. ! Solve each part recursively. ! Combine solutions to sub-problems into overall solution.

! Break up problem into several parts. ! Solve each part recursively. ! Combine solutions to sub-problems into overall solution. Divide-and-Conquer Chapter 5 Divide and Conquer Divide-and-conquer.! Break up problem into several parts.! Solve each part recursively.! Combine solutions to sub-problems into overall solution. Most common

More information

Divide-and-Conquer. Reading: CLRS Sections 2.3, 4.1, 4.2, 4.3, 28.2, CSE 6331 Algorithms Steve Lai

Divide-and-Conquer. Reading: CLRS Sections 2.3, 4.1, 4.2, 4.3, 28.2, CSE 6331 Algorithms Steve Lai Divide-and-Conquer Reading: CLRS Sections 2.3, 4.1, 4.2, 4.3, 28.2, 33.4. CSE 6331 Algorithms Steve Lai Divide and Conquer Given an instance x of a prolem, the method works as follows: divide-and-conquer

More information

282 Math Preview. Chris Brown. September 8, Why This? 2. 2 Logarithms Basic Identities Basic Consequences...

282 Math Preview. Chris Brown. September 8, Why This? 2. 2 Logarithms Basic Identities Basic Consequences... 282 Math Preview Chris Brown September 8, 2005 Contents Why This? 2 2 Logarithms 2 2. Basic Identities.................................... 2 2.2 Basic Consequences.................................. 3 3

More information

Divide and Conquer: Polynomial Multiplication Version of October 1 / 7, 24201

Divide and Conquer: Polynomial Multiplication Version of October 1 / 7, 24201 Divide and Conquer: Polynomial Multiplication Version of October 7, 2014 Divide and Conquer: Polynomial Multiplication Version of October 1 / 7, 24201 Outline Outline: Introduction The polynomial multiplication

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I ICS4: Discrete Mathematics for Computer Science I Dept. Information & Computer Sci., Jan Stelovsky based on slides by Dr. Baek and Dr. Still Originals by Dr. M. P. Frank and Dr. J.L. Gross Provided by

More information

CS483 Design and Analysis of Algorithms

CS483 Design and Analysis of Algorithms CS483 Design and Analysis of Algorithms Chapter 2 Divide and Conquer Algorithms Instructor: Fei Li lifei@cs.gmu.edu with subject: CS483 Office hours: Room 5326, Engineering Building, Thursday 4:30pm -

More information

Vector, Matrix, and Tensor Derivatives

Vector, Matrix, and Tensor Derivatives Vector, Matrix, and Tensor Derivatives Erik Learned-Miller The purpose of this document is to help you learn to take derivatives of vectors, matrices, and higher order tensors (arrays with three dimensions

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design nd Anlysis LECTURE 12 Solving Recurrences Mster Theorem Adm Smith Review Question: Exponentition Problem: Compute b, where b N is n bits long. Question: How mny multiplictions? Nive lgorithm:

More information

CSC236 Week 4. Larry Zhang

CSC236 Week 4. Larry Zhang CSC236 Week 4 Larry Zhang 1 Announcements PS2 due on Friday This week s tutorial: Exercises with big-oh PS1 feedback People generally did well Writing style need to be improved. This time the TAs are lenient,

More information

MATH 320, WEEK 7: Matrices, Matrix Operations

MATH 320, WEEK 7: Matrices, Matrix Operations MATH 320, WEEK 7: Matrices, Matrix Operations 1 Matrices We have introduced ourselves to the notion of the grid-like coefficient matrix as a short-hand coefficient place-keeper for performing Gaussian

More information

cse547, math547 DISCRETE MATHEMATICS Professor Anita Wasilewska

cse547, math547 DISCRETE MATHEMATICS Professor Anita Wasilewska cse547, math547 DISCRETE MATHEMATICS Professor Anita Wasilewska LECTURE 1 INTRODUCTION Course Web Page www.cs.stonybrook.edu/ cse547 The webpage contains: detailed lectures notes slides; very detailed

More information

CSI2101-W08- Recurrence Relations

CSI2101-W08- Recurrence Relations Motivation CSI2101-W08- Recurrence Relations where do they come from modeling program analysis Solving Recurrence Relations by iteration arithmetic/geometric sequences linear homogenous recurrence relations

More information

Complexity Theory of Polynomial-Time Problems

Complexity Theory of Polynomial-Time Problems Complexity Theory of Polynomial-Time Problems Lecture 3: The polynomial method Part I: Orthogonal Vectors Sebastian Krinninger Organization of lecture No lecture on 26.05. (State holiday) 2 nd exercise

More information

CS 4424 Matrix multiplication

CS 4424 Matrix multiplication CS 4424 Matrix multiplication 1 Reminder: matrix multiplication Matrix-matrix product. Starting from a 1,1 a 1,n A =.. and B = a n,1 a n,n b 1,1 b 1,n.., b n,1 b n,n we get AB by multiplying A by all columns

More information

Divide and Conquer Strategy

Divide and Conquer Strategy Divide and Conquer Strategy Algorithm design is more an art, less so a science. There are a few useful strategies, but no guarantee to succeed. We will discuss: Divide and Conquer, Greedy, Dynamic Programming.

More information

Lecture 9: Submatrices and Some Special Matrices

Lecture 9: Submatrices and Some Special Matrices Lecture 9: Submatrices and Some Special Matrices Winfried Just Department of Mathematics, Ohio University February 2, 2018 Submatrices A submatrix B of a given matrix A is any matrix that can be obtained

More information

Asymptotic Analysis and Recurrences

Asymptotic Analysis and Recurrences Appendix A Asymptotic Analysis and Recurrences A.1 Overview We discuss the notion of asymptotic analysis and introduce O, Ω, Θ, and o notation. We then turn to the topic of recurrences, discussing several

More information

Lecture 10: Powers of Matrices, Difference Equations

Lecture 10: Powers of Matrices, Difference Equations Lecture 10: Powers of Matrices, Difference Equations Difference Equations A difference equation, also sometimes called a recurrence equation is an equation that defines a sequence recursively, i.e. each

More information

Divide-and-conquer: Order Statistics. Curs: Fall 2017

Divide-and-conquer: Order Statistics. Curs: Fall 2017 Divide-and-conquer: Order Statistics Curs: Fall 2017 The divide-and-conquer strategy. 1. Break the problem into smaller subproblems, 2. recursively solve each problem, 3. appropriately combine their answers.

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Divide-and-Conquer Chapter 5 Divide and Conquer Divide-and-conquer. Break up problem into several parts. Solve each part recursively. Combine solutions to sub-problems into overall solution. Most common

More information

1300 Linear Algebra and Vector Geometry

1300 Linear Algebra and Vector Geometry 1300 Linear Algebra and Vector Geometry R. Craigen Office: MH 523 Email: craigenr@umanitoba.ca May-June 2017 Introduction: linear equations Read 1.1 (in the text that is!) Go to course, class webpages.

More information

22A-2 SUMMER 2014 LECTURE Agenda

22A-2 SUMMER 2014 LECTURE Agenda 22A-2 SUMMER 204 LECTURE 2 NATHANIEL GALLUP The Dot Product Continued Matrices Group Work Vectors and Linear Equations Agenda 2 Dot Product Continued Angles between vectors Given two 2-dimensional vectors

More information

Chapter 2. Divide-and-conquer. 2.1 Strassen s algorithm

Chapter 2. Divide-and-conquer. 2.1 Strassen s algorithm Chapter 2 Divide-and-conquer This chapter revisits the divide-and-conquer paradigms and explains how to solve recurrences, in particular, with the use of the master theorem. We first illustrate the concept

More information

How to find good starting tensors for matrix multiplication

How to find good starting tensors for matrix multiplication How to find good starting tensors for matrix multiplication Markus Bläser Saarland University Matrix multiplication z,... z,n..... z n,... z n,n = x,... x,n..... x n,... x n,n y,... y,n..... y n,... y

More information

On the Exponent of the All Pairs Shortest Path Problem

On the Exponent of the All Pairs Shortest Path Problem On the Exponent of the All Pairs Shortest Path Problem Noga Alon Department of Mathematics Sackler Faculty of Exact Sciences Tel Aviv University Zvi Galil Department of Computer Science Sackler Faculty

More information

Divide and Conquer algorithms

Divide and Conquer algorithms Divide and Conquer algorithms Another general method for constructing algorithms is given by the Divide and Conquer strategy. We assume that we have a problem with input that can be split into parts in

More information

Finite Math - J-term Section Systems of Linear Equations in Two Variables Example 1. Solve the system

Finite Math - J-term Section Systems of Linear Equations in Two Variables Example 1. Solve the system Finite Math - J-term 07 Lecture Notes - //07 Homework Section 4. - 9, 0, 5, 6, 9, 0,, 4, 6, 0, 50, 5, 54, 55, 56, 6, 65 Section 4. - Systems of Linear Equations in Two Variables Example. Solve the system

More information

A design paradigm. Divide and conquer: (When) does decomposing a problem into smaller parts help? 09/09/ EECS 3101

A design paradigm. Divide and conquer: (When) does decomposing a problem into smaller parts help? 09/09/ EECS 3101 A design paradigm Divide and conquer: (When) does decomposing a problem into smaller parts help? 09/09/17 112 Multiplying complex numbers (from Jeff Edmonds slides) INPUT: Two pairs of integers, (a,b),

More information

Lecture 1b: The Maximum Contiguous Subarray Problem

Lecture 1b: The Maximum Contiguous Subarray Problem Lecture 1b: The Maximum Contiguous Subarray Problem Reference: Chapter 8 in Programming Pearls, (nd ed) by Jon Bentley. History: 1-D version of a a -D pattern recognition problem. Clean way to illustrate

More information

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in Vectors and Matrices Continued Remember that our goal is to write a system of algebraic equations as a matrix equation. Suppose we have the n linear algebraic equations a x + a 2 x 2 + a n x n = b a 2

More information

Divide and Conquer. Chapter Overview. 1.2 Divide and Conquer

Divide and Conquer. Chapter Overview. 1.2 Divide and Conquer Chapter 1 Divide and Conquer 1.1 Overview This chapter introduces Divide and Conquer, which is a technique for designing recursive algorithms that are (sometimes) asymptotically efficient. It also presents

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CSE 101, Winter 2018 Design and Analysis of Algorithms Lecture 4: Divide and Conquer (I) Class URL: http://vlsicad.ucsd.edu/courses/cse101-w18/ Divide and Conquer ( DQ ) First paradigm or framework DQ(S)

More information

Math.3336: Discrete Mathematics. Advanced Counting Techniques

Math.3336: Discrete Mathematics. Advanced Counting Techniques Math.3336: Discrete Mathematics Advanced Counting Techniques Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu

More information

The divide-and-conquer strategy solves a problem by: 1. Breaking it into subproblems that are themselves smaller instances of the same type of problem

The divide-and-conquer strategy solves a problem by: 1. Breaking it into subproblems that are themselves smaller instances of the same type of problem Chapter 2. Divide-and-conquer algorithms The divide-and-conquer strategy solves a problem by: 1. Breaking it into subproblems that are themselves smaller instances of the same type of problem. 2. Recursively

More information

CS483 Design and Analysis of Algorithms

CS483 Design and Analysis of Algorithms CS483 Design and Analysis of Algorithms Lecture 6-8 Divide and Conquer Algorithms Instructor: Fei Li lifei@cs.gmu.edu with subject: CS483 Office hours: STII, Room 443, Friday 4:00pm - 6:00pm or by appointments

More information

Solving Recurrences. Lecture 23 CS2110 Fall 2011

Solving Recurrences. Lecture 23 CS2110 Fall 2011 Solving Recurrences Lecture 23 CS2110 Fall 2011 1 Announcements Makeup Prelim 2 Monday 11/21 7:30-9pm Upson 5130 Please do not discuss the prelim with your classmates! Quiz 4 next Tuesday in class Topics:

More information

Evaluating Determinants by Row Reduction

Evaluating Determinants by Row Reduction Evaluating Determinants by Row Reduction MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives Reduce a matrix to row echelon form and evaluate its determinant.

More information

1111: Linear Algebra I

1111: Linear Algebra I 1111: Linear Algebra I Dr. Vladimir Dotsenko (Vlad) Lecture 6 Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 6 1 / 14 Gauss Jordan elimination Last time we discussed bringing matrices to reduced

More information

CS 231: Algorithmic Problem Solving

CS 231: Algorithmic Problem Solving CS 231: Algorithmic Problem Solving Naomi Nishimura Module 4 Date of this version: June 11, 2018 WARNING: Drafts of slides are made available prior to lecture for your convenience. After lecture, slides

More information

Recursion. Algorithms and Data Structures. (c) Marcin Sydow. Introduction. Linear 2nd-order Equations. Important 3 Cases. Quicksort Average Complexity

Recursion. Algorithms and Data Structures. (c) Marcin Sydow. Introduction. Linear 2nd-order Equations. Important 3 Cases. Quicksort Average Complexity Recursion Topics covered by this lecture: Recursion: Fibonacci numbers, Hanoi Towers,... cases of recursive equations (with proofs) QuickSort (Proof) Recursion e.g.: n! = (n 1)!n Mathematics: recurrent

More information

CSCI Honor seminar in algorithms Homework 2 Solution

CSCI Honor seminar in algorithms Homework 2 Solution CSCI 493.55 Honor seminar in algorithms Homework 2 Solution Saad Mneimneh Visiting Professor Hunter College of CUNY Problem 1: Rabin-Karp string matching Consider a binary string s of length n and another

More information