Expanding permutation statistics as sums of permutation patterns

Size: px
Start display at page:

Download "Expanding permutation statistics as sums of permutation patterns"

Transcription

1 Expanding permutation statistics as sums of permutation patterns Petter Branden Stockholm University Anders Claesson Reykjavik University 1 / 23

2 Permutations/patterns as functions Think of 2 S as a function : S! N that counts occurrences of Example 1 = j j 21 = inv 2 / 23

3 Statistics as linear combinations of patterns Any function stat : S! C may be represented uniquely as a (typically innite) sum stat = X 2S () where f()g 2S C Example lmax = X ( 1) jj 1 = S (jj)=1 3 / 23

4 The incidence algebra I(P ) Let Q be a locally nite poset. The incidence algebra, I(Q), is the C-algebra of all functions Q Q! C with multiplication X (F G)(x; z) = xyz F (x; y)g(y; z) and identity (x; y) = ( 1 if x = y; 0 if x 6= y 4 / 23

5 The incidence algebra I(S) Dene in S if () > 0 Dene P 2 I(S) by P (; ) = () : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : / 23

6 The incidence algebra I(S) Dene in S if () > 0 Dene P 2 I(S) by P (; ) = () P is invertible because P (; ) = 1. Therefore, for any stat : S! C, there are unique scalars f()g 2S C such that stat = X 2S (): (1) Indeed, I(S) acts on the right of C S by (f F )() = X f()f (; ): Thus (1) i stat = P i = stat P 1. 5 / 23

7 lmax = Why? 6 / 23

8 lmax = Why? des; maj; exc; x; : : : How do we expand them? 6 / 23

9 Mesh patterns A mesh pattern is a pair p = (; R) with 2 S k and R [0; k] [0; k] Example p = 3241; f(0; 2); (1; 3); (1; 4); (4; 2); (4; 3)g = 7 / 23

10 Mesh patterns A mesh pattern is a pair p = (; R) with 2 S k and R [0; k] [0; k] Example p = 3241; f(0; 2); (1; 3); (1; 4); (4; 2); (4; 3)g = 7 / 23

11 Mesh patterns A mesh pattern is a pair p = (; R) with 2 S k and R [0; k] [0; k] Example p = 3241; f(0; 2); (1; 3); (1; 4); (4; 2); (4; 3)g = 7 / 23

12 Mesh patterns A mesh pattern is a pair p = (; R) with 2 S k and R [0; k] [0; k] Example p = 3241; f(0; 2); (1; 3); (1; 4); (4; 2); (4; 3)g = 7 / 23

13 Mesh patterns A mesh pattern is a pair p = (; R) with 2 S k and R [0; k] [0; k] Example p = 3241; f(0; 2); (1; 3); (1; 4); (4; 2); (4; 3)g = 7 / 23

14 Mesh patterns A mesh pattern is a pair p = (; R) with 2 S k and R [0; k] [0; k] Example p = 3241; f(0; 2); (1; 3); (1; 4); (4; 2); (4; 3)g = 7 / 23

15 Mesh patterns A mesh pattern is a pair p = (; R) with 2 S k and R [0; k] [0; k] Example p = 3241; f(0; 2); (1; 3); (1; 4); (4; 2); (4; 3)g = 7 / 23

16 What is an occurrence of a mesh pattern? p = (; R) : S! N p() is the number of \classical" occurrences of in such that no elements of are in the shaded regions dened by R 8 / 23

17 What is an occurrence of a mesh pattern? p = (; R) : S! N p() is the number of \classical" occurrences of in such that no elements of are in the shaded regions dened by R Example With p = (1; f(0; 1)g) = p( ) = p 0 we have 1 C A = 3 8 / 23

18 What is an occurrence of a mesh pattern? p = (; R) : S! N p() is the number of \classical" occurrences of in such that no elements of are in the shaded regions dened by R Example With p = (1; f(0; 1)g) = p( ) = p 0 we have 1 C A = 3 8 / 23

19 What is an occurrence of a mesh pattern? p = (; R) : S! N p() is the number of \classical" occurrences of in such that no elements of are in the shaded regions dened by R Example With p = (1; f(0; 1)g) = p( ) = p 0 we have 1 C A = 3 8 / 23

20 What is an occurrence of a mesh pattern? p = (; R) : S! N p() is the number of \classical" occurrences of in such that no elements of are in the shaded regions dened by R Example With p = (1; f(0; 1)g) = p( ) = p 0 we have 1 C A = 3 8 / 23

21 What is an occurrence of a mesh pattern? p = (; R) : S! N p() is the number of \classical" occurrences of in such that no elements of are in the shaded regions dened by R Example With p = (1; f(0; 1)g) = p( ) = p 0 we have 1 C A = 3 8 / 23

22 What is an occurrence of a mesh pattern? p = (; R) : S! N p() is the number of \classical" occurrences of in such that no elements of are in the shaded regions dened by R Example With p = (1; f(0; 1)g) = p( ) = p 0 we have 1 C A = 3 8 / 23

23 What is an occurrence of a mesh pattern? p = (; R) : S! N p() is the number of \classical" occurrences of in such that no elements of are in the shaded regions dened by R Example With p = (1; f(0; 1)g) = p( ) = p 0 we have 1 C A = 3 8 / 23

24 What is an occurrence of a mesh pattern? p = (; R) : S! N p() is the number of \classical" occurrences of in such that no elements of are in the shaded regions dened by R Example (Chayne Homsberger) # consecutive adjacent entries in =! + () 8 / 23

25 p = (; R) 2 S k [0; k] 2 classic: R = ; barred: R = f(i 1; (i) 1)g = segment: R = [1; k 1] 2 ddes = dashed/vincular: R = [ vertical strips 23-1 = bivincular: R = [ vertical and horizontal strips 9 / 23

26 The reciprocity theorem Theorem (Reciprocity) For any mesh pattern p = (; R) we have p = X 2S ( 1) jj jj p? () Denition (Dual pattern) For p = (; R) let p? = (; R c ), where R c = [0; jj] 2 n R:!? = 10 / 23

27 The reciprocity theorem Theorem (Reciprocity) For any mesh pattern p = (; R) we have p = X 2S ( 1) jj jj p? () Denition (Dual pattern) For p = (; R) let p? = (; R c ), where R c = [0; jj] 2 n R:!? = 10 / 23

28 We can now explain why lmax = We have lmax = Thus and? =. lmax = X 2S () where () = ( 1) jj 1 () = ( ( 1) jj 1 if (jj) = 1; 0 otherwise 11 / 23

29 Also, des = We have des = Thus and? =. des = X 2S () where () = ( 1) jj () = ( ( 1) jj if (1) > (jj); 0 otherwise 12 / 23

30 Babson and Steingrmsson classied Mahonian statistics using patterns. For instance maj = (21) + (1-32) + (2-31) + (3-21) = Thus we may write maj = P 2S () where ( 1) j j ( ) = This last expression simplies to () = where n = jj 8 >< >: 1 if = 21 ( 1) n if (2) < (n) < (1) ( 1) n+1 if (1) < (n) < (2) 0 otherwise 13 / 23

31 If a 1 : : : a n 2 S n, then a i is called a strong xed point if j < i =) a j < a i j > i =) a j > a i. and 14 / 23

32 If a 1 : : : a n 2 S n, then a i is called a strong xed point if Let j < i =) a j < a i j > i =) a j > a i. and sx() = # strong xed points of ssx() = # strong xed points of r (skew sx) 14 / 23

33 If a 1 : : : a n 2 S n, then a i is called a strong xed point if Let j < i =) a j < a i j > i =) a j > a i. and sx() = # strong xed points of ssx() = # strong xed points of r (skew sx) Theorem sx = X ( 1) jj 1 ssx() Proof. sx = and ssx = 14 / 23

34 x Q 2 (; x) Q 1 (; x) Q 3 (; x) Q 4 (; x) j Q 1 (; x) = f (i) : i > j; (i) > x g Q 2 (; x) = f (i) : i < j; (i) > x g Q 3 (; x) = f (i) : i < j; (i) < x g Q 4 (; x) = f (i) : i > j; (i) < x g The point x in is a xed point if jq 2 (; x)j = jq 4 (; x)j an excedance if jq 4 (; x)j > jq 2 (; x)j 15 / 23

35 A corollary to the reciprocity theorem Recall that P (; ) = (). Theorem (Inverse) The inverse of P in I(S) is given by P 1 (; ) = ( 1) j j jj P (; ) 16 / 23

36 A corollary to the reciprocity theorem Recall that P (; ) = (). Theorem (Inverse) The inverse of P in I(S) is given by P 1 (; ) = ( 1) j j jj P (; ) Proof. For 2 S k, let p = (; [0; k] [0; k]). Then p? = (; ;) and Thus p() = X 2S( 1) jj jj p? ()() (reciprocity) (; ) = X ( 1) jj jj P (; )P (; ) 16 / 23

37 By the inverse theorem (but not trivially): x = X exc = X ( 1) jj 1 ( 1) jj 2 X x2ssf() X x2ssf()!1 jj 1 A x 1!1 jj 2 A x 2 where SSF() is the set of skew strong xed points in 17 / 23

38 Alternating permutations and the Euler numbers A permutation 2 S n is said to be alternating if (1) > (2) < (3) > (4) < Alternating permutations are those that avoid ; and In 1879, Andre showed that the number of alternating permutations in S n is the Euler number E n given by X n0 E n x n =n! = sec x + tan x: 18 / 23

39 Simsun permutations A permutation 2 S n is simsun if for all i 2 [1; n], after removing the i largest letters of, the remaining word has no double descents. A permutation is simsun if and only if it avoids the pattern simsun = The number of simsun permutations in S n is E n / 23

40 Andre permutations Andre permutations of various kinds were introduced by Foata and Schutzenberger and further studied by Foata and Strehl. If 2 S n and x = (i) 2 [1; n] let (x); (x) [1; n] be dened as follows. Let (0) = (n + 1) = 1. (x) = f(k) : j 0 < k < ig where j 0 = maxfj : j < i and (j) < (i)g, and (x) = f(k) : i < k < j 1 g where j 1 = minfj : i < j and (j) < (i)g. Then is an Andre permutation of the rst kind if max (x) max (x) for all x 2 [1; n], where max ; = 1. In particular, has no double descents and (n) = n. 20 / 23

41 Andre permutations Andre permutations of various kinds were introduced by Foata and Schutzenberger and further studied by Foata and Strehl. If 2 S n and x = (i) 2 [1; n] let (x); (x) [1; n] be dened as follows. Let (0) = (n + 1) = 1. (x) = f(k) : j 0 < k < ig where j 0 = maxfj : j < i and (j) < (i)g, and (x) = f(k) : i < k < j 1 g where j 1 = minfj : i < j and (j) < (i)g. Then is an Andre permutation of the rst kind if max (x) max (x) for all x 2 [1; n], where max ; = 1. In particular, has no double descents and (n) = n. 20 / 23

42 Andre permutations Fact: There are exactly E n Andre permutations in S n. Theorem Let 2 S n. Then is an Andre permutation of the rst kind if and only if it avoids and = andre Corollary S n (andre) = E n+1 21 / 23

43 A Wilf-equivalence Corollary The two patterns simsun = and andre = are Wilf-equivalent 22 / 23

44 A Wilf-equivalence Corollary The two patterns simsun = and andre = are Wilf-equivalent Moreover, these are the only essentially dierent patterns in this Wilf-class 22 / 23

45 We have barely scratched the surface. For n = 3 we have # patterns = # 2 element sets of patterns = # 3 element sets of patterns = # 4 element sets of patterns = p = (; R) 2 S k [0; k] 2 Restrict R? R as a relation: reexive, symmetric, transitive,... R as a digraph: acyclic, rooted tree, tournament, / 23

New concepts: Span of a vector set, matrix column space (range) Linearly dependent set of vectors Matrix null space

New concepts: Span of a vector set, matrix column space (range) Linearly dependent set of vectors Matrix null space Lesson 6: Linear independence, matrix column space and null space New concepts: Span of a vector set, matrix column space (range) Linearly dependent set of vectors Matrix null space Two linear systems:

More information

arxiv: v3 [math.co] 11 Mar 2015

arxiv: v3 [math.co] 11 Mar 2015 SUBWORD COUNTING AND THE INCIDENCE ALGEBRA ANDERS CLAESSON arxiv:50203065v3 [mathco] Mar 205 Abstract The Pascal matrix, P, is an upper diagonal matrix whose entries are the binomial coefficients In 993

More information

THREE GENERALIZATIONS OF WEYL'S DENOMINATOR FORMULA. Todd Simpson Tred Avon Circle, Easton, MD 21601, USA.

THREE GENERALIZATIONS OF WEYL'S DENOMINATOR FORMULA. Todd Simpson Tred Avon Circle, Easton, MD 21601, USA. THREE GENERALIZATIONS OF WEYL'S DENOMINATOR FORMULA Todd Simpson 7661 Tred Avon Circle, Easton, MD 1601, USA todo@ora.nobis.com Submitted: July 8, 1995; Accepted: March 15, 1996 Abstract. We give combinatorial

More information

EQUIDISTRIBUTIONS OF MAHONIAN STATISTICS OVER PATTERN AVOIDING PERMUTATIONS (EXTENDED ABSTRACT)

EQUIDISTRIBUTIONS OF MAHONIAN STATISTICS OVER PATTERN AVOIDING PERMUTATIONS (EXTENDED ABSTRACT) EQUIDISTRIBUTIONS OF MAHONIAN STATISTICS OVER PATTERN AVOIDING PERMUTATIONS (EXTENDED ABSTRACT) NIMA AMINI 1. Introduction A Mahonian d-function is a Mahonian statistic that can be expressed as a linear

More information

On an algebra related to orbit-counting. Peter J. Cameron. Queen Mary and Westeld College. London E1 4NS U.K. Abstract

On an algebra related to orbit-counting. Peter J. Cameron. Queen Mary and Westeld College. London E1 4NS U.K. Abstract On an algebra related to orbit-counting Peter J. Cameron School of Mathematical Sciences Queen Mary and Westeld College London E1 4NS U.K. Abstract With any permutation group G on an innite set is associated

More information

294 Meinolf Geck In 1992, Lusztig [16] addressed this problem in the framework of his theory of character sheaves and its application to Kawanaka's th

294 Meinolf Geck In 1992, Lusztig [16] addressed this problem in the framework of his theory of character sheaves and its application to Kawanaka's th Doc. Math. J. DMV 293 On the Average Values of the Irreducible Characters of Finite Groups of Lie Type on Geometric Unipotent Classes Meinolf Geck Received: August 16, 1996 Communicated by Wolfgang Soergel

More information

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition)

Vector Space Basics. 1 Abstract Vector Spaces. 1. (commutativity of vector addition) u + v = v + u. 2. (associativity of vector addition) Vector Space Basics (Remark: these notes are highly formal and may be a useful reference to some students however I am also posting Ray Heitmann's notes to Canvas for students interested in a direct computational

More information

Math 375 First Exam, Page a) Give an example of a non-abelian group of innite order and one of nite order. (Say which is

Math 375 First Exam, Page a) Give an example of a non-abelian group of innite order and one of nite order. (Say which is Math 375 First Exam, Page 1 1. a) Give an example of a non-abelian group of innite order and one of nite order. (Say which is which.) b) Find the order of each element inu(5), the group of units mod 5.

More information

Balance properties of multi-dimensional words

Balance properties of multi-dimensional words Theoretical Computer Science 273 (2002) 197 224 www.elsevier.com/locate/tcs Balance properties of multi-dimensional words Valerie Berthe a;, Robert Tijdeman b a Institut de Mathematiques de Luminy, CNRS-UPR

More information

3. G. Groups, as men, will be known by their actions. - Guillermo Moreno

3. G. Groups, as men, will be known by their actions. - Guillermo Moreno 3.1. The denition. 3. G Groups, as men, will be known by their actions. - Guillermo Moreno D 3.1. An action of a group G on a set X is a function from : G X! X such that the following hold for all g, h

More information

Sergey Fomin* and. Minneapolis, MN We consider the partial order on partitions of integers dened by removal of

Sergey Fomin* and. Minneapolis, MN We consider the partial order on partitions of integers dened by removal of Rim Hook Lattices Sergey Fomin* Department of Mathematics, Massachusetts Institute of Technology Cambridge, MA 02139 Theory of Algorithms Laboratory St. Petersburg Institute of Informatics Russian Academy

More information

A new Euler-Mahonian constructive bijection

A new Euler-Mahonian constructive bijection A new Euler-Mahonian constructive bijection Vincent Vajnovszki LE2I, Université de Bourgogne BP 47870, 21078 Dijon Cedex, France vvajnov@u-bourgogne.fr March 19, 2011 Abstract Using generating functions,

More information

Restricted Motzkin permutations, Motzkin paths, continued fractions, and Chebyshev polynomials

Restricted Motzkin permutations, Motzkin paths, continued fractions, and Chebyshev polynomials Discrete Mathematics 305 (2005) 70 89 wwwelseviercom/locate/disc Restricted Motzkin permutations, Motzkin paths, continued fractions, and Chebyshev polynomials Sergi Elizalde a, Toufik Mansour b a Department

More information

LaCIM seminar, UQÀM. March 15, 2013

LaCIM seminar, UQÀM. March 15, 2013 (Valparaiso University) LaCIM seminar, UQÀM Montréal, Québec March 15, 2013 Conventions and Definitions s are written in one-line notation. e.g. S 3 = {123, 132, 213, 231, 312, 321} Conventions and Definitions

More information

A theorem on summable families in normed groups. Dedicated to the professors of mathematics. L. Berg, W. Engel, G. Pazderski, and H.- W. Stolle.

A theorem on summable families in normed groups. Dedicated to the professors of mathematics. L. Berg, W. Engel, G. Pazderski, and H.- W. Stolle. Rostock. Math. Kolloq. 49, 51{56 (1995) Subject Classication (AMS) 46B15, 54A20, 54E15 Harry Poppe A theorem on summable families in normed groups Dedicated to the professors of mathematics L. Berg, W.

More information

LECTURE NOTES IN CRYPTOGRAPHY

LECTURE NOTES IN CRYPTOGRAPHY 1 LECTURE NOTES IN CRYPTOGRAPHY Thomas Johansson 2005/2006 c Thomas Johansson 2006 2 Chapter 1 Abstract algebra and Number theory Before we start the treatment of cryptography we need to review some basic

More information

Combinations. April 12, 2006

Combinations. April 12, 2006 Combinations April 12, 2006 Combinations, April 12, 2006 Binomial Coecients Denition. The number of distinct subsets with j elements that can be chosen from a set with n elements is denoted by ( n j).

More information

A RELATION BETWEEN SCHUR P AND S. S. Leidwanger. Universite de Caen, CAEN. cedex FRANCE. March 24, 1997

A RELATION BETWEEN SCHUR P AND S. S. Leidwanger. Universite de Caen, CAEN. cedex FRANCE. March 24, 1997 A RELATION BETWEEN SCHUR P AND S FUNCTIONS S. Leidwanger Departement de Mathematiques, Universite de Caen, 0 CAEN cedex FRANCE March, 997 Abstract We dene a dierential operator of innite order which sends

More information

q-alg/ Mar 96

q-alg/ Mar 96 Integrality of Two Variable Kostka Functions Friedrich Knop* Department of Mathematics, Rutgers University, New Brunswick NJ 08903, USA knop@math.rutgers.edu 1. Introduction q-alg/9603027 29 Mar 96 Macdonald

More information

Calculus and linear algebra for biomedical engineering Week 3: Matrices, linear systems of equations, and the Gauss algorithm

Calculus and linear algebra for biomedical engineering Week 3: Matrices, linear systems of equations, and the Gauss algorithm Calculus and linear algebra for biomedical engineering Week 3: Matrices, linear systems of equations, and the Gauss algorithm Hartmut Führ fuehr@matha.rwth-aachen.de Lehrstuhl A für Mathematik, RWTH Aachen

More information

Elementary 2-Group Character Codes. Abstract. In this correspondence we describe a class of codes over GF (q),

Elementary 2-Group Character Codes. Abstract. In this correspondence we describe a class of codes over GF (q), Elementary 2-Group Character Codes Cunsheng Ding 1, David Kohel 2, and San Ling Abstract In this correspondence we describe a class of codes over GF (q), where q is a power of an odd prime. These codes

More information

Departement de mathematique, Universite Louis Pasteur, 7, rue Rene Descartes, F Strasbourg, France

Departement de mathematique, Universite Louis Pasteur, 7, rue Rene Descartes, F Strasbourg, France GRAPHICAL MAJOR INDICES, II D. FOATA y AND C. KRATTENTHALER y Departement de mathematique, Universite Louis Pasteur, 7, rue Rene Descartes, F-67084 Strasbourg, France e-mail: foata@math.u-strasbg.fr Institut

More information

N.G.Bean, D.A.Green and P.G.Taylor. University of Adelaide. Adelaide. Abstract. process of an MMPP/M/1 queue is not a MAP unless the queue is a

N.G.Bean, D.A.Green and P.G.Taylor. University of Adelaide. Adelaide. Abstract. process of an MMPP/M/1 queue is not a MAP unless the queue is a WHEN IS A MAP POISSON N.G.Bean, D.A.Green and P.G.Taylor Department of Applied Mathematics University of Adelaide Adelaide 55 Abstract In a recent paper, Olivier and Walrand (994) claimed that the departure

More information

group homomorphism if for every a; b 2 G we have Notice that the operation on the left is occurring in G 1 while the operation

group homomorphism if for every a; b 2 G we have Notice that the operation on the left is occurring in G 1 while the operation Math 375 Week 6 6.1 Homomorphisms and Isomorphisms DEFINITION 1 Let G 1 and G 2 groups and let : G 1! G 2 be a function. Then is a group homomorphism if for every a; b 2 G we have (ab) =(a)(b): REMARK

More information

THE MAXIMAL SUBGROUPS AND THE COMPLEXITY OF THE FLOW SEMIGROUP OF FINITE (DI)GRAPHS

THE MAXIMAL SUBGROUPS AND THE COMPLEXITY OF THE FLOW SEMIGROUP OF FINITE (DI)GRAPHS THE MAXIMAL SUBGROUPS AND THE COMPLEXITY OF THE FLOW SEMIGROUP OF FINITE (DI)GRAPHS GÁBOR HORVÁTH, CHRYSTOPHER L. NEHANIV, AND KÁROLY PODOSKI Dedicated to John Rhodes on the occasion of his 80th birthday.

More information

Combinatorial Structures

Combinatorial Structures Combinatorial Structures Contents 1 Permutations 1 Partitions.1 Ferrers diagrams....................................... Skew diagrams........................................ Dominance order......................................

More information

Paths, Permutations and Trees. Enumerating Permutations Avoiding Three Babson - Steingrímsson Patterns

Paths, Permutations and Trees. Enumerating Permutations Avoiding Three Babson - Steingrímsson Patterns Paths, Permutations and Trees Center for Combinatorics Nankai University Tianjin, February 5-7, 004 Enumerating Permutations Avoiding Three Babson - Steingrímsson Patterns Antonio Bernini, Elisa Pergola

More information

STAT (2016) ISSN

STAT (2016) ISSN Kitaev, Sergey and Vajnovszki, Vincent (2016) Mahonian STAT on words. Information Processing Letters, 116. pp. 157-162. ISSN 1872-6119, http://dx.doi.org/10.1016/j.ipl.2015.09.006 This version is available

More information

The average dimension of the hull of cyclic codes

The average dimension of the hull of cyclic codes Discrete Applied Mathematics 128 (2003) 275 292 www.elsevier.com/locate/dam The average dimension of the hull of cyclic codes Gintaras Skersys Matematikos ir Informatikos Fakultetas, Vilniaus Universitetas,

More information

1 Introduction We adopt the terminology of [1]. Let D be a digraph, consisting of a set V (D) of vertices and a set E(D) V (D) V (D) of edges. For a n

1 Introduction We adopt the terminology of [1]. Let D be a digraph, consisting of a set V (D) of vertices and a set E(D) V (D) V (D) of edges. For a n HIGHLY ARC-TRANSITIVE DIGRAPHS WITH NO HOMOMORPHISM ONTO Z Aleksander Malnic 1 Dragan Marusic 1 IMFM, Oddelek za matematiko IMFM, Oddelek za matematiko Univerza v Ljubljani Univerza v Ljubljani Jadranska

More information

arxiv:math/ v1 [math.co] 2 Oct 2002

arxiv:math/ v1 [math.co] 2 Oct 2002 PARTIALLY ORDERED GENERALIZED PATTERNS AND k-ary WORDS SERGEY KITAEV AND TOUFIK MANSOUR arxiv:math/020023v [math.co] 2 Oct 2002 Matematik, Chalmers tekniska högskola och Göteborgs universitet, S-42 96

More information

Approximation Algorithms for Maximum. Coverage and Max Cut with Given Sizes of. Parts? A. A. Ageev and M. I. Sviridenko

Approximation Algorithms for Maximum. Coverage and Max Cut with Given Sizes of. Parts? A. A. Ageev and M. I. Sviridenko Approximation Algorithms for Maximum Coverage and Max Cut with Given Sizes of Parts? A. A. Ageev and M. I. Sviridenko Sobolev Institute of Mathematics pr. Koptyuga 4, 630090, Novosibirsk, Russia fageev,svirg@math.nsc.ru

More information

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space

Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) 1.1 The Formal Denition of a Vector Space Linear Algebra (part 1) : Vector Spaces (by Evan Dummit, 2017, v. 1.07) Contents 1 Vector Spaces 1 1.1 The Formal Denition of a Vector Space.................................. 1 1.2 Subspaces...................................................

More information

Outline 1. Background on Symmetric Polynomials 2. Algebraic definition of (modified) Macdonald polynomials 3. New combinatorial definition of Macdonal

Outline 1. Background on Symmetric Polynomials 2. Algebraic definition of (modified) Macdonald polynomials 3. New combinatorial definition of Macdonal Algebraic and Combinatorial Macdonald Polynomials Nick Loehr AIM Workshop on Generalized Kostka Polynomials July 2005 Reference: A Combinatorial Formula for Macdonald Polynomials" by Haglund, Haiman, and

More information

ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS. 1. Linear Equations and Matrices

ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS. 1. Linear Equations and Matrices ELEMENTARY LINEAR ALGEBRA WITH APPLICATIONS KOLMAN & HILL NOTES BY OTTO MUTZBAUER 11 Systems of Linear Equations 1 Linear Equations and Matrices Numbers in our context are either real numbers or complex

More information

of poly-slenderness coincides with the one of boundedness. Once more, the result was proved again by Raz [17]. In the case of regular languages, Szila

of poly-slenderness coincides with the one of boundedness. Once more, the result was proved again by Raz [17]. In the case of regular languages, Szila A characterization of poly-slender context-free languages 1 Lucian Ilie 2;3 Grzegorz Rozenberg 4 Arto Salomaa 2 March 30, 2000 Abstract For a non-negative integer k, we say that a language L is k-poly-slender

More information

q-eulerian POLYNOMIALS: EXCEDANCE NUMBER AND MAJOR INDEX

q-eulerian POLYNOMIALS: EXCEDANCE NUMBER AND MAJOR INDEX q-eulerian POLYNOMIALS: EXCEDANCE NUMBER AND MAJOR INDEX JOHN SHARESHIAN 1 AND MICHELLE L. WACHS 2 Abstract. In this research announcement we present a new q-analog of a classical formula for the exponential

More information

EQUIDISTRIBUTION AND SIGN-BALANCE ON 321-AVOIDING PERMUTATIONS

EQUIDISTRIBUTION AND SIGN-BALANCE ON 321-AVOIDING PERMUTATIONS Séminaire Lotharingien de Combinatoire 51 (2004), Article B51d EQUIDISTRIBUTION AND SIGN-BALANCE ON 321-AVOIDING PERMUTATIONS RON M. ADIN AND YUVAL ROICHMAN Abstract. Let T n be the set of 321-avoiding

More information

16 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes... for all j 2 J is said to be a subcomplementary vector of variables for (3.

16 Chapter 3. Separation Properties, Principal Pivot Transforms, Classes... for all j 2 J is said to be a subcomplementary vector of variables for (3. Chapter 3 SEPARATION PROPERTIES, PRINCIPAL PIVOT TRANSFORMS, CLASSES OF MATRICES In this chapter we present the basic mathematical results on the LCP. Many of these results are used in later chapters to

More information

q-alg/ v2 15 Sep 1997

q-alg/ v2 15 Sep 1997 DOMINO TABLEAUX, SCH UTZENBERGER INVOLUTION, AND THE SYMMETRIC GROUP ACTION ARKADY BERENSTEIN Department of Mathematics, Cornell University Ithaca, NY 14853, U.S.A. q-alg/9709010 v 15 Sep 1997 ANATOL N.

More information

Some statistics on permutations avoiding generalized patterns

Some statistics on permutations avoiding generalized patterns PUMA Vol 8 (007), No 4, pp 7 Some statistics on permutations avoiding generalized patterns Antonio Bernini Università di Firenze, Dipartimento di Sistemi e Informatica, viale Morgagni 65, 504 Firenze,

More information

On the classication of algebras

On the classication of algebras Technische Universität Carolo-Wilhelmina Braunschweig Institut Computational Mathematics On the classication of algebras Morten Wesche September 19, 2016 Introduction Higman (1950) published the papers

More information

A combinatorial approach to the q, t-symmetry relation in Macdonald polynomials

A combinatorial approach to the q, t-symmetry relation in Macdonald polynomials A combinatorial approach to the q, t-symmetry relation in Macdonald polynomials Maria Monks Gillespie Department of Mathematics University of California, Berkeley Berkeley, CA, U.S.A. monks@math.berkeley.edu

More information

1 Introduction It will be convenient to use the inx operators a b and a b to stand for maximum (least upper bound) and minimum (greatest lower bound)

1 Introduction It will be convenient to use the inx operators a b and a b to stand for maximum (least upper bound) and minimum (greatest lower bound) Cycle times and xed points of min-max functions Jeremy Gunawardena, Department of Computer Science, Stanford University, Stanford, CA 94305, USA. jeremy@cs.stanford.edu October 11, 1993 to appear in the

More information

Nader H. Bshouty Lisa Higham Jolanta Warpechowska-Gruca. Canada. (

Nader H. Bshouty Lisa Higham Jolanta Warpechowska-Gruca. Canada. ( Meeting Times of Random Walks on Graphs Nader H. Bshouty Lisa Higham Jolanta Warpechowska-Gruca Computer Science University of Calgary Calgary, AB, T2N 1N4 Canada (e-mail: fbshouty,higham,jolantag@cpsc.ucalgary.ca)

More information

. Consider the linear system dx= =! = " a b # x y! : (a) For what values of a and b do solutions oscillate (i.e., do both x(t) and y(t) pass through z

. Consider the linear system dx= =! =  a b # x y! : (a) For what values of a and b do solutions oscillate (i.e., do both x(t) and y(t) pass through z Preliminary Exam { 1999 Morning Part Instructions: No calculators or crib sheets are allowed. Do as many problems as you can. Justify your answers as much as you can but very briey. 1. For positive real

More information

2 ALGEBRA II. Contents

2 ALGEBRA II. Contents ALGEBRA II 1 2 ALGEBRA II Contents 1. Results from elementary number theory 3 2. Groups 4 2.1. Denition, Subgroup, Order of an element 4 2.2. Equivalence relation, Lagrange's theorem, Cyclic group 9 2.3.

More information

Mobius Inversion on Partially Ordered Sets

Mobius Inversion on Partially Ordered Sets Mobius Inversion on Partially Ordered Sets 1 Introduction The theory of Möbius inversion gives us a unified way to look at many different results in combinatorics that involve inverting the relation between

More information

exp(y u). exp(su) s exp(u)

exp(y u). exp(su) s exp(u) PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Xxxx 2005 THE q-tangent AND q-secant NUMBERS VIA BASIC EULERIAN POLYNOMIALS DOMINIQUE FOATA AND GUO-NIU HAN Abstract. The classical

More information

Math 40510, Algebraic Geometry

Math 40510, Algebraic Geometry Math 40510, Algebraic Geometry Problem Set 1, due February 10, 2016 1. Let k = Z p, the field with p elements, where p is a prime. Find a polynomial f k[x, y] that vanishes at every point of k 2. [Hint:

More information

Simple Lie subalgebras of locally nite associative algebras

Simple Lie subalgebras of locally nite associative algebras Simple Lie subalgebras of locally nite associative algebras Y.A. Bahturin Department of Mathematics and Statistics Memorial University of Newfoundland St. John's, NL, A1C5S7, Canada A.A. Baranov Department

More information

Discrete, sequential dynamical systems

Discrete, sequential dynamical systems Discrete Mathematics 226 (2001) 281 295 www.elsevier.com/locate/disc Discrete, sequential dynamical systems H.S. Mortveit a;b, C.M. Reidys c; a Los Alamos National Laboratory, TSA=DO-SA, NM 87545, Mailstop:

More information

into B multisets, or blocks, each of cardinality K (K V ), satisfying

into B multisets, or blocks, each of cardinality K (K V ), satisfying ,, 1{8 () c Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Balanced Part Ternary Designs: Some New Results THOMAS KUNKLE DINESH G. SARVATE Department of Mathematics, College of Charleston,

More information

CYCLE-COUNTING Q-ROOK THEORY AND OTHER GENERALIZATIONS OF CLASSICAL ROOK THEORY. Frederick Michael Butler A DISSERTATION.

CYCLE-COUNTING Q-ROOK THEORY AND OTHER GENERALIZATIONS OF CLASSICAL ROOK THEORY. Frederick Michael Butler A DISSERTATION. CYCLE-COUNTING Q-ROOK THEORY AND OTHER GENERALIZATIONS OF CLASSICAL ROOK THEORY Frederick Michael Butler A DISSERTATION in Mathematics Presented to the Faculties of the University of Pennsylvania in Partial

More information

Linear Algebra, 4th day, Thursday 7/1/04 REU Info:

Linear Algebra, 4th day, Thursday 7/1/04 REU Info: Linear Algebra, 4th day, Thursday 7/1/04 REU 004. Info http//people.cs.uchicago.edu/laci/reu04. Instructor Laszlo Babai Scribe Nick Gurski 1 Linear maps We shall study the notion of maps between vector

More information

2. THE MAIN RESULTS In the following, we denote by the underlying order of the lattice and by the associated Mobius function. Further let z := fx 2 :

2. THE MAIN RESULTS In the following, we denote by the underlying order of the lattice and by the associated Mobius function. Further let z := fx 2 : COMMUNICATION COMLEITY IN LATTICES Rudolf Ahlswede, Ning Cai, and Ulrich Tamm Department of Mathematics University of Bielefeld.O. Box 100131 W-4800 Bielefeld Germany 1. INTRODUCTION Let denote a nite

More information

MATH 829: Introduction to Data Mining and Analysis Graphical Models I

MATH 829: Introduction to Data Mining and Analysis Graphical Models I MATH 829: Introduction to Data Mining and Analysis Graphical Models I Dominique Guillot Departments of Mathematical Sciences University of Delaware May 2, 2016 1/12 Independence and conditional independence:

More information

On reaching head-to-tail ratios for balanced and unbalanced coins

On reaching head-to-tail ratios for balanced and unbalanced coins Journal of Statistical Planning and Inference 0 (00) 0 0 www.elsevier.com/locate/jspi On reaching head-to-tail ratios for balanced and unbalanced coins Tamas Lengyel Department of Mathematics, Occidental

More information

PUTNAM PROBLEM SOLVING SEMINAR WEEK 7 This is the last meeting before the Putnam. The Rules. These are way too many problems to consider. Just pick a

PUTNAM PROBLEM SOLVING SEMINAR WEEK 7 This is the last meeting before the Putnam. The Rules. These are way too many problems to consider. Just pick a PUTNAM PROBLEM SOLVING SEMINAR WEEK 7 This is the last meeting before the Putnam The Rules These are way too many problems to consider Just pick a few problems in one of the sections and play around with

More information

CYCLIC SIEVING FOR CYCLIC CODES

CYCLIC SIEVING FOR CYCLIC CODES CYCLIC SIEVING FOR CYCLIC CODES ALEX MASON, VICTOR REINER, SHRUTHI SRIDHAR Abstract. These are notes on a preliminary follow-up to a question of Jim Propp, about cyclic sieving of cyclic codes. We show

More information

Abstract This work is a survey on decidable and undecidable problems in matrix theory. The problems studied are simply formulated, however most of the

Abstract This work is a survey on decidable and undecidable problems in matrix theory. The problems studied are simply formulated, however most of the Decidable and Undecidable Problems in Matrix Theory Vesa Halava University of Turku, Department of Mathematics, FIN-24 Turku, Finland vehalava@utu. Supported by the Academy of Finland under the grant 447

More information

Lecture 9: Cardinality. a n. 2 n 1 2 n. n=1. 0 x< 2 n : x = :a 1 a 2 a 3 a 4 :::: s n = s n n+1 x. 0; if 0 x<

Lecture 9: Cardinality. a n. 2 n 1 2 n. n=1. 0 x< 2 n : x = :a 1 a 2 a 3 a 4 :::: s n = s n n+1 x. 0; if 0 x< Lecture 9: Cardinality 9. Binary representations Suppose fa n g n= is a sequence such that, for each n =; 2; 3;:::, either a n =0ora n = and, for any integer N, there exists an integer n>n such that a

More information

Proposition 5. Group composition in G 1 (N) induces the structure of an abelian group on K 1 (X):

Proposition 5. Group composition in G 1 (N) induces the structure of an abelian group on K 1 (X): 2 RICHARD MELROSE 3. Lecture 3: K-groups and loop groups Wednesday, 3 September, 2008 Reconstructed, since I did not really have notes { because I was concentrating too hard on the 3 lectures on blow-up

More information

Abstract We survey some of what can be deduced about automorphisms of a graph from information on its eigenvalues and eigenvectors. Two of the main to

Abstract We survey some of what can be deduced about automorphisms of a graph from information on its eigenvalues and eigenvectors. Two of the main to Symmetry and Eigenvectors Ada Chan and Chris D. Godsil Combinatorics and Optimization University of Waterloo Waterloo, Ontario Canada N2L 3G http://bilby.uwaterloo.ca Support from a National Sciences and

More information

SCHUBERT FUNCTIONS AND THE NUMBER OF REDUCED WORDS OF PERMUTATIONS RUDOLF WINKEL

SCHUBERT FUNCTIONS AND THE NUMBER OF REDUCED WORDS OF PERMUTATIONS RUDOLF WINKEL SCHUBERT FUNCTIONS AND THE NUMBER OF REDUCED WORDS OF PERMUTATIONS RUDOLF WINKEL Abstract: It is wellknown that a Schur function is the `limit' of a sequence of Schur polynomials in an incraesing number

More information

Back circulant Latin squares and the inuence of a set. L F Fitina, Jennifer Seberry and Ghulam R Chaudhry. Centre for Computer Security Research

Back circulant Latin squares and the inuence of a set. L F Fitina, Jennifer Seberry and Ghulam R Chaudhry. Centre for Computer Security Research Back circulant Latin squares and the inuence of a set L F Fitina, Jennifer Seberry and Ghulam R Chaudhry Centre for Computer Security Research School of Information Technology and Computer Science University

More information

Riemann Hypotheses. Alex J. Best 4/2/2014. WMS Talks

Riemann Hypotheses. Alex J. Best 4/2/2014. WMS Talks Riemann Hypotheses Alex J. Best WMS Talks 4/2/2014 In this talk: 1 Introduction 2 The original hypothesis 3 Zeta functions for graphs 4 More assorted zetas 5 Back to number theory 6 Conclusion The Riemann

More information

Ole Christensen 3. October 20, Abstract. We point out some connections between the existing theories for

Ole Christensen 3. October 20, Abstract. We point out some connections between the existing theories for Frames and pseudo-inverses. Ole Christensen 3 October 20, 1994 Abstract We point out some connections between the existing theories for frames and pseudo-inverses. In particular, using the pseudo-inverse

More information

4.1 Eigenvalues, Eigenvectors, and The Characteristic Polynomial

4.1 Eigenvalues, Eigenvectors, and The Characteristic Polynomial Linear Algebra (part 4): Eigenvalues, Diagonalization, and the Jordan Form (by Evan Dummit, 27, v ) Contents 4 Eigenvalues, Diagonalization, and the Jordan Canonical Form 4 Eigenvalues, Eigenvectors, and

More information

A NOTE ON SOME MAHONIAN STATISTICS

A NOTE ON SOME MAHONIAN STATISTICS Séminaire Lotharingien de Combinatoire 53 (2005), Article B53a A NOTE ON SOME MAHONIAN STATISTICS BOB CLARKE Abstract. We construct a class of mahonian statistics on words, related to the classical statistics

More information

and lim lim 6. The Squeeze Theorem

and lim lim 6. The Squeeze Theorem Limits (day 3) Things we ll go over today 1. Limits of the form 0 0 (continued) 2. Limits of piecewise functions 3. Limits involving absolute values 4. Limits of compositions of functions 5. Limits similar

More information

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial

More information

VII Selected Topics. 28 Matrix Operations

VII Selected Topics. 28 Matrix Operations VII Selected Topics Matrix Operations Linear Programming Number Theoretic Algorithms Polynomials and the FFT Approximation Algorithms 28 Matrix Operations We focus on how to multiply matrices and solve

More information

Power Domains and Iterated Function. Systems. Abbas Edalat. Department of Computing. Imperial College of Science, Technology and Medicine

Power Domains and Iterated Function. Systems. Abbas Edalat. Department of Computing. Imperial College of Science, Technology and Medicine Power Domains and Iterated Function Systems Abbas Edalat Department of Computing Imperial College of Science, Technology and Medicine 180 Queen's Gate London SW7 2BZ UK Abstract We introduce the notion

More information

2 Exercises 1. The following represent graphs of functions from the real numbers R to R. Decide which are one-to-one, which are onto, which are neithe

2 Exercises 1. The following represent graphs of functions from the real numbers R to R. Decide which are one-to-one, which are onto, which are neithe Infinity and Counting 1 Peter Trapa September 28, 2005 There are 10 kinds of people in the world: those who understand binary, and those who don't. Welcome to the rst installment of the 2005 Utah Math

More information

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by

L p Functions. Given a measure space (X, µ) and a real number p [1, ), recall that the L p -norm of a measurable function f : X R is defined by L p Functions Given a measure space (, µ) and a real number p [, ), recall that the L p -norm of a measurable function f : R is defined by f p = ( ) /p f p dµ Note that the L p -norm of a function f may

More information

CERNY CONJECTURE FOR DFA ACCEPTING STAR-FREE LANGUAGES

CERNY CONJECTURE FOR DFA ACCEPTING STAR-FREE LANGUAGES CERNY CONJECTURE FOR DFA ACCEPTING STAR-FREE LANGUAGES A.N. Trahtman? Bar-Ilan University, Dep. of Math. and St., 52900, Ramat Gan, Israel ICALP, Workshop synchr. autom., Turku, Finland, 2004 Abstract.

More information

Enumeration of polyominoes defined in terms of pattern avoidance or convexity constraints

Enumeration of polyominoes defined in terms of pattern avoidance or convexity constraints arxiv:45.346v [math.co] 3 May 24 Enumeration of polyominoes defined in terms of pattern avoidance or convexity constraints Thesis of the University of Siena and the University of Nice Sophia Antipolis

More information

Introductory Probability

Introductory Probability Introductory Probability Bernoulli Trials and Binomial Probability Distributions Dr. Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK February 04, 2019 Agenda Bernoulli Trials and Probability

More information

2 IGOR PAK so we loose some information about the structure of the tilings since there could be many tilings of with the same multiset of tiles (see e

2 IGOR PAK so we loose some information about the structure of the tilings since there could be many tilings of with the same multiset of tiles (see e RIBBON TILE INVARIANTS Igor Pak MIT E-mail: pak@math.mit.edu September 30, 1997 Abstract. Let T be a nite set of tiles, B be a set of regions tileable by T. We introduce a tile counting group G (T; B)

More information

Involutions by Descents/Ascents and Symmetric Integral Matrices. Alan Hoffman Fest - my hero Rutgers University September 2014

Involutions by Descents/Ascents and Symmetric Integral Matrices. Alan Hoffman Fest - my hero Rutgers University September 2014 by Descents/Ascents and Symmetric Integral Matrices Richard A. Brualdi University of Wisconsin-Madison Joint work with Shi-Mei Ma: European J. Combins. (to appear) Alan Hoffman Fest - my hero Rutgers University

More information

On the topology of the permutation pattern poset

On the topology of the permutation pattern poset On the topology of the permutation pattern poset Peter R. W. McNamara a,1, Einar Steingrímsson b,2 a Department of Mathematics, Bucknell University, Lewisburg, PA 17837, USA b Department of Computer and

More information

A.J. Kfoury y. December 20, Abstract. Various restrictions on the terms allowed for substitution give rise

A.J. Kfoury y. December 20, Abstract. Various restrictions on the terms allowed for substitution give rise A General Theory of Semi-Unication Said Jahama Boston University (jahama@cs.bu.edu) A.J. Kfoury y Boston University (kfoury@cs.bu.edu) December 20, 1993 Technical Report: bu-cs # 93-018 Abstract Various

More information

1 Vectors. Notes for Bindel, Spring 2017 Numerical Analysis (CS 4220)

1 Vectors. Notes for Bindel, Spring 2017 Numerical Analysis (CS 4220) Notes for 2017-01-30 Most of mathematics is best learned by doing. Linear algebra is no exception. You have had a previous class in which you learned the basics of linear algebra, and you will have plenty

More information

Rearrangements and polar factorisation of countably degenerate functions G.R. Burton, School of Mathematical Sciences, University of Bath, Claverton D

Rearrangements and polar factorisation of countably degenerate functions G.R. Burton, School of Mathematical Sciences, University of Bath, Claverton D Rearrangements and polar factorisation of countably degenerate functions G.R. Burton, School of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, U.K. R.J. Douglas, Isaac Newton

More information

2 C. A. Gunter ackground asic Domain Theory. A poset is a set D together with a binary relation v which is reexive, transitive and anti-symmetric. A s

2 C. A. Gunter ackground asic Domain Theory. A poset is a set D together with a binary relation v which is reexive, transitive and anti-symmetric. A s 1 THE LARGEST FIRST-ORDER-AXIOMATIZALE CARTESIAN CLOSED CATEGORY OF DOMAINS 1 June 1986 Carl A. Gunter Cambridge University Computer Laboratory, Cambridge C2 3QG, England Introduction The inspiration for

More information

615, rue du Jardin Botanique. Abstract. In contrast to the case of words, in context-free tree grammars projection rules cannot always be

615, rue du Jardin Botanique. Abstract. In contrast to the case of words, in context-free tree grammars projection rules cannot always be How to Get Rid of Projection Rules in Context-free Tree Grammars Dieter Hofbauer Maria Huber Gregory Kucherov Technische Universit t Berlin Franklinstra e 28/29, FR 6-2 D - 10587 Berlin, Germany e-mail:

More information

PARKING FUNCTIONS. Richard P. Stanley Department of Mathematics M.I.T Cambridge, MA

PARKING FUNCTIONS. Richard P. Stanley Department of Mathematics M.I.T Cambridge, MA PARKING FUNCTIONS Richard P. Stanley Department of Mathematics M.I.T. -75 Cambridge, MA 09 rstan@math.mit.edu http://www-math.mit.edu/~rstan Transparencies available at: http://www-math.mit.edu/~rstan/trans.html

More information

describe next. (In fact Chevalley [C] has shown a more general result probably earlier, but his paper was unpublished until recently.) For a given 2 S

describe next. (In fact Chevalley [C] has shown a more general result probably earlier, but his paper was unpublished until recently.) For a given 2 S ON THE MULTIPLICATION OF SCHUBERT POLYNOMIALS RUDOLF WINKEL Abstract: Finding a combinatorial rule for the multiplication of Schubert polynomials is a long standing problem. In this paper we give a combinatorial

More information

It is well-known (cf. [2,4,5,9]) that the generating function P w() summed over all tableaux of shape = where the parts in row i are at most a i and a

It is well-known (cf. [2,4,5,9]) that the generating function P w() summed over all tableaux of shape = where the parts in row i are at most a i and a Counting tableaux with row and column bounds C. Krattenthalery S. G. Mohantyz Abstract. It is well-known that the generating function for tableaux of a given skew shape with r rows where the parts in the

More information

17 Galois Fields Introduction Primitive Elements Roots of Polynomials... 8

17 Galois Fields Introduction Primitive Elements Roots of Polynomials... 8 Contents 17 Galois Fields 2 17.1 Introduction............................... 2 17.2 Irreducible Polynomials, Construction of GF(q m )... 3 17.3 Primitive Elements... 6 17.4 Roots of Polynomials..........................

More information

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2014 1 3 FUNCTIONS 3.1 Definition and Basic Properties DEFINITION 1. Let A and B be nonempty sets. A function f from A to B is a rule that assigns to each element in the set

More information

0. Introduction In this article, our goal is to survey some of the fundamental computational problems that arise in working with the structures mentio

0. Introduction In this article, our goal is to survey some of the fundamental computational problems that arise in working with the structures mentio Computational Aspects of Root Systems, Coxeter Groups, and Weyl Characters John R. Stembridge Department of Mathematics University of Michigan Ann Arbor, Michigan 48109{1109 USA e-mail: jrs@math.lsa.umich.edu

More information

Some results on the roots of the independence polynomial of graphs

Some results on the roots of the independence polynomial of graphs Some results on the roots of the independence polynomial of graphs Ferenc Bencs Central European University Algebraic and Extremal Graph Theory Conference Aug 9, 2017 Supervisor: Péter Csikvári Denition,

More information

Vector Spaces and SubSpaces

Vector Spaces and SubSpaces Vector Spaces and SubSpaces Linear Algebra MATH 2076 Linear Algebra Vector Spaces & SubSpaces Chapter 4, Section 1b 1 / 10 What is a Vector Space? A vector space is a bunch of objects that we call vectors

More information

1 I A Q E B A I E Q 1 A ; E Q A I A (2) A : (3) A : (4)

1 I A Q E B A I E Q 1 A ; E Q A I A (2) A : (3) A : (4) Latin Squares Denition and examples Denition. (Latin Square) An n n Latin square, or a latin square of order n, is a square array with n symbols arranged so that each symbol appears just once in each row

More information

An algebraic model of observable properties in distributed systems

An algebraic model of observable properties in distributed systems Theoretical Computer Science 290 (2003) 637 668 www.elsevier.com/locate/tcs An algebraic model of observable properties in distributed systems Luca Bernardinello a;, Carlo Ferigato b; 1, Lucia Pomello

More information

i) G is a set and that is a binary operation on G (i.e., G is closed iii) there exists e 2 G such that a e = e a = a for all a 2 G (i.e.

i) G is a set and that is a binary operation on G (i.e., G is closed iii) there exists e 2 G such that a e = e a = a for all a 2 G (i.e. Math 375 Week 2 2.1 Groups Recall our basic denition: DEFINITION 1 Suppose that: i) G is a set and that is a binary operation on G (i.e., G is closed under ); ii) is associative; iii) there exists e 2

More information

Balanced Labellings and Schubert Polynomials. Sergey Fomin. Curtis Greene. Victor Reiner. Mark Shimozono. October 11, 1995.

Balanced Labellings and Schubert Polynomials. Sergey Fomin. Curtis Greene. Victor Reiner. Mark Shimozono. October 11, 1995. Balanced Labellings and Schubert Polynomials Sergey Fomin Curtis Greene Victor Reiner Mark Shimozono October 11, 1995 Abstract We study balanced labellings of diagrams representing the inversions in a

More information

EXTENDED ABSTRACT. 2;4 fax: , 3;5 fax: Abstract

EXTENDED ABSTRACT. 2;4 fax: , 3;5 fax: Abstract 1 Syntactic denitions of undened: EXTENDED ABSTRACT on dening the undened Zena Ariola 1, Richard Kennaway 2, Jan Willem Klop 3, Ronan Sleep 4 and Fer-Jan de Vries 5 1 Computer and Information Science Department,

More information