Resummations of self-energy graphs and KAM theory G. Gentile (Roma3), G.G. (The.H.E.S.) Communications in Mathematical Physics, 227, , 2002.

Size: px
Start display at page:

Download "Resummations of self-energy graphs and KAM theory G. Gentile (Roma3), G.G. (The.H.E.S.) Communications in Mathematical Physics, 227, , 2002."

Transcription

1 Resummations of self-energy graphs and KAM theory G. Gentile (Roma3), G.G. (The.H.E.S.) Communications in Mathematical Physics, 227, ,

2 Hamiltonian for a rotators system H = 1 2 (A2 + B 2 )+εf(α, β) A = (A 1,...,A r ), B = (B 1,...,B n r ) α = (a 1,...,a r ), β = (β 1,...,β n r ) where f is an even trigonometric polynomial of degree N. Special unperturbed motions ω = (ω 1,...,ω r ) ν = (ν 1,...,ν r ) Z r A = ω, B = 0, ω ν > 1 C ν τ α = α 0 + ωt, β = β 0 r = n maximal tori or KAM tori Are there motions of the same type in presence of interaction?? i.e. A = ω + H(ψ), B = K(ψ) α = ψ + h(ψ), β = β 0 + k(ψ) with ψ ψ + ωt is a solution? It must be (necessarily if h = εh (1) +ε 2 h (2) +..., k =...): (ω ψ ) 2 h(ψ) = ε α f(ψ + h(ψ), β 0 + k(ψ)) (ω ψ ) 2 k(ψ) = ε β f(ψ + h(ψ), β 0 + k(ψ)) and β 0 mustbeanextremumfortheaverageover α: f(β) = f(α, β) dα (2π) r : (ω ψ ) 2 k 1 (ψ) = β f(ψ, β 0 ) 0 = β f(β 0 ) 1

3 Maximal tori: r=n. Series of Lindstedt, Newcomb, Poincaré: Let ϑ be a tree with p nodes v 0,...,v p 1 and root r. We attach to every node v a momentum Z n with f 0. The root momentum will be a unit vector n; and we define a current flowing on a line outgoing the node v ν(v) def = w<v ν w which we suppose 0 Note that 0 < N ω > c > 0 (if ω is Diophantine ) 1 v 5 r n λ 0 ν = ν λ0 v 0 0 v 1 v 3 v 6 v 7 v 2 v 4 v 8 v 9 v 10 Fig. 1: A tree ϑ with mv 0 = 2,mv 1 = 2,mv 2 = 3,mv 3 = 2,mv 4 = 2 and k = 12, and a few decorations. Only two momentum labels and one current label are explicitly written down; the indices enumerating the lines (because they are distinct) are not marked. Arrows represnt the partial ordering of the nodes defined by the tree. v 11 Define the value of a tree ϑ with distinct (i.e. labeled) branches Val(ϑ) = 1 p! ( linesλ=(v v) ϑ counting trees up to pivot equivalence. Then h (p) ν n = )( (ω ν(v)) 2 ϑ root current= ν Val(ϑ) v ϑ f ) 2

4 Siegel Bryuno Pöschel bound We say that λ = (v v) has scale n = 0, 1, 2,... bf if Then 2 n 1 < ω ν(v) 2 n N 2 2 2n if 2 n 1 < ω ν(v) 2 n (ω ν(v)) 2 Val(ϑ) 1 p! N2p F p 0 n= 2 2nN n N n def = number of lines of scalen If ν(v) ν(w) for all v > w then N n is small N n an2 n/τ p for some a > 0. We must use 2 n/τ N 1 nodes with momentum N to reach a line v v such that ω ν(v) 2 n, i.e. ν(v) = O(2 n/τ ). To find another one of the same scale we need as many new ones: hence N n = O(p2 n/τ N). ϑ con p nodi Val(ϑ) 1 p! p!4p N 2p F p ( 0 n= = 1 p! p!4p N 2p F p (2 2aN 0 2 2naN2n/τ p ) = n= n2n/τ ) p = B p A simple self-energy graph R ν out ν in 3

5 R ν out ν in This is a self-energy subgraph if the entering line and the exiting one have the same current ν, of scale n, and all the internal lines have scale m n + 3 and the their number is < a2 n/τ, i.e. not too large, and w R ν w = 0 and all subgraph lines have different currents (i.e. no self-energy sub-subgraph! simple ). Resummations of simple self-energy graphs The contribution to the value of a tree from a self-energy subgraph R inserted on the line v v is ν out (ω ν) 2 ( λ=(w w) R 1 (ω ν) 2 M R (ν) (ω ν) 2 ν w ν w (ω ν(λ)) 2 ) ν in (ω ν) 2 Let M(ν) def = R ε R M R (ν). We can insert m = 0,1,2,... self-energy subgraphs on every line of a tree without any such subgraph m=0 = 1 ( M(ν) ) m (ω ν) ν 2 v ν (ω ν) 2 v = 1 (ω ν) 2 M(ν) that is a convergent sum because of the Siegel Bryuno Pöschel bound. 4

6 Cancellations This is not enough because (ω ν) 2 M(ν) can vanish!! Nevertheless one shows that M(ν) = (ω ν) 2 m 1 ε(ν) andthepropagatorbecomes(ω ν) 2 (1+m 1 1 def ε(ν)) = (ω ν) 2 G (1) (ν), i.e. we have eliminated the self-energy subgraphs not containing other self-energy subgraphs. Elimination of overlapping graphs Define m 2 ε(ν) in the same way : considering all trees with simple of self-energy graphs at most and define their value as in the preceding case making use, however, of the new propagators. Then iterate indefinitely: one can check that G (k) ε (ν) converges to a limit G ( ) ε (ν). The torus invariant equation is therefore obtained by considering all the graphs without self-energies and computing them by means of the new propagator (ω ν) 2 (1+m ε (ν)) 1 def = (ω ν) 2 G ( ) (ν) which, by the Siegel Bryuno Pöschel bound does not present convergence problems and in fact this yields an algorithm to evaluate the sum of the LNP series. 5

7 Lower dimensional tori (Resonances) If f(α, β) = ν,µ eiν α+iµ β f ν,µ Feynman s rules undergo some minor changes. After resummation of the self-energy subgraphs (defined in the same way) the propagator is a Hermitian matrix (n n as before) which has the form α β α (r r) (r (n r)) = β (r r) ((n r) (n r)) ( ( (ω ν) 2 (1+O(ε 2 )) i(ω ν)bε+o(ε 2 ) = i(ω ν)bε+o(ε 2 ) (ω ν) 2 ε β f(β 0 )+O(ε 2 ) ) ) 1 where the α α elements account for the cancellations discussed in the maximal cases. Also the α β terms show cancellations (of lower order: 1 instead of 2 when ω ν 0). Nevertheless the β β elements can vanish on or near the set of infinitely many points ε for which (ω ν) 2 ε β f(β 0 ) = 0. Ifε > 0 and β 0 is amaximumthere isno 0eigenvalue andthe eigenvalues are bounded from below by (ω ν) 2. Hence on falls back in the same situation met in the maximal tori case. Convergence takes place in the domain D γ (1 > γ > 0) of complex ε where (ω ν) 2 ε β f(β 0 ) γ(ω ν) 2. The domain has the form complex ε plane O Fig.3: Analyticity domain D 0 for the lower dimensional invariant tori. The cusp at the origin is a second order one. The figure refers to the hyperbolic case. 6

8 complex ε plane Fig.4: Can the domain D 0 in Fig.3 be extended? the domain might perhaps be (near the origin) as in the picture. It reaches the real axis in cusps with apex at a set Iε 0 ; in the complex ε plane they correspond to elliptic tori which would therefore be analytic continuations of the hyperbolic tori. The analytic continuation could be continuous across the real axis on Iε 0 and Iε 0 /ε 0 ε0 1 (i.e. Iε 0 is very large near 0. 7

9 Short Bibliography Low dimensional tori S.M. Graff: On the conservation for hyperbolic invariant tori for Hamiltonian systems, J. Differential Equations 15 (1974), V.K. Mel nikov: On some cases of conservation of conditionally periodic motions under a small change of the Hamiltonian function, Soviet Math. Dokl. 6(1965), ; A family of conditionally periodic solutions of a Hamiltonian systems, Soviet Math. Dokl. 9 (1968), J. Moser: Convergent series expansions for almost periodic motions, Math. Ann. 169 (1967), Eliasson, L.H.: Absolutely convergent series expansions for quasi-periodic motions, Math. Phys. Electronic J., < mpej.unige.ch>, 2 (1996), Paper 4 A. Jorba, R. Llave, M. Zou: Lindstedt series for lower dimensional tori, in Hamiltonian systems with more than two degrees of freedom (S Agary, 1995), , NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. Vol. 533, Ed. C. Simy, Kluwer Academic Publishers, The bound of Siegel-Bryuno-Pöschel A.D. Bryuno: Analytic form of differential equations. The, II. (Russian), Trudy Moskov. Mat. Obšč. 25 (1971), ; ibid. 26 (1972), J. Pöschel: Invariant manifolds of complex analytic mappings near fixed points, in Critical Phenomena, Random Systems, Gauge Theories, Les Houches, Session XLIII (1984), Vol. II, , Ed. K. Osterwalder & R. Stora, North Holland, Amsterdam, Graph methods L. Chierchia, C. Falcolini: Compensations in small divisor problems, Comm. Math. Phys. 175 (1996), G. Gallavotti: Twistless KAM tori, Comm. Math. Phys. 164 nd (1994), no. 1, Twistless KAM tori, quasiflat homoclinic intersections, 8

10 and other cancellations in the perturbation series of certain completely integrable Hamiltonian systems. A review, Rev. Math. Phys. 6 (1994), no. 3, More recent papers J. Bricmont, A. Kupiainen, A. Schenkel: Renormalization group for the Melnikov problem for PDE s, Comm. Math. Phys. 221 (2001), no. 1, J. Xu, J. You: Persistence of Lower Dimensional Tori Under the First Melnikov s Non-resonance Condition, Nanjing University Preprint, 1 21, 2001, J. Math. Pures Appl., in press. Xiaoping Yuan: Construction of quasi-periodic breathers via KAM techniques Comm. Math. Phys., in press. 9

Resummations of self energy graphs and KAM theory G. Gentile (Roma3), G.G. (I.H.E.S.) Communications in Mathematical Physics, 227, , 2002.

Resummations of self energy graphs and KAM theory G. Gentile (Roma3), G.G. (I.H.E.S.) Communications in Mathematical Physics, 227, , 2002. Resummations of self energy graphs and KAM theory G. Gentile (Roma3), G.G. (I.H.E.S.) Communications in Mathematical Physics, 227, 421 460, 2002. 1 Hamiltonian for a rotator system H = 1 2 (A2 + B 2 )+εf(α,

More information

Divergent series resummations: examples in ODE s & PDE s

Divergent series resummations: examples in ODE s & PDE s Divergent series resummations: examples in ODE s & PDE s Survey of works by G. Gentile (Roma3), V. Matropietro (Roma2), G.G. (Roma1) http://ipparco.roma1.infn.it 1 Hamiltonian rotators system α = ε α f(α,

More information

Elliptic resonances and summation of divergent series

Elliptic resonances and summation of divergent series Elliptic resonances and summation of divergent series Guido Gentile, G. Gallavotti Universitá di Roma 3 and Roma 7/giugno/200; 9:42 Hamiltonian : H = 2 I2 +εf(ϕ) with (I,ϕ) R l T l...... Representation

More information

1 Divergent series summation in Hamilton Jacobi equation (resonances) G. Gentile, G.G. α = ε α f(α)

1 Divergent series summation in Hamilton Jacobi equation (resonances) G. Gentile, G.G. α = ε α f(α) Divergent series summation in Hamilton Jacobi equation (resonances) Eq. Motion: G. Gentile, G.G. α = ε α f(α) α α 2 α l...... Representation of phase space in terms of l rotators. 2 α = (α,...,α l ) T

More information

Resonances, Divergent series and R.G.: (G. Gentile, G.G.) α = ε α f(α) α 2. 0 ν Z r

Resonances, Divergent series and R.G.: (G. Gentile, G.G.) α = ε α f(α) α 2. 0 ν Z r B Resonances, Divergent series and R.G.: (G. Gentile, G.G.) Eq. Motion: α = ε α f(α) A A 2 α α 2 α...... l A l Representation of phase space in terms of l rotators: α=(α,...,α l ) T l Potential: f(α) =

More information

Diagrammatic Methods in Classical Perturbation Theory

Diagrammatic Methods in Classical Perturbation Theory Diagrammatic Methods in Classical Perturbation Theory Guido Gentile Dipartimento di Matematica, Università di Roma Tre, Roma, I-0046, Italy. E-mail: gentile@mat.uniroma3.it Article outline Glossary. Definition

More information

Domains of analyticity for response solutions in strongly dissipative forced systems

Domains of analyticity for response solutions in strongly dissipative forced systems Domains of analyticity for response solutions in strongly dissipative forced systems Livia Corsi 1, Roberto Feola 2 and Guido Gentile 2 1 Dipartimento di Matematica, Università di Napoli Federico II, Napoli,

More information

Recent progress on nonlinear wave equations via KAM theory

Recent progress on nonlinear wave equations via KAM theory Recent progress on nonlinear wave equations via KAM theory Xiaoping Yuan Abstract. In this note, the present author s recent works on nonlinear wave equations via KAM theory are introduced and reviewed.

More information

Quasi-periodic motions in strongly dissipative forced systems

Quasi-periodic motions in strongly dissipative forced systems Quasi-periodic motions in strongly dissipative forced systems Guido Gentile Dipartimento di Matematica, Università di Roma Tre, Roma, I-00146, Italy. E-mail: gentile@mat.uniroma3.it Abstract We consider

More information

Construction of quasi-periodic response solutions in forced strongly dissipative systems

Construction of quasi-periodic response solutions in forced strongly dissipative systems Construction of quasi-periodic response solutions in forced strongly dissipative systems Guido Gentile Dipartimento di Matematica, Università di Roma Tre, Roma, I-146, Italy. E-mail: gentile@mat.uniroma3.it

More information

2 A. Jorba and J. Villanueva coordinates the Hamiltonian can be written as H( ; x; I; y) =h! ;Ii hz; B( )zi + H 1( ; x; I; y); (1) where z =(x;

2 A. Jorba and J. Villanueva coordinates the Hamiltonian can be written as H( ; x; I; y) =h! ;Ii hz; B( )zi + H 1( ; x; I; y); (1) where z =(x; The fine geometry of the Cantor families of invariant tori in Hamiltonian systems y Angel Jorba and Jordi Villanueva Abstract. This work focuses on the dynamics around a partially elliptic, lower dimensional

More information

Summation of divergent series and Borel summability for strongly dissipative equations with periodic or quasi-periodic forcing terms

Summation of divergent series and Borel summability for strongly dissipative equations with periodic or quasi-periodic forcing terms Summation of divergent series and Borel summability for strongly dissipative equations with periodic or quasi-periodic forcing terms Guido Gentile, Michele V. Bartuccelli and Jonathan H.B. Deane Dipartimento

More information

The steep Nekhoroshev s Theorem and optimal stability exponents (an announcement)

The steep Nekhoroshev s Theorem and optimal stability exponents (an announcement) The steep Nekhoroshev s Theorem and optimal stability exponents (an announcement) Nota di Massimiliano Guzzo, Luigi Chierchia e Giancarlo Benettin Scientific chapter: Mathematical analysis. M. Guzzo Dipartimento

More information

AMADEU DELSHAMS AND RAFAEL RAMíREZ-ROS

AMADEU DELSHAMS AND RAFAEL RAMíREZ-ROS POINCARÉ-MELNIKOV-ARNOLD METHOD FOR TWIST MAPS AMADEU DELSHAMS AND RAFAEL RAMíREZ-ROS 1. Introduction A general theory for perturbations of an integrable planar map with a separatrix to a hyperbolic fixed

More information

RENORMALIZATION GROUP AND FIELD THEORETIC TECHNIQUES FOR THE ANALYSIS OF THE LINDSTEDT SERIES ALBERTO BERRETTI AND GUIDO GENTILE

RENORMALIZATION GROUP AND FIELD THEORETIC TECHNIQUES FOR THE ANALYSIS OF THE LINDSTEDT SERIES ALBERTO BERRETTI AND GUIDO GENTILE RENORMALIZATION GROUP AND FIELD THEORETIC TECHNIQUES FOR THE ANALYSIS OF THE LINDSTEDT SERIES ALBERTO BERRETTI AND GUIDO GENTILE Abstract. The Lindstedt series were introduced in the XIX th century in

More information

Im + α α. β + I 1 I 1< 0 I 1= 0 I 1 > 0

Im + α α. β + I 1 I 1< 0 I 1= 0 I 1 > 0 ON THE HAMILTONIAN ANDRONOV-HOPF BIFURCATION M. Olle, J. Villanueva 2 and J. R. Pacha 3 2 3 Departament de Matematica Aplicada I (UPC), Barcelona, Spain In this contribution, we consider an specic type

More information

KAM for quasi-linear KdV. Pietro Baldi, Massimiliano Berti, Riccardo Montalto

KAM for quasi-linear KdV. Pietro Baldi, Massimiliano Berti, Riccardo Montalto KAM for quasi-linear KdV Pietro Baldi, Massimiliano Berti, Riccardo Montalto Abstract. We prove the existence and stability of Cantor families of quasi-periodic, small amplitude solutions of quasi-linear

More information

Persistence of invariant tori on sub-manifolds in Hamiltonian systems

Persistence of invariant tori on sub-manifolds in Hamiltonian systems Persistence of invariant tori on sub-manifolds in Hamiltonian systems Shui-Nee Chow School of Mathematics, Georgia Institute of Technology, Atlanta, GA 3033, USA Yong Li Department of Mathematics, Jilin

More information

KAM for NLS with harmonic potential

KAM for NLS with harmonic potential Université de Nantes 3rd Meeting of the GDR Quantum Dynamics MAPMO, Orléans, 2-4 February 2011. (Joint work with Benoît Grébert) Introduction The equation : We consider the nonlinear Schrödinger equation

More information

Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann s non-degeneracy condition

Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann s non-degeneracy condition J Differential Equations 235 (27) 69 622 wwwelseviercom/locate/de Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann s non-degeneracy condition Junxiang

More information

ON THE BREAK-UP OF INVARIANT TORI WITH THREE FREQUENCIES

ON THE BREAK-UP OF INVARIANT TORI WITH THREE FREQUENCIES ON THE BREAK-UP OF INVARIANT TORI WITH THREE FREQUENCIES J.D. MEISS Program in Applied Mathematics University of Colorado Boulder, CO Abstract We construct an approximate renormalization operator for a

More information

Normal form for the non linear Schrödinger equation

Normal form for the non linear Schrödinger equation Normal form for the non linear Schrödinger equation joint work with Claudio Procesi and Nguyen Bich Van Universita di Roma La Sapienza S. Etienne de Tinee 4-9 Feb. 2013 Nonlinear Schrödinger equation Consider

More information

KAM for quasi-linear KdV

KAM for quasi-linear KdV KAM for quasi-linear KdV Massimiliano Berti ST Etienne de Tinée, 06-02-2014 KdV t u + u xxx 3 x u 2 + N 4 (x, u, u x, u xx, u xxx ) = 0, x T Quasi-linear Hamiltonian perturbation N 4 := x {( u f )(x, u,

More information

Survey of strong normal-internal k : l resonances in quasi-periodically driven oscillators for l = 1, 2, 3.

Survey of strong normal-internal k : l resonances in quasi-periodically driven oscillators for l = 1, 2, 3. June, : WSPC - Proceedings Trim Size: in x in SPT-broer Survey of strong normal-internal k : l resonances in quasi-periodically driven oscillators for l =,,. H.W. BROER and R. VAN DIJK Institute for mathematics

More information

ON GEOMETRIC METHODS IN WORKS BY V.I.ARNOLD AND V.V. KOZLOV 1

ON GEOMETRIC METHODS IN WORKS BY V.I.ARNOLD AND V.V. KOZLOV 1 ON GEOMETRIC METHODS IN WORKS BY V.I.ARNOLD AND V.V. KOZLOV 1 A.D.Bruno Keldysh Institute of Applied Mathematics, Moscow, Russia arxiv:1401.6320v1 [math.ca] 24 Jan 2014 We give a survey of geometric methods

More information

arxiv: v2 [math.ds] 15 Jul 2010

arxiv: v2 [math.ds] 15 Jul 2010 July 21, Version 2.1 arxiv:99.115v2 [math.ds] 15 Jul 21 Kam à la R Jürgen Pöschel In [4] Rüssmann proposed quoting from his abstract a new variant of the Kam-theory, containing an artificial parameter

More information

Perturbation theory, KAM theory and Celestial Mechanics 7. KAM theory

Perturbation theory, KAM theory and Celestial Mechanics 7. KAM theory Perturbation theory, KAM theory and Celestial Mechanics 7. KAM theory Alessandra Celletti Department of Mathematics University of Roma Tor Vergata Sevilla, 25-27 January 2016 Outline 1. Introduction 2.

More information

= 0. = q i., q i = E

= 0. = q i., q i = E Summary of the Above Newton s second law: d 2 r dt 2 = Φ( r) Complicated vector arithmetic & coordinate system dependence Lagrangian Formalism: L q i d dt ( L q i ) = 0 n second-order differential equations

More information

SPLITTING OF SEPARATRICES FOR (FAST) QUASIPERIODIC FORCING. splitting, which now seems to be the main cause of the stochastic behavior in

SPLITTING OF SEPARATRICES FOR (FAST) QUASIPERIODIC FORCING. splitting, which now seems to be the main cause of the stochastic behavior in SPLITTING OF SEPARATRICES FOR (FAST) QUASIPERIODIC FORCING A. DELSHAMS, V. GELFREICH, A. JORBA AND T.M. SEARA At the end of the last century, H. Poincare [7] discovered the phenomenon of separatrices splitting,

More information

Summation of divergent series and Borel summability for strongly dissipative differential equations with periodic or quasiperiodic forcing terms

Summation of divergent series and Borel summability for strongly dissipative differential equations with periodic or quasiperiodic forcing terms JOURNAL OF MATHEMATICAL PHYSICS 46, 062704 2005 Summation of divergent series and Borel summability for strongly dissipative differential equations with periodic or quasiperiodic forcing terms Guido Gentile

More information

GEVREY-SMOOTHNESS OF INVARIANT TORI FOR NEARLY INTEGRABLE SIMPLECTIC MAPPINGS

GEVREY-SMOOTHNESS OF INVARIANT TORI FOR NEARLY INTEGRABLE SIMPLECTIC MAPPINGS Electronic Journal of Differential Equations, Vol. 017 (017), No. 159, pp. 1 17. ISSN: 107-6691. URL: http://ede.math.txstate.edu or http://ede.math.unt.edu GEVREY-SMOOTHNESS OF INVARIANT TORI FOR NEARLY

More information

H = ( H(x) m,n. Ω = T d T x = x + ω (d frequency shift) Ω = T 2 T x = (x 1 + x 2, x 2 + ω) (skewshift)

H = ( H(x) m,n. Ω = T d T x = x + ω (d frequency shift) Ω = T 2 T x = (x 1 + x 2, x 2 + ω) (skewshift) Chapter One Introduction We will consider infinite matrices indexed by Z (or Z b ) associated to a dynamical system in the sense that satisfies H = ( H(x) m,n )m,n Z H(x) m+1,n+1 = H(T x) m,n where x Ω,

More information

ENERGY SURFACES AND HIERARCHIES OF BIFURCATIONS. Instabilities in the forced truncated NLS.

ENERGY SURFACES AND HIERARCHIES OF BIFURCATIONS. Instabilities in the forced truncated NLS. ENERGY SURFACES AND HIERARCHIES OF BIFURCATIONS. Instabilities in the forced truncated NLS. Eli Shlizerman Faculty of mathematical and computer science Weizmann Institute, Rehovot 76100, Israel Vered Rom-Kedar

More information

Secular and oscillatory motions in dynamical systems. Henk Broer Johann Bernoulli Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen

Secular and oscillatory motions in dynamical systems. Henk Broer Johann Bernoulli Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Secular and oscillatory motions in dynamical systems Henk Broer Johann Bernoulli Instituut voor Wiskunde en Informatica Rijksuniversiteit Groningen Contents 1. Toroidal symmetry 2. Secular (slow) versus

More information

arxiv: v1 [math.ds] 19 Dec 2012

arxiv: v1 [math.ds] 19 Dec 2012 arxiv:1212.4559v1 [math.ds] 19 Dec 2012 KAM theorems and open problems for infinite dimensional Hamiltonian with short range Xiaoping YUAN December 20, 2012 Abstract. Introduce several KAM theorems for

More information

Bibliography. [1] S.B. Angenent, The periodic orbits of an area preserving twist map, Comm. Math. Phys. 115 (1988), no. 3,

Bibliography. [1] S.B. Angenent, The periodic orbits of an area preserving twist map, Comm. Math. Phys. 115 (1988), no. 3, Bibliography [1] S.B. Angenent, The periodic orbits of an area preserving twist map, Comm. Math. Phys. 115 (1988), no. 3, 353 374. [2], Monotone recurrence relations, their Birkhoff orbits and topological

More information

A Cantor set of tori with monodromy near a focus focus singularity

A Cantor set of tori with monodromy near a focus focus singularity INSTITUTE OF PHYSICS PUBLISHING Nonlinearity 17 (2004) 1 10 NONLINEARITY PII: S0951-7715(04)65776-8 A Cantor set of tori with monodromy near a focus focus singularity Bob Rink Mathematics Institute, Utrecht

More information

Hamiltonian Dynamics

Hamiltonian Dynamics Hamiltonian Dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS Feb. 10, 2009 Joris Vankerschaver (CDS) Hamiltonian Dynamics Feb. 10, 2009 1 / 31 Outline 1. Introductory concepts; 2. Poisson brackets;

More information

Curriculum Vitae. Livia Corsi March, 2, 2018

Curriculum Vitae. Livia Corsi March, 2, 2018 Curriculum Vitae Livia Corsi March, 2, 2018 Personal data. Place and date of birth: Rome, September 2, 1983 Current position: (since August 2016) Visiting Assistant Professor at Georgia Institute of Technology

More information

Journal of Differential Equations

Journal of Differential Equations J. Differential Equations 250 (2011) 2601 2623 Contents lists available at ScienceDirect Journal of Differential Equations www.elsevier.com/locate/jde A geometric mechanism of diffusion: Rigorous verification

More information

Hamiltonian Chaos and the standard map

Hamiltonian Chaos and the standard map Hamiltonian Chaos and the standard map Outline: What happens for small perturbation? Questions of long time stability? Poincare section and twist maps. Area preserving mappings. Standard map as time sections

More information

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Introduction to Applied Nonlinear Dynamical Systems and Chaos Stephen Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos Second Edition With 250 Figures 4jj Springer I Series Preface v L I Preface to the Second Edition vii Introduction 1 1 Equilibrium

More information

Some Collision solutions of the rectilinear periodically forced Kepler problem

Some Collision solutions of the rectilinear periodically forced Kepler problem Advanced Nonlinear Studies 1 (2001), xxx xxx Some Collision solutions of the rectilinear periodically forced Kepler problem Lei Zhao Johann Bernoulli Institute for Mathematics and Computer Science University

More information

PERSISTENCE OF LOWER DIMENSIONAL TORI OF GENERAL TYPES IN HAMILTONIAN SYSTEMS

PERSISTENCE OF LOWER DIMENSIONAL TORI OF GENERAL TYPES IN HAMILTONIAN SYSTEMS PERSISTENCE OF LOWER DIMENSIONAL TORI OF GENERAL TYPES IN HAMILTONIAN SYSTEMS YONG LI AND YINGFEI YI Abstract. The work is a generalization to [4] in which we study the persistence of lower dimensional

More information

Quasi-periodic solutions with Sobolev regularity of NLS on T d with a multiplicative potential

Quasi-periodic solutions with Sobolev regularity of NLS on T d with a multiplicative potential Quasi-periodic solutions with Sobolev regularity of NLS on T d with a multiplicative potential Massimiliano Berti, Philippe Bolle Abstract: We prove the existence of quasi-periodic solutions for Schrödinger

More information

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams

Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams Quantum Field Theory I Examination questions will be composed from those below and from questions in the textbook and previous exams III. Quantization of constrained systems and Maxwell s theory 1. The

More information

Quasi-periodic solutions of the 2D Euler equation

Quasi-periodic solutions of the 2D Euler equation Quasi-periodic solutions of the 2D Euler equation Nicolas Crouseilles, Erwan Faou To cite this version: Nicolas Crouseilles, Erwan Faou. Quasi-periodic solutions of the 2D Euler equation. Asymptotic Analysis,

More information

Lectures on Dynamical Systems. Anatoly Neishtadt

Lectures on Dynamical Systems. Anatoly Neishtadt Lectures on Dynamical Systems Anatoly Neishtadt Lectures for Mathematics Access Grid Instruction and Collaboration (MAGIC) consortium, Loughborough University, 2007 Part 3 LECTURE 14 NORMAL FORMS Resonances

More information

Two models for the parametric forcing of a nonlinear oscillator

Two models for the parametric forcing of a nonlinear oscillator Nonlinear Dyn (007) 50:147 160 DOI 10.1007/s11071-006-9148-3 ORIGINAL ARTICLE Two models for the parametric forcing of a nonlinear oscillator Nazha Abouhazim Mohamed Belhaq Richard H. Rand Received: 3

More information

Symmetries. x = x + y k 2π sin(2πx), y = y k. 2π sin(2πx t). (3)

Symmetries. x = x + y k 2π sin(2πx), y = y k. 2π sin(2πx t). (3) The standard or Taylor Chirikov map is a family of area-preserving maps, z = f(z)where z = (x, y) is the original position and z = (x,y ) the new position after application of the map, which is defined

More information

KAM tori for higher dimensional beam equations with constant potentials

KAM tori for higher dimensional beam equations with constant potentials INSTITUTE OF PHYSICS PUBLISHING Nonlinearity 9 (2006) 2405 2423 NONLINEARITY doi:0.088/095-775/9/0/007 KAM tori for higher dimensional beam equations with constant potentials Jiansheng Geng and Jiangong

More information

( r) = 1 Z. e Zr/a 0. + n +1δ n', n+1 ). dt ' e i ( ε n ε i )t'/! a n ( t) = n ψ t = 1 i! e iε n t/! n' x n = Physics 624, Quantum II -- Exam 1

( r) = 1 Z. e Zr/a 0. + n +1δ n', n+1 ). dt ' e i ( ε n ε i )t'/! a n ( t) = n ψ t = 1 i! e iε n t/! n' x n = Physics 624, Quantum II -- Exam 1 Physics 624, Quantum II -- Exam 1 Please show all your work on the separate sheets provided (and be sure to include your name) You are graded on your work on those pages, with partial credit where it is

More information

Lecture 11 : Overview

Lecture 11 : Overview Lecture 11 : Overview Error in Assignment 3 : In Eq. 1, Hamiltonian should be H = p2 r 2m + p2 ϕ 2mr + (p z ea z ) 2 2 2m + eφ (1) Error in lecture 10, slide 7, Eq. (21). Should be S(q, α, t) m Q = β =

More information

CHARACTERIZATION OF ORBITS IN THE TRUNCATED AND FORCED NONLINEAR SHRÖDINGER MODEL

CHARACTERIZATION OF ORBITS IN THE TRUNCATED AND FORCED NONLINEAR SHRÖDINGER MODEL ENOC-005, Eindhoven, Netherlands, 7-1 August 005 CHARACTERIZATION OF ORBITS IN THE TRUNCATED AND FORCED NONLINEAR SHRÖDINGER MODEL Eli Shlizerman Faculty of Mathematics and Computer Science The Weizmann

More information

Newton s Method and Localization

Newton s Method and Localization Newton s Method and Localization Workshop on Analytical Aspects of Mathematical Physics John Imbrie May 30, 2013 Overview Diagonalizing the Hamiltonian is a goal in quantum theory. I would like to discuss

More information

PERIODIC SOLUTIONS OF THE PLANETARY N BODY PROBLEM

PERIODIC SOLUTIONS OF THE PLANETARY N BODY PROBLEM 1 PERIODIC SOLUTIONS OF THE PLANETARY N BODY PROBLEM L. CHIERCHIA Department of Mathematics, Roma Tre University, Rome, I-146, Italy E-mail: luigi@mat.uniroma3.it The closure of periodic orbits in the

More information

A PERIODICITY PROBLEM FOR THE KORTEWEG DE VRIES AND STURM LIOUVILLE EQUATIONS. THEIR CONNECTION WITH ALGEBRAIC GEOMETRY

A PERIODICITY PROBLEM FOR THE KORTEWEG DE VRIES AND STURM LIOUVILLE EQUATIONS. THEIR CONNECTION WITH ALGEBRAIC GEOMETRY A PERIODICITY PROBLEM FOR THE KORTEWEG DE VRIES AND STURM LIOUVILLE EQUATIONS. THEIR CONNECTION WITH ALGEBRAIC GEOMETRY B. A. DUBROVIN AND S. P. NOVIKOV 1. As was shown in the remarkable communication

More information

Aubry Mather Theory from a Topological Viewpoint

Aubry Mather Theory from a Topological Viewpoint Aubry Mather Theory from a Topological Viewpoint III. Applications to Hamiltonian instability Marian Gidea,2 Northeastern Illinois University, Chicago 2 Institute for Advanced Study, Princeton WORKSHOP

More information

INVARIANT TORI IN THE LUNAR PROBLEM. Kenneth R. Meyer, Jesús F. Palacián, and Patricia Yanguas. Dedicated to Jaume Llibre on his 60th birthday

INVARIANT TORI IN THE LUNAR PROBLEM. Kenneth R. Meyer, Jesús F. Palacián, and Patricia Yanguas. Dedicated to Jaume Llibre on his 60th birthday Publ. Mat. (2014), 353 394 Proceedings of New Trends in Dynamical Systems. Salou, 2012. DOI: 10.5565/PUBLMAT Extra14 19 INVARIANT TORI IN THE LUNAR PROBLEM Kenneth R. Meyer, Jesús F. Palacián, and Patricia

More information

Exponentially small splitting of separatrices of the pendulum: two different examples. Marcel Guardia, Carme Olivé, Tere M-Seara

Exponentially small splitting of separatrices of the pendulum: two different examples. Marcel Guardia, Carme Olivé, Tere M-Seara Exponentially small splitting of separatrices of the pendulum: two different examples Marcel Guardia, Carme Olivé, Tere M-Seara 1 A fast periodic perturbation of the pendulum We consider a non-autonomous

More information

University of Groningen. The Parametrically Forced Pendulum Broer, Hendrik; Hoveijn, I.; Noort, M. van; Simó, C.; Vegter, Geert

University of Groningen. The Parametrically Forced Pendulum Broer, Hendrik; Hoveijn, I.; Noort, M. van; Simó, C.; Vegter, Geert University of Groningen The Parametrically Forced Pendulum Broer, Hendrik; Hoveijn, I.; Noort, M. van; Simó, C.; Vegter, Geert Published in: Journal of dynamics and differential equations IMPORTANT NOTE:

More information

KAM theory: a journey from conservative to dissipative systems

KAM theory: a journey from conservative to dissipative systems KAM theory: a journey from conservative to dissipative systems Alessandra Celletti Department of Mathematics University of Roma Tor Vergata 4 July 2012 Outline 1. Introduction 2. Qualitative description

More information

Chaos in Hamiltonian systems

Chaos in Hamiltonian systems Chaos in Hamiltonian systems Teemu Laakso April 26, 2013 Course material: Chapter 7 from Ott 1993/2002, Chaos in Dynamical Systems, Cambridge http://matriisi.ee.tut.fi/courses/mat-35006 Useful reading:

More information

AVERAGING AND RECONSTRUCTION IN HAMILTONIAN SYSTEMS

AVERAGING AND RECONSTRUCTION IN HAMILTONIAN SYSTEMS AVERAGING AND RECONSTRUCTION IN HAMILTONIAN SYSTEMS Kenneth R. Meyer 1 Jesús F. Palacián 2 Patricia Yanguas 2 1 Department of Mathematical Sciences University of Cincinnati, Cincinnati, Ohio (USA) 2 Departamento

More information

BIFURCATION PHENOMENA Lecture 4: Bifurcations in n-dimensional ODEs

BIFURCATION PHENOMENA Lecture 4: Bifurcations in n-dimensional ODEs BIFURCATION PHENOMENA Lecture 4: Bifurcations in n-dimensional ODEs Yuri A. Kuznetsov August, 2010 Contents 1. Solutions and orbits: equilibria cycles connecting orbits compact invariant manifolds strange

More information

A New Approach to the Parameterization Method for Lagrangian Tori of Hamiltonian Systems

A New Approach to the Parameterization Method for Lagrangian Tori of Hamiltonian Systems J Nonlinear Sci (017) 7:495 530 DOI 10.1007/s0033-016-934-5 A New Approach to the Parameterization Method for Lagrangian Tori of Hamiltonian Systems Jordi Villanueva 1 Received: 16 March 016 / Accepted:

More information

Barcelona, Spain. RTBP, collinear points, periodic orbits, homoclinic orbits. Resumen

Barcelona, Spain.   RTBP, collinear points, periodic orbits, homoclinic orbits. Resumen XX Congreso de Ecuaciones Diferenciales y Aplicaciones X Congreso de Matemática Aplicada Sevilla, 24-28 septiembre 27 (pp. 1 8) The dynamics around the collinear point L 3 of the RTBP E. Barrabés 1, J.M.

More information

Towards stability results for planetary problems with more than three bodies

Towards stability results for planetary problems with more than three bodies Towards stability results for planetary problems with more than three bodies Ugo Locatelli [a] and Marco Sansottera [b] [a] Math. Dep. of Università degli Studi di Roma Tor Vergata [b] Math. Dep. of Università

More information

An abstract Nash-Moser Theorem with parameters and applications to PDEs

An abstract Nash-Moser Theorem with parameters and applications to PDEs An abstract Nash-Moser Theorem with parameters and applications to PDEs M. Berti, P. Bolle, M. Procesi Abstract. We prove an abstract Nash-Moser implicit function theorem with parameters which covers the

More information

5 Infrared Divergences

5 Infrared Divergences 5 Infrared Divergences We have already seen that some QED graphs have a divergence associated with the masslessness of the photon. The divergence occurs at small values of the photon momentum k. In a general

More information

Multiperiodic dynamics overview and some recent results

Multiperiodic dynamics overview and some recent results Multiperiodic dynamics overview and some recent results Henk Broer Rijksuniversiteit Groningen Instituut voor Wiskunde en Informatica POBox 800 9700 AV Groningen email: broer@math.rug.nl URL: http://www.math.rug.nl/~broer

More information

Branching of Cantor Manifolds of Elliptic Tori and Applications to PDEs

Branching of Cantor Manifolds of Elliptic Tori and Applications to PDEs Commun. Math. Phys. 35, 741 796 (211) Digital Object Identifier (DOI) 1.17/s22-11-1264-3 Communications in Mathematical Physics Branching of Cantor Manifolds of Elliptic Tori and Applications to PDEs Massimiliano

More information

Finite dimensional invariant KAM tori for tame vector fields

Finite dimensional invariant KAM tori for tame vector fields Finite dimensional invariant KAM tori for tame vector fields L. Corsi, R. Feola, M. Procesi Georgia Institute of Technology, Altanta, lcorsi6@math.gatech.edu; SISSA, Trieste, rfeola@sissa.it; Università

More information

INVARIANT TORI IN NON-DEGENERATE NEARLY INTEGRABLE HAMILTONIAN SYSTEMS

INVARIANT TORI IN NON-DEGENERATE NEARLY INTEGRABLE HAMILTONIAN SYSTEMS H. Rüssmann Fachbereich Mathemati Universität Mainz 55099 Mainz, Germany E-mail: ruessmann@mathemati.uni -mainz.de INVARIANT TORI IN NON-DEGENERATE NEARLY INTEGRABLE HAMILTONIAN SYSTEMS Received May 00

More information

2 Feynman rules, decay widths and cross sections

2 Feynman rules, decay widths and cross sections 2 Feynman rules, decay widths and cross sections 2.1 Feynman rules Normalization In non-relativistic quantum mechanics, wave functions of free particles are normalized so that there is one particle in

More information

Journal of Differential Equations

Journal of Differential Equations J. Differential Equations 5 (0) 66 93 Contents lists available at SciVerse ScienceDirect Journal of Differential Equations www.elsevier.com/locate/jde Quasi-periodic solutions for D wave equation with

More information

Action-Angle Variables and KAM-Theory in General Relativity

Action-Angle Variables and KAM-Theory in General Relativity Action-Angle Variables and KAM-Theory in General Relativity Daniela Kunst, Volker Perlick, Claus Lämmerzahl Center of Space Technology and Microgravity University of Bremen, Germany Workshop in Oldenburg

More information

Globally and locally attractive solutions for quasi-periodically forced systems

Globally and locally attractive solutions for quasi-periodically forced systems J. Math. Anal. Appl. 328 (27) 699 714 www.elsevier.com/locate/jmaa Globally and locally attractive solutions for quasi-periodically forced systems Michele V. Bartuccelli a, Jonathan H.B. Deane a, Guido

More information

On the smoothness of the conjugacy between circle maps with a break

On the smoothness of the conjugacy between circle maps with a break On the smoothness of the conjugacy between circle maps with a break Konstantin Khanin and Saša Kocić 2 Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4 2 Department of Mathematics,

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

Universal Dynamics in a Neighborhood of a Generic Elliptic Periodic Point

Universal Dynamics in a Neighborhood of a Generic Elliptic Periodic Point ISSN 1560-3547, Regular and Chaotic Dynamics, 2010, Vol. 15, Nos. 2 3, pp. 159 164. c Pleiades Publishing, Ltd., 2010. L.P. SHILNIKOV 75 Special Issue Universal Dynamics in a Neighborhood of a Generic

More information

REVIEW REVIEW. Quantum Field Theory II

REVIEW REVIEW. Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

PERSISTENCE OF HYPERBOLIC TORI IN HAMILTONIAN SYSTEMS. Dedicated to Professor George R. Sell on the occasion of his 65th birthday

PERSISTENCE OF HYPERBOLIC TORI IN HAMILTONIAN SYSTEMS. Dedicated to Professor George R. Sell on the occasion of his 65th birthday PERSISTENCE OF HYPERBOLIC TORI IN HAMILTONIAN SYSTEMS YONG LI AND YINGFEI YI Abstract. We generalize the well-known result of Graff and Zehnder on the persistence of hyperbolic invariant tori in Hamiltonian

More information

DIFFERENTIATING THE ABSOLUTELY CONTINUOUS INVARIANT MEASURE OF AN INTERVAL MAP f WITH RESPECT TO f. by David Ruelle*.

DIFFERENTIATING THE ABSOLUTELY CONTINUOUS INVARIANT MEASURE OF AN INTERVAL MAP f WITH RESPECT TO f. by David Ruelle*. DIFFERENTIATING THE ABSOLUTELY CONTINUOUS INVARIANT MEASURE OF AN INTERVAL MAP f WITH RESPECT TO f. by David Ruelle*. Abstract. Let the map f : [, 1] [, 1] have a.c.i.m. ρ (absolutely continuous f-invariant

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Unicity of KAM tori Henk Broer 1 and Floris Takens 1

Unicity of KAM tori Henk Broer 1 and Floris Takens 1 Unicity of KAM tori Henk Broer 1 and Floris Takens 1 Abstract The classical KAM theorem establishes persistence of invariant Lagrangean tori in nearly integrable Hamiltonian systems. These tori are quasi-periodic

More information

Separatrix Map Analysis for Fractal Scatterings in Weak Interactions of Solitary Waves

Separatrix Map Analysis for Fractal Scatterings in Weak Interactions of Solitary Waves Separatrix Map Analysis for Fractal Scatterings in Weak Interactions of Solitary Waves By Yi Zhu, Richard Haberman, and Jianke Yang Previous studies have shown that fractal scatterings in weak interactions

More information

Bifurcations of normally parabolic tori in Hamiltonian systems

Bifurcations of normally parabolic tori in Hamiltonian systems INSTITUTE OF PHYSICS PUBLISHING Nonlinearity 18 (25) 1735 1769 NONLINEARITY doi:1.188/951-7715/18/4/18 Bifurcations of normally parabolic tori in Hamiltonian systems Henk W Broer 1, Heinz Hanßmann 2,4

More information

Green Functions in Many Body Quantum Mechanics

Green Functions in Many Body Quantum Mechanics Green Functions in Many Body Quantum Mechanics NOTE This section contains some advanced material, intended to give a brief introduction to methods used in many body quantum mechanics. The material at the

More information

Hylomorphic solitons and their dynamics

Hylomorphic solitons and their dynamics Hylomorphic solitons and their dynamics Vieri Benci Dipartimento di Matematica Applicata U. Dini Università di Pisa 18th May 2009 Vieri Benci (DMA-Pisa) Hylomorphic solitons 18th May 2009 1 / 50 Types

More information

Periodic solutions for a class of nonlinear partial differential equations in higher dimension

Periodic solutions for a class of nonlinear partial differential equations in higher dimension Periodic solutions for a class of nonlinear partial differential equations in higher dimension Guido Gentile 1 and Michela Procesi 2 1 Dipartimento di Matematica, Università di Roma Tre, Roma, I-00146,

More information

GRAPH QUANTUM MECHANICS

GRAPH QUANTUM MECHANICS GRAPH QUANTUM MECHANICS PAVEL MNEV Abstract. We discuss the problem of counting paths going along the edges of a graph as a toy model for Feynman s path integral in quantum mechanics. Let Γ be a graph.

More information

SPLITTING AND MELNIKOV POTENTIALS IN HAMILTONIAN SYSTEMS AMADEU DELSHAMS AND PERE GUTI ERREZ Departament de Matematica Aplicada I, Universitat Politec

SPLITTING AND MELNIKOV POTENTIALS IN HAMILTONIAN SYSTEMS AMADEU DELSHAMS AND PERE GUTI ERREZ Departament de Matematica Aplicada I, Universitat Politec SPLITTING AND MELNIKOV POTENTIALS IN HAMILTONIAN SYSTEMS AMADEU DELSHAMS AND PERE GUTI ERREZ Departament de Matematica Aplicada I, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona We

More information

ON THE REDUCIBILITY OF LINEAR DIFFERENTIAL EQUATIONS WITH QUASIPERIODIC COEFFICIENTS WHICH ARE DEGENERATE

ON THE REDUCIBILITY OF LINEAR DIFFERENTIAL EQUATIONS WITH QUASIPERIODIC COEFFICIENTS WHICH ARE DEGENERATE PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 5, May 1998, Pages 1445 1451 S 0002-9939(98)04523-7 ON THE REDUCIBILITY OF LINEAR DIFFERENTIAL EQUATIONS WITH QUASIPERIODIC COEFFICIENTS

More information

DYNAMICS OF GENERALIZED EULER TOPS WITH CONSTRAINTS. Dmitry V. Zenkov, Anthony M. Bloch

DYNAMICS OF GENERALIZED EULER TOPS WITH CONSTRAINTS. Dmitry V. Zenkov, Anthony M. Bloch PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 18 21, 2000, Atlanta, USA pp. 398 405 DYNAMICS OF GENERALIZED EULER TOPS WITH CONSTRAINTS Dmitry V. Zenkov,

More information

Existence of (Generalized) Breathers in Periodic Media

Existence of (Generalized) Breathers in Periodic Media Existence of (Generalized) Breathers in Periodic Media Guido Schneider Lehrstuhl für Analysis und Modellierung www.iadm.uni-stuttgart.de/lstanamod/schneider/ Collaborators:. Martina Chirilus-Bruckner,

More information

Bridges between the Generalized Sitnikov Family and the Lyapunov Family of Periodic Orbits*

Bridges between the Generalized Sitnikov Family and the Lyapunov Family of Periodic Orbits* journal of differential equations 154, 140156 (1999) Article ID jdeq.1998.3565, available online at http:www.idealibrary.com on Bridges between the Generalized Sitnikov Family and the Lyapunov Family of

More information

Frequency analysis of the stability of asteroids in the framework of the restricted, three body problem

Frequency analysis of the stability of asteroids in the framework of the restricted, three body problem Frequency analysis of the stability of asteroids in the framework of the restricted, three body problem Alessandra Celletti Dipartimento di Matematica Università di Roma Tor Vergata Via della Ricerca Scientifica

More information