Lattice Boltzmann methods Summer term Cumulant-based LBM. 25. July 2017

Size: px
Start display at page:

Download "Lattice Boltzmann methods Summer term Cumulant-based LBM. 25. July 2017"

Transcription

1 Cumulant-based LBM Prof. B. Wohlmuth Markus Muhr 25. July 2017

2 1. Repetition: LBM and notation Discretization SRT-equation Content 2. MRT-model Basic idea Moments and moment-transformation 3. Cumulant-based LBM Basic idea and technical tools Derivation of the cumulants Cumulant-transformation Cumulant collision operator 4. Validation a.k.a. colorful pictures Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 1/60

3 Repetition: LBM and notation Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 2/60

4 Computational Fluid Dynamics Numerical simulation of flows Calculation of the velocity field Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 3/60

5 Computational Fluid Dynamics Numerical simulation of flows Calculation of the velocity field Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 4/60

6 Discretization In space In velocity (D2Q9-model) c 6 c 2 c 5 c 3 c 1 c 7 c 4 c 8 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 5/60

7 (Discrete) Boltzmann-equation Considering probabilities of an encounter fi f 6 f 2 f 5 f 3 f 1 f 7 f 4 f 8 Derivation of a (discrete) transport-equation for the distributions f i : f i (t, x) t + c i x f i (t, x) = Q(f i ) 1 τ C (f i (t, x) f eq i (t, x) ) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 6/60

8 (Discrete) Boltzmann-equation Considering probabilities of an encounter fi f 6 f 2 f 5 f 3 f 1 f 7 f 4 f 8 Derivation of a (discrete) transport-equation for the distributions f i : f i (t, x) t + c i x f i (t, x) = Q(f i ) 1 τ C (f i (t, x) f eq i (t, x) ) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 6/60

9 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 7/60 Equilibrium distributions f eq i Maxwell-distribution as natural velocity-distribution of an ideal gas: ( ) ) m 3/2 m ξ u 2 M(ξ, ρ, u, T ) = ρ exp ( 2π k B T 2k B T Taylor expansion up to second order ξ = ci : ( f eq i = ρ ω i c i u c 2 3 u 2 2c ( ci c 4 u ) ) 2

10 SRT-equation Discretization of the derivative by finite differences f i (t + t, x + c i t) = f i (t, x) 1 τ (f i (t, x) f eq i (t, x) ) Interpretation as collision and streaming: f 6 f 2 f 5 f 3 f 1 f 7 f 4 f 8

11 SRT-equation Discretization of the derivative by finite differences f i (t + t, x + c i t) = f i (t, x) 1 τ (f i (t, x) f eq i (t, x) ) Interpretation as collision and streaming: f 6 f 2 f 5 f 6 f 2 f 5 f 3 f 1 f 3 f 1 f 7 f 4 f 8 f7 f4 f8

12 SRT-equation Discretization of the derivative by finite differences f i (t + t, x + c i t) = f i (t, x) 1 τ (f i (t, x) f eq i (t, x) ) Interpretation as collision and streaming: f 6 f 2 f 5 f 6 f 2 f 5 f 6 f 2 f 5 f 3 f 1 f 3 f 1 f 3 f 1 f 7 f 4 f 8 f7 f4 f8 f7 f4 f8 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 8/60

13 SRT-equation Discretization of the derivative by finite differences f i (t + t, x + c i t) = f i (t, x) 1 τ (f i (t, x) f eq i (t, x) ) Interpretation as collision and streaming: f 6 f 2 f 5 f 6 f 2 f 5 f 6 f 2 f 5 f 3 f 1 f 3 f 1 f 3 f 1 f 7 f 4 f 8 f7 f4 f8 f7 f4 f8 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 8/60

14 In three dimensions Analogously in three dimensions (D3Q27-model) z y x Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 9/60

15 Notation Convenient notation by index-tupel: f 6 f 2 f 5 f 11 f 01 f 11 f 3 f 1 f 10 f 10 f 7 f 4 f 8 f 1 1 f 0 1 f 1 1 f i f ij with i, j { 1, 0, 1} Analogously in three dimensions: fi f ijk with i, j, k { 1, 0, 1} Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 10/60

16 MRT-model Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 11/60

17 Basic idea of MRT (1) The SRT-equation reads: f i (t + t, x + c i t) = f i (t, x) 1 τ (f i (t, x) f eq i (t, x) ) Idea: Mix the relaxation terms f i (t + t, x + c i t) = f i (t, x) n V j=0 1 ( ) f j (t, x) f eq j (t, x) τ ij Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 12/60

18 Basic idea of MRT (1) The SRT-equation reads: f i (t + t, x + c i t) = f i (t, x) 1 τ (f i (t, x) f eq i (t, x) ) Idea: Mix the relaxation terms f i (t + t, x + c i t) = f i (t, x) n V j=0 1 ( ) f j (t, x) f eq j (t, x) τ ij In matrix-vector-form. f i (t + t, x + c i t). =. f i (t, x). S. ( fi (t, x) f eq i (t, x) ). Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 12/60

19 Basic idea of MRT (1) The SRT-equation reads: f i (t + t, x + c i t) = f i (t, x) 1 τ (f i (t, x) f eq i (t, x) ) Idea: Mix the relaxation terms f i (t + t, x + c i t) = f i (t, x) n V j=0 1 ( ) f j (t, x) f eq j (t, x) τ ij In matrix-vector-form. f i (t + t, x + c i t). =. f i (t, x). S. ( fi (t, x) f eq i (t, x) ). Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 12/60

20 Basic idea of MRT (2) In matrix-vector-form f (t + t, x + c t) = f (t, x) S (f (t, x) f eq (t, x)) Diagonalize the matrix S: f (t+ t, x +c t) = f (t, x) M 1Ŝ (Mf (t, x) Mf eq (t, x)) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 13/60

21 Basic idea of MRT (2) In matrix-vector-form f (t + t, x + c t) = f (t, x) S (f (t, x) f eq (t, x)) Diagonalize the matrix S: f (t+ t, x +c t) = f (t, x) M 1Ŝ (Mf (t, x) Mf eq (t, x)) Interpretation as transformation M : f m f (t + t, x + c t) = f (t, x) M 1Ŝ (m(t, x) meq (t, x)) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 13/60

22 Basic idea of MRT (2) In matrix-vector-form f (t + t, x + c t) = f (t, x) S (f (t, x) f eq (t, x)) Diagonalize the matrix S: f (t+ t, x +c t) = f (t, x) M 1Ŝ (Mf (t, x) Mf eq (t, x)) Interpretation as transformation M : f m f (t + t, x + c t) = f (t, x) M 1Ŝ (m(t, x) meq (t, x)) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 13/60

23 Definition: (Raw)-moments Moments For α, β, γ = 0, 1, 2,... one defined the (raw)-moments of order α + β + γ as follows: m αβγ = 1 i,j,k= 1 In matrix-vector-form (in 2D) m 00 m 10 m 01 m 20 m 02 m 11 m 21 m 12 m 22 = ( ) α ( ) β ( ) γ c ijk c ijk c ijk f ijk = x y z i,j,k= 1 i α j β k γ f ijk Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 14/60 f 0 f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

24 Definition: (Raw)-moments Moments For α, β, γ = 0, 1, 2,... one defined the (raw)-moments of order α + β + γ as follows: m αβγ = 1 i,j,k= 1 In matrix-vector-form (in 2D) m 00 m 10 m 01 m 20 m 02 m 11 m 21 m 12 m 22 = ( ) α ( ) β ( ) γ c ijk c ijk c ijk f ijk = x y z i,j,k= 1 i α j β k γ f ijk Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 14/60 f 0 f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

25 Interpretation of the moments The moments correspond to different physical quantities like: m 00 = 1 i,j= 1 f ij = ρ density c 6 c 2 c 5 c 3 c 1 m 10 = 1 ) (c ij i,j= 1 m01 = 1 i,j= 1 (c ij ) x y c 7 c 4 c 8 f ij = ρ u x x-momentum f ij = ρ u y y-momentum Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 15/60

26 Interpretation of the moments The moments correspond to different physical quantities like: m 00 = 1 i,j= 1 f ij = ρ density c 6 c 2 c 5 c 3 c 1 m 10 = 1 i,j= 1 m01 = 1 i,j= 1 (c ij ) (c ij ) x y c 7 c 4 c 8 f ij = ρ u x x-momentum f ij = ρ u y y-momentum Some moments have to be combined for a reasonable interpretation ( m20 + m 02 = 1 ( ) 2 ( ) ) 2 c ij + c ij f ij E kin x y i,j= 1 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 15/60

27 Interpretation of the moments The moments correspond to different physical quantities like: m 00 = 1 i,j= 1 f ij = ρ density c 6 c 2 c 5 c 3 c 1 m 10 = 1 i,j= 1 m01 = 1 i,j= 1 (c ij ) (c ij ) x y c 7 c 4 c 8 f ij = ρ u x x-momentum f ij = ρ u y y-momentum Some moments have to be combined for a reasonable interpretation ( m20 + m 02 = 1 ( ) 2 ( ) ) 2 c ij + c ij f ij E kin x y i,j= 1 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 15/60

28 Moment-transformation The respective linear combination of matrix-lines yields the moment-transformationmatrix M 0 M 1 M 2 M 3 M 4 M 5 M 6 M 7 M 8 = m 00 m 10 m 01 m 20 + m 02 m 20 m 02 m 11 m 21 m 12 m 22 = f 0 f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 Further linear combinations of (raw)-moments are possible as for example row-wise orthogonalization. Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 16/60

29 MRT-algorithm Transform the given distributions f into moments M = M f und M eq = M f eq Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 17/60

30 MRT-algorithm Transform the given distributions f into moments M = M f und M eq = M f eq Relax the moment Mi with frequencies ω i M 0. M 8 = ω 0... ω 8 M 0 M eq 0. M 8 M eq 8 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 17/60

31 MRT-algorithm Transform the given distributions f into moments M = M f und M eq = M f eq Relax the moment Mi with frequencies ω i M 0. M 8 = ω 0... ω 8 M 0 M eq 0. M 8 M eq 8 Transform the relaxed moments back into distribution space f = M 1 M Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 17/60

32 MRT-algorithm Transform the given distributions f into moments M = M f und M eq = M f eq Relax the moment Mi with frequencies ω i M 0. M 8 = ω 0... ω 8 M 0 M eq 0. M 8 M eq 8 Transform the relaxed moments back into distribution space f = M 1 M Collision update and streaming step f (t+ t, x +c t) = f (t, x) M 1Ŝ (Mf (t, x) Mf eq (t, x)) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 17/60

33 MRT-algorithm Transform the given distributions f into moments M = M f und M eq = M f eq Relax the moment Mi with frequencies ω i M 0. M 8 = ω 0... ω 8 M 0 M eq 0. M 8 M eq 8 Transform the relaxed moments back into distribution space f = M 1 M Collision update and streaming step f (t+ t, x +c t) = f (t, x) M 1Ŝ (Mf (t, x) Mf eq (t, x)) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 17/60

34 Pro/Con MRT-model More tuning-parameter ωi as for SRT Better insight into the model by identification with physical quantities Linear transformations statistical dependencies among the moments ( dependencies between ω i ) Physics gets lost by (wrong) variation of parameters. How to choose them? Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 18/60

35 Pro/Con MRT-model More tuning-parameter ωi as for SRT Better insight into the model by identification with physical quantities Linear transformations statistical dependencies among the moments ( dependencies between ω i ) Physics gets lost by (wrong) variation of parameters. How to choose them? Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 18/60

36 Cumulant-based LBM Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 19/60

37 Basic idea of cumulant-based LBM Goal: Find a transformation to statistically independent quantities C m Mathematically this is described by a factorization of the probability-density f ijk = n V m=0 F m (C m ) Efficient implementation of that (nonlinear) transformation Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 20/60

38 Basic idea of cumulant-based LBM Goal: Find a transformation to statistically independent quantities C m Mathematically this is described by a factorization of the probability-density f ijk = n V m=0 F m (C m ) Efficient implementation of that (nonlinear) transformation Main tools: Multivariate Taylor-expansion, Laplace-transformation and distribution-theory Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 20/60

39 Basic idea of cumulant-based LBM Goal: Find a transformation to statistically independent quantities C m Mathematically this is described by a factorization of the probability-density f ijk = n V m=0 F m (C m ) Efficient implementation of that (nonlinear) transformation Main tools: Multivariate Taylor-expansion, Laplace-transformation and distribution-theory Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 20/60

40 Distributions Recall from measure theory: Lebesgue-space L 2 : L 2 (R) := { f : R R R f (x) 2 dx < } Consider the following functional G : L 2 (R) R, G(f ) := 1 1 f (x) dx Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 21/60

41 Distributions Recall from measure theory: Lebesgue-space L 2 : L 2 (R) := { f : R R R f (x) 2 dx < } Consider the following functional G : L 2 (R) R, G(f ) := 1 1 f (x) dx Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 21/60

42 Distributions Recall from measure theory: Lebesgue-space L 2 : L 2 (R) := { f : R R R f (x) 2 dx < } Consider the following functional G : L 2 (R) R, G(f ) := 1 1 f (x) dx One searches for a g L 2 (R) satisfying: G(f ) = g(x) f (x) dx f L 2 (R) R Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 22/60

43 Distributions Recall from measure theory: Lebesgue-space L 2 : L 2 (R) := { f : R R R f (x) 2 dx < } Consider the following functional G : L 2 (R) R, G(f ) := 1 1 f (x) dx One searches for a g L 2 (R) satisfying: G(f ) = g(x) f (x) dx f L 2 (R) R Solution: g(x) = 1[ 1,1] (x) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 22/60

44 Distributions Recall from measure theory: Lebesgue-space L 2 : L 2 (R) := { f : R R R f (x) 2 dx < } Consider the following functional G : L 2 (R) R, G(f ) := 1 1 f (x) dx One searches for a g L 2 (R) satisfying: G(f ) = g(x) f (x) dx f L 2 (R) R Solution: g(x) = 1[ 1,1] (x) Interpretation of g as functional (Riesz representation theorem) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 22/60

45 Distributions Recall from measure theory: Lebesgue-space L 2 : L 2 (R) := { f : R R R f (x) 2 dx < } Consider the following functional G : L 2 (R) R, G(f ) := 1 1 f (x) dx One searches for a g L 2 (R) satisfying: G(f ) = g(x) f (x) dx f L 2 (R) R Solution: g(x) = 1[ 1,1] (x) Interpretation of g as functional (Riesz representation theorem) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 22/60

46 Dirac-sequence Interprete the functions gn (x) = n 2 1 [ 1 n, n] 1 (x), n N as functionals Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 23/60

47 Delta-distribution δ For continuous functions f there holds: R g n (x) f (x) dx = n 1 2 n f (x) dx 1 n = n ( ( ) ( 1 2 F F 1 )) n n Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 24/60

48 Delta-distribution δ For continuous functions f there holds: R g n (x) f (x) dx = n 1 2 n f (x) dx 1 n = n ( ( ) ( 1 2 F F 1 )) n n = F ( 1 n ) ( ) F 1 n 2 1 n n F (0) = f (0) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 24/60

49 Delta-distribution δ For continuous functions f there holds: R g n (x) f (x) dx = n 1 2 n f (x) dx 1 n = n ( ( ) ( 1 2 F F 1 )) n n = F ( 1 n ) ( ) F 1 n 2 1 n n F (0) = f (0) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 24/60

50 Delta-distribution δ For continuous functions f there holds: R g n (x) f (x) dx = n 1 2 n f (x) dx 1 n = n ( ( ) ( 1 2 F F 1 )) n n = F ( 1 n ) ( ) F 1 n 2 1 n Define the delta-distribution δ(x) := lim g n(x) = g (x) n by: δ(x) f (x) dx = f (0) R n F (0) = f (0) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 24/60

51 Delta-distribution δ For continuous functions f there holds: R g n (x) f (x) dx = n 1 2 n f (x) dx 1 n = n ( ( ) ( 1 2 F F 1 )) n n = F ( 1 n ) ( ) F 1 n 2 1 n Define the delta-distribution δ(x) := lim g n(x) = g (x) n by: δ(x) f (x) dx = f (0) R n F (0) = f (0) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 24/60

52 Delta-function Considered as a function there holds: δ(x) = { 0 if x 0 if x = 0 Which often gets normed to: δ(x) = { 0 if x 0 1 if x = 0 What you should remember for sure: δ(x) f (x) dx = f (0) R Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 25/60

53 Delta-function Considered as a function there holds: δ(x) = { 0 if x 0 if x = 0 Which often gets normed to: δ(x) = { 0 if x 0 1 if x = 0 What you should remember for sure: δ(x) f (x) dx = f (0) R Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 25/60

54 Repetition: Fourier-transform The Fourier-transform of f : R C is (modulo scaling) defined by: f (ω) = F[f (x)](ω) := f (x) e iωx dx R f (ω) tells, how strong e iω is present in the frequency-spectrum of f Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 26/60

55 Repetition: Fourier-transform The Fourier-transform of f : R C is (modulo scaling) defined by: f (ω) = F[f (x)](ω) := f (x) e iωx dx R f (ω) tells, how strong e iω is present in the frequency-spectrum of f δ(ω 1) δ(ω + 1) Example: F[sin(x)](ω) 2i Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 27/60

56 Laplace-transformation Instead of projection onto oscillations {e iω } ω R one projects onto damping-functions {e s } s R + F (s) := L[f (x)](s) := 0 f (x) e sx dx Laplace-transformations of a few common functions: L[x n ](s) = n! s n+1 L[sin(ax)](s) = a s 2 +a 2 L[ln(ax)](s) = 1 s (ln(s/a) + γ) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 28/60

57 Laplace-transformation Instead of projection onto oscillations {e iω } ω R one projects onto damping-functions {e s } s R + F (s) := L[f (x)](s) := 0 f (x) e sx dx Laplace-transformations of a few common functions: L[x n ](s) = n! s n+1 L[sin(ax)](s) = a s 2 +a 2 L[ln(ax)](s) = 1 s (ln(s/a) + γ) Certain features as for example the shift-property hold true: L[f (x a)](s) = e as F (s) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 28/60

58 Laplace-transformation Instead of projection onto oscillations {e iω } ω R one projects onto damping-functions {e s } s R + F (s) := L[f (x)](s) := 0 f (x) e sx dx Laplace-transformations of a few common functions: L[x n ](s) = n! s n+1 L[sin(ax)](s) = a s 2 +a 2 L[ln(ax)](s) = 1 s (ln(s/a) + γ) Certain features as for example the shift-property hold true: L[f (x a)](s) = e as F (s) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 28/60

59 Laplace-transformation of the delta-distribution Apply the definition of the (two-sided) Laplace-transform: L[δ(x)](s) = δ(x) e sx dx R Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 29/60

60 Laplace-transformation of the delta-distribution Apply the definition of the (two-sided) Laplace-transform: L[δ(x)](s) = δ(x) e sx dx R Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 29/60

61 Laplace-transformation of the delta-distribution Apply the definition of the (two-sided) Laplace-transform: L[δ(x)](s) = δ(x) e sx dx = e s 0 = 1 R Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 30/60

62 Laplace-transformation of the delta-distribution Apply the definition of the (two-sided) Laplace-transform: L[δ(x)](s) = δ(x) e sx dx = e s 0 = 1 R Transformation of the shifted delta-distribution by the shift-property: L[δ(x a)](s) = e as L[δ(x)](s) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 30/60

63 Laplace-transformation of the delta-distribution Apply the definition of the (two-sided) Laplace-transform: L[δ(x)](s) = δ(x) e sx dx = e s 0 = 1 R Transformation of the shifted delta-distribution by the shift-property: L[δ(x a)](s) = e as L[δ(x)](s) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 30/60

64 Laplace-transformation of the delta-distribution Apply the definition of the (two-sided) Laplace-transform: L[δ(x)](s) = δ(x) e sx dx = e s 0 = 1 R Transformation of the shifted delta-distribution by the shift-property: L[δ(x a)](s) = e as L[δ(x)](s) = e as Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 31/60

65 Derivation of the cumulants (1) - Analytization Want to capture the discrete velocity-distributions analytically f 11 f 01 f 11 f 10 f 10 f 1 1 f 0 1 f 1 1 This can be done by the peak-function f (ξ): 1 f (ξ) = f (ξ x, ξ y, ξ z ) = f ijk δ(ic ξ x ) δ(jc ξ y ) δ(kc ξ z ) i,j,k= 1 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 32/60

66 Derivation of the cumulants (1) - Analytization Want to capture the discrete velocity-distributions analytically f 11 f 01 f 11 f 10 f 10 f 1 1 f 0 1 f 1 1 This can be done by the peak-function f (ξ): 1 f (ξ) = f (ξ x, ξ y, ξ z ) = f ijk δ(ic ξ x ) δ(jc ξ y ) δ(kc ξ z ) i,j,k= 1 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 32/60

67 Derivation of the cumulants (1) - Analytization Want to capture the discrete velocity-distributions analytically f 11 f 01 f 11 f 10 f 10 f 1 1 f 0 1 f 1 1 This can be done by the peak-function f (ξ): 1 f (ξ) = f (ξ x, ξ y, ξ z ) = f ijk δ(ic ξ x ) δ(jc ξ y ) δ(kc ξ z ) i,j,k= 1 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 33/60

68 Derivation (2) - Laplace-transform To increase regularity one performs the two-sided Laplace-transform of f (ξ): 1 L[f (ξ)](ξ) = f ijk L[δ(ic ξ x )]L[δ(jc ξ y )]L[δ(kc ξ z )] i,j,k= 1 1 = f ijk e Ξx ic e Ξy jc e Ξz kc =: F (Ξ) i,j,k= 1 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 34/60

69 Derivation (2) - Laplace-transform To increase regularity one performs the two-sided Laplace-transform of f (ξ): 1 L[f (ξ)](ξ) = f ijk L[δ(ic ξ x )]L[δ(jc ξ y )]L[δ(kc ξ z )] i,j,k= 1 1 = f ijk e Ξx ic e Ξy jc e Ξz kc =: F (Ξ) i,j,k= 1 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 34/60

70 Derivation (3) - statistical independence Applying the statistical independence (which one aims to have) in the frequency space: F (Ξ x, Ξ y, Ξ z ) = n V m=0 F m (C m ) And using the logarithm ln (F (Ξ x, Ξ y, Ξ z )) = n V m=0 ln (F m (C m )) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 35/60

71 Derivation (4) - Taylor-expansion The multivariate Taylor-expansion of ln (F (Ξx, Ξ y, Ξ z )) around Ξ = 0 is: α+β+γ ln(f (Ξ x, Ξ y, Ξ z )) = α+β+γ 0 1 α!β!γ! Ξ α x Ξ β y Ξ γ z ln(f (Ξ x, Ξ y, Ξ z )) Ξ=0 Definition: Cumulants For α, β, γ = 0, 1, 2,... one defines the cumulants of order α + β + γ as follows: c αβγ := c (α+β+γ) α+β+γ Ξ α x Ξ β y Ξ γ ln(f (Ξ x, Ξ y, Ξ z )) z Ξ α x Ξβ y Ξ γ z Ξ=0 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 36/60

72 Derivation (4) - Taylor-expansion The multivariate Taylor-expansion of ln (F (Ξx, Ξ y, Ξ z )) around Ξ = 0 is: α+β+γ ln(f (Ξ x, Ξ y, Ξ z )) = α+β+γ 0 1 α!β!γ! Ξ α x Ξ β y Ξ γ z ln(f (Ξ x, Ξ y, Ξ z )) Ξ=0 Definition: Cumulants For α, β, γ = 0, 1, 2,... one defines the cumulants of order α + β + γ as follows: c αβγ := c (α+β+γ) α+β+γ Ξ α x Ξ β y Ξ γ ln(f (Ξ x, Ξ y, Ξ z )) z Ξ α x Ξβ y Ξ γ z Ξ=0 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 36/60

73 Efficient calculation via moments Conduct the Taylor-expansion without the logarithm: α+β+γ F (Ξ x, Ξ y, Ξ z ) = α+β+γ 0 1 α!β!γ! Ξ α x Ξ β y Ξ γ F (Ξ x, Ξ y, Ξ z ) z Analogously consider the coefficients: α+β+γ Ξ α x Ξ β y Ξ γ F (Ξ x, Ξ y, Ξ z ) z Ξ=0 Ξ=0 Ξ α x Ξ β y Ξ γ z Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 37/60

74 Where the magic happens Explicit calculation of these coefficients yields: α+β+γ Ξ α x Ξ β y Ξ γ F (Ξ x, Ξ y, Ξ z ) 1 α+β+γ = z Ξ Ξ=0 α x Ξ β y Ξ γ z i,j,k= 1 f ijk e Ξx ic e Ξy jc e Ξz kc Ξ=0 = 1 i,j,k= 1 f ijk ( ic) α e Ξx ic ( jc) β e Ξy jc ( kc) γ e Ξz kc Ξ=0 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 38/60

75 Where the magic happens Explicit calculation of these coefficients yields: α+β+γ Ξ α x Ξ β y Ξ γ F (Ξ x, Ξ y, Ξ z ) 1 α+β+γ = z Ξ Ξ=0 α x Ξ β y Ξ γ z i,j,k= 1 f ijk e Ξx ic e Ξy jc e Ξz kc Ξ=0 = 1 i,j,k= 1 f ijk ( ic) α e Ξx ic ( jc) β e Ξy jc ( kc) γ e Ξz kc Ξ=0 = ( c) α+β+γ 1 i,j,k= 1 i α j β k γ f ijk Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 38/60

76 Where the magic happens Explicit calculation of these coefficients yields: α+β+γ Ξ α x Ξ β y Ξ γ F (Ξ x, Ξ y, Ξ z ) 1 α+β+γ = z Ξ Ξ=0 α x Ξ β y Ξ γ z i,j,k= 1 f ijk e Ξx ic e Ξy jc e Ξz kc Ξ=0 = 1 i,j,k= 1 f ijk ( ic) α e Ξx ic ( jc) β e Ξy jc ( kc) γ e Ξz kc Ξ=0 = ( c) α+β+γ 1 i,j,k= 1 i α j β k γ f ijk = ( c) α+β+γ m αβγ Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 38/60

77 Where the magic happens Explicit calculation of these coefficients yields: α+β+γ Ξ α x Ξ β y Ξ γ F (Ξ x, Ξ y, Ξ z ) 1 α+β+γ = z Ξ Ξ=0 α x Ξ β y Ξ γ z i,j,k= 1 f ijk e Ξx ic e Ξy jc e Ξz kc Ξ=0 = 1 i,j,k= 1 f ijk ( ic) α e Ξx ic ( jc) β e Ξy jc ( kc) γ e Ξz kc Ξ=0 = ( c) α+β+γ 1 i,j,k= 1 i α j β k γ f ijk = ( c) α+β+γ m αβγ Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 38/60

78 Cumulants vs. Moments The (raw)-moments were shown to be: m αβγ = ( c) (α+β+γ) α+β+γ Ξ α x Ξ β y Ξ γ F (Ξ x, Ξ y, Ξ z ) z Ξ=0 The cumulants: c αβγ = c (α+β+γ) α+β+γ Ξ α x Ξ β y Ξ γ z ln(f (Ξ x, Ξ y, Ξ z )) Ξ=0 Idea: By applying the chain rule one should be able to trace back the cumulants to the moments... Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 39/60

79 Cumulants vs. Moments The (raw)-moments were shown to be: m αβγ = ( c) (α+β+γ) α+β+γ Ξ α x Ξ β y Ξ γ F (Ξ x, Ξ y, Ξ z ) z Ξ=0 The cumulants: c αβγ = c (α+β+γ) α+β+γ Ξ α x Ξ β y Ξ γ z ln(f (Ξ x, Ξ y, Ξ z )) Ξ=0 Idea: By applying the chain rule one should be able to trace back the cumulants to the moments... Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 39/60

80 Cumulant-transformation (1) We conduct the idea on the example c100 : c 100 = c (1+0+0) 1 Ξ 1 x Ξ 0 y Ξ 0 ln(f (Ξ x, Ξ y, Ξ z )) z = c 1 1 F (0, 0, 0) 1 F (Ξ x, Ξ y, Ξ z ) Ξ 1 x Ξ=0 Ξ=0 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 40/60

81 Cumulant-transformation (1) We conduct the idea on the example c100 : c 100 = c (1+0+0) 1 Ξ 1 x Ξ 0 y Ξ 0 ln(f (Ξ x, Ξ y, Ξ z )) z = c 1 1 F (0, 0, 0) 1 F (Ξ x, Ξ y, Ξ z ) Ξ 1 x Ξ=0 = c 1 1 F (0, 0, 0) m 100 ( c) 1 = 1 F (0, 0, 0) m 100 Ξ=0 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 40/60

82 Cumulant-transformation (1) We conduct the idea on the example c100 : c 100 = c (1+0+0) 1 Ξ 1 x Ξ 0 y Ξ 0 ln(f (Ξ x, Ξ y, Ξ z )) z = c 1 1 F (0, 0, 0) 1 F (Ξ x, Ξ y, Ξ z ) Ξ 1 x Ξ=0 = c 1 1 F (0, 0, 0) m 100 ( c) 1 = 1 F (0, 0, 0) m 100 With F (0, 0, 0) = 1 i,j,k= 1 Ξ=0 f ijk e 0 e 0 e 0 = ρ also: c 100 = 1 ρ m 100 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 40/60

83 Cumulant-transformation (1) We conduct the idea on the example c100 : c 100 = c (1+0+0) 1 Ξ 1 x Ξ 0 y Ξ 0 ln(f (Ξ x, Ξ y, Ξ z )) z = c 1 1 F (0, 0, 0) 1 F (Ξ x, Ξ y, Ξ z ) Ξ 1 x Ξ=0 = c 1 1 F (0, 0, 0) m 100 ( c) 1 = 1 F (0, 0, 0) m 100 With F (0, 0, 0) = 1 i,j,k= 1 Ξ=0 f ijk e 0 e 0 e 0 = ρ also: c 100 = 1 ρ m 100 Define: Cαβγ = ρc αβγ, then = C 100 = m 100 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 40/60

84 Cumulant-transformation (1) We conduct the idea on the example c100 : c 100 = c (1+0+0) 1 Ξ 1 x Ξ 0 y Ξ 0 ln(f (Ξ x, Ξ y, Ξ z )) z = c 1 1 F (0, 0, 0) 1 F (Ξ x, Ξ y, Ξ z ) Ξ 1 x Ξ=0 = c 1 1 F (0, 0, 0) m 100 ( c) 1 = 1 F (0, 0, 0) m 100 With F (0, 0, 0) = 1 i,j,k= 1 Ξ=0 f ijk e 0 e 0 e 0 = ρ also: c 100 = 1 ρ m 100 Define: Cαβγ = ρc αβγ, then = C 100 = m 100 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 40/60

85 Cumulant-transformation (2) Analogous procedure for the remaining cumulants: C 100 = m 100 C 010 = m 010 C 001 = m 001 C 200 = m ρ m2 100 C 020 = m ρ m2 010 C 002 = m ρ m2 001 C 110 = m ρ m 100m 010 C 101 = m ρ m 100m C 210 = m ρ 2 m2 100m ρ m 110m ρ m 200m 010. Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 41/60

86 Half-time score What do we have so far? How far do we come with that, starting with the current distributions? Transform distributions f to (raw)-moments m = M f Transform (raw)-moments m to cumulants C = K(m) = K(M f ) = C(f ) [Ŝ ] f (t+ t, x +c t) = f (t, x) C 1 (C(f (t, x)) C(f eq (t, x))) Efficient transformation of equilibria Choice of relaxation parameters ωi Inverse mapping C 1 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 42/60

87 Cumulant equilibria - Derivation The equilibria can be calculated in advance Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 43/60

88 Cumulant equilibria - Derivation The equilibria can be calculated in advance Laplace-transformation of Maxwell-distribution: F eq (Ξ) = L [ M(ξ) ] (Ξ) = M(ξ) e Ξ ξ dξ x dξ y dξ z R = ρ ( ) 1 exp C 4C (Ξ2 x + Ξ 2 y + Ξ 2 z) Ξ x u x Ξ y u y Ξ z u z Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 43/60

89 Cumulant equilibria - Derivation The equilibria can be calculated in advance Laplace-transformation of Maxwell-distribution: F eq (Ξ) = L [ M(ξ) ] (Ξ) = M(ξ) e Ξ ξ dξ x dξ y dξ z R = ρ ( ) 1 exp C 4C (Ξ2 x + Ξ 2 y + Ξ 2 z) Ξ x u x Ξ y u y Ξ z u z Apply the logarithm: ( ) ρ ln(f eq (Ξ)) = ln Ξ x u x Ξ y u y Ξ z u z + c2 ( s Ξ 2 2 x + Ξ 2 y + Ξ 2 z) ρ 0 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 43/60

90 Cumulant equilibria - Derivation The equilibria can be calculated in advance Laplace-transformation of Maxwell-distribution: F eq (Ξ) = L [ M(ξ) ] (Ξ) = M(ξ) e Ξ ξ dξ x dξ y dξ z R = ρ ( ) 1 exp C 4C (Ξ2 x + Ξ 2 y + Ξ 2 z) Ξ x u x Ξ y u y Ξ z u z Apply the logarithm: ( ) ρ ln(f eq (Ξ)) = ln Ξ x u x Ξ y u y Ξ z u z + c2 ( s Ξ 2 2 x + Ξ 2 y + Ξ 2 z) ρ 0 Taylor-expansion can be skipped, since this is a polynomial anyway Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 43/60

91 Cumulant equilibria - Derivation The equilibria can be calculated in advance Laplace-transformation of Maxwell-distribution: F eq (Ξ) = L [ M(ξ) ] (Ξ) = M(ξ) e Ξ ξ dξ x dξ y dξ z R = ρ ( ) 1 exp C 4C (Ξ2 x + Ξ 2 y + Ξ 2 z) Ξ x u x Ξ y u y Ξ z u z Apply the logarithm: ( ) ρ ln(f eq (Ξ)) = ln Ξ x u x Ξ y u y Ξ z u z + c2 ( s Ξ 2 2 x + Ξ 2 y + Ξ 2 z) ρ 0 Taylor-expansion can be skipped, since this is a polynomial anyway Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 43/60

92 Cumulant equilibria Only a certain few cumulants have an equilibrium not equal 0: c eq 000 = ln(ρ/ρ 0) c eq 100 = c 1 u x c eq 010 = c 1 u y c eq 001 = c 1 u z c eq 200 = c 2 c 2 s c eq 020 = c 2 c 2 s c eq 002 = c 2 c 2 s For all others, there holds: c eq αβγ = 0 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 44/60

93 Half-time score What do we have so far? How far do we come with that, starting with the current distributions? Transform distributions f to (raw)-moments m = M f Transform (raw)-moments m to cumulants C = K(m) = K(M f ) = C(f ) [Ŝ ] f (t+ t, x +c t) = f (t, x) C 1 (C(f (t, x)) C(f eq (t, x))) Efficient transformation of equilibria Choice of relaxation parameters ωi Inverse mapping C 1 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 45/60

94 Choice of relaxation parameters For the most cumulants the equilibrium is 0, hence one gets for example: C 222 = ω 10 (C 222 0) C 110 = ω 1 C 110 C 101 = ω 1 C 101 C 011 = ω 1 C 011 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 46/60

95 Choice of relaxation parameters For the most cumulants the equilibrium is 0, hence one gets for example: C 222 = ω 10 (C 222 0) C 110 = ω 1 C 110 C 101 = ω 1 C 101 C 011 = ω 1 C 011 C 211 = ω 8 C 211 C 121 = ω 8 C 121 C 112 = ω 8 C 112 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 46/60

96 Choice of relaxation parameters For the most cumulants the equilibrium is 0, hence one gets for example: C 222 = ω 10 (C 222 0) C 110 = ω 1 C 110 C 101 = ω 1 C 101 C 011 = ω 1 C 011 C 211 = ω 8 C 211 C 121 = ω 8 C 121 C 112 = ω 8 C 112 Those with non vanishing equilibrium one can combine: C 200 C 020 = ω 1 (C 200 C 020 ) C 200 C 002 = ω 1 (C 200 C 002 ) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 46/60

97 Choice of relaxation parameters For the most cumulants the equilibrium is 0, hence one gets for example: C 222 = ω 10 (C 222 0) C 110 = ω 1 C 110 C 101 = ω 1 C 101 C 011 = ω 1 C 011 C 211 = ω 8 C 211 C 121 = ω 8 C 121 C 112 = ω 8 C 112 Those with non vanishing equilibrium one can combine: C 200 C 020 = ω 1 (C 200 C 020 ) C 200 C 002 = ω 1 (C 200 C 002 ) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 46/60

98 Half-time score What do we have so far? How far do we come with that, starting with the current distributions? Transform distributions f to (raw)-moments m = M f Transform (raw)-moments m to cumulants C = K(m) = K(M f ) = C(f ) [Ŝ ] f (t+ t, x +c t) = f (t, x) C 1 (C(f (t, x)) C(f eq (t, x))) Efficient transformation of equilibria Choice of relaxation parameters ωi Inverse mapping C 1 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 47/60

99 Half-time score What do we have so far? How far do we come with that, starting with the current distributions? Transform distributions f to (raw)-moments m = M f Transform (raw)-moments m to cumulants C = K(m) = K(M f ) = C(f ) [Ŝ ] f (t+ t, x +c t) = f (t, x) C 1 (C(f (t, x)) C(f eq (t, x))) Efficient transformation of equilibria Choice of relaxation parameters ωi Inverse mapping C 1 Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 48/60

100 Advantages of Cumulant-based LBM Better representation of physical processes due to statistical independence Equilibria of cumulants are almost all 0 More (real) degrees of freedom than in classical MRT Gradual improvement of the method by asymptotic analysis and elimination of error-terms Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 49/60

101 Synthesis of Navier-Stokes-equation By a Chapman-Enskog expansion one can derive the Navier-Stokes equations: u = 0 u t + (u ) u = 1 ρ p + 1 ( 1 1 ) u + f 3 ω 1 2 ρ }{{} =ν With ω1 one can simulate fluids of different viscosity Only ω1 directly influences the solution Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 50/60

102 Synthesis of Navier-Stokes-equation By a Chapman-Enskog expansion one can derive the Navier-Stokes equations: u = 0 u t + (u ) u = 1 ρ p + 1 ( 1 1 ) u + f 3 ω 1 2 ρ }{{} =ν With ω1 one can simulate fluids of different viscosity Only ω1 directly influences the solution Further parameters influence higher order error terms (set them to 1 in the following) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 50/60

103 Synthesis of Navier-Stokes-equation By a Chapman-Enskog expansion one can derive the Navier-Stokes equations: u = 0 u t + (u ) u = 1 ρ p + 1 ( 1 1 ) u + f 3 ω 1 2 ρ }{{} =ν With ω1 one can simulate fluids of different viscosity Only ω1 directly influences the solution Further parameters influence higher order error terms (set them to 1 in the following) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 50/60

104 Validation a.k.a. colorful pictures Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 51/60

105 Turbulence measure The Reynolds-number is dimensionless parameter of a flow Re = U L ν At some specific threshold Re the laminar-turbulent transition starts Traditional LBM methods have problems with high Reynolds-numbers: Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 52/60

106 Comparison: BGK Kumulanten Comparison SRT- and cumulant-based LBM for a cylinder flow at Re = 8000 a) BGK-SRT-LBM (Picture source [5]) b) Cumulant-based LBM (Picture source [5]) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 53/60

107 Turbulence resolution in 3D Representation of (turbulence) vortices around a sphere flow: (Picture source [5]) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 54/60

108 Turbulence resolution in 3D (Picture source [5]) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 55/60

109 Turbulence resolution in 3D (Picture source [5]) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 56/60

110 The highlights MRT-like-method with nonlinear transformation to statistical independent quantities Mathematical methods: Distributions as generalized functions (Analytization) Laplace-transform Comparison of Taylor-coefficients Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 57/60

111 The highlights MRT-like-method with nonlinear transformation to statistical independent quantities Mathematical methods: Distributions as generalized functions (Analytization) Laplace-transform Comparison of Taylor-coefficients Advantages especially at high Reynolds-numbers (stability and adaptivity) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 57/60

112 The highlights MRT-like-method with nonlinear transformation to statistical independent quantities Mathematical methods: Distributions as generalized functions (Analytization) Laplace-transform Comparison of Taylor-coefficients Advantages especially at high Reynolds-numbers (stability and adaptivity) Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 57/60

113 Literature I d Humières, Dominique: Multiple relaxation time lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 360(1792): , Dubois, François: Equivalent partial differential equations of a lattice Boltzmann scheme. Computers & Mathematics with Applications, 55(7): , Geier, M: Ab initio derivation of the cascaded Lattice Boltzmann Automaton. University of Freiburg IMTEK, Geier, Martin, Andreas Greiner und Jan G Korvink: Cascaded digital lattice Boltzmann automata for high Reynolds number flow. Physical Review E, 73(6):066705, Geier, Martin, Martin Schönherr, Andrea Pasquali und Manfred Krafczyk: The cumulant lattice Boltzmann equation in three dimensions: Theory and validation. Computers & Mathematics with Applications, 70(4): , Hänel, Dieter: Molekulare Gasdynamik: Einführung in die kinetische Theorie der Gase und Lattice-Boltzmann-Methoden. Springer-Verlag, Lukacs, Eugene: Characteristics functions. Griffin, London, Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 58/60

114 Literature II Ning, Yang und Kannan N Premnath: Numerical Study of the Properties of the Central Moment Lattice Boltzmann Method. arxiv preprint arxiv: , Rohm, Florian: A commented Python Script for LBM-Flow-Simulations. Lecture on, Wolf-Gladrow, Dieter A: Lattice-gas cellular automata and lattice Boltzmann models: An Introduction. Nummer Springer Science & Business Media, Kumulanten-basierte LBM Prof. B. Wohlmuth Markus Muhr 59/60

Cumulant-based LBM. Repetition: LBM and notation. Content. Computational Fluid Dynamics. 1. Repetition: LBM and notation Discretization SRT-equation

Cumulant-based LBM. Repetition: LBM and notation. Content. Computational Fluid Dynamics. 1. Repetition: LBM and notation Discretization SRT-equation Content Cumulant-based LBM Prof B Wohlmuth Markus Muhr 25 July 2017 1 epetition: LBM and notation Discretiation ST-equation 2 MT-model Basic idea Moments and moment-transformation 3 Cumulant-based LBM

More information

Generalized Local Equilibrium in the Cascaded Lattice Boltzmann Method. Abstract

Generalized Local Equilibrium in the Cascaded Lattice Boltzmann Method. Abstract Accepted for publication on Physical Review E (R), code ERR1034 Generalized Local Equilibrium in the Cascaded Lattice Boltzmann Method Pietro Asinari Department of Energetics, Politecnico di Torino, Corso

More information

Lattice Boltzmann Method

Lattice Boltzmann Method 3 Lattice Boltzmann Method 3.1 Introduction The lattice Boltzmann method is a discrete computational method based upon the lattice gas automata - a simplified, fictitious molecular model. It consists of

More information

External and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method

External and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method Available online at http://ijim.srbiau.ac.ir/ Int. J. Industrial Mathematics (ISSN 2008-5621) Vol. 10, No. 2, 2018 Article ID IJIM-00726, 8 pages Research Article External and Internal Incompressible Viscous

More information

Predictor-Corrector Finite-Difference Lattice Boltzmann Schemes

Predictor-Corrector Finite-Difference Lattice Boltzmann Schemes Applied Mathematical Sciences, Vol. 9, 2015, no. 84, 4191-4199 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.5138 Predictor-Corrector Finite-Difference Lattice Boltzmann Schemes G. V.

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 23 March 2001 with E. A. Spiegel

More information

Lattice Boltzmann Method for Fluid Simulations

Lattice Boltzmann Method for Fluid Simulations 1 / 16 Lattice Boltzmann Method for Fluid Simulations Yuanxun Bill Bao & Justin Meskas Simon Fraser University April 7, 2011 2 / 16 Ludwig Boltzmann and His Kinetic Theory of Gases The Boltzmann Transport

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 21 May 2001 with E. A. Spiegel

More information

Physical Modeling of Multiphase flow. Boltzmann method

Physical Modeling of Multiphase flow. Boltzmann method with lattice Boltzmann method Exa Corp., Burlington, MA, USA Feburary, 2011 Scope Scope Re-examine the non-ideal gas model in [Shan & Chen, Phys. Rev. E, (1993)] from the perspective of kinetic theory

More information

Lecture 5: Kinetic theory of fluids

Lecture 5: Kinetic theory of fluids Lecture 5: Kinetic theory of fluids September 21, 2015 1 Goal 2 From atoms to probabilities Fluid dynamics descrines fluids as continnum media (fields); however under conditions of strong inhomogeneities

More information

Lattice Boltzmann Method for Fluid Simulations

Lattice Boltzmann Method for Fluid Simulations Lattice Boltzmann Method for Fluid Simulations Yuanxun Bill Bao & Justin Meskas April 14, 2011 1 Introduction In the last two decades, the Lattice Boltzmann method (LBM) has emerged as a promising tool

More information

Stochastic Particle Methods for Rarefied Gases

Stochastic Particle Methods for Rarefied Gases CCES Seminar WS 2/3 Stochastic Particle Methods for Rarefied Gases Julian Köllermeier RWTH Aachen University Supervisor: Prof. Dr. Manuel Torrilhon Center for Computational Engineering Science Mathematics

More information

On the stability of a relative velocity lattice Boltzmann scheme for compressible Navier-Stokes equations

On the stability of a relative velocity lattice Boltzmann scheme for compressible Navier-Stokes equations On the stability of a relative velocity lattice Boltzmann scheme for compressible Navier-Stokes equations François Dubois, Tony Fevrier, Benjamin Graille To cite this version: François Dubois, Tony Fevrier,

More information

The lattice Boltzmann method for contact line dynamics

The lattice Boltzmann method for contact line dynamics The lattice Boltzmann method for contact line dynamics Sudhir Srivastava, J.H.M. ten Thije Boonkkamp, Federico Toschi April 13, 2011 Overview 1 Problem description 2 Huh and Scriven model 3 Lattice Boltzmann

More information

COMPARISON OF CPU AND GPU IMPLEMENTATIONS OF THE LATTICE BOLTZMANN METHOD

COMPARISON OF CPU AND GPU IMPLEMENTATIONS OF THE LATTICE BOLTZMANN METHOD XVIII International Conference on Water Resources CMWR 2010 J. Carrera (Ed) c CIMNE, Barcelona, 2010 COMPARISON OF CPU AND GPU IMPLEMENTATIONS OF THE LATTICE BOLTZMANN METHOD James.E. McClure, Jan F. Prins

More information

SEMICLASSICAL LATTICE BOLTZMANN EQUATION HYDRODYNAMICS

SEMICLASSICAL LATTICE BOLTZMANN EQUATION HYDRODYNAMICS The Seventh Nobeyama Workshop on CFD: To the Memory of Prof. Kuwahara Sanjo Kaikan, the University of Tokyo, Japan, September. 23-24, 2009 SEMICLASSICAL LATTICE BOLTZMANN EQUATION HYDRODYNAMICS Jaw-Yen

More information

Analysis of the Lattice Boltzmann Method by the Truncated Moment System

Analysis of the Lattice Boltzmann Method by the Truncated Moment System by the Truncated Moment System Pietro Asinari, PhD Department of Energetics, Politecnico di Torino, Torino 10129, Italy, pietro.asinari@polito.it http://staff.polito.it/pietro.asinari Lab for Simulation,

More information

Lattice Boltzmann Method for Moving Boundaries

Lattice Boltzmann Method for Moving Boundaries Lattice Boltzmann Method for Moving Boundaries Hans Groot March 18, 2009 Outline 1 Introduction 2 Moving Boundary Conditions 3 Cylinder in Transient Couette Flow 4 Collision-Advection Process for Moving

More information

Equivalence between kinetic method for fluid-dynamic equation and macroscopic finite-difference scheme

Equivalence between kinetic method for fluid-dynamic equation and macroscopic finite-difference scheme Equivalence between kinetic method for fluid-dynamic equation and macroscopic finite-difference scheme Pietro Asinari (1), Taku Ohwada (2) (1) Department of Energetics, Politecnico di Torino, Torino 10129,

More information

Lattice Bhatnagar Gross Krook model for the Lorenz attractor

Lattice Bhatnagar Gross Krook model for the Lorenz attractor Physica D 154 (2001) 43 50 Lattice Bhatnagar Gross Krook model for the Lorenz attractor Guangwu Yan a,b,,liyuan a a LSEC, Institute of Computational Mathematics, Academy of Mathematics and System Sciences,

More information

LATTICE BOLTZMANN METHOD AND DIFFUSION IN MATERIALS WITH LARGE DIFFUSIVITY RATIOS

LATTICE BOLTZMANN METHOD AND DIFFUSION IN MATERIALS WITH LARGE DIFFUSIVITY RATIOS THERMAL SCIENCE: Year 27, Vol. 2, No. 3, pp. 73-82 73 LATTICE BOLTZMANN METHOD AND DIFFUSION IN MATERIALS WITH LARGE DIFFUSIVITY RATIOS by Edouard WALTHER *, Rachid BENNACER, and Caroline DE SA LMT, ENS

More information

Magic. The Lattice Boltzmann Method

Magic. The Lattice Boltzmann Method Magic The Lattice Boltzmann Method Lattice Boltzmann: secret ingredients Kn(Ma t f + v x x f + v y y f + v z z f ) = Ω( f ) Analysis Modeling Kn(Ma t π α + x π αx + y π αy + z π αz ) = ω α ( α π α ) ω

More information

A Momentum Exchange-based Immersed Boundary-Lattice. Boltzmann Method for Fluid Structure Interaction

A Momentum Exchange-based Immersed Boundary-Lattice. Boltzmann Method for Fluid Structure Interaction APCOM & ISCM -4 th December, 03, Singapore A Momentum Exchange-based Immersed Boundary-Lattice Boltzmann Method for Fluid Structure Interaction Jianfei Yang,,3, Zhengdao Wang,,3, and *Yuehong Qian,,3,4

More information

Research of Micro-Rectangular-Channel Flow Based on Lattice Boltzmann Method

Research of Micro-Rectangular-Channel Flow Based on Lattice Boltzmann Method Research Journal of Applied Sciences, Engineering and Technology 6(14): 50-55, 013 ISSN: 040-7459; e-issn: 040-7467 Maxwell Scientific Organization, 013 Submitted: November 08, 01 Accepted: December 8,

More information

LATTICE BOLTZMANN MODELLING OF PULSATILE FLOW USING MOMENT BOUNDARY CONDITIONS

LATTICE BOLTZMANN MODELLING OF PULSATILE FLOW USING MOMENT BOUNDARY CONDITIONS 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 5 June 28, Glasgow, UK LATTICE BOLTZMANN MODELLING OF PULSATILE FLOW USING MOMENT

More information

Multi species Lattice Boltzmann Models and Applications to Sustainable Energy Systems

Multi species Lattice Boltzmann Models and Applications to Sustainable Energy Systems Multi species Lattice Boltzmann Models and Applications to Sustainable Energy Systems Pietro Asinari, PhD Dipartimento di Energetica (DENER), Politecnico di Torino (POLITO), Torino 10129, Italy e-mail:

More information

Simulation of floating bodies with lattice Boltzmann

Simulation of floating bodies with lattice Boltzmann Simulation of floating bodies with lattice Boltzmann by Simon Bogner, 17.11.2011, Lehrstuhl für Systemsimulation, Friedrich-Alexander Universität Erlangen 1 Simulation of floating bodies with lattice Boltzmann

More information

Lattice Boltzmann Methods for Fluid Dynamics

Lattice Boltzmann Methods for Fluid Dynamics Lattice Boltzmann Methods for Fluid Dynamics Steven Orszag Department of Mathematics Yale University In collaboration with Hudong Chen, Isaac Goldhirsch, and Rick Shock Transient flow around a car LBGK

More information

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University Anisotropic fluid dynamics Thomas Schaefer, North Carolina State University Outline We wish to extract the properties of nearly perfect (low viscosity) fluids from experiments with trapped gases, colliding

More information

Kinetic relaxation models for reacting gas mixtures

Kinetic relaxation models for reacting gas mixtures Kinetic relaxation models for reacting gas mixtures M. Groppi Department of Mathematics and Computer Science University of Parma - ITALY Main collaborators: Giampiero Spiga, Giuseppe Stracquadanio, Univ.

More information

Pietro Asinari Department of Energetics, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy. (Dated: September 25, 2009) Abstract

Pietro Asinari Department of Energetics, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy. (Dated: September 25, 2009) Abstract Submitted for publication to Physical Review E, code EL10375, version Ge Lattice Boltzmann scheme for mixture modeling: analysis of the continuum diffusion regimes recovering Maxwell Stefan model and incompressible

More information

Simulation of 2D non-isothermal flows in slits using lattice Boltzmann method

Simulation of 2D non-isothermal flows in slits using lattice Boltzmann method Simulation of 2D non-isothermal flows in slits using lattice Boltzmann method João Chambel Leitão Department of Mechanical Engineering, Instituto Superior Técnico, Lisboa, Portugal Abstract: The present

More information

NON-DARCY POROUS MEDIA FLOW IN NO-SLIP AND SLIP REGIMES

NON-DARCY POROUS MEDIA FLOW IN NO-SLIP AND SLIP REGIMES THERMAL SCIENCE, Year 2012, Vol. 16, No. 1, pp. 167-176 167 NON-DARCY POROUS MEDIA FLOW IN NO-SLIP AND SLIP REGIMES by Antonio F. MIGUEL Geophysics Centre of Evora & Department of Physics, University of

More information

Accurate representation of velocity space using truncated Hermite expansions.

Accurate representation of velocity space using truncated Hermite expansions. Accurate representation of velocity space using truncated Hermite expansions. Joseph Parker Oxford Centre for Collaborative Applied Mathematics Mathematical Institute, University of Oxford Wolfgang Pauli

More information

Lattice Boltzmann approach to liquid - vapour separation

Lattice Boltzmann approach to liquid - vapour separation Lattice Boltzmann approach to liquid - vapour separation T.Biciușcă 1,2, A.Cristea 1, A.Lamura 3, G.Gonnella 4, V.Sofonea 1 1 Centre for Fundamental and Advanced Technical Research, Romanian Academy Bd.

More information

PREDICTION OF INTRINSIC PERMEABILITIES WITH LATTICE BOLTZMANN METHOD

PREDICTION OF INTRINSIC PERMEABILITIES WITH LATTICE BOLTZMANN METHOD PREDICTION OF INTRINSIC PERMEABILITIES WITH LATTICE BOLTZMANN METHOD Luís Orlando Emerich dos Santos emerich@lmpt.ufsc.br Carlos Enrique Pico Ortiz capico@lmpt.ufsc.br Henrique Cesar de Gaspari henrique@lmpt.ufsc.br

More information

Non-equilibrium mixtures of gases: modeling and computation

Non-equilibrium mixtures of gases: modeling and computation Non-equilibrium mixtures of gases: modeling and computation Lecture 1: and kinetic theory of gases Srboljub Simić University of Novi Sad, Serbia Aim and outline of the course Aim of the course To present

More information

Level Set-based Topology Optimization Method for Viscous Flow Using Lattice Boltzmann Method

Level Set-based Topology Optimization Method for Viscous Flow Using Lattice Boltzmann Method 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Level Set-based Topology Optimization Method for Viscous Flow Using Lattice Boltzmann Method

More information

The Lattice Boltzmann method for hyperbolic systems. Benjamin Graille. October 19, 2016

The Lattice Boltzmann method for hyperbolic systems. Benjamin Graille. October 19, 2016 The Lattice Boltzmann method for hyperbolic systems Benjamin Graille October 19, 2016 Framework The Lattice Boltzmann method 1 Description of the lattice Boltzmann method Link with the kinetic theory Classical

More information

A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows

A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows K. Xu and J.C. Huang Mathematics Department, Hong Kong University of Science and Technology, Hong Kong Department of Merchant Marine, National

More information

On the relation between lattice variables and physical quantities in lattice Boltzmann simulations

On the relation between lattice variables and physical quantities in lattice Boltzmann simulations On the relation between lattice variables and physical quantities in lattice Boltzmann simulations Michael Junk Dirk Kehrwald th July 6 Kaiserslautern, Germany CONTENTS Contents Initial situation Problem

More information

Hilbert Sixth Problem

Hilbert Sixth Problem Academia Sinica, Taiwan Stanford University Newton Institute, September 28, 2010 : Mathematical Treatment of the Axioms of Physics. The investigations on the foundations of geometry suggest the problem:

More information

Solution of the Hirota Equation Using Lattice-Boltzmann and the Exponential Function Methods

Solution of the Hirota Equation Using Lattice-Boltzmann and the Exponential Function Methods Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 7, 307-315 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.7418 Solution of the Hirota Equation Using Lattice-Boltzmann and the

More information

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University

(Super) Fluid Dynamics. Thomas Schaefer, North Carolina State University (Super) Fluid Dynamics Thomas Schaefer, North Carolina State University Hydrodynamics Hydrodynamics (undergraduate version): Newton s law for continuous, deformable media. Fluids: Gases, liquids, plasmas,...

More information

Application of the Lattice-Boltzmann method in flow acoustics

Application of the Lattice-Boltzmann method in flow acoustics Application of the Lattice-Boltzmann method in flow acoustics Andreas Wilde Fraunhofer Institut für Integrierte Schaltungen, Außenstelle EAS Zeunerstr. 38, 01069 Dresden Abstract The Lattice-Boltzmann

More information

arxiv:comp-gas/ v1 28 Apr 1993

arxiv:comp-gas/ v1 28 Apr 1993 Lattice Boltzmann Thermohydrodynamics arxiv:comp-gas/9304006v1 28 Apr 1993 F. J. Alexander, S. Chen and J. D. Sterling Center for Nonlinear Studies and Theoretical Division Los Alamos National Laboratory

More information

Free energy concept Free energy approach LBM implementation Parameters

Free energy concept Free energy approach LBM implementation Parameters BINARY LIQUID MODEL A. Kuzmin J. Derksen Department of Chemical and Materials Engineering University of Alberta Canada August 22,2011 / LBM Workshop OUTLINE 1 FREE ENERGY CONCEPT 2 FREE ENERGY APPROACH

More information

fluid mechanics as a prominent discipline of application for numerical

fluid mechanics as a prominent discipline of application for numerical 1. fluid mechanics as a prominent discipline of application for numerical simulations: experimental fluid mechanics: wind tunnel studies, laser Doppler anemometry, hot wire techniques,... theoretical fluid

More information

Numerical Simulation Of Pore Fluid Flow And Fine Sediment Infiltration Into The Riverbed

Numerical Simulation Of Pore Fluid Flow And Fine Sediment Infiltration Into The Riverbed City University of New York (CUNY) CUNY Academic Works International Conference on Hydroinformatics 8-1-2014 Numerical Simulation Of Pore Fluid Flow And Fine Sediment Infiltration Into The Riverbed Tobias

More information

Simulation of lid-driven cavity ows by parallel lattice Boltzmann method using multi-relaxation-time scheme

Simulation of lid-driven cavity ows by parallel lattice Boltzmann method using multi-relaxation-time scheme INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2004; 46:921 937 Published online 27 September 2004 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/d.787

More information

Lattice Boltzmann Method

Lattice Boltzmann Method Chapter 5 Lattice Boltzmann Method 5.1 Pseudo-kinetic computational methods Understanding the flow properties of complex fluids in complex topologies is of importance to technological applications and

More information

A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries

A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries A Framework for Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries SC13, November 21 st 2013 Christian Godenschwager, Florian Schornbaum, Martin Bauer, Harald Köstler, Ulrich

More information

Connection Between the Lattice Boltzmann Equation and the Beam Scheme

Connection Between the Lattice Boltzmann Equation and the Beam Scheme NASA/CR-1999-209001 ICASE Report No. 99-10 Connection Between the Lattice Boltzmann Equation and the Beam Scheme Kun Xu Hong Kong University of Science and Technology, Kowloon, Hong Kong Li-Shi Luo ICASE,

More information

Lattice-Boltzmann vs. Navier-Stokes simulation of particulate flows

Lattice-Boltzmann vs. Navier-Stokes simulation of particulate flows Lattice-Boltzmann vs. Navier-Stokes simulation of particulate flows Amir Eshghinejadfard, Abouelmagd Abdelsamie, Dominique Thévenin University of Magdeburg, Germany 14th Workshop on Two-Phase Flow Predictions

More information

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations The Hilltop Review Volume 7 Issue 1 Winter 2014 Article 10 December 2014 Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations Tai-Hsien Wu Western Michigan University

More information

The lattice Boltzmann equation (LBE) has become an alternative method for solving various fluid dynamic

The lattice Boltzmann equation (LBE) has become an alternative method for solving various fluid dynamic 36th AIAA Fluid Dynamics Conference and Exhibit 5-8 June 2006, San Francisco, California AIAA 2006-3904 Direct and Large-Eddy Simulation of Decaying and Forced Isotropic Turbulence Using Lattice Boltzmann

More information

Supplement: Statistical Physics

Supplement: Statistical Physics Supplement: Statistical Physics Fitting in a Box. Counting momentum states with momentum q and de Broglie wavelength λ = h q = 2π h q In a discrete volume L 3 there is a discrete set of states that satisfy

More information

arxiv:gr-qc/ v2 6 Apr 1999

arxiv:gr-qc/ v2 6 Apr 1999 1 Notations I am using the same notations as in [3] and [2]. 2 Temporal gauge - various approaches arxiv:gr-qc/9801081v2 6 Apr 1999 Obviously the temporal gauge q i = a i = const or in QED: A 0 = a R (1)

More information

Turbulence modulation by fully resolved particles using Immersed Boundary Methods

Turbulence modulation by fully resolved particles using Immersed Boundary Methods Turbulence modulation by fully resolved particles using Immersed Boundary Methods Abouelmagd Abdelsamie and Dominique Thévenin Lab. of Fluid Dynamics & Technical Flows University of Magdeburg Otto von

More information

Grad s approximation for missing data in lattice Boltzmann simulations

Grad s approximation for missing data in lattice Boltzmann simulations Europhysics Letters PREPRINT Grad s approximation for missing data in lattice Boltzmann simulations S. Ansumali 2, S. S. Chikatamarla 1 and I. V. Karlin 1 1 Aerothermochemistry and Combustion Systems Laboratory,

More information

Modelling of turbulent flows: RANS and LES

Modelling of turbulent flows: RANS and LES Modelling of turbulent flows: RANS and LES Turbulenzmodelle in der Strömungsmechanik: RANS und LES Markus Uhlmann Institut für Hydromechanik Karlsruher Institut für Technologie www.ifh.kit.edu SS 2012

More information

Computers and Mathematics with Applications. Investigation of the LES WALE turbulence model within the lattice Boltzmann framework

Computers and Mathematics with Applications. Investigation of the LES WALE turbulence model within the lattice Boltzmann framework Computers and Mathematics with Applications 59 (2010) 2200 2214 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: www.elsevier.com/locate/camwa Investigation

More information

Matrix lattice Boltzmann reloaded

Matrix lattice Boltzmann reloaded Matrix lattice Boltzmann reloaded By Ilya Karlin,2, Pietro Asinari 3, Sauro Succi 4,5 Aerothermochemistry and Combustion Systems Lab, ETH Zurich, 8092 Zurich, Switzerland 2 School of Engineering Sciences,

More information

Some aspects of consistency and stability for lattice Boltzmann methods

Some aspects of consistency and stability for lattice Boltzmann methods Some aspects of consistency and stability for lattice Boltzmann methods Workshop Lattice Boltzmann schemes Methods and Applications 5 December 28, Cemagref Antony, France Martin Rheinländer Arbeitsgruppe

More information

Semi-implicit-linearized Multiple-relaxation-time formulation of Lattice Boltzmann Schemes for Mixture Modeling. Abstract

Semi-implicit-linearized Multiple-relaxation-time formulation of Lattice Boltzmann Schemes for Mixture Modeling. Abstract Accepted for publication on Physical Review E Semi-implicit-linearized Multiple-relaxation-time formulation of Lattice Boltzmann Schemes for Mixture Modeling Pietro Asinari Department of Energetics, Politecnico

More information

Fluid-Particles Interaction Models Asymptotics, Theory and Numerics I

Fluid-Particles Interaction Models Asymptotics, Theory and Numerics I Fluid-Particles Interaction Models Asymptotics, Theory and Numerics I J. A. Carrillo collaborators: T. Goudon (Lille), P. Lafitte (Lille) and F. Vecil (UAB) (CPDE 2005), (JCP, 2008), (JSC, 2008) ICREA

More information

Schemes for Mixture Modeling

Schemes for Mixture Modeling DEPARTMENT OF ENERGETICS Consistency of Multiplerelaxation-time Lattice Boltzmann Schemes for Mixture Modeling Invited Talk (Prof. Taku Ohwada) Department of Aeronautics and Astronautics Graduate School

More information

A LATTICE BOLTZMANN SCHEME WITH A THREE DIMENSIONAL CUBOID LATTICE. Haoda Min

A LATTICE BOLTZMANN SCHEME WITH A THREE DIMENSIONAL CUBOID LATTICE. Haoda Min A LATTICE BOLTZMANN SCHEME WITH A THREE DIMENSIONAL CUBOID LATTICE by Haoda Min A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree

More information

Numerical Investigation of Fluid and Thermal Flow in a Differentially Heated Side Enclosure walls at Various Inclination Angles

Numerical Investigation of Fluid and Thermal Flow in a Differentially Heated Side Enclosure walls at Various Inclination Angles Numerical Investigation of Fluid and Thermal Flow in a Differentially Heated Side Enclosure walls at Various Inclination Angles O. A. SHAHRUL Faculty of Mechanical & Manufacturing Engineering Universiti

More information

IMPLEMENTING THE LATTICE-BOLTZMANN

IMPLEMENTING THE LATTICE-BOLTZMANN IMPLEMENTING THE LATTICE-BOLTZMANN METHOD A RESEARCH ON BOUNDARY CONDITION TECHNIQUES by S.C. Wetstein in partial fulfillment of the requirements for the degree of Bachelor of Science in Applied Physics

More information

Lattice Boltzmann Simulations of 2D Laminar Flows past Two Tandem Cylinders

Lattice Boltzmann Simulations of 2D Laminar Flows past Two Tandem Cylinders Lattice Boltzmann Simulations of 2D Laminar Flows past Two Tandem Cylinders Alberto Mussa a, Pietro Asinari a,, and Li-Shi Luo b a Department of Energetics, Politecnico di Torino, Torino 10129, Italy Tel.:

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

Computer simulations of fluid dynamics. Lecture 11 LBM: Algorithm for BGK Maciej Matyka

Computer simulations of fluid dynamics. Lecture 11 LBM: Algorithm for BGK Maciej Matyka Computer simulations of fluid dynamics Lecture 11 LBM: Algorithm for BGK Maciej Matyka https://www.youtube.com/watch? v=vluyp_ydfjc https://youtu.be/cj52zpggka (789 citations) Lecture goal l l Give a complete

More information

A Compact and Efficient Lattice Boltzmann Scheme to Simulate Complex Thermal Fluid Flows

A Compact and Efficient Lattice Boltzmann Scheme to Simulate Complex Thermal Fluid Flows A Compact and Efficient Lattice Boltzmann Scheme to Simulate Complex Thermal Fluid Flows Tao Zhang 1[0000-0001-7216-0423] and Shuyu Sun 1[0000-0002-3078-864X] 1 Computational Transport Phenomena Laboratory

More information

General introduction to Hydrodynamic Instabilities

General introduction to Hydrodynamic Instabilities KTH ROYAL INSTITUTE OF TECHNOLOGY General introduction to Hydrodynamic Instabilities L. Brandt & J.-Ch. Loiseau KTH Mechanics, November 2015 Luca Brandt Professor at KTH Mechanics Email: luca@mech.kth.se

More information

Introduction to Turbulence and Turbulence Modeling

Introduction to Turbulence and Turbulence Modeling Introduction to Turbulence and Turbulence Modeling Part I Venkat Raman The University of Texas at Austin Lecture notes based on the book Turbulent Flows by S. B. Pope Turbulent Flows Turbulent flows Commonly

More information

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction Carnegie Mellon University Center for Nonlinear Analysis Working Group, October 2016 Outline 1 Physical Framework 2 3 Free Energy

More information

YAN GUO, JUHI JANG, AND NING JIANG

YAN GUO, JUHI JANG, AND NING JIANG LOCAL HILBERT EXPANSION FOR THE BOLTZMANN EQUATION YAN GUO, JUHI JANG, AND NING JIANG Abstract. We revisit the classical ork of Caflisch [C] for compressible Euler limit of the Boltzmann equation. By using

More information

Parallelism of MRT Lattice Boltzmann Method based on Multi-GPUs

Parallelism of MRT Lattice Boltzmann Method based on Multi-GPUs Parallelism of MRT Lattice Boltzmann Method based on Multi-GPUs 1 School of Information Engineering, China University of Geosciences (Beijing) Beijing, 100083, China E-mail: Yaolk1119@icloud.com Ailan

More information

Lattice Boltzmann Method Solver Documentation

Lattice Boltzmann Method Solver Documentation Lattice Boltzmann Method Solver Documentation Release 0.0.1 Sayop Kim May 03, 2016 Contents 1 Code Instruction 3 1.1 Quick instruction for running the simulation.............................. 3 2 Results

More information

MATH 205C: STATIONARY PHASE LEMMA

MATH 205C: STATIONARY PHASE LEMMA MATH 205C: STATIONARY PHASE LEMMA For ω, consider an integral of the form I(ω) = e iωf(x) u(x) dx, where u Cc (R n ) complex valued, with support in a compact set K, and f C (R n ) real valued. Thus, I(ω)

More information

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE Stability Evaluation of Lattice Boltzmann Method for High Viscosity Fluid Model Applied in Pore Scale Porous Media Pahala Richard Panjaitan Ph.D. Student,

More information

1 Assignment 1: Nonlinear dynamics (due September

1 Assignment 1: Nonlinear dynamics (due September Assignment : Nonlinear dynamics (due September 4, 28). Consider the ordinary differential equation du/dt = cos(u). Sketch the equilibria and indicate by arrows the increase or decrease of the solutions.

More information

Fundamental Solutions of Stokes and Oseen Problem in Two Spatial Dimensions

Fundamental Solutions of Stokes and Oseen Problem in Two Spatial Dimensions J. math. fluid mech. c 6 Birkhäuser Verlag, Basel DOI.7/s-5-9-z Journal of Mathematical Fluid Mechanics Fundamental Solutions of Stokes and Oseen Problem in Two Spatial Dimensions Ronald B. Guenther and

More information

July 21 Math 2254 sec 001 Summer 2015

July 21 Math 2254 sec 001 Summer 2015 July 21 Math 2254 sec 001 Summer 2015 Section 8.8: Power Series Theorem: Let a n (x c) n have positive radius of convergence R, and let the function f be defined by this power series f (x) = a n (x c)

More information

A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models

A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models Alessandro Alaia, Gabriella Puppo May 31, 2011 Abstract In this work we present a non stationary domain

More information

Euler equation and Navier-Stokes equation

Euler equation and Navier-Stokes equation Euler equation and Navier-Stokes equation WeiHan Hsiao a a Department of Physics, The University of Chicago E-mail: weihanhsiao@uchicago.edu ABSTRACT: This is the note prepared for the Kadanoff center

More information

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang,

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, yfwang09@stanford.edu 1. Problem setting In this project, we present a benchmark simulation for segmented flows, which contain

More information

Discontinuous shear thickening on dense non-brownian suspensions via lattice Boltzmann method

Discontinuous shear thickening on dense non-brownian suspensions via lattice Boltzmann method Discontinuous shear thickening on dense non-brownian suspensions via lattice Boltzmann method Pradipto and Hisao Hayakawa Yukawa Insitute for Theoretical Physics Kyoto University Rheology of disordered

More information

The lattice Boltzmann equation: background and boundary conditions

The lattice Boltzmann equation: background and boundary conditions The lattice Boltzmann equation: background and boundary conditions Tim Reis Department of Mathematics Sciences University of Greenwich Leslie Comrie Seminar Series November 2016 Acknowledgements: P. Dellar

More information

The Brownian Oscillator

The Brownian Oscillator Chapter The Brownian Oscillator Contents.One-DimensionalDiffusioninaHarmonicPotential...38 The one-dimensional Smoluchowski equation, in case that a stationary flux-free equilibrium state p o (x) exists,

More information

LATTICE BOLTZMANN SIMULATION OF FLUID FLOW IN A LID DRIVEN CAVITY

LATTICE BOLTZMANN SIMULATION OF FLUID FLOW IN A LID DRIVEN CAVITY LATTICE BOLTZMANN SIMULATION OF FLUID FLOW IN A LID DRIVEN CAVITY M. Y. Gokhale, Ignatius Fernandes Maharashtra Institute of Technology, Pune 4 38, India University of Pune, India Email : mukundyg@yahoo.co.in,

More information

Pore-scale lattice Boltzmann simulation of laminar and turbulent flow through a sphere pack

Pore-scale lattice Boltzmann simulation of laminar and turbulent flow through a sphere pack Pore-scale lattice Boltzmann simulation of laminar and turbulent flow through a sphere pack Ehsan Fattahi a,b, Christian Waluga, Barbara Wohlmuth a, Ulrich Rüde b, Michael Manhart c, Rainer Helmig d a

More information

Lattice Boltzmann model for the Elder problem

Lattice Boltzmann model for the Elder problem 1549 Lattice Boltzmann model for the Elder problem D.T. Thorne a and M.C. Sukop a a Department of Earth Sciences, Florida International University, PC 344, University Park, 11200 SW 8th Street, Miami,

More information

SUMMER SCHOOL - KINETIC EQUATIONS LECTURE II: CONFINED CLASSICAL TRANSPORT Shanghai, 2011.

SUMMER SCHOOL - KINETIC EQUATIONS LECTURE II: CONFINED CLASSICAL TRANSPORT Shanghai, 2011. SUMMER SCHOOL - KINETIC EQUATIONS LECTURE II: CONFINED CLASSICAL TRANSPORT Shanghai, 2011. C. Ringhofer ringhofer@asu.edu, math.la.asu.edu/ chris OVERVIEW Quantum and classical description of many particle

More information

arxiv: v1 [physics.flu-dyn] 10 Aug 2015

arxiv: v1 [physics.flu-dyn] 10 Aug 2015 Slip velocity of lattice Boltzmann simulation using bounce-back boundary scheme Jianping Meng, Xiao-Jun Gu, and David R Emerson Scientific Computing Department, STFC Daresbury laboratory, arxiv:1508.009v1

More information

IMMERSED BOUNDARY METHODS IN THE LATTICE BOLTZMANN EQUATION FOR FLOW SIMULATION. A Dissertation SHIN KYU KANG

IMMERSED BOUNDARY METHODS IN THE LATTICE BOLTZMANN EQUATION FOR FLOW SIMULATION. A Dissertation SHIN KYU KANG IMMERSED BOUNDARY METHODS IN THE LATTICE BOLTZMANN EQUATION FOR FLOW SIMULATION A Dissertation by SHIN KYU KANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment

More information

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS 1 REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS HENNING STRUCHTRUP ETH Zürich, Department of Materials, Polymer Physics, CH-8093 Zürich, Switzerland (on leave from University of Victoria,

More information

Divergence of the gradient expansion and the applicability of fluid dynamics Gabriel S. Denicol (IF-UFF)

Divergence of the gradient expansion and the applicability of fluid dynamics Gabriel S. Denicol (IF-UFF) Divergence of the gradient expansion and the applicability of fluid dynamics Gabriel S. Denicol (IF-UFF) arxiv:1608.07869, arxiv:1711.01657, arxiv:1709.06644 Frankfurt University 1.February.2018 Preview

More information

1 Fundamentals. 1.1 Overview. 1.2 Units: Physics 704 Spring 2018

1 Fundamentals. 1.1 Overview. 1.2 Units: Physics 704 Spring 2018 Physics 704 Spring 2018 1 Fundamentals 1.1 Overview The objective of this course is: to determine and fields in various physical systems and the forces and/or torques resulting from them. The domain of

More information