PHY481: Electromagnetism

Size: px
Start display at page:

Download "PHY481: Electromagnetism"

Transcription

1 PHY481: Electromagnetism Vector tools Lecture 4 Carl Bromberg - Prof. of Physics

2 Cartesian coordinates Definitions Vector x is defined relative to the origin of 1 coordinate system (x,y,z) In Cartsian coordinates x = x î + y ĵ + z ˆk Arbitrary rotation of the coordinate system changes the direction but not the magnitude of x ˆ i = îcosφ + ĵsinφ ˆ j = îsinφ + ĵcosφ k ˆ = ˆk x = x ˆ i + y ˆ j + z k ˆ Example: rotation about the z-axis by angle φ x = x ˆ i = xcosφ + ysinφ y = x ˆ j = xsinφ + ycosφ z = z Lecture 4 Carl Bromberg - Prof. of Physics 1

3 Rotation matrix A rotation can be expressed as a 3x3 unitary matrix R Rotation of coordinates x x y = R y z z Rotation of vector components E x Ey E z = R E x E y E z Rotation Matrix is Unitary Maintains vector magnitude Transpose = Inverse R ij T = R ji = R ij 1 Rotation matrix properties R = BCD (3 rotations) Rotations do not commute B = C = D = Euler angle rotations cosφ sinφ 0 sinφ cosφ cosθ sinθ 0 sinθ cosθ cosψ sinψ 0 sinψ cosψ rotation about z rotation about x rotation about z Lecture 4 Carl Bromberg - Prof. of Physics 2

4 Vector multiplication Vector addition and multiplication by a constant OK Scalar (or dot) product A B = A x B x + A y B y + A z B z = 3 A i B i i=1 (1,2,3) = (x,y,z) Einstein summation convention (repeated indices) A B = A i B i = A 1 B 1 + A 2 B 2 + A 3 B 3 Σ is superfluous Cross product (new techniques) C = A B C i = B k A k B j i,j,k are cyclic permutations of 1,2,3 C x = A y B z A z B y C y = A z B x A x B z C z = A x B y A y B x C 1 = A 2 B 3 A 3 B 2 C 2 = A 3 B 1 A 1 B 3 C 3 = A 1 B 2 A 2 B 1 Lecture 4 Carl Bromberg - Prof. of Physics 3

5 Economy of notation we will NEED Levi-Chivita anti-symmetric 3x3x3 tensor ε ijk Learn to love it! ( A B) i = ε ijk B k i, j, k = (1, 2 or 3) If any 2 indices are the same Permutations of 123 Cyclic = even # of pair-wise Non-cyclic = odd # of pair-wise ε ijk = 0 21 of 27 elements are 0! 6 non-zero elements ε 123 = ε 312 = ε 231 = +1 ε 213 = ε 132 = ε 321 = 1 (A B) 1 = ε 123 A 2 B 3 + ε 132 A 3 B 2 = A 2 B 3 A 3 B 2 Verify the remainder for yourself Levi-Chivita tensor product ε ijk ε klm = δ il δ jm δ im δ jl sum over k, k = 1, 2, 3 Kronecker delta { δ ij = 1, i = j 0, i j Lecture 4 Carl Bromberg - Prof. of Physics 4

6 Vector identities Prove A x (B x C) = B(A C) C(A B) Cross product using Levi-Chivita tensor: ( A B) i = ε ijk B k Levi-Chivita tensor product: ε ijk ε klm = δ il δ jm δ im δ jl PROOF i th component B C = D A ( B C) ( ) i = ε ijk D k D k = (B C) k = ε klm B l C m [ ] i = A D [ A ( B C) ] i = ε ijk ε klm B l C m need indices l and m = ( δ il δ jm δ im δ ) jl B l C m = B i C j B j C i A ( B C) = B ( A C ) C ( A B ) B j = A B Lecture 4 Carl Bromberg - Prof. of Physics 5

7 Vector operators - Gradient (Cartesian) Gradient of a scalar function V V (x) = V ê x i i = V x î + V y ĵ + V z Example: parallel plate capacitor ˆk = ê i x i ê 1 = î, ê 2 = ĵ, ê 3 = ˆk Gives vector in direction of maximum change in V V (x) = V (x) = Ex Maximum change in V is in the +x direction V (x) = V x î = E î Electric field points opposite to maximum change in V E(x) = V (x) = E î Lecture 4 Carl Bromberg - Prof. of Physics 6

8 Vector operators - Divergence (Cartesian) Divergence of a vector function is a scalar E(x) = E i x i = E x x + E y y + E z z Spreading of E at x. 0 if charge is at x Coordinate independent definition E(x) da = E i (x + ε 2 êi )ε 2 E i (x ε 2 S = = 3 i=1 êi )ε 2 3 E i (x + ε 2 êi ) E (x ε i 2 êi ) ε 3 ε i=1 3 i=1 E i ε 3 = [ E(x) ]ε 3 x i = ê i Lecture 4 Carl Bromberg - Prof. of Physics 7 Divergence definition E(x) = lim V 0 1 V x i tiny box centered on x S E(x) da Del operator

9 Differential form of Gauss s Law Gauss s Law in terms of divergence of E Gauss s Law lim V 0 1 V 1 V S S S E(x) da E(x) da E(x) da = q encl ε 0 = 1 V = lim V 0 q encl ε 0 q encl V 1 ε 0 a 2 î Box centered on x a a a a 2 î ρ = q encl V ; V = a3 E(x) = ρ(x) ε 0 Gauss s Law equivalent Lecture 4 Carl Bromberg - Prof. of Physics 8

10 Vector operators - Curl (Cartesian) Curl of a vector function is another vector B [ B(x) ] i = ε k ijk x j Circulation of E around a loop ( B(x) ) 1 = B 3 B 2 x 2 x 3 Verify the remainder B(x) d = B i (x ε ê )ε B (x + ε ê )ε 2 j i 2 j P k Coordinate independent definition (1) (2) + B j (x + ε 2 êi )ε B (x ε j 2 = B j B i x i x j ε 2 = B(x) êi )ε [ ] k ε 2 Lecture 4 Carl Bromberg - Prof. of Physics 9 (3) (4) Curl definition ˆn [ B(x) ] = lim A 0 Path centered on x 1 A C B(x) d

11 Physical interpretation of vector operators Characterize flow of field [area displayed (±3m, ±3m)] E(x) = ( x î + y ĵ ) V/m 2 B(x) = ( y î + x ĵ ) T/m 2 C 0 C 0 E = ρ(x) ε 0 = 2 V/m 2 B = µ 0 J(x) = 2 T/m 2 E = 0 B = 0 Lecture 4 Carl Bromberg - Prof. of Physics 10

PHY481: Electromagnetism

PHY481: Electromagnetism PHY481: Electromagnetism Vector tools Sorry, no office hours today I ve got to catch a plane for a meeting in Italy Lecture 3 Carl Bromberg - Prof. of Physics Cartesian coordinates Definitions Vector x

More information

A Primer on Three Vectors

A Primer on Three Vectors Michael Dine Department of Physics University of California, Santa Cruz September 2010 What makes E&M hard, more than anything else, is the problem that the electric and magnetic fields are vectors, and

More information

Vector calculus. Appendix A. A.1 Definitions. We shall only consider the case of three-dimensional spaces.

Vector calculus. Appendix A. A.1 Definitions. We shall only consider the case of three-dimensional spaces. Appendix A Vector calculus We shall only consider the case of three-dimensional spaces A Definitions A physical quantity is a scalar when it is only determined by its magnitude and a vector when it is

More information

Index Notation for Vector Calculus

Index Notation for Vector Calculus Index Notation for Vector Calculus by Ilan Ben-Yaacov and Francesc Roig Copyright c 2006 Index notation, also commonly known as subscript notation or tensor notation, is an extremely useful tool for performing

More information

2.20 Fall 2018 Math Review

2.20 Fall 2018 Math Review 2.20 Fall 2018 Math Review September 10, 2018 These notes are to help you through the math used in this class. This is just a refresher, so if you never learned one of these topics you should look more

More information

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components Cartesian Tensors Reference: Jeffreys Cartesian Tensors 1 Coordinates and Vectors z x 3 e 3 y x 2 e 2 e 1 x x 1 Coordinates x i, i 123,, Unit vectors: e i, i 123,, General vector (formal definition to

More information

Chapter 6: Vector Analysis

Chapter 6: Vector Analysis Chapter 6: Vector Analysis We use derivatives and various products of vectors in all areas of physics. For example, Newton s 2nd law is F = m d2 r. In electricity dt 2 and magnetism, we need surface and

More information

Physics 110. Electricity and Magnetism. Professor Dine. Spring, Handout: Vectors and Tensors: Everything You Need to Know

Physics 110. Electricity and Magnetism. Professor Dine. Spring, Handout: Vectors and Tensors: Everything You Need to Know Physics 110. Electricity and Magnetism. Professor Dine Spring, 2008. Handout: Vectors and Tensors: Everything You Need to Know What makes E&M hard, more than anything else, is the problem that the electric

More information

Lecture 3: Vectors. Any set of numbers that transform under a rotation the same way that a point in space does is called a vector.

Lecture 3: Vectors. Any set of numbers that transform under a rotation the same way that a point in space does is called a vector. Lecture 3: Vectors Any set of numbers that transform under a rotation the same way that a point in space does is called a vector i.e., A = λ A i ij j j In earlier courses, you may have learned that a vector

More information

Vector analysis and vector identities by means of cartesian tensors

Vector analysis and vector identities by means of cartesian tensors Vector analysis and vector identities by means of cartesian tensors Kenneth H. Carpenter August 29, 2001 1 The cartesian tensor concept 1.1 Introduction The cartesian tensor approach to vector analysis

More information

Rotational motion of a rigid body spinning around a rotational axis ˆn;

Rotational motion of a rigid body spinning around a rotational axis ˆn; Physics 106a, Caltech 15 November, 2018 Lecture 14: Rotations The motion of solid bodies So far, we have been studying the motion of point particles, which are essentially just translational. Bodies with

More information

u z u y u x ChE 342 Vectors 1 VECTORS Figure 1 Basic Definitions Vectors have magnitude and direction: u = i u x + j u y + k u z (1)

u z u y u x ChE 342 Vectors 1 VECTORS Figure 1 Basic Definitions Vectors have magnitude and direction: u = i u x + j u y + k u z (1) ChE 342 Vectors 1 VECTORS u u i k j u u Basic Definitions Figure 1 Vectors have magnitude and direction: u = i u + j u + k u (1) i = [1,0,0] j = [0,1,0] (2) k = [0,0,1] i, j, and k are mutuall orthogonal.

More information

Math review. Math review

Math review. Math review Math review 1 Math review 3 1 series approximations 3 Taylor s Theorem 3 Binomial approximation 3 sin(x), for x in radians and x close to zero 4 cos(x), for x in radians and x close to zero 5 2 some geometry

More information

VECTORS, TENSORS AND INDEX NOTATION

VECTORS, TENSORS AND INDEX NOTATION VECTORS, TENSORS AND INDEX NOTATION Enrico Nobile Dipartimento di Ingegneria e Architettura Università degli Studi di Trieste, 34127 TRIESTE March 5, 2018 Vectors & Tensors, E. Nobile March 5, 2018 1 /

More information

Physics 6303 Lecture 2 August 22, 2018

Physics 6303 Lecture 2 August 22, 2018 Physics 6303 Lecture 2 August 22, 2018 LAST TIME: Coordinate system construction, covariant and contravariant vector components, basics vector review, gradient, divergence, curl, and Laplacian operators

More information

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components

Cartesian Tensors. e 2. e 1. General vector (formal definition to follow) denoted by components Cartesian Tensors Reference: Jeffreys Cartesian Tensors 1 Coordinates and Vectors z x 3 e 3 y x 2 e 2 e 1 x x 1 Coordinates x i, i 123,, Unit vectors: e i, i 123,, General vector (formal definition to

More information

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian... Vector analysis Abstract These notes present some background material on vector analysis. Except for the material related to proving vector identities (including Einstein s summation convention and the

More information

Some elements of vector and tensor analysis and the Dirac δ-function

Some elements of vector and tensor analysis and the Dirac δ-function Chapter 1 Some elements of vector and tensor analysis and the Dirac δ-function The vector analysis is useful in physics formulate the laws of physics independently of any preferred direction in space experimentally

More information

Introduction to Tensor Notation

Introduction to Tensor Notation MCEN 5021: Introduction to Fluid Dynamics Fall 2015, T.S. Lund Introduction to Tensor Notation Tensor notation provides a convenient and unified system for describing physical quantities. Scalars, vectors,

More information

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review 1 PHYS 705: Classical Mechanics Rigid Body Motion Introduction + Math Review 2 How to describe a rigid body? Rigid Body - a system of point particles fixed in space i r ij j subject to a holonomic constraint:

More information

Texture, Microstructure & Anisotropy A.D. (Tony) Rollett

Texture, Microstructure & Anisotropy A.D. (Tony) Rollett 1 Carnegie Mellon MRSEC 27-750 Texture, Microstructure & Anisotropy A.D. (Tony) Rollett Last revised: 5 th Sep. 2011 2 Show how to convert from a description of a crystal orientation based on Miller indices

More information

The Matrix Representation of a Three-Dimensional Rotation Revisited

The Matrix Representation of a Three-Dimensional Rotation Revisited Physics 116A Winter 2010 The Matrix Representation of a Three-Dimensional Rotation Revisited In a handout entitled The Matrix Representation of a Three-Dimensional Rotation, I provided a derivation of

More information

University of Sheffield. PHY120 - Vectors. Dr Emiliano Cancellieri

University of Sheffield. PHY120 - Vectors. Dr Emiliano Cancellieri University of Sheffield PHY120 - Vectors Dr Emiliano Cancellieri October 14, 2015 Contents 1 Lecture 1 2 1.1 Basic concepts of vectors........................ 2 1.2 Cartesian components of vectors....................

More information

Classical Mechanics in Hamiltonian Form

Classical Mechanics in Hamiltonian Form Classical Mechanics in Hamiltonian Form We consider a point particle of mass m, position x moving in a potential V (x). It moves according to Newton s law, mẍ + V (x) = 0 (1) This is the usual and simplest

More information

Topic 5.9: Divergence and The Divergence Theorem

Topic 5.9: Divergence and The Divergence Theorem Math 275 Notes (Ultman) Topic 5.9: Divergence and The Divergence Theorem Textbook ection: 16.9 From the Toolbox (what you need from previous classes): Computing partial derivatives. Computing the dot product.

More information

Tensors, and differential forms - Lecture 2

Tensors, and differential forms - Lecture 2 Tensors, and differential forms - Lecture 2 1 Introduction The concept of a tensor is derived from considering the properties of a function under a transformation of the coordinate system. A description

More information

Electromagnetism HW 1 math review

Electromagnetism HW 1 math review Electromagnetism HW math review Problems -5 due Mon 7th Sep, 6- due Mon 4th Sep Exercise. The Levi-Civita symbol, ɛ ijk, also known as the completely antisymmetric rank-3 tensor, has the following properties:

More information

Week 2 Notes, Math 865, Tanveer

Week 2 Notes, Math 865, Tanveer Week 2 Notes, Math 865, Tanveer 1. Incompressible constant density equations in different forms Recall we derived the Navier-Stokes equation for incompressible constant density, i.e. homogeneous flows:

More information

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II November 5, 207 Prof. Alan Guth FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 207 A few items below are marked

More information

Vectors. September 2, 2015

Vectors. September 2, 2015 Vectors September 2, 2015 Our basic notion of a vector is as a displacement, directed from one point of Euclidean space to another, and therefore having direction and magnitude. We will write vectors in

More information

Introduction and Vectors Lecture 1

Introduction and Vectors Lecture 1 1 Introduction Introduction and Vectors Lecture 1 This is a course on classical Electromagnetism. It is the foundation for more advanced courses in modern physics. All physics of the modern era, from quantum

More information

INTEGRALSATSER VEKTORANALYS. (indexräkning) Kursvecka 4. and CARTESIAN TENSORS. Kapitel 8 9. Sidor NABLA OPERATOR,

INTEGRALSATSER VEKTORANALYS. (indexräkning) Kursvecka 4. and CARTESIAN TENSORS. Kapitel 8 9. Sidor NABLA OPERATOR, VEKTORANALYS Kursvecka 4 NABLA OPERATOR, INTEGRALSATSER and CARTESIAN TENSORS (indexräkning) Kapitel 8 9 Sidor 83 98 TARGET PROBLEM In the plasma there are many particles (10 19, 10 20 per m 3 ), strong

More information

Tensor Analysis Author: Harald Höller last modified: Licence: Creative Commons Lizenz by-nc-sa 3.0 at

Tensor Analysis Author: Harald Höller last modified: Licence: Creative Commons Lizenz by-nc-sa 3.0 at Tensor Analysis Author: Harald Höller last modified: 02.12.09 Licence: Creative Commons Lizenz by-nc-sa 3.0 at Levi-Civita Symbol (Ε - Tensor) 2 Tensor_analysis_m6.nb Ε = Ε = Ε = 1 123 231 312 Ε = Ε =

More information

Vectors. (Dated: August ) I. PROPERTIES OF UNIT ANSTISYMMETRIC TENSOR

Vectors. (Dated: August ) I. PROPERTIES OF UNIT ANSTISYMMETRIC TENSOR Vectors Dated: August 25 2016) I. PROPERTIE OF UNIT ANTIYMMETRIC TENOR ɛijkɛ klm = δ il δ jm δ im δ jl 1) Here index k is dummy index summation index), which can be denoted by any symbol. For two repeating

More information

Classical Mechanics Solutions 1.

Classical Mechanics Solutions 1. Classical Mechanics Solutions 1. HS 2015 Prof. C. Anastasiou Prologue Given an orthonormal basis in a vector space with n dimensions, any vector can be represented by its components1 ~v = n X vi e i. 1)

More information

We are already familiar with the concept of a scalar and vector. are unit vectors in the x and y directions respectively with

We are already familiar with the concept of a scalar and vector. are unit vectors in the x and y directions respectively with Math Review We are already familiar with the concept of a scalar and vector. Example: Position (x, y) in two dimensions 1 2 2 2 s ( x y ) where s is the length of x ( xy, ) xi yj And i, j ii 1 j j 1 i

More information

Module 4M12: Partial Differential Equations and Variational Methods IndexNotationandVariationalMethods

Module 4M12: Partial Differential Equations and Variational Methods IndexNotationandVariationalMethods Module 4M12: Partial Differential Equations and ariational Methods IndexNotationandariationalMethods IndexNotation(2h) ariational calculus vs differential calculus(5h) ExamplePaper(1h) Fullinformationat

More information

Mathematical Preliminaries

Mathematical Preliminaries Mathematical Preliminaries Introductory Course on Multiphysics Modelling TOMAZ G. ZIELIŃKI bluebox.ippt.pan.pl/ tzielins/ Table of Contents Vectors, tensors, and index notation. Generalization of the concept

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Phsics 151 Lecture 8 Rigid Bod Motion (Chapter 4) What We Did Last Time! Discussed scattering problem! Foundation for all experimental phsics! Defined and calculated cross sections! Differential

More information

Chapter 7. Kinematics. 7.1 Tensor fields

Chapter 7. Kinematics. 7.1 Tensor fields Chapter 7 Kinematics 7.1 Tensor fields In fluid mechanics, the fluid flow is described in terms of vector fields or tensor fields such as velocity, stress, pressure, etc. It is important, at the outset,

More information

( ) by D n ( y) 1.1 Mathematical Considerations. π e nx Dirac s delta function (distribution) a) Dirac s delta function is defined such that

( ) by D n ( y) 1.1 Mathematical Considerations. π e nx Dirac s delta function (distribution) a) Dirac s delta function is defined such that Chapter 1. Electrostatics I Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 1. Units from the Système International (SI) will be used in this chapter. 1.1 Mathematical

More information

Basic mathematics for nano-engineers (II)

Basic mathematics for nano-engineers (II) Basic mathematics for nano-engineers (II) Horia D. Cornean 26/09/2005 I.M.F. Aalborg University, Fredrik Bajers Vej 7G, 9220 Aalborg, Denmark. 1 Vector calculus We will prove several important differential

More information

A.1 Appendix on Cartesian tensors

A.1 Appendix on Cartesian tensors 1 Lecture Notes on Fluid Dynamics (1.63J/2.21J) by Chiang C. Mei, February 6, 2007 A.1 Appendix on Cartesian tensors [Ref 1] : H Jeffreys, Cartesian Tensors; [Ref 2] : Y. C. Fung, Foundations of Solid

More information

Additional Mathematical Tools: Detail

Additional Mathematical Tools: Detail Additional Mathematical Tools: Detail September 9, 25 The material here is not required, but gives more detail on the additional mathmatical tools: coordinate systems, rotations, the Dirac delta function

More information

Fundamentals of Applied Electromagnetics. Chapter 2 - Vector Analysis

Fundamentals of Applied Electromagnetics. Chapter 2 - Vector Analysis Fundamentals of pplied Electromagnetics Chapter - Vector nalsis Chapter Objectives Operations of vector algebra Dot product of two vectors Differential functions in vector calculus Divergence of a vector

More information

Vectors and Matrices Notes.

Vectors and Matrices Notes. Vectors and Matrices Notes Jonathan Coulthard JonathanCoulthard@physicsoxacuk 1 Index Notation Index notation may seem quite intimidating at first, but once you get used to it, it will allow us to prove

More information

Electromagnetic Theory Prof. Michael J. Ruiz, UNC Asheville (doctorphys on YouTube) Chapter A Notes. Vector Analysis

Electromagnetic Theory Prof. Michael J. Ruiz, UNC Asheville (doctorphys on YouTube) Chapter A Notes. Vector Analysis Electromagnetic Theory Prof. Michael J. Ruiz, UNC Asheville (doctorphys on YouTube) Chapter A Notes. Vector Analysis A0. Vector Figure Courtesy OpenStax College. Vector Addition and Subtraction: Analytical

More information

1. Basic Operations Consider two vectors a (1, 4, 6) and b (2, 0, 4), where the components have been expressed in a given orthonormal basis.

1. Basic Operations Consider two vectors a (1, 4, 6) and b (2, 0, 4), where the components have been expressed in a given orthonormal basis. Questions on Vectors and Tensors 1. Basic Operations Consider two vectors a (1, 4, 6) and b (2, 0, 4), where the components have been expressed in a given orthonormal basis. Compute 1. a. 2. The angle

More information

Vector and Tensor Calculus

Vector and Tensor Calculus Appendices 58 A Vector and Tensor Calculus In relativistic theory one often encounters vector and tensor expressions in both three- and four-dimensional form. The most important of these expressions are

More information

ENERGY IN ELECTROSTATICS

ENERGY IN ELECTROSTATICS ENERGY IN ELECTROSTATICS We now turn to the question of energy in electrostatics. The first question to consider is whether or not the force is conservative. You will recall from last semester that a conservative

More information

Concepts in Engineering Mathematics: Lecture 39

Concepts in Engineering Mathematics: Lecture 39 Concepts in Engineering Mathematics: Lecture 39 Part IV: Vector Calculus Lecture 39 Version: 0.94 Dec7.15 Jont B. Allen; UIUC Urbana IL, USA December 9, 2015 Jont B. Allen; UIUC Urbana IL, USA Concepts

More information

1. Rotations in 3D, so(3), and su(2). * version 2.0 *

1. Rotations in 3D, so(3), and su(2). * version 2.0 * 1. Rotations in 3D, so(3, and su(2. * version 2.0 * Matthew Foster September 5, 2016 Contents 1.1 Rotation groups in 3D 1 1.1.1 SO(2 U(1........................................................ 1 1.1.2

More information

A Brief Revision of Vector Calculus and Maxwell s Equations

A Brief Revision of Vector Calculus and Maxwell s Equations A Brief Revision of Vector Calculus and Maxwell s Equations Debapratim Ghosh Electronic Systems Group Department of Electrical Engineering Indian Institute of Technology Bombay e-mail: dghosh@ee.iitb.ac.in

More information

CE-570 Advanced Structural Mechanics - Arun Prakash

CE-570 Advanced Structural Mechanics - Arun Prakash Ch1-Intro Page 1 CE-570 Advanced Structural Mechanics - Arun Prakash The BIG Picture What is Mechanics? Mechanics is study of how things work: how anything works, how the world works! People ask: "Do you

More information

Tensors - Lecture 4. cos(β) sin(β) sin(β) cos(β) 0

Tensors - Lecture 4. cos(β) sin(β) sin(β) cos(β) 0 1 Introduction Tensors - Lecture 4 The concept of a tensor is derived from considering the properties of a function under a transformation of the corrdinate system. As previously discussed, such transformations

More information

Homework 7-8 Solutions. Problems

Homework 7-8 Solutions. Problems Homework 7-8 Solutions Problems 26 A rhombus is a parallelogram with opposite sides of equal length Let us form a rhombus using vectors v 1 and v 2 as two adjacent sides, with v 1 = v 2 The diagonals of

More information

Rigid Bodies. November 5, 2018

Rigid Bodies. November 5, 2018 Rigid Bodies November 5, 08 Contents Change of basis 3. Einstein summation convention................................... 4. Passive transformation........................................ 6.3 Active transformation........................................

More information

Valiantly Validating Vexing Vector Verities

Valiantly Validating Vexing Vector Verities Valiantly Validating Vexing Vector Verities 1. (A B) = Aâ( âb) + Bâ( âa) + (A ) B + (B ) A For many students, one of the most challenging vector problems is proving the identity : HA BL = A âh âbl + B

More information

Notes 19 Gradient and Laplacian

Notes 19 Gradient and Laplacian ECE 3318 Applied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of ECE Notes 19 Gradient and Laplacian 1 Gradient Φ ( x, y, z) =scalar function Φ Φ Φ grad Φ xˆ + yˆ + zˆ x y z We can

More information

%#, for x = a & ' 0, for x $ a. but with the restriction that the area it encloses equals 1. Therefore, whenever it is used it is implied that

%#, for x = a & ' 0, for x $ a. but with the restriction that the area it encloses equals 1. Therefore, whenever it is used it is implied that Chapter 1. Electrostatics I Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 1. Units from the ystème International (I will be used in this chapter. 1.1 Mathematical Considerations

More information

FoMP: Vectors, Tensors and Fields

FoMP: Vectors, Tensors and Fields FoMP: Vectors, Tensors and Fields 1 Contents 1 Vectors 6 1.1 Review of Vectors................................. 6 1.1.1 Physics Terminology (L1)........................ 6 1.1.2 Geometrical Approach..........................

More information

Summary of time independent electrodynamics

Summary of time independent electrodynamics hapter 10 Summary of time independent electrodynamics 10.1 Electrostatics Physical law oulomb s law charges as origin of electric field Superposition principle ector of the electric field E(x) in vacuum

More information

6 Div, grad curl and all that

6 Div, grad curl and all that 6 Div, grad curl and all that 6.1 Fundamental theorems for gradient, divergence, and curl Figure 1: Fundamental theorem of calculus relates df/dx over[a, b] and f(a), f(b). You will recall the fundamental

More information

Class 4 : Maxwell s Equations for Electrostatics

Class 4 : Maxwell s Equations for Electrostatics Class 4 : Maxwell s Equations for Electrostatics Concept of charge density Maxwell s 1 st and 2 nd Equations Physical interpretation of divergence and curl How do we check whether a given vector field

More information

Chapter 1. Vector Analysis

Chapter 1. Vector Analysis Chapter 1. Vector Analysis Hayt; 8/31/2009; 1-1 1.1 Scalars and Vectors Scalar : Vector: A quantity represented by a single real number Distance, time, temperature, voltage, etc Magnitude and direction

More information

1.4 LECTURE 4. Tensors and Vector Identities

1.4 LECTURE 4. Tensors and Vector Identities 16 CHAPTER 1. VECTOR ALGEBRA 1.3.2 Triple Product The triple product of three vectors A, B and C is defined by In tensor notation it is A ( B C ) = [ A, B, C ] = A ( B C ) i, j,k=1 ε i jk A i B j C k =

More information

NIELINIOWA OPTYKA MOLEKULARNA

NIELINIOWA OPTYKA MOLEKULARNA NIELINIOWA OPTYKA MOLEKULARNA chapter 1 by Stanisław Kielich translated by:tadeusz Bancewicz http://zon8.physd.amu.edu.pl/~tbancewi Poznan,luty 2008 ELEMENTS OF THE VECTOR AND TENSOR ANALYSIS Reference

More information

Gradient, Divergence and Curl in Curvilinear Coordinates

Gradient, Divergence and Curl in Curvilinear Coordinates Gradient, Divergence and Curl in Curvilinear Coordinates Although cartesian orthogonal coordinates are very intuitive and easy to use, it is often found more convenient to work with other coordinate systems.

More information

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University TAADI Electromagnetic Theory

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University TAADI Electromagnetic Theory TAAD1 Electromagnetic Theory G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University 8-31-12 Classical Electrodynamics A main physics discovery of the last half of the 2 th

More information

Quantum Physics II (8.05) Fall 2004 Assignment 3

Quantum Physics II (8.05) Fall 2004 Assignment 3 Quantum Physics II (8.5) Fall 24 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 3, 24 September 23, 24 7:pm This week we continue to study the basic principles of quantum

More information

dt Now we will look at the E&M force on moving charges to explore the momentum conservation law in E&M.

dt Now we will look at the E&M force on moving charges to explore the momentum conservation law in E&M. . Momentum Conservation.. Momentum in mechanics In classical mechanics p = m v and nd Newton s law d p F = dt If m is constant with time d v F = m = m a dt Now we will look at the &M force on moving charges

More information

1 Index Gymnastics and Einstein Convention

1 Index Gymnastics and Einstein Convention Index Gymnastics and Einstein Convention Part (i) Let g δ µνe µ e ν be the metric. Then: Part (ii) x x g (x, x) δ µνe µ (x σ e σ) e ν (x ρ e ρ) δ µνx σ x ρ e µ (e σ) e ν (e ρ) δ µνx σ x ρ δ µ σ δ ν ρ δ

More information

Chapter 22 Gauss s law. Electric charge and flux (sec &.3) Gauss s Law (sec &.5) Charges on conductors (sec. 22.6)

Chapter 22 Gauss s law. Electric charge and flux (sec &.3) Gauss s Law (sec &.5) Charges on conductors (sec. 22.6) Chapter 22 Gauss s law Electric charge and flux (sec. 22.2 &.3) Gauss s Law (sec. 22.4 &.5) Charges on conductors (sec. 22.6) 1 Learning Goals for CH 22 Determine the amount of charge within a closed surface

More information

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length. Mathematical Tripos Part IA Lent Term 205 ector Calculus Prof B C Allanach Example Sheet Sketch the curve in the plane given parametrically by r(u) = ( x(u), y(u) ) = ( a cos 3 u, a sin 3 u ) with 0 u

More information

Electromagnetic energy and momentum

Electromagnetic energy and momentum Electromagnetic energy and momentum Conservation of energy: the Poynting vector In previous chapters of Jackson we have seen that the energy density of the electric eq. 4.89 in Jackson and magnetic eq.

More information

Vector Operations. Vector Operations. Graphical Operations. Component Operations. ( ) ˆk

Vector Operations. Vector Operations. Graphical Operations. Component Operations. ( ) ˆk Vector Operations Vector Operations ME 202 Multiplication by a scalar Addition/subtraction Scalar multiplication (dot product) Vector multiplication (cross product) 1 2 Graphical Operations Component Operations

More information

Lecture 37: Principal Axes, Translations, and Eulerian Angles

Lecture 37: Principal Axes, Translations, and Eulerian Angles Lecture 37: Principal Axes, Translations, and Eulerian Angles When Can We Find Principal Axes? We can always write down the cubic equation that one must solve to determine the principal moments But if

More information

Electromagnetic Field Theory (EMT) Lecture # 7 Vector Calculus (Continued)

Electromagnetic Field Theory (EMT) Lecture # 7 Vector Calculus (Continued) Electromagnetic Field Theory (EMT) Lecture # 7 Vector Calculus (Continued) Topics to be Covered: Vector Calculus Differential Length, Area, and Volume Line, Surface, and Volume Integrals Del Operator Gradient

More information

OLLSCOIL NA heireann MA NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH MATHEMATICAL PHYSICS EE112. Engineering Mathematics II

OLLSCOIL NA heireann MA NUAD THE NATIONAL UNIVERSITY OF IRELAND MAYNOOTH MATHEMATICAL PHYSICS EE112. Engineering Mathematics II OLLSCOIL N heirenn M NUD THE NTIONL UNIVERSITY OF IRELND MYNOOTH MTHEMTICL PHYSICS EE112 Engineering Mathematics II Prof. D. M. Heffernan and Mr. S. Pouryahya 1 5 Scalars and Vectors 5.1 The Scalar Quantities

More information

Vector calculus background

Vector calculus background Vector calculus background Jiří Lebl January 18, 2017 This class is really the vector calculus that you haven t really gotten to in Calc III. Let us start with a very quick review of the concepts from

More information

MP204 Electricity and Magnetism

MP204 Electricity and Magnetism MATHEMATICAL PHYSICS SEMESTER 2, REPEAT 2016 2017 MP204 Electricity and Magnetism Prof. S. J. Hands, Dr. M. Haque and Dr. J.-I. Skullerud Time allowed: 1 1 2 hours Answer ALL questions MP204, 2016 2017,

More information

PH101 Saurabh Basu Class timings (Group II): 9 am-10 am (Wednesdays) 10 am -11 am (Thursdays)

PH101 Saurabh Basu Class timings (Group II): 9 am-10 am (Wednesdays) 10 am -11 am (Thursdays) PH101 Saurabh Basu Class timings (Group II): 9 am-10 am (Wednesdays) 10 am -11 am (Thursdays) Class timings (Group IV): 4 pm- 5 pm (Wednesdays) 3 pm 4 pm (Thursdays) Special: 18 th August and 15 th September

More information

( ) by D n ( y) 1.1 Mathematical Considerations. π e nx Dirac s delta function (distribution) a) Dirac s delta function is defined such that

( ) by D n ( y) 1.1 Mathematical Considerations. π e nx Dirac s delta function (distribution) a) Dirac s delta function is defined such that Chapter 1. Electrostatics I Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 1. Units from the ystème International (I) will be used in this chapter. 1.1 Mathematical

More information

1.3 LECTURE 3. Vector Product

1.3 LECTURE 3. Vector Product 12 CHAPTER 1. VECTOR ALGEBRA Example. Let L be a line x x 1 a = y y 1 b = z z 1 c passing through a point P 1 and parallel to the vector N = a i +b j +c k. The equation of the plane passing through the

More information

Quantization of the Spins

Quantization of the Spins Chapter 5 Quantization of the Spins As pointed out already in chapter 3, the external degrees of freedom, position and momentum, of an ensemble of identical atoms is described by the Scödinger field operator.

More information

ASTR 320: Solutions to Problem Set 2

ASTR 320: Solutions to Problem Set 2 ASTR 320: Solutions to Problem Set 2 Problem 1: Streamlines A streamline is defined as a curve that is instantaneously tangent to the velocity vector of a flow. Streamlines show the direction a massless

More information

Introduction to Vector Spaces

Introduction to Vector Spaces 1 CSUC Department of Physics Mechanics: Class Notes Introduction to Vector Spaces I. INTRODUCTION Modern mathematics often constructs logical systems by merely proposing a set of elements that obey a specific

More information

CONTINUUM MECHANICS. lecture notes 2003 jp dr.-ing. habil. ellen kuhl technical university of kaiserslautern

CONTINUUM MECHANICS. lecture notes 2003 jp dr.-ing. habil. ellen kuhl technical university of kaiserslautern CONTINUUM MECHANICS lecture notes 2003 jp dr.-ing. habil. ellen kuhl technical university of kaiserslautern Contents Tensor calculus. Tensor algebra.................................... Vector algebra.................................

More information

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I Physics 342 Lecture 2 Linear Algebra I Lecture 2 Physics 342 Quantum Mechanics I Wednesday, January 27th, 21 From separation of variables, we move to linear algebra Roughly speaking, this is the study

More information

free space (vacuum) permittivity [ F/m]

free space (vacuum) permittivity [ F/m] Electrostatic Fields Electrostatic fields are static (time-invariant) electric fields produced by static (stationary) charge distributions. The mathematical definition of the electrostatic field is derived

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b Electromagnetism Physics 15b Lecture #5 Curl Conductors Purcell 2.13 3.3 What We Did Last Time Defined divergence: Defined the Laplacian: From Gauss s Law: Laplace s equation: F da divf = lim S V 0 V Guass

More information

Solutions: Homework 5

Solutions: Homework 5 Ex. 5.1: Capacitor Solutions: Homework 5 (a) Consider a parallel plate capacitor with large circular plates, radius a, a distance d apart, with a d. Choose cylindrical coordinates (r,φ,z) and let the z

More information

Introduction to relativistic quantum mechanics

Introduction to relativistic quantum mechanics Introduction to relativistic quantum mechanics. Tensor notation In this book, we will most often use so-called natural units, which means that we have set c = and =. Furthermore, a general 4-vector will

More information

Special Relativity - QMII - Mechina

Special Relativity - QMII - Mechina Special Relativity - QMII - Mechina 2016-17 Daniel Aloni Disclaimer This notes should not replace a course in special relativity, but should serve as a reminder. I tried to cover as many important topics

More information

Maxwell s equations for electrostatics

Maxwell s equations for electrostatics Maxwell s equations for electrostatics October 6, 5 The differential form of Gauss s law Starting from the integral form of Gauss s law, we treat the charge as a continuous distribution, ρ x. Then, letting

More information

An Undergraduate View of a Second Year Course in Physics

An Undergraduate View of a Second Year Course in Physics An Undergraduate View of a Second Year Course in Physics Josuan Calderon, Sruthi Narayanan, Farid Salazar, Pedro Soto November 1, 2015 Contents Foreword 4 Preface 7 1 Electromagnetism and the Wave Equation

More information

Tensor Analysis in Euclidean Space

Tensor Analysis in Euclidean Space Tensor Analysis in Euclidean Space James Emery Edited: 8/5/2016 Contents 1 Classical Tensor Notation 2 2 Multilinear Functionals 4 3 Operations With Tensors 5 4 The Directional Derivative 5 5 Curvilinear

More information

Mathematical Models in Physics:

Mathematical Models in Physics: Mathematical Models in Physics: Relativistic Electrodynamics and Differential Forms James Cook MA 430 Department of Mathematics at NCSU Let me try to summarize the physical and mathematical motivations

More information

Appendix: Orthogonal Curvilinear Coordinates. We define the infinitesimal spatial displacement vector dx in a given orthogonal coordinate system with

Appendix: Orthogonal Curvilinear Coordinates. We define the infinitesimal spatial displacement vector dx in a given orthogonal coordinate system with Appendix: Orthogonal Curvilinear Coordinates Notes: Most of the material presented in this chapter is taken from Anupam G (Classical Electromagnetism in a Nutshell 2012 (Princeton: New Jersey)) Chap 2

More information

CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1. Prof. N. Harnew University of Oxford TT 2013

CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1. Prof. N. Harnew University of Oxford TT 2013 CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1 Prof. N. Harnew University of Oxford TT 2013 1 OUTLINE 1. Vector Algebra 2. Vector Geometry 3. Types of Matrices and Matrix Operations 4. Determinants

More information