EECS 730 Introduction to Bioinformatics Sequence Alignment. Luke Huan Electrical Engineering and Computer Science

Size: px
Start display at page:

Download "EECS 730 Introduction to Bioinformatics Sequence Alignment. Luke Huan Electrical Engineering and Computer Science"

Transcription

1 EECS 730 Introduction to Bioinformatics Sequence Alignment Luke Huan Electrical Engineering and Computer Science

2 Administrative Term-project In a group of 2 students Think about it and ask around I will post choices of project on-line soon You will need to turn in a report and a do a presentation at the end of the semester. More details to come 2012/9/4 EECS 730 2

3 Total number of alignments Align seq1: ATAAGC and seq2: AAAACG. Let L be the alignment length. ATAAGC- AAAA-CG L=7 We know that L is at least 6 and at most 12. L=6 L=12 ATAAGC ATAAGC AAAACG AAAACG The total number of possible alignments is 8989!!! And the total number of non-redundant alignments is 924!!! A more realistic example: two protein sequences of 300 amino acids each have possible alignments. 2012/9/4 EECS 730 3

4 Now what? When two sequences are aligned, there is an enormous number of possible alignment. Brute-force examining all possible alignments of two sequences could take forever Dynamic Programming is a very general programming technique. It is applicable when a large search space can be structured into a succession of stages, such that: The initial stage contains trivial solutions to sub-problems Each partial solution in a later stage can be calculated by recurring a fixed number of partial solutions in an earlier stage The final stage contains the overall solution 2012/9/4 EECS 730 4

5 Scoring matrix A R N D C Q E G H I L K M F P S T W Y V A R N D C Q E G H I L K M F P S T W Y V Top: original amino acid; Side: replacement amino acid 2012/9/4 EECS P(i, j) is multiplied by 100

6 Dynamic Programming (DP) Dynamic programming usually consists of three components. Recursive relation Tabular computation Trace back This efficient recursive method is used to search through all possible alignments and finding the one with the optimal score. EECS 730

7 How DP is used for alignment? An alignment is represented as a path through a matrix. To search through the matrix of all possible paths and find the optimal path DP is used. 2012/9/4 EECS 730 7

8 Four possible outcomes in aligning two sequences 1 [1] identity (stay along a diagonal) [2] mismatch (stay along a diagonal) [3] gap in one sequence (move vertically!) [4] gap in the other sequence (move horizontally!) 2012/9/4 EECS

9 Intuition of Dynamic Programming If we already have the optimal solution to: XY AB then we know the next pair of characters will either be: XYZ or XY- or XYZ ABC ABC AB- (where - indicates a gap). So we can extend the match by determining which of these has the highest score. 2012/9/4 EECS 730 9

10 Sequence alignment with DP Align sequence x and y. F is the DP matrix; s is the substitution matrix; is the gap penalty. F 0,0 0 F ( i, j) max F F F ( i 1, j 1) ( k, j) ( i ( i, k ) ( j s ( x k ), k ), i, y k k j ), 0,..., 0,..., i 1, j /9/4 EECS

11 Two types of sequence alignment: global and local Global alignment: the entire sequence of each protein or DNA sequence is contained in the alignment. Local alignment: only regions of greatest similarity between two sequences are aligned percent identity: ~26% RBP: 26 RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWD K GTW++MA + L + A V T + +L+ W+ glycodelin: 23 QTKQDLELPKLAGTWHSMAMA-TNNISLMATLKAPLRVHITSLLPTPEDNLEIVLHRWEN /9/4 EECS

12 Global vs. local alignment Global alignment are often not effective for highly diverged sequences - do not reflect the biological reality that two sequences may only share limited regions of conserved sequence. Sometimes two sequences may be derived from ancient recombination events where only a single functional domain is shared. Global methods are useful when you want to force two sequences to align over their entire length Local alignment is almost always used for database searches such as BLAST. It is useful to find domains (or limited regions of homology) within sequences. 2012/9/4 EECS

13 Local alignment DP Align sequence x and y. F is the DP matrix; s is the substitution matrix; d is the linear gap penalty. F F 0,0 0 ( i, j) max F F F 0 ( i 1, j 1) ( k, j) ( i ( i, k ) ( j s ( x k ), k ), i, y k k j ), 0,..., 0,..., i 1, j /9/4 EECS

14 Algorithms for sequence alignment The global alignment algorithm of Needleman and Wunsch (1970). The local alignment algorithm of Smith and Waterman (1981). 2012/9/4 EECS

15 Global alignment with the algorithm of Needleman and Wunsch (1970) Two sequences can be compared in a matrix along x- and y-axes. If they are identical, a path along a diagonal can be drawn Find the optimal subpaths, and add them up to achieve the best score. This involves adding gaps when needed allowing for conservative substitutions choosing a scoring system (simple or complicated) N-W is guaranteed to find optimal alignment(s) 2012/9/4 EECS

16 2012/9/4 EECS Gap Penalties Above, the function of gap penalties can take any form Below, using a simple gap penalty (-d for each gap position) to speed up the alignment algorithm 1. 0,..., ), ( ), ( 1, 0,..., ), ( ), ( ),, ( 1) 1, ( max ), ( j k k j k i F i k k i j k F y x s j i F j i F j i. 1), (, ) 1, ( ),, ( 1) 1, ( max ), ( d j i F d j i F y x s j i F j i F j i

17 Three steps to global alignment with the Needleman-Wunsch algorithm [1] set up a matrix [2] score the matrix [3] identify the optimal alignment(s) 2012/9/4 EECS

18 Start Needleman-Wunsch with an identity matrix sequence 1 ABCNJ-RQCLCR-PM sequence 2 AJC-JNR-CKCRBPsequence 1 ABC-NJRQCLCR-PM sequence 2 AJCJN-R-CKCRBP- 2012/9/4 EECS

19 2012/9/4 EECS

20 Needleman-Wunsch: dynamic programming N-W is guaranteed to find optimal alignments, although the algorithm does not search all possible alignments. It is an example of a dynamic programming algorithm: an optimal path (alignment) is identified by incrementally extending optimal subpaths. Thus, a series of decisions is made at each step of the alignment to find the pair of residues with the best score. 2012/9/4 EECS

21 Local alignment Often, one wants to align subsequences of two larger sequences. Examples: Database search locating common domains in proteins (e.g., transmembrane proteins) comparing extended sections of genomic DNA sequence detecting similarity between highly diverged sequences (only certain parts of sequence conserved enough for alignment, the rest may have accumulated too much noise) local alignments are generally not subsets of global alignments! 2012/9/4 EECS

22 Local alignment Two major differences with respect to global alignment: No score is negative. Traceback begins at the highest score in the matrix and continues until you reach /9/4 EECS

23 Recap: Dynamic Programming Great for doing pairwise global alignments Produces a quantitative alignment score Problems if one tries to do alignments with very large sequences (memory requirement grows as N 2 or as N x M) Serious problems if one tries to align one sequence against a database (10 s of hours) Need an alternative /9/4 EECS

24 Parameters of Sequence Alignment Scoring Systems: Each symbol pairing is assigned a numerical value, based on a symbol comparison table. Gap Penalties: Opening: The cost to introduce a gap Extension: The cost to elongate a gap 2012/9/4 EECS

25 Substitution Matrix A substitution matrix contains values proportional to the probability that amino acid i mutates into amino acid j for all pairs of amino acids. Substitution matrices are constructed by assembling a large and diverse sample of verified pairwise alignments (or multiple sequence alignments) of amino acids. Substitution matrices should reflect the true probabilities of mutations occurring through a period of evolution. The two major types of substitution matrices are PAM and BLOSUM. 2012/9/4 EECS

26 PAM matrices: Point-accepted mutations PAM matrices are based on global alignments of closely related proteins. The PAM1 is the matrix calculated from comparisons of sequences with no more than 1% divergence. Other PAM matrices are extrapolated from PAM1. All the PAM data come from closely related proteins (>85% amino acid identity) 2012/9/4 EECS

27 Dayhoff s 34 protein superfamilies Protein PAMs per 100 million years Ig kappa chain 37 Kappa casein 33 Lactalbumin 27 Hemoglobin 12 Myoglobin 8.9 Insulin 4.4 Histone H Ubiquitin /9/4 EECS

28 Multiple sequence alignment of glyceraldehyde 3-phosphate dehydrogenases fly GAKKVIISAP SAD.APM..F VCGVNLDAYK PDMKVVSNAS CTTNCLAPLA human GAKRVIISAP SAD.APM..F VMGVNHEKYD NSLKIISNAS CTTNCLAPLA plant GAKKVIISAP SAD.APM..F VVGVNEHTYQ PNMDIVSNAS CTTNCLAPLA bacterium GAKKVVMTGP SKDNTPM..F VKGANFDKY. AGQDIVSNAS CTTNCLAPLA yeast GAKKVVITAP SS.TAPM..F VMGVNEEKYT SDLKIVSNAS CTTNCLAPLA archaeon GADKVLISAP PKGDEPVKQL VYGVNHDEYD GE.DVVSNAS CTTNSITPVA fly KVINDNFEIV EGLMTTVHAT TATQKTVDGP SGKLWRDGRG AAQNIIPAST human KVIHDNFGIV EGLMTTVHAI TATQKTVDGP SGKLWRDGRG ALQNIIPAST plant KVVHEEFGIL EGLMTTVHAT TATQKTVDGP SMKDWRGGRG ASQNIIPSST bacterium KVINDNFGII EGLMTTVHAT TATQKTVDGP SHKDWRGGRG ASQNIIPSST yeast KVINDAFGIE EGLMTTVHSL TATQKTVDGP SHKDWRGGRT ASGNIIPSST archaeon KVLDEEFGIN AGQLTTVHAY TGSQNLMDGP NGKP.RRRRA AAENIIPTST fly GAAKAVGKVI PALNGKLTGM AFRVPTPNVS VVDLTVRLGK GASYDEIKAK human GAAKAVGKVI PELNGKLTGM AFRVPTANVS VVDLTCRLEK PAKYDDIKKV plant GAAKAVGKVL PELNGKLTGM AFRVPTSNVS VVDLTCRLEK GASYEDVKAA bacterium GAAKAVGKVL PELNGKLTGM AFRVPTPNVS VVDLTVRLEK AATYEQIKAA yeast GAAKAVGKVL PELQGKLTGM AFRVPTVDVS VVDLTVKLNK ETTYDEIKKV archaeon GAAQAATEVL PELEGKLDGM AIRVPVPNGS ITEFVVDLDD DVTESDVNAA 2012/9/4 EECS

29 Dayhoff s numbers of Percent Accepted Mutation : what amino acid substitutions occur in proteins? A Ala R Arg N Asn D Asp C Cys Q Gln E Glu G Gly A R 30 N D C Q E G H /9/4 EECS

30 Normalized frequencies of amino acids Gly 8.9% Arg 4.1% Ala 8.7% Asn 4.0% Leu 8.5% Phe 4.0% Lys 8.1% Gln 3.8% Ser 7.0% Ile 3.7% Val 6.5% His 3.4% Thr 5.8% Cys 3.3% Pro 5.1% Tyr 3.0% Glu 5.0% Met 1.5% Asp 4.7% Trp 1.0% blue=6 codons; red=1 codon 2012/9/4 EECS

31 Dayhoff s PAM1 mutation probability matrix A Ala R Arg N Asn D Asp C Cys Q Gln E Glu G Gly H His I Ile A R N D C Q E G H I P(i, j) is multiplied by 10,000 Original amino acid 2012/9/4 EECS

32 Dayhoff s PAM0 mutation probability matrix: the rules for extremely slowly evolving proteins PAM0 A Ala R Arg N Asn D Asp C Cys Q Gln E Glu G Gly A 100% 0% 0% 0% 0% 0% 0% 0% R 0% 100% 0% 0% 0% 0% 0% 0% N 0% 0% 100% 0% 0% 0% 0% 0% D 0% 0% 0% 100% 0% 0% 0% 0% C 0% 0% 0% 0% 100% 0% 0% 0% Q 0% 0% 0% 0% 0% 100% 0% 0% E 0% 0% 0% 0% 0% 0% 100% 0% G 0% 0% 0% 0% 0% 0% 0% 100% Top: original amino acid Side: replacement amino acid 2012/9/4 EECS

33 Dayhoff s PAM2000 mutation probability matrix: the rules for very distantly related proteins PAM A Ala R Arg N Asn D Asp C Cys Q Gln E Glu 2012/9/4 EECS G Gly A 8.7% 8.7% 8.7% 8.7% 8.7% 8.7% 8.7% 8.7% R 4.1% 4.1% 4.1% 4.1% 4.1% 4.1% 4.1% 4.1% N 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% 4.0% D 4.7% 4.7% 4.7% 4.7% 4.7% 4.7% 4.7% 4.7% C 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% 3.3% Q 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% 3.8% E 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% 5.0% G 8.9% 8.9% 8.9% 8.9% 8.9% 8.9% 8.9% 8.9% Top: original amino acid Side: replacement amino acid

34 PAM250 mutation probability matrix A R N D C Q E G H I L K M F P S T W Y V A R N D C Q E G H I L K M F P S T W Y V Top: original amino acid; Side: replacement amino acid 2012/9/4 EECS P(i, j) is multiplied by 100

35 Why do we go from a mutation probability matrix to a log odds matrix? We want a scoring matrix so that when we do a pairwise alignment (or a BLAST search) we know what score to assign to two aligned amino acid residues. Logarithms are easier to use for a scoring system. They allow us to sum the scores of aligned residues (rather than having to multiply them). 2012/9/4 EECS

36 How do we go from a mutation probability matrix to a log odds matrix? The cells in a log odds matrix consist of an odds ratio : the probability that an alignment is authentic the probability that the alignment was random The score S for an alignment of residues a,b is given by: S(a,b) = 10 log 10 (M ab /p b ) As an example, for ala trp, assume that p(ala trp) = 0.55 and p(trp) = 0.01 S(ala,trp) = 10 log 10 (0.55/0.010) = /9/4 EECS

37 What do the numbers mean in a log odds matrix? S(a,tryptophan) = 10 log 10 (0.55/0.010) = 17.4 A score of +17 for tryptophan means that this alignment is 50 times more likely than a chance alignment of ala and trp residues. S(a,b) = 17 Probability of replacement (M ab /p b ) = x Then 17 = 10 log 10 x 1.7 = log 10 x = x = /9/4 EECS

38 What do the numbers mean in a log odds matrix? A score of +2 indicates that the amino acid replacement occurs 1.6 times as frequently as expected by chance. A score of 0 is neutral. A score of 10 indicates that the correspondence of two amino acids in an alignment that accurately represents homology (evolutionary descent) is one tenth as frequent as the chance alignment of these amino acids. 2012/9/4 EECS

39 A 2 R -2 6 N D C Q E G H I L K M F P S PAM250 log odds scoring matrix T W Y V A R N D C Q E G H I L K M F P S T W Y V 2012/9/4 EECS

40 PAM250 vs. PAM10 SIM alignment program Try it with yourself by aligning RBP4 (Q28369) and bovine β-lactoglobulin (P02754) 2012/9/4 EECS

41 Comparing two proteins with a PAM1 matrix gives completely different results than PAM250! Consider two distantly related proteins. A PAM40 matrix is not forgiving of mismatches, and penalizes them severely. Using this matrix you can find almost no match. hsrbp, 136 CRLLNLDGTC btlact, 3 CLLLALALTC * ** * ** A PAM250 matrix is very tolerant of mismatches. 24.7% identity in 81 residues overlap; Score: 77.0; Gap frequency: 3.7% rbp4 26 RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDV btlact 21 QTMKGLDIQKVAGTWYSLAMAASD-ISLLDAQSAPLRVYVEELKPTPEGDLEILLQKWEN * **** * * * * ** * rbp CADMVGTFTDTEDPAKFKM btlact 80 GECAQKKIIAEKTKIPAVFKI ** * ** ** 2012/9/4 EECS

42 BLOSUM Matrices BLOSUM matrices are based on local alignments. BLOCKS database: >500 groups of local multiple alignment of distantly related protein sequences Focused on conserved regions BLOSUM stands for BLOcks SUbstitution Matrix. BLOSUM62 is a matrix calculated from comparisons of sequences with less than 62% identity. 2012/9/4 EECS

43 BLOSUM Matrices Percent amino acid identity BLOSUM /9/4 EECS

44 BLOSUM Matrices Percent amino acid identity BLOSUM80 BLOSUM62 BLOSUM /9/4 EECS

45 BLOSUM Matrices All BLOSUM matrices are based on observed alignments; they are not extrapolated from comparisons of closely related proteins. BLOSUM62 is the default matrix in BLAST 2.0. Though it is tailored for comparisons of moderately distant proteins, it performs well in detecting closer relationships. A search for distant relatives may be more sensitive with a different matrix. 2012/9/4 EECS

46 A 4 Blosum62 scoring matrix R -1 5 N D C Q E G H I L K M F P S T W Y V A R N D C Q E G H I L K M F P S T W Y V 2012/9/4 EECS

47 Summary of PAM & BLOSUM Rat versus mouse RBP Rat versus bacterial lipocalin 2012/9/4 EECS

48 TIPS on choosing a scoring matrix Generally, BLOSUM matrices perform better than PAM matrices for local similarity searches (Henikoff & Henikoff, 1993). When comparing closely related proteins one should use lower PAM or higher BLOSUM matrices, for distantly related proteins higher PAM or lower BLOSUM matrices. For database searching the commonly used matrix is BLOSUM /9/4 EECS

49 Why Gap Penalties? The optimal alignment of two similar sequences is usually that which maximizes the number of matches and minimizes the number of gaps. There is a tradeoff between these two adding gaps reduces mismatches Permitting the insertion of arbitrarily many gaps can lead to high scoring alignments of nonhomologous sequences. Penalizing gaps forces alignments to have relatively few gaps. 2012/9/4 EECS

50 Gap Penalties How to balance gaps with mismatches? Gaps must get a steep penalty, or else you ll end up with nonsense alignments. In real sequences, muti-base (or amino acid) gaps are quit common genetic insertion/deletion events Affine gap penalties give a big penalty for each new gap, but a much smaller gap extension penalty. 2012/9/4 EECS

51 Gap penalties Too high a gap penalty is used relative to the range of scores in the substitution matrix, gaps will never appear in the alignment. Conversely, too long gaps will appear everywhere. Gaps of length k are more probably than k gaps of length 1 (Single mutational event vs. different length mutational events). PSKGK-----GRSW P-S-K-GK-GR-SW 2012/9/4 EECS

52 Affine Gap Penalty Scoring scheme should penalize new gaps more Affine means that the penalty for a gap computes as a linear function of its length x A total gap score: w x = g + r( x-1) w x : total gap penalty; g: gap open penalty; r: gap extend penalty; x: gap length Example: g=-12; r = /9/4 EECS

53 Significance of alignments Percent identity Rule of thumb: if two proteins share 25% amino acid identity over a span of 150 amino acids, they are probably significantly related. What if two proteins share limited amino acids identity? Use statistical tests to decide whether the matches are true positives or false positives 2012/9/4 EECS

54 Randomization test: scramble a sequence First compare two proteins and obtain a score RBP: 26 RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWD K GTW++MA + L + A V T + +L+ W+ glycodelin: 23 QTKQDLELPKLAGTWHSMAMA-TNNISLMATLKAPLRVHITSLLPTPEDNLEIVLHRWEN 81 Next scramble the bottom sequence 100 times, and obtain 100 randomized scores (+/- standard deviation) Composition and length are maintained If the comparison is real we expect the authentic score to be several standard deviations above the mean of the randomized scores 2012/9/4 EECS

55 A randomization test shows that RBP is significantly related to -lactoglobulin 16 Number of instances random shuffles Mean score = 8.4 Std. dev. = 4.5 Real comparison Score = Quality score But this test assumes a normal distribution of scores! 2012/9/4 EECS Page 77

56 You can perform this randomization test And obtain Z score: Z = (Sreal Xrandomized score) standard deviation 2012/9/4 EECS

57 Summary Sequence alignment Algorithm Substitution matrices (represent the probability of mutations): PAM, BLOSUM Gap penalty: gap opening penalty, gap extension penalty Global alignment aligns the entire sequence of each protein or DNA sequence. Needleman-Wunsch Global alignment. Local alignment finds the best match between subsequences. Smith-Waterman local alignment algorithm. 2012/9/4 EECS

58 Acknowledge Many of the images and slides in this PowerPoint presentation are from Bioinformatics and Functional Genomics by Jonathan Pevsner (ISBN ). Copyright 2003 by John Wiley & Sons, Inc. 2012/9/4 EECS

CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools" Giri Narasimhan

CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools Giri Narasimhan CAP 5510: Introduction to Bioinformatics CGS 5166: Bioinformatics Tools" Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs13.html Sequence Alignment" BLAST Variants"

More information

Sequence Alignments. Dynamic programming approaches, scoring, and significance. Lucy Skrabanek ICB, WMC January 31, 2013

Sequence Alignments. Dynamic programming approaches, scoring, and significance. Lucy Skrabanek ICB, WMC January 31, 2013 Sequence Alignments Dynamic programming approaches, scoring, and significance Lucy Skrabanek ICB, WMC January 31, 213 Sequence alignment Compare two (or more) sequences to: Find regions of conservation

More information

11/18/2010. Pairwise sequence. Copyright notice. November 22, Announcements. Outline: pairwise alignment. Learning objectives

11/18/2010. Pairwise sequence. Copyright notice. November 22, Announcements. Outline: pairwise alignment. Learning objectives Copyright notice November 22, 2010 Pairwise sequence alignment Jonathan Pevsner, Ph.D. Bioinformatics Johns Hopkins School Med. Many of the images in this powerpoint presentation are from Bioinformatics

More information

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment

Algorithms in Bioinformatics FOUR Pairwise Sequence Alignment. Pairwise Sequence Alignment. Convention: DNA Sequences 5. Sequence Alignment Algorithms in Bioinformatics FOUR Sami Khuri Department of Computer Science San José State University Pairwise Sequence Alignment Homology Similarity Global string alignment Local string alignment Dot

More information

3. SEQUENCE ANALYSIS BIOINFORMATICS COURSE MTAT

3. SEQUENCE ANALYSIS BIOINFORMATICS COURSE MTAT 3. SEQUENCE ANALYSIS BIOINFORMATICS COURSE MTAT.03.239 25.09.2012 SEQUENCE ANALYSIS IS IMPORTANT FOR... Prediction of function Gene finding the process of identifying the regions of genomic DNA that encode

More information

Similarity or Identity? When are molecules similar?

Similarity or Identity? When are molecules similar? Similarity or Identity? When are molecules similar? Mapping Identity A -> A T -> T G -> G C -> C or Leu -> Leu Pro -> Pro Arg -> Arg Phe -> Phe etc If we map similarity using identity, how similar are

More information

CISC 889 Bioinformatics (Spring 2004) Sequence pairwise alignment (I)

CISC 889 Bioinformatics (Spring 2004) Sequence pairwise alignment (I) CISC 889 Bioinformatics (Spring 2004) Sequence pairwise alignment (I) Contents Alignment algorithms Needleman-Wunsch (global alignment) Smith-Waterman (local alignment) Heuristic algorithms FASTA BLAST

More information

Biochemistry 324 Bioinformatics. Pairwise sequence alignment

Biochemistry 324 Bioinformatics. Pairwise sequence alignment Biochemistry 324 Bioinformatics Pairwise sequence alignment How do we compare genes/proteins? When we have sequenced a genome, we try and identify the function of unknown genes by finding a similar gene

More information

Sequence analysis and comparison

Sequence analysis and comparison The aim with sequence identification: Sequence analysis and comparison Marjolein Thunnissen Lund September 2012 Is there any known protein sequence that is homologous to mine? Are there any other species

More information

CONCEPT OF SEQUENCE COMPARISON. Natapol Pornputtapong 18 January 2018

CONCEPT OF SEQUENCE COMPARISON. Natapol Pornputtapong 18 January 2018 CONCEPT OF SEQUENCE COMPARISON Natapol Pornputtapong 18 January 2018 SEQUENCE ANALYSIS - A ROSETTA STONE OF LIFE Sequence analysis is the process of subjecting a DNA, RNA or peptide sequence to any of

More information

Algorithms in Bioinformatics

Algorithms in Bioinformatics Algorithms in Bioinformatics Sami Khuri Department of omputer Science San José State University San José, alifornia, USA khuri@cs.sjsu.edu www.cs.sjsu.edu/faculty/khuri Pairwise Sequence Alignment Homology

More information

Quantifying sequence similarity

Quantifying sequence similarity Quantifying sequence similarity Bas E. Dutilh Systems Biology: Bioinformatic Data Analysis Utrecht University, February 16 th 2016 After this lecture, you can define homology, similarity, and identity

More information

Pairwise sequence alignments. Vassilios Ioannidis (From Volker Flegel )

Pairwise sequence alignments. Vassilios Ioannidis (From Volker Flegel ) Pairwise sequence alignments Vassilios Ioannidis (From Volker Flegel ) Outline Introduction Definitions Biological context of pairwise alignments Computing of pairwise alignments Some programs Importance

More information

Pairwise sequence alignments

Pairwise sequence alignments Pairwise sequence alignments Volker Flegel VI, October 2003 Page 1 Outline Introduction Definitions Biological context of pairwise alignments Computing of pairwise alignments Some programs VI, October

More information

Bioinformatics (GLOBEX, Summer 2015) Pairwise sequence alignment

Bioinformatics (GLOBEX, Summer 2015) Pairwise sequence alignment Bioinformatics (GLOBEX, Summer 2015) Pairwise sequence alignment Substitution score matrices, PAM, BLOSUM Needleman-Wunsch algorithm (Global) Smith-Waterman algorithm (Local) BLAST (local, heuristic) E-value

More information

In-Depth Assessment of Local Sequence Alignment

In-Depth Assessment of Local Sequence Alignment 2012 International Conference on Environment Science and Engieering IPCBEE vol.3 2(2012) (2012)IACSIT Press, Singapoore In-Depth Assessment of Local Sequence Alignment Atoosa Ghahremani and Mahmood A.

More information

Sara C. Madeira. Universidade da Beira Interior. (Thanks to Ana Teresa Freitas, IST for useful resources on this subject)

Sara C. Madeira. Universidade da Beira Interior. (Thanks to Ana Teresa Freitas, IST for useful resources on this subject) Bioinformática Sequence Alignment Pairwise Sequence Alignment Universidade da Beira Interior (Thanks to Ana Teresa Freitas, IST for useful resources on this subject) 1 16/3/29 & 23/3/29 27/4/29 Outline

More information

CSE 549: Computational Biology. Substitution Matrices

CSE 549: Computational Biology. Substitution Matrices CSE 9: Computational Biology Substitution Matrices How should we score alignments So far, we ve looked at arbitrary schemes for scoring mutations. How can we assign scores in a more meaningful way? Are

More information

Sequence Alignment: A General Overview. COMP Fall 2010 Luay Nakhleh, Rice University

Sequence Alignment: A General Overview. COMP Fall 2010 Luay Nakhleh, Rice University Sequence Alignment: A General Overview COMP 571 - Fall 2010 Luay Nakhleh, Rice University Life through Evolution All living organisms are related to each other through evolution This means: any pair of

More information

Pairwise & Multiple sequence alignments

Pairwise & Multiple sequence alignments Pairwise & Multiple sequence alignments Urmila Kulkarni-Kale Bioinformatics Centre 411 007 urmila@bioinfo.ernet.in Basis for Sequence comparison Theory of evolution: gene sequences have evolved/derived

More information

8 Grundlagen der Bioinformatik, SS 09, D. Huson, April 28, 2009

8 Grundlagen der Bioinformatik, SS 09, D. Huson, April 28, 2009 8 Grundlagen der Bioinformatik, SS 09, D. Huson, April 28, 2009 2 Pairwise alignment We will discuss: 1. Strings 2. Dot matrix method for comparing sequences 3. Edit distance and alignment 4. The number

More information

Sequence analysis and Genomics

Sequence analysis and Genomics Sequence analysis and Genomics October 12 th November 23 rd 2 PM 5 PM Prof. Peter Stadler Dr. Katja Nowick Katja: group leader TFome and Transcriptome Evolution Bioinformatics group Paul-Flechsig-Institute

More information

Sequence Analysis 17: lecture 5. Substitution matrices Multiple sequence alignment

Sequence Analysis 17: lecture 5. Substitution matrices Multiple sequence alignment Sequence Analysis 17: lecture 5 Substitution matrices Multiple sequence alignment Substitution matrices Used to score aligned positions, usually of amino acids. Expressed as the log-likelihood ratio of

More information

Bioinformatics. Scoring Matrices. David Gilbert Bioinformatics Research Centre

Bioinformatics. Scoring Matrices. David Gilbert Bioinformatics Research Centre Bioinformatics Scoring Matrices David Gilbert Bioinformatics Research Centre www.brc.dcs.gla.ac.uk Department of Computing Science, University of Glasgow Learning Objectives To explain the requirement

More information

8 Grundlagen der Bioinformatik, SoSe 11, D. Huson, April 18, 2011

8 Grundlagen der Bioinformatik, SoSe 11, D. Huson, April 18, 2011 8 Grundlagen der Bioinformatik, SoSe 11, D. Huson, April 18, 2011 2 Pairwise alignment We will discuss: 1. Strings 2. Dot matrix method for comparing sequences 3. Edit distance and alignment 4. The number

More information

Massachusetts Institute of Technology Computational Evolutionary Biology, Fall, 2005 Notes for November 7: Molecular evolution

Massachusetts Institute of Technology Computational Evolutionary Biology, Fall, 2005 Notes for November 7: Molecular evolution Massachusetts Institute of Technology 6.877 Computational Evolutionary Biology, Fall, 2005 Notes for November 7: Molecular evolution 1. Rates of amino acid replacement The initial motivation for the neutral

More information

Practical considerations of working with sequencing data

Practical considerations of working with sequencing data Practical considerations of working with sequencing data File Types Fastq ->aligner -> reference(genome) coordinates Coordinate files SAM/BAM most complete, contains all of the info in fastq and more!

More information

BIO 285/CSCI 285/MATH 285 Bioinformatics Programming Lecture 8 Pairwise Sequence Alignment 2 And Python Function Instructor: Lei Qian Fisk University

BIO 285/CSCI 285/MATH 285 Bioinformatics Programming Lecture 8 Pairwise Sequence Alignment 2 And Python Function Instructor: Lei Qian Fisk University BIO 285/CSCI 285/MATH 285 Bioinformatics Programming Lecture 8 Pairwise Sequence Alignment 2 And Python Function Instructor: Lei Qian Fisk University Measures of Sequence Similarity Alignment with dot

More information

Bioinformatics and BLAST

Bioinformatics and BLAST Bioinformatics and BLAST Overview Recap of last time Similarity discussion Algorithms: Needleman-Wunsch Smith-Waterman BLAST Implementation issues and current research Recap from Last Time Genome consists

More information

SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS. Prokaryotes and Eukaryotes. DNA and RNA

SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS. Prokaryotes and Eukaryotes. DNA and RNA SEQUENCE ALIGNMENT BACKGROUND: BIOINFORMATICS 1 Prokaryotes and Eukaryotes 2 DNA and RNA 3 4 Double helix structure Codons Codons are triplets of bases from the RNA sequence. Each triplet defines an amino-acid.

More information

Tools and Algorithms in Bioinformatics

Tools and Algorithms in Bioinformatics Tools and Algorithms in Bioinformatics GCBA815, Fall 2013 Week3: Blast Algorithm, theory and practice Babu Guda, Ph.D. Department of Genetics, Cell Biology & Anatomy Bioinformatics and Systems Biology

More information

THEORY. Based on sequence Length According to the length of sequence being compared it is of following two types

THEORY. Based on sequence Length According to the length of sequence being compared it is of following two types Exp 11- THEORY Sequence Alignment is a process of aligning two sequences to achieve maximum levels of identity between them. This help to derive functional, structural and evolutionary relationships between

More information

Scoring Matrices. Shifra Ben-Dor Irit Orr

Scoring Matrices. Shifra Ben-Dor Irit Orr Scoring Matrices Shifra Ben-Dor Irit Orr Scoring matrices Sequence alignment and database searching programs compare sequences to each other as a series of characters. All algorithms (programs) for comparison

More information

Pairwise Alignment. Guan-Shieng Huang. Dept. of CSIE, NCNU. Pairwise Alignment p.1/55

Pairwise Alignment. Guan-Shieng Huang. Dept. of CSIE, NCNU. Pairwise Alignment p.1/55 Pairwise Alignment Guan-Shieng Huang shieng@ncnu.edu.tw Dept. of CSIE, NCNU Pairwise Alignment p.1/55 Approach 1. Problem definition 2. Computational method (algorithms) 3. Complexity and performance Pairwise

More information

Lecture 4: Evolutionary Models and Substitution Matrices (PAM and BLOSUM)

Lecture 4: Evolutionary Models and Substitution Matrices (PAM and BLOSUM) Bioinformatics II Probability and Statistics Universität Zürich and ETH Zürich Spring Semester 2009 Lecture 4: Evolutionary Models and Substitution Matrices (PAM and BLOSUM) Dr Fraser Daly adapted from

More information

Single alignment: Substitution Matrix. 16 march 2017

Single alignment: Substitution Matrix. 16 march 2017 Single alignment: Substitution Matrix 16 march 2017 BLOSUM Matrix BLOSUM Matrix [2] (Blocks Amino Acid Substitution Matrices ) It is based on the amino acids substitutions observed in ~2000 conserved block

More information

Module: Sequence Alignment Theory and Applications Session: Introduction to Searching and Sequence Alignment

Module: Sequence Alignment Theory and Applications Session: Introduction to Searching and Sequence Alignment Module: Sequence Alignment Theory and Applications Session: Introduction to Searching and Sequence Alignment Introduction to Bioinformatics online course : IBT Jonathan Kayondo Learning Objectives Understand

More information

Computational Biology

Computational Biology Computational Biology Lecture 6 31 October 2004 1 Overview Scoring matrices (Thanks to Shannon McWeeney) BLAST algorithm Start sequence alignment 2 1 What is a homologous sequence? A homologous sequence,

More information

Pairwise sequence alignment

Pairwise sequence alignment Department of Evolutionary Biology Example Alignment between very similar human alpha- and beta globins: GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL G+ +VK+HGKKV A+++++AH+D++ +++++LS+LH KL GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

More information

Substitution matrices

Substitution matrices Introduction to Bioinformatics Substitution matrices Jacques van Helden Jacques.van-Helden@univ-amu.fr Université d Aix-Marseille, France Lab. Technological Advances for Genomics and Clinics (TAGC, INSERM

More information

Large-Scale Genomic Surveys

Large-Scale Genomic Surveys Bioinformatics Subtopics Fold Recognition Secondary Structure Prediction Docking & Drug Design Protein Geometry Protein Flexibility Homology Modeling Sequence Alignment Structure Classification Gene Prediction

More information

Pairwise Sequence Alignment

Pairwise Sequence Alignment Introduction to Bioinformatics Pairwise Sequence Alignment Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr Outline Introduction to sequence alignment pair wise sequence alignment The Dot Matrix Scoring

More information

Proteins: Characteristics and Properties of Amino Acids

Proteins: Characteristics and Properties of Amino Acids SBI4U:Biochemistry Macromolecules Eachaminoacidhasatleastoneamineandoneacidfunctionalgroupasthe nameimplies.thedifferentpropertiesresultfromvariationsinthestructuresof differentrgroups.thergroupisoftenreferredtoastheaminoacidsidechain.

More information

Sequence Alignment: Scoring Schemes. COMP 571 Luay Nakhleh, Rice University

Sequence Alignment: Scoring Schemes. COMP 571 Luay Nakhleh, Rice University Sequence Alignment: Scoring Schemes COMP 571 Luay Nakhleh, Rice University Scoring Schemes Recall that an alignment score is aimed at providing a scale to measure the degree of similarity (or difference)

More information

Bioinformatics for Computer Scientists (Part 2 Sequence Alignment) Sepp Hochreiter

Bioinformatics for Computer Scientists (Part 2 Sequence Alignment) Sepp Hochreiter Bioinformatics for Computer Scientists (Part 2 Sequence Alignment) Institute of Bioinformatics Johannes Kepler University, Linz, Austria Sequence Alignment 2. Sequence Alignment Sequence Alignment 2.1

More information

Motivating the need for optimal sequence alignments...

Motivating the need for optimal sequence alignments... 1 Motivating the need for optimal sequence alignments... 2 3 Note that this actually combines two objectives of optimal sequence alignments: (i) use the score of the alignment o infer homology; (ii) use

More information

Statistical Distributions of Optimal Global Alignment Scores of Random Protein Sequences

Statistical Distributions of Optimal Global Alignment Scores of Random Protein Sequences BMC Bioinformatics This Provisional PDF corresponds to the article as it appeared upon acceptance. The fully-formatted PDF version will become available shortly after the date of publication, from the

More information

Sequence Comparison. mouse human

Sequence Comparison. mouse human Sequence Comparison Sequence Comparison mouse human Why Compare Sequences? The first fact of biological sequence analysis In biomolecular sequences (DNA, RNA, or amino acid sequences), high sequence similarity

More information

BIOINFORMATICS: An Introduction

BIOINFORMATICS: An Introduction BIOINFORMATICS: An Introduction What is Bioinformatics? The term was first coined in 1988 by Dr. Hwa Lim The original definition was : a collective term for data compilation, organisation, analysis and

More information

An Introduction to Sequence Similarity ( Homology ) Searching

An Introduction to Sequence Similarity ( Homology ) Searching An Introduction to Sequence Similarity ( Homology ) Searching Gary D. Stormo 1 UNIT 3.1 1 Washington University, School of Medicine, St. Louis, Missouri ABSTRACT Homologous sequences usually have the same,

More information

5. MULTIPLE SEQUENCE ALIGNMENT BIOINFORMATICS COURSE MTAT

5. MULTIPLE SEQUENCE ALIGNMENT BIOINFORMATICS COURSE MTAT 5. MULTIPLE SEQUENCE ALIGNMENT BIOINFORMATICS COURSE MTAT.03.239 03.10.2012 ALIGNMENT Alignment is the task of locating equivalent regions of two or more sequences to maximize their similarity. Homology:

More information

Sequence Database Search Techniques I: Blast and PatternHunter tools

Sequence Database Search Techniques I: Blast and PatternHunter tools Sequence Database Search Techniques I: Blast and PatternHunter tools Zhang Louxin National University of Singapore Outline. Database search 2. BLAST (and filtration technique) 3. PatternHunter (empowered

More information

Administration. ndrew Torda April /04/2008 [ 1 ]

Administration. ndrew Torda April /04/2008 [ 1 ] ndrew Torda April 2008 Administration 22/04/2008 [ 1 ] Sprache? zu verhandeln (Englisch, Hochdeutsch, Bayerisch) Selection of topics Proteins / DNA / RNA Two halves to course week 1-7 Prof Torda (larger

More information

Alignment & BLAST. By: Hadi Mozafari KUMS

Alignment & BLAST. By: Hadi Mozafari KUMS Alignment & BLAST By: Hadi Mozafari KUMS SIMILARITY - ALIGNMENT Comparison of primary DNA or protein sequences to other primary or secondary sequences Expecting that the function of the similar sequence

More information

Lecture Notes: Markov chains

Lecture Notes: Markov chains Computational Genomics and Molecular Biology, Fall 5 Lecture Notes: Markov chains Dannie Durand At the beginning of the semester, we introduced two simple scoring functions for pairwise alignments: a similarity

More information

Local Alignment: Smith-Waterman algorithm

Local Alignment: Smith-Waterman algorithm Local Alignment: Smith-Waterman algorithm Example: a shared common domain of two protein sequences; extended sections of genomic DNA sequence. Sensitive to detect similarity in highly diverged sequences.

More information

Local Alignment Statistics

Local Alignment Statistics Local Alignment Statistics Stephen Altschul National Center for Biotechnology Information National Library of Medicine National Institutes of Health Bethesda, MD Central Issues in Biological Sequence Comparison

More information

1.5 Sequence alignment

1.5 Sequence alignment 1.5 Sequence alignment The dramatic increase in the number of sequenced genomes and proteomes has lead to development of various bioinformatic methods and algorithms for extracting information (data mining)

More information

Introduction to Comparative Protein Modeling. Chapter 4 Part I

Introduction to Comparative Protein Modeling. Chapter 4 Part I Introduction to Comparative Protein Modeling Chapter 4 Part I 1 Information on Proteins Each modeling study depends on the quality of the known experimental data. Basis of the model Search in the literature

More information

Sequence Alignment Techniques and Their Uses

Sequence Alignment Techniques and Their Uses Sequence Alignment Techniques and Their Uses Sarah Fiorentino Since rapid sequencing technology and whole genomes sequencing, the amount of sequence information has grown exponentially. With all of this

More information

Tools and Algorithms in Bioinformatics

Tools and Algorithms in Bioinformatics Tools and Algorithms in Bioinformatics GCBA815, Fall 2015 Week-4 BLAST Algorithm Continued Multiple Sequence Alignment Babu Guda, Ph.D. Department of Genetics, Cell Biology & Anatomy Bioinformatics and

More information

7.36/7.91 recitation CB Lecture #4

7.36/7.91 recitation CB Lecture #4 7.36/7.91 recitation 2-19-2014 CB Lecture #4 1 Announcements / Reminders Homework: - PS#1 due Feb. 20th at noon. - Late policy: ½ credit if received within 24 hrs of due date, otherwise no credit - Answer

More information

Lecture 2, 5/12/2001: Local alignment the Smith-Waterman algorithm. Alignment scoring schemes and theory: substitution matrices and gap models

Lecture 2, 5/12/2001: Local alignment the Smith-Waterman algorithm. Alignment scoring schemes and theory: substitution matrices and gap models Lecture 2, 5/12/2001: Local alignment the Smith-Waterman algorithm Alignment scoring schemes and theory: substitution matrices and gap models 1 Local sequence alignments Local sequence alignments are necessary

More information

20 Grundlagen der Bioinformatik, SS 08, D. Huson, May 27, Global and local alignment of two sequences using dynamic programming

20 Grundlagen der Bioinformatik, SS 08, D. Huson, May 27, Global and local alignment of two sequences using dynamic programming 20 Grundlagen der Bioinformatik, SS 08, D. Huson, May 27, 2008 4 Pairwise alignment We will discuss: 1. Strings 2. Dot matrix method for comparing sequences 3. Edit distance 4. Global and local alignment

More information

First generation sequencing and pairwise alignment (High-tech, not high throughput) Analysis of Biological Sequences

First generation sequencing and pairwise alignment (High-tech, not high throughput) Analysis of Biological Sequences First generation sequencing and pairwise alignment (High-tech, not high throughput) Analysis of Biological Sequences 140.638 where do sequences come from? DNA is not hard to extract (getting DNA from a

More information

The translation machinery of the cell works with triples of types of RNA bases. Any triple of RNA bases is known as a codon. The set of codons is

The translation machinery of the cell works with triples of types of RNA bases. Any triple of RNA bases is known as a codon. The set of codons is Relations Supplement to Chapter 2 of Steinhart, E. (2009) More Precisely: The Math You Need to Do Philosophy. Broadview Press. Copyright (C) 2009 Eric Steinhart. Non-commercial educational use encouraged!

More information

Properties of amino acids in proteins

Properties of amino acids in proteins Properties of amino acids in proteins one of the primary roles of DNA (but not the only one!) is to code for proteins A typical bacterium builds thousands types of proteins, all from ~20 amino acids repeated

More information

Chapter 2: Sequence Alignment

Chapter 2: Sequence Alignment Chapter 2: Sequence lignment 2.2 Scoring Matrices Prof. Yechiam Yemini (YY) Computer Science Department Columbia University COMS4761-2007 Overview PM: scoring based on evolutionary statistics Elementary

More information

Week 10: Homology Modelling (II) - HHpred

Week 10: Homology Modelling (II) - HHpred Week 10: Homology Modelling (II) - HHpred Course: Tools for Structural Biology Fabian Glaser BKU - Technion 1 2 Identify and align related structures by sequence methods is not an easy task All comparative

More information

Sequence comparison: Score matrices

Sequence comparison: Score matrices Sequence comparison: Score matrices http://facultywashingtonedu/jht/gs559_2013/ Genome 559: Introduction to Statistical and omputational Genomics Prof James H Thomas FYI - informal inductive proof of best

More information

Introduction to sequence alignment. Local alignment the Smith-Waterman algorithm

Introduction to sequence alignment. Local alignment the Smith-Waterman algorithm Lecture 2, 12/3/2003: Introduction to sequence alignment The Needleman-Wunsch algorithm for global sequence alignment: description and properties Local alignment the Smith-Waterman algorithm 1 Computational

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Introduction to Bioinformatics Jianlin Cheng, PhD Department of Computer Science Informatics Institute 2011 Topics Introduction Biological Sequence Alignment and Database Search Analysis of gene expression

More information

... and searches for related sequences probably make up the vast bulk of bioinformatics activities.

... and searches for related sequences probably make up the vast bulk of bioinformatics activities. 1 2 ... and searches for related sequences probably make up the vast bulk of bioinformatics activities. 3 The terms homology and similarity are often confused and used incorrectly. Homology is a quality.

More information

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell Mathematics and Biochemistry University of Wisconsin - Madison 0 There Are Many Kinds Of Proteins The word protein comes

More information

Sequence comparison: Score matrices. Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas

Sequence comparison: Score matrices. Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas Sequence comparison: Score matrices Genome 559: Introduction to Statistical and omputational Genomics Prof James H Thomas FYI - informal inductive proof of best alignment path onsider the last step in

More information

Sequence comparison: Score matrices. Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas

Sequence comparison: Score matrices. Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas Sequence comparison: Score matrices Genome 559: Introduction to Statistical and omputational Genomics Prof James H Thomas Informal inductive proof of best alignment path onsider the last step in the best

More information

M.O. Dayhoff, R.M. Schwartz, and B. C, Orcutt

M.O. Dayhoff, R.M. Schwartz, and B. C, Orcutt A Model of volutionary Change in Proteins M.O. Dayhoff, R.M. Schwartz, and B. C, Orcutt n the eight years since we last examined the amino acid exchanges seen in closely related proteins,' the information

More information

Bioinformatics. Molecular Biophysics & Biochemistry 447b3 / 747b3. Class 3, 1/19/98. Mark Gerstein. Yale University

Bioinformatics. Molecular Biophysics & Biochemistry 447b3 / 747b3. Class 3, 1/19/98. Mark Gerstein. Yale University Molecular Biophysics & Biochemistry 447b3 / 747b3 Bioinformatics Mark Gerstein Class 3, 1/19/98 Yale University 1 Aligning Text Strings Raw Data??? T C A T G C A T T G 2 matches, 0 gaps T C A T G C A T

More information

C E N T R. Introduction to bioinformatics 2007 E B I O I N F O R M A T I C S V U F O R I N T. Lecture 5 G R A T I V. Pair-wise Sequence Alignment

C E N T R. Introduction to bioinformatics 2007 E B I O I N F O R M A T I C S V U F O R I N T. Lecture 5 G R A T I V. Pair-wise Sequence Alignment C E N T R E F O R I N T E G R A T I V E B I O I N F O R M A T I C S V U Introduction to bioinformatics 2007 Lecture 5 Pair-wise Sequence Alignment Bioinformatics Nothing in Biology makes sense except in

More information

InDel 3-5. InDel 8-9. InDel 3-5. InDel 8-9. InDel InDel 8-9

InDel 3-5. InDel 8-9. InDel 3-5. InDel 8-9. InDel InDel 8-9 Lecture 5 Alignment I. Introduction. For sequence data, the process of generating an alignment establishes positional homologies; that is, alignment provides the identification of homologous phylogenetic

More information

Basic Local Alignment Search Tool

Basic Local Alignment Search Tool Basic Local Alignment Search Tool Alignments used to uncover homologies between sequences combined with phylogenetic studies o can determine orthologous and paralogous relationships Local Alignment uses

More information

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure

Secondary Structure. Bioch/BIMS 503 Lecture 2. Structure and Function of Proteins. Further Reading. Φ, Ψ angles alone determine protein structure Bioch/BIMS 503 Lecture 2 Structure and Function of Proteins August 28, 2008 Robert Nakamoto rkn3c@virginia.edu 2-0279 Secondary Structure Φ Ψ angles determine protein structure Φ Ψ angles are restricted

More information

Bioinformatics Exercises

Bioinformatics Exercises Bioinformatics Exercises AP Biology Teachers Workshop Susan Cates, Ph.D. Evolution of Species Phylogenetic Trees show the relatedness of organisms Common Ancestor (Root of the tree) 1 Rooted vs. Unrooted

More information

Sequence Analysis and Databases 2: Sequences and Multiple Alignments

Sequence Analysis and Databases 2: Sequences and Multiple Alignments 1 Sequence Analysis and Databases 2: Sequences and Multiple Alignments Jose María González-Izarzugaza Martínez CNIO Spanish National Cancer Research Centre (jmgonzalez@cnio.es) 2 Sequence Comparisons:

More information

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two

Supplementary Figure 3 a. Structural comparison between the two determined structures for the IL 23:MA12 complex. The overall RMSD between the two Supplementary Figure 1. Biopanningg and clone enrichment of Alphabody binders against human IL 23. Positive clones in i phage ELISA with optical density (OD) 3 times higher than background are shown for

More information

NMR Assignments using NMRView II: Sequential Assignments

NMR Assignments using NMRView II: Sequential Assignments NMR Assignments using NMRView II: Sequential Assignments DO THE FOLLOWING, IF YOU HAVE NOT ALREADY DONE SO: For Mac OS X, you should have a subdirectory nmrview. At UGA this is /Users/bcmb8190/nmrview.

More information

Homology Modeling (Comparative Structure Modeling) GBCB 5874: Problem Solving in GBCB

Homology Modeling (Comparative Structure Modeling) GBCB 5874: Problem Solving in GBCB Homology Modeling (Comparative Structure Modeling) Aims of Structural Genomics High-throughput 3D structure determination and analysis To determine or predict the 3D structures of all the proteins encoded

More information

COPIA: A New Software for Finding Consensus Patterns. Chengzhi Liang. A thesis. presented to the University ofwaterloo. in fulfilment of the

COPIA: A New Software for Finding Consensus Patterns. Chengzhi Liang. A thesis. presented to the University ofwaterloo. in fulfilment of the COPIA: A New Software for Finding Consensus Patterns in Unaligned Protein Sequences by Chengzhi Liang A thesis presented to the University ofwaterloo in fulfilment of the thesis requirement for the degree

More information

Scoring Matrices. Shifra Ben Dor Irit Orr

Scoring Matrices. Shifra Ben Dor Irit Orr Scoring Matrices Shifra Ben Dor Irit Orr Scoring matrices Sequence alignment and database searching programs compare sequences to each other as a series of characters. All algorithms (programs) for comparison

More information

Packing of Secondary Structures

Packing of Secondary Structures 7.88 Lecture Notes - 4 7.24/7.88J/5.48J The Protein Folding and Human Disease Professor Gossard Retrieving, Viewing Protein Structures from the Protein Data Base Helix helix packing Packing of Secondary

More information

Lecture 15: Realities of Genome Assembly Protein Sequencing

Lecture 15: Realities of Genome Assembly Protein Sequencing Lecture 15: Realities of Genome Assembly Protein Sequencing Study Chapter 8.10-8.15 1 Euler s Theorems A graph is balanced if for every vertex the number of incoming edges equals to the number of outgoing

More information

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4.

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4. Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4. Field Desorption 5. MS MS techniques Matrix assisted

More information

Comparative genomics: Overview & Tools + MUMmer algorithm

Comparative genomics: Overview & Tools + MUMmer algorithm Comparative genomics: Overview & Tools + MUMmer algorithm Urmila Kulkarni-Kale Bioinformatics Centre University of Pune, Pune 411 007. urmila@bioinfo.ernet.in Genome sequence: Fact file 1995: The first

More information

Lecture 1, 31/10/2001: Introduction to sequence alignment. The Needleman-Wunsch algorithm for global sequence alignment: description and properties

Lecture 1, 31/10/2001: Introduction to sequence alignment. The Needleman-Wunsch algorithm for global sequence alignment: description and properties Lecture 1, 31/10/2001: Introduction to sequence alignment The Needleman-Wunsch algorithm for global sequence alignment: description and properties 1 Computational sequence-analysis The major goal of computational

More information

Course Notes: Topics in Computational. Structural Biology.

Course Notes: Topics in Computational. Structural Biology. Course Notes: Topics in Computational Structural Biology. Bruce R. Donald June, 2010 Copyright c 2012 Contents 11 Computational Protein Design 1 11.1 Introduction.........................................

More information

Moreover, the circular logic

Moreover, the circular logic Moreover, the circular logic How do we know what is the right distance without a good alignment? And how do we construct a good alignment without knowing what substitutions were made previously? ATGCGT--GCAAGT

More information

Lecture 5,6 Local sequence alignment

Lecture 5,6 Local sequence alignment Lecture 5,6 Local sequence alignment Chapter 6 in Jones and Pevzner Fall 2018 September 4,6, 2018 Evolution as a tool for biological insight Nothing in biology makes sense except in the light of evolution

More information

Chapter 5. Proteomics and the analysis of protein sequence Ⅱ

Chapter 5. Proteomics and the analysis of protein sequence Ⅱ Proteomics Chapter 5. Proteomics and the analysis of protein sequence Ⅱ 1 Pairwise similarity searching (1) Figure 5.5: manual alignment One of the amino acids in the top sequence has no equivalent and

More information

Clustering and Model Integration under the Wasserstein Metric. Jia Li Department of Statistics Penn State University

Clustering and Model Integration under the Wasserstein Metric. Jia Li Department of Statistics Penn State University Clustering and Model Integration under the Wasserstein Metric Jia Li Department of Statistics Penn State University Clustering Data represented by vectors or pairwise distances. Methods Top- down approaches

More information

Evolutionary Analysis of Viral Genomes

Evolutionary Analysis of Viral Genomes University of Oxford, Department of Zoology Evolutionary Biology Group Department of Zoology University of Oxford South Parks Road Oxford OX1 3PS, U.K. Fax: +44 1865 271249 Evolutionary Analysis of Viral

More information