Unexpected facets of the Yang-Baxter equation

Size: px
Start display at page:

Download "Unexpected facets of the Yang-Baxter equation"

Transcription

1 Unexpected facets of the Yang-Baxter equation Victoria LEBED University of Nantes Utrecht, September 29, 2015

2 1 Yang-Baxter equation Avectorspace V(oranobjectinany monoidal category) σ: V 2 V 2 Yang-Baxter equation(ybe): σ 1 σ 2 σ 1 =σ 2 σ 1 σ 2 : V 3 V 3 where σ i =Id i 1 V σ Id V. Amap σsatisfyingybeisabraiding.

3 1 Yang-Baxter equation Avectorspace V(oranobjectinany monoidal category) σ: V 2 V 2 Yang-Baxter equation(ybe): σ V V V V σ 1 σ 2 σ 1 =σ 2 σ 1 σ 2 : V 3 V 3 where σ i =Id i 1 V σ Id V. Amap σsatisfyingybeisabraiding. = (Reidemeister III)

4 1 Yang-Baxter equation Avectorspace V(oranobjectinany monoidal category) σ: V 2 V 2 Yang-Baxter equation(ybe): σ V V V V σ 1 σ 2 σ 1 =σ 2 σ 1 σ 2 : V 3 V 3 where σ i =Id i 1 V σ Id V. Amap σsatisfyingybeisabraiding. (Reidemeister III) History: Particle physics: factorization cond. for the dispersion matrix in the 1-dim. n-body problem(mcguire, Yang, 60 ). = collisions Statistical mechanics: partition function for exactly solvable lattice models(baxter, 70 ).

5 History: 1 Yang-Baxter equation Particle physics: factorization cond. for the dispersion matrix in the 1-dim. n-body problem(mcguire, Yang, 60 ). Statistical mechanics: partition function for exactly solvable lattice models(baxter, 70 ), quantum inverse scattering method for completely integrable systems (Faddeevetal.,1979). Field theories: factorizable S-matrices in 2-dim. quantum field theory(zamolodchikov, 1979), conformal field theory. Quantumgroups(Drinfel d,80 ). C algebras(woronowicz,80 ). Low-dimensional topology....

6 2 AhomologytheoryfortheYBE Aim: Unify homology theories for basic algebraic structures.

7 2 AhomologytheoryfortheYBE Aim: Unify homology theories for basic algebraic structures. Tools: Graphical calculus.

8 2 AhomologytheoryfortheYBE Aim: Unify homology theories for basic algebraic structures. Tools: Graphical calculus. Ingredients: A braided vector space (V, σ); aleftbraided V-module: (M,ρ: M V M)s.t. ρ ρ 1 =ρ ρ 1 σ 2 : M V V M ρ ρ = ρ ρ σ M V V M V V arightbraided V-module (N,λ: V N N).

9 2 AhomologytheoryfortheYBE Aim: Unify homology theories for basic algebraic structures. Tools: Graphical calculus. Ingredients: A braided vector space (V, σ); aleftbraided V-module: (M,ρ: M V M)s.t. ρ ρ 1 =ρ ρ 1 σ 2 : M V V M ρ ρ = ρ ρ σ M V V M V V arightbraided V-module (N,λ: V N N). Theorem(L.2013): M T(V) Ncarriesafamilyof differentials δ (α,β) =α δ+βδ, α,β k. (I.e., δ (α,β) δ (α,β) =0.)

10 2 AhomologytheoryfortheYBE Theorem(L.2013): M T(V) Ncarriesafamilyof differentials δ (α,β) =α δ+βδ, α,β k. δ= ( 1) i 1 ρ M V... V σ σ N δ = ( 1) i 1 M V... V N σ σ λ 1... i...n 1... i... n

11 2 AhomologytheoryfortheYBE Theorem(L.2013): M T(V) Ncarriesafamilyof differentials δ (α,β) =α δ+βδ, α,β k. δ= ( 1) i 1 ρ M V... V σ σ N δ = ( 1) i 1 M V... V σ σ N λ Proof: 1... i...n 1... i... n YBE = br. mod. = & sign = ( 1) #cross.

12 2 AhomologytheoryfortheYBE Theorem(L.2013): M T(V) Ncarriesafamilyof differentials δ (α,β) =α δ+βδ, α,β k. δ= ( 1) i ρ M V... V σ σ N δ = ( 1) i M V... V σ σ N λ 1... i...n 1... i... n Remarks: Functoriality. Interpretation in terms of quantum shuffles(rosso, 1995). Duality acohomologytheory. Pre-cubical structure.

13 2 AhomologytheoryfortheYBE Theorem(L.2013): M T(V) Ncarriesafamilyof differentials δ (α,β) =α δ+βδ, α,β k. Remarks: Functoriality. Interpretation in terms of quantum shuffles(rosso, 1995). Duality acohomologytheory. Pre-cubical structure. Degeneracies: Braidedcoalgebra: br. v. sp. (V,σ) & : V V Vs.t. = = = (Cf. Reidemeister moves for knotted 3-valent graphs!)

14 2 AhomologytheoryfortheYBE Theorem(L.2013): M T(V) Ncarriesafamilyof differentials δ (α,β) =α δ+βδ, α,β k. Remarks: Functoriality. Interpretation in terms of quantum shuffles(rosso, 1995). Duality acohomologytheory. Pre-cubical structure. Degeneracies: Braidedcoalgebra: br. v. sp. (V,σ) & : V V Vs.t. = = = (Cf. Reidemeister moves for knotted 3-valent graphs!) Theorem(L.2013): All δ (α,β) restrictto i Im( i). normalization

15 3 Alg. structures via braidings A Associative algebras

16 3 Alg. structures via braidings A Associative algebras (V,,1)s.t. Associativity: (u v) w=u (v w) Unit axiom: 1 v=v 1=v = = =

17 3 Alg. structures via braidings A Associative algebras (V,,1)s.t. Associativity: (u v) w=u (v w) = Unit axiom: 1 v=v 1=v Associativitybraiding σ Ass : v w 1 v w = = YBEfor σ Ass (un. ax.) associativity for

18 3 Alg. structures via braidings A Associative algebras (V,,1)s.t. Associativity: (u v) w=u (v w) = Unit axiom: 1 v=v 1=v Associativitybraiding σ Ass : v w 1 v w = = YBEfor σ Ass (un. ax.) associativity for Proof: =

19 3 Alg. structures via braidings A Associative algebras (V,,1) σ Ass : v w 1 v w YBEfor σ Ass (un.ax.) associativity for Afullyfaithfulfunctor Alg Br.

20 3 Alg. structures via braidings A Associative algebras (V,,1) σ Ass : v w 1 v w YBEfor σ Ass (un.ax.) associativity for Afullyfaithfulfunctor Alg Br. Duality: Alg Br coalg.

21 3 Alg. structures via braidings A Associative algebras (V,,1) σ Ass : v w 1 v w YBEfor σ Ass (un.ax.) associativity for Afullyfaithfulfunctor Alg Br. Duality: Alg Br coalg. σ Ass σ Ass =σ Ass = highlynon-invertible. Braidedmodulesfor (V,σ Ass ) modulesfor (V,,1).

22 3 Alg. structures via braidings A Associative algebras (V,,1) σ Ass : v w 1 v w YBEfor σ Ass (un.ax.) associativity for Afullyfaithfulfunctor Alg Br. Duality: Alg Br coalg. σ Ass σ Ass =σ Ass = highlynon-invertible. Braidedmodulesfor (V,σ Ass ) modulesfor (V,,1). Ass : v 1 v braidedcoalgebra.

23 3 Alg. structures via braidings A Associative algebras (V,,1) σ Ass : v w 1 v w YBEfor σ Ass (un.ax.) associativity for Afullyfaithfulfunctor Alg Br. Duality: Alg Br coalg. σ Ass σ Ass =σ Ass = highlynon-invertible. Braidedmodulesfor (V,σ Ass ) modulesfor (V,,1). Ass : v 1 v braidedcoalgebra. Braidedhomologiesfor (V,σ Ass )include bar; Hochschild; group.

24 3 Alg. structures via braidings B Leibniz algebras (V,[],1)s.t. Leibnizidentity: [v,[w,u]]=[[v,w],u] [[v,u],w]; Lieunitaxiom: [1,v]=[v,1]=0. (Bloh 1965, Loday& Cuvier 1991: a non-commutative generalization of Lie algebras.)

25 3 Alg. structures via braidings B Leibniz algebras (V,[],1)s.t. Leibnizidentity: [v,[w,u]]=[[v,w],u] [[v,u],w]; Lieunitaxiom: [1,v]=[v,1]=0. (Bloh 1965, Loday& Cuvier 1991: a non-commutative generalization of Lie algebras.) Leibnizbraiding σ Lei : v w w v+1 [v,w] YBEfor σ Lei (Lie un. ax.) Leibnizidentityfor [] Afullyfaithfulfunctor Lei Br.

26 3 Alg. structures via braidings B Leibniz algebras (V,[],1)s.t. Leibnizidentity: [v,[w,u]]=[[v,w],u] [[v,u],w]; Lieunitaxiom: [1,v]=[v,1]=0. (Bloh 1965, Loday& Cuvier 1991: a non-commutative generalization of Lie algebras.) Leibnizbraiding σ Lei : v w w v+1 [v,w] YBEfor σ Lei (Lie un. ax.) Leibnizidentityfor [] Afullyfaithfulfunctor Lei Br. σ Lei isinvertible. Braidedmod. for (V,σ Lei ) anti-symmetricleibniz mod. for (V,[],1).

27 3 Alg. structures via braidings B Leibniz algebras (V,[],1)s.t. [v,[w,u]]=[[v,w],u] [[v,u],w], [1,v]=[v,1]=0. Leibnizbraiding σ Lei : v w w v+1 [v,w] Supposethat V =V k1, [V,V ] V. Then Lei : v 1 v+v 1, v V ; turns (V,σ Lei )intoa braided coalgebra.

28 3 Alg. structures via braidings B Leibniz algebras (V,[],1)s.t. [v,[w,u]]=[[v,w],u] [[v,u],w], [1,v]=[v,1]=0. Leibnizbraiding σ Lei : v w w v+1 [v,w] Supposethat V =V k1, [V,V ] V. Then Lei : v 1 v+v 1, v V ; turns (V,σ Lei )intoa braided coalgebra. Braidedhomologiesfor (V,σ Lei )includeleibnizhomology. (M T(V),d Lei ) antisymm. Cuvier-Loday Lie V (M Λ(V),d CE ) Chevalley-Eilenberg

29 3 Alg. structures via braidings B Leibniz algebras (V,[],1)s.t. [v,[w,u]]=[[v,w],u] [[v,u],w], [1,v]=[v,1]=0. Leibnizbraiding σ Lei : v w w v+1 [v,w] Supposethat V =V k1, [V,V ] V. Then Lei : v 1 v+v 1, v V ; turns (V,σ Lei )intoa braided coalgebra. Braidedhomologiesfor (V,σ Lei )includeleibnizhomology. Lei Lie V (M T(V),d Lei ) antisymm. antisymm. Cuvier-Loday V (M Λ(V),d CE ) Chevalley-Eilenberg

30 3 Alg. structures via braidings B Leibniz algebras (V,[],1)s.t. [v,[w,u]]=[[v,w],u] [[v,u],w], [1,v]=[v,1]=0. Leibnizbraiding σ Lei : v w w v+1 [v,w] Supposethat V =V k1, [V,V ] V. Then Lei : v 1 v+v 1, v V ; turns (V,σ Lei )intoa braided coalgebra. Braidedhomologiesfor (V,σ Lei )includeleibnizhomology. Lei Lie V (M T(V),d Lei ) antisymm. antisymm. Cuvier-Loday V (M Λ(V),d CE ) Chevalley-Eilenberg Explains the choice of the lift of the Jacobi identity.

31 3 Alg. structures via braidings C Self-distributive structures

32 3 Alg. structures via braidings C Self-distributive structures b a b colorings by (S, ) a b SD braiding σ SD : (a,b) (b,a b) c b c (a b) c a b a b c RIII c b c (a c) (b c) a c a b c YBE RIII (a b) c=(a c) (b c) (SD)

33 3 Alg. structures via braidings C Self-distributive structures b a b colorings by (S, ) a b SD braiding σ SD : (a,b) (b,a b) c b c (a b) c a b a b c RIII c b c (a c) (b c) a c a b c YBE RIII (a b) c=(a c) (b c) (SD)

34 3 Alg. structures via braidings C Self-distributive structures b a b colorings by (S, ) a b SD braiding σ SD : (a,b) (b,a b) c b c (a b) c a b a b c RIII c b c (a c) (b c) a c a b c YBE RIII (a b) c=(a c) (b c) RII a a bbijective (Inv) σ 1 SD RI a a=a (SD) (Idem) RII RI

35 3 Alg. structures via braidings C Self-distributive structures b a b colorings by (S, ) a b SD braiding σ SD : (a,b) (b,a b) c b c (a b) c a b a b c RIII c b c (a c) (b c) a c a b c YBE RIII (a b) c=(a c) (b c) (SD) σ 1 SD RII a a bbijective (Inv) = RI a a=a (Idem) RII RI SD : a (a,a)

36 3 Alg. structures via braidings C Self-distributive structures b a b colorings by (S, ) Joyce, Matveev 1982: knotinvariants colorings quandle a b pos. braids RIII (a b) c=(a c) (b c) shelf braids RII a a bbijective rack knots RI a a=a quandle RII RI

37 3 Alg. structures via braidings C Self-distributive structures b a b colorings by (S, ) Joyce, Matveev 1982: knotinvariants colorings quandle a b pos. braids RIII (a b) c=(a c) (b c) shelf braids RII a a bbijective rack knots RI a a=a quandle Ex.: Conjugationquandles: (group G,g h=h 1 gh) coloring rule Wirtinger presentation rule, colorings Rep(π 1 (R 3 \K),G).

38 3 Alg. structures via braidings C Self-distributive structures b a b colorings by (S, ) Joyce, Matveev 1982: knotinvariants colorings quandle a b pos. braids RIII (a b) c=(a c) (b c) shelf braids RII a a bbijective rack knots RI a a=a quandle Ex.: Conjugationquandles: (group G,g h=h 1 gh) coloring rule Wirtinger presentation rule, colorings Rep(π 1 (R 3 \K),G). Ex.: Dihedralquandles: (Z n,a b=2b a) colorings n-fox colorings.

39 3 Alg. structures via braidings C Self-distributive structures b a b colorings by (S, ) Joyce, Matveev 1982: knotinvariants colorings quandle a b pos. braids RIII (a b) c=(a c) (b c) shelf braids RII a a bbijective rack knots RI a a=a quandle Ex.: Conjugationquandles: (group G,g h=h 1 gh) coloring rule Wirtinger presentation rule, colorings Rep(π 1 (R 3 \K),G). Ex.: Dihedralquandles: (Z n,a b=2b a) colorings n-fox colorings. n=3

40 3 Alg. structures via braidings C Self-distributive structures diagrams: D R-move D colorings: C C coloringsets: Col S (D) bij. Col S (D ) countinginvariants: #Col S (D) = #Col S (D )

41 3 Alg. structures via braidings C Self-distributive structures diagrams: D R-move D colorings: C C coloringsets: Col S (D) bij. Col S (D ) countinginvariants: #Col S (D) = #Col S (D ) Question: Extract more information? Idea: Some weight ωs.t. ω(c)=ω(c ) = {ω(c) C Col S (D)}={ω(C ) C Col S (D )}.

42 3 Alg. structures via braidings C Self-distributive structures diagrams: D R-move D colorings: C C coloringsets: Col S (D) bij. Col S (D ) countinginvariants: #Col S (D) = #Col S (D ) Question: Extract more information? Idea: Some weight ωs.t. ω(c)=ω(c ) = {ω(c) C Col S (D)}={ω(C ) C Col S (D )}. Answer: quandle cocycle invariants(carter-jelsovsky- Kamada-Langford-Saito 1999). φ:s S A Boltzmann weight: ω φ (C) = a b ±φ(a, b)

43 3 Alg. structures via braidings C Self-distributive structures Rack& quandle cohomology theories (Fenn-Rourke-Sanderson 1995, Carter et al. 1999) Motivation: {ω φ (C) C Col S (D)}yieldsabraid/knotinvariantwhen φ isarack/quandle 2-cocycle; this invariant is trivial when φ is a coboundary;

44 3 Alg. structures via braidings C Self-distributive structures Rack& quandle cohomology theories (Fenn-Rourke-Sanderson 1995, Carter et al. 1999) Motivation: {ω φ (C) C Col S (D)}yieldsabraid/knotinvariantwhen φ isarack/quandle 2-cocycle; this invariant is trivial when φ is a coboundary; adding coefficients allows to color diagram regions: a rack module M m m a ω φ (C) = ±φ(m,a,b) am b everythinggeneralizesto K n 1 R n+1.

45 3 Alg. structures via braidings C Self-distributive structures Rack& quandle cohomology theories (Fenn-Rourke-Sanderson 1995, Carter et al. 1999) Motivation: {ω φ (C) C Col S (D)}yieldsabraid/knotinvariantwhen φ isarack/quandle 2-cocycle; this invariant is trivial when φ is a coboundary; adding coefficients allows to color diagram regions: a rack module M m m a ω φ (C) = ±φ(m,a,b) am b everythinggeneralizesto K n 1 R n+1. Inspiration: (Co-)homology theories for associativity. Question(Przytycki): Explain the parallels between the associative and the SD worlds?

46 3 Alg. structures via braidings C Self-distributive structures Rack& quandle cohomology theories (Fenn-Rourke-Sanderson 1995, Carter et al. 1999) Motivation: {ω φ (C) C Col S (D)}yieldsabraid/knotinvariantwhen φ isarack/quandle 2-cocycle; this invariant is trivial when φ is a coboundary; adding coefficients allows to color diagram regions: a rack module M m m a ω φ (C) = ±φ(m,a,b) am b everythinggeneralizesto K n 1 R n+1. Inspiration: (Co-)homology theories for associativity. Question(Przytycki): Explain the parallels between the associative and the SD worlds? Answer: Common braided interpretation.

47 3 Alg. structures via braidings C Self-distributive structures Shelf (S, ) σ SD : (a,b) (b,a b) YBEfor σ SD SDfor Afullyfaithfulfunctor Shelf Br. σ SD isinvertible (S, )isarack. Braidedmodulesfor (V,σ SD ) rackmodulesfor (S, ). SD : a (a,a) weakbraidedcoalgebraif (S, )isa quandle. Braidedhomologiesfor (V,σ SD )includerack,quandle, and other SD homologies.

48 4 Multi-component braidings Question: How to treat more complicated structures?

49 4 Multi-component braidings Question: How to treat more complicated structures? Braidedsystem: V 1,V 2,...,V r and σ i,j :V i V j V j V i, i j, satisfying the colored Yang-Baxter equation(cybe): σ j,k 1 σi,k 2 σi,j 1 =σi,j 2 σi,k 1 σj,k 2 V i V j V k V k V j V i,i j k V i V j V k V i V j V k Thecollection (σ i,j )satisfyingcybeisamulti-braiding.

50 4 Multi-component braidings Question: How to treat more complicated structures? Braidedsystem: V 1,V 2,...,V r and σ i,j :V i V j V j V i, i j, satisfying the colored Yang-Baxter equation(cybe): σ j,k 1 σi,k 2 σi,j 1 =σi,j 2 σi,k 1 σj,k 2 V i V j V k V k V j V i,i j k V i V j V k V i V j V k Thecollection (σ i,j )satisfyingcybeisamulti-braiding. Left braided V-module: (M,(ρ i : M V i M))s.t. ρ j ρ i ρ = ρ j im Vi Vj σ i,j i j M V i V j

51 4 Multi-component braidings Question: How to treat more complicated structures? Braidedsystem: V 1,V 2,...,V r and σ i,j :V i V j V j V i, i j, satisfying the colored Yang-Baxter equation(cybe): σ j,k 1 σi,k 2 σi,j 1 =σi,j 2 σi,k 1 σj,k 2 V i V j V k V k V j V i,i j k V i V j V k V i V j V k Thecollection (σ i,j )satisfyingcybeisamulti-braiding. Left braided V-module: (M,(ρ i : M V i M))s.t. ρ j ρ i ρ = ρ j im Vi Vj σ i,j i j M V i V j Theorem(L.,2013): M T(V 1 ) T(V r ) Ncarriesa familyofdifferentials δ (α,β) =α δ+βδ, α,β k.

52 4 Multi-component braidings Finite-dim. bialgebra H (H,H ;σ H,H =σ r Ass (H),σ H,H =σ Ass(H ),σ H,H =σ YD ) σ H,H = σ H,H = σ H,H = ev h l l (1),h (2) l (2) h (1) YBEon H H H (un. ax.) bialgebra compatibility

53 4 Multi-component braidings Finite-dim. bialgebra H (H,H ;σ H,H =σ r Ass (H),σ H,H =σ Ass(H ),σ H,H =σ YD ) σ H,H = σ H,H = σ H,H = ev h l l (1),h (2) l (2) h (1) YBEon H H H (un. ax.) bialgebra compatibility Afullyfaithfulfunctor Bialg 2 BrSyst.

54 4 Multi-component braidings Finite-dim. bialgebra H (H,H ;σ H,H =σ r Ass (H),σ H,H =σ Ass(H ),σ H,H =σ YD ) σ H,H = σ H,H = σ H,H = ev h l l (1),h (2) l (2) h (1) YBEon H H H (un. ax.) bialgebra compatibility Afullyfaithfulfunctor Bialg 2 BrSyst. σ H,H isinvertible HisaHopfalgebra.

55 4 Multi-component braidings Finite-dim. bialgebra H (H,H ;σ H,H =σ r Ass (H),σ H,H =σ Ass(H ),σ H,H =σ YD ) σ H,H = σ H,H = σ H,H = ev h l l (1),h (2) l (2) h (1) YBEon H H H (un. ax.) bialgebra compatibility Afullyfaithfulfunctor Bialg 2 BrSyst. σ H,H isinvertible HisaHopfalgebra. Braided modules Hopf modules over H.

56 4 Multi-component braidings Finite-dim. bialgebra H (H,H ;σ H,H =σ r Ass (H),σ H,H =σ Ass(H ),σ H,H =σ YD ) σ H,H = σ H,H = σ H,H = ev h l l (1),h (2) l (2) h (1) YBEon H H H (un. ax.) bialgebra compatibility Afullyfaithfulfunctor Bialg 2 BrSyst. σ H,H isinvertible HisaHopfalgebra. Braided modules Hopf modules over H. Braided homologies include Gerstenhaber-Schack; Panaite-Ştefan.

57 4 Multi-component braidings Finite-dim. bialgebra H (H,H op,h,(h ) op ;...). Afullyfaithfulfunctor Bialg 4 BrSyst.

58 4 Multi-component braidings Finite-dim. bialgebra H (H,H op,h,(h ) op ;...). Afullyfaithfulfunctor Bialg 4 BrSyst. Braided modules Hopf bimodules over H.

59 4 Multi-component braidings Finite-dim. bialgebra H (H,H op,h,(h ) op ;...). Afullyfaithfulfunctor Bialg 4 BrSyst. Braided modules Hopf bimodules over H. Application: Hopf bimodules are modules over the Heisenberg double H (H)=H H Cibils-Rosso 1998: Hopf bimodules are modules over X (H)=(H H op ) (H (H ) op )

60 4 Multi-component braidings Finite-dim. bialgebra H (H,H op,h,(h ) op ;...). Afullyfaithfulfunctor Bialg 4 BrSyst. Braided modules Hopf bimodules over H. Application: Hopf bimodules are modules over the Heisenberg double H (H)=H H Cibils-Rosso 1998: Hopf bimodules are modules over X (H)=(H H op ) (H (H ) op ) Panaite 2002: Hopf bimodules are modules over... Y (H)=H #(H op H)#(H ) op & Z(H)=(H (H ) op ) (H op H)

61 4 Multi-component braidings Finite-dim. bialgebra H (H,H op,h,(h ) op ;...). Afullyfaithfulfunctor Bialg 4 BrSyst. Braided modules Hopf bimodules over H. Application: Hopf bimodules are modules over the Heisenberg double H (H)=H H Cibils-Rosso 1998: Hopf bimodules are modules over X (H)=(H H op ) (H (H ) op ) Panaite 2002: Hopf bimodules are modules over... Y (H)=H #(H op H)#(H ) op & Z(H)=(H (H ) op ) (H op H) Theorem(L. 2013): Hopf bimodules are modules over 4! = 24 pairwise isomorphic algebras.

62 4 Multi-component braidings Finite-dim. bialgebra H (H,H op,h,(h ) op ;...). Afullyfaithfulfunctor Bialg 4 BrSyst. Braided modules Hopf bimodules over H. Application: Hopf bimodules are modules over the Heisenberg double H (H)=H H Cibils-Rosso 1998: Hopf bimodules are modules over X (H)=(H H op ) (H (H ) op ) Panaite 2002: Hopf bimodules are modules over... Y (H)=H #(H op H)#(H ) op & Z(H)=(H (H ) op ) (H op H) Theorem(L. 2013): Hopf bimodules are modules over 4! = 24 pairwise isomorphic algebras. Braided homologies include the Ospel-Taillefer theory.

63 5 TheunifyingroleoftheYBE (multi-)braiding algebraic structure rbrsyst Struc (c)ybe the defining relations invertibility algebraic properties braided modules usual modules braided hom. theory usual hom. theories

64 5 TheunifyingroleoftheYBE (multi-)braiding algebraic structure rbrsyst Struc (c)ybe the defining relations invertibility algebraic properties braided modules usual modules braided hom. theory usual hom. theories Other braidable structures: module algebras(yau); Yetter-Drinfel dmodules(panaite-ştefan);

65 5 TheunifyingroleoftheYBE (multi-)braiding algebraic structure rbrsyst Struc (c)ybe the defining relations invertibility algebraic properties braided modules usual modules braided hom. theory usual hom. theories Other braidable structures: module algebras(yau); Yetter-Drinfel dmodules(panaite-ştefan); (non-commutative) Poisson algebras(fresse);

66 5 TheunifyingroleoftheYBE (multi-)braiding algebraic structure rbrsyst Struc (c)ybe the defining relations invertibility algebraic properties braided modules usual modules braided hom. theory usual hom. theories Other braidable structures: module algebras(yau); Yetter-Drinfel dmodules(panaite-ştefan); (non-commutative) Poisson algebras(fresse); multiple conjugation quandles(ishii) knotted handle-bodies

67 6 AbraidedversionofYDmodules Yetter-Drinfel dmoduleoverahopfalgebra H: vector space M; right H-action ρ; right H-coaction δ; compatibility.

68 6 AbraidedversionofYDmodules Yetter-Drinfel dmoduleoverahopfalgebra H: braiding σ vector space M; YD : ρ right H-action ρ; right H-coaction δ; τ compatibility. δ

69 6 AbraidedversionofYDmodules Yetter-Drinfel dmoduleoverahopfalgebra H: braiding σ vector space M; YD : ρ right H-action ρ; right H-coaction δ; τ compatibility. δ This construction yields all invertible f.-d. braidings!

70 M A M A 6 AbraidedversionofYDmodules Yetter-Drinfel dmoduleoverahopfalgebra H: braiding σ vector space M; YD : ρ right H-action ρ; right H-coaction δ; τ compatibility. δ This construction yields all invertible f.-d. braidings! L.-Wagemann2015: YDmoduleoverabr. system (C,A;σ): vector space M; rightaction ρof (A;σ A,A ); rightcoaction δof (C;σ C,C ); compatibility: M C M C δ ρ = ρ δ σ C,A

71 M A M A 6 AbraidedversionofYDmodules Yetter-Drinfel dmoduleoverahopfalgebra H: braiding σ vector space M; YD : ρ right H-action ρ; right H-coaction δ; τ compatibility. δ This construction yields all invertible f.-d. braidings! L.-Wagemann2015: YDmoduleoverabr. system (C,A;σ): vector space M; rightaction ρof (A;σ A,A ); rightcoaction δof (C;σ C,C ); compatibility: M C M C δ ρ = ρ δ σ C,A &a nice π: C A braiding σ GYD : ρ τ π δ

72 6 AbraidedversionofYDmodules YDmoduleoverabraidedsystem (C,A;σ): vector space M; rightaction ρof (A;σ A,A ); &a nice π: C A rightcoaction δof (C;σ C,C ); compatibility: braiding σ GYD : M C M C ρ δ ρ M A = ρ δ M σ C,A Examples: YDmodulesoveraHopfalgebra σ YD ; A τ π δ

73 6 AbraidedversionofYDmodules YDmoduleoverabraidedsystem (C,A;σ): vector space M; rightaction ρof (A;σ A,A ); &a nice π: C A rightcoaction δof (C;σ C,C ); compatibility: braiding σ GYD : M C M C ρ δ ρ M A = ρ δ M σ C,A A Examples: YDmodulesoveraHopfalgebra σ YD ; representationsofacrossedmoduleofgroups Bantay s braiding(2010); τ π δ

74 6 AbraidedversionofYDmodules YDmoduleoverabraidedsystem (C,A;σ): vector space M; rightaction ρof (A;σ A,A ); &a nice π: C A rightcoaction δof (C;σ C,C ); compatibility: braiding σ GYD : M C M C ρ δ ρ M A = ρ δ M σ C,A A Examples: YDmodulesoveraHopfalgebra σ YD ; representationsofacrossedmoduleofgroups Bantay s braiding(2010); shelf σ SD ; τ π δ

75 6 AbraidedversionofYDmodules YDmoduleoverabraidedsystem (C,A;σ): vector space M; rightaction ρof (A;σ A,A ); &a nice π: C A rightcoaction δof (C;σ C,C ); compatibility: braiding σ GYD : M C M C ρ δ ρ M A = ρ δ M σ C,A A Examples: YDmodulesoveraHopfalgebra σ YD ; representationsofacrossedmoduleofgroups Bantay s braiding(2010); shelf σ SD ; representations of a crossed module of shelves/ Leibnizalgebras newbraidings(l.-wagemann2015). τ π δ

On set-theoretic solutions to the Yang-Baxter equation. Victoria LEBED (Nantes) with Leandro VENDRAMIN (Buenos Aires)

On set-theoretic solutions to the Yang-Baxter equation. Victoria LEBED (Nantes) with Leandro VENDRAMIN (Buenos Aires) On set-theoretic solutions to the Yang-Baxter equation Victoria LEBED (Nantes) with Leandro VENDRAMIN (Buenos Aires) Turin, January 2016 1 Yang-Baxter equation X: vector space, ff : X 2 X 2. Yang-Baxter

More information

Unexpected facets of the Yang Baxter equation

Unexpected facets of the Yang Baxter equation Unexpected facets of the Yang Baxter equation Victoria LEBED (ab)c = a(bc) = z 1 (y 1 xy)z= (z 1 y 1 z)(z 1 xz)(z 1 yz) TCD, Octobre 2016 1 Yang Baxter equation: basics Data: vectorspacev, ff:v 2 V 2.

More information

THE CLASSICAL HOM-YANG-BAXTER EQUATION AND HOM-LIE BIALGEBRAS. Donald Yau

THE CLASSICAL HOM-YANG-BAXTER EQUATION AND HOM-LIE BIALGEBRAS. Donald Yau International Electronic Journal of Algebra Volume 17 (2015) 11-45 THE CLASSICAL HOM-YANG-BAXTER EQUATION AND HOM-LIE BIALGEBRAS Donald Yau Received: 25 January 2014 Communicated by A. Çiğdem Özcan Abstract.

More information

arxiv: v2 [math.gt] 13 Jul 2010

arxiv: v2 [math.gt] 13 Jul 2010 The column group and its link invariants Johanna Hennig Sam Nelson arxiv:0902.0028v2 [math.gt] 13 Jul 2010 Abstract The column group is a subgroup of the symmetric group on the elements of a finite blackboard

More information

A Survey of Quandles with some recent developments

A Survey of Quandles with some recent developments A Survey of Quandles with some recent developments University of South Florida QQQ 2016 Knots and their diagrams Overview of knot diagrams and Quandles A knot is the image of a smooth embeding S 1 R 3

More information

arxiv:math/ v2 [math.kt] 2 Aug 2002

arxiv:math/ v2 [math.kt] 2 Aug 2002 arxiv:math/0207154v2 [math.kt] 2 Aug 2002 Injective opf bimodules, cohomologies of infinite dimensional opf algebras and graded-commutativity of the Yoneda product. Rachel Taillefer Department of Mathematics

More information

THE QUANTUM DOUBLE AS A HOPF ALGEBRA

THE QUANTUM DOUBLE AS A HOPF ALGEBRA THE QUANTUM DOUBLE AS A HOPF ALGEBRA In this text we discuss the generalized quantum double construction. treatment of the results described without proofs in [2, Chpt. 3, 3]. We give several exercises

More information

Quantum Groups. Jesse Frohlich. September 18, 2018

Quantum Groups. Jesse Frohlich. September 18, 2018 Quantum Groups Jesse Frohlich September 18, 2018 bstract Quantum groups have a rich theory. Categorically they are wellbehaved under the reversal of arrows, and algebraically they form an interesting generalization

More information

Cocycle Invariants of Knots, Graphs and Surfaces

Cocycle Invariants of Knots, Graphs and Surfaces Cocycle Invariants of Knots, Graphs and Surfaces Kheira Ameur J. Scott Carter Mohamed Elhamdadi Masahico Saito Shin Satoh Introduction Dedicated to Professor Yukio Matsumoto for his 6th birthday Quandle

More information

arxiv:math.gt/ v1 20 Mar 2007

arxiv:math.gt/ v1 20 Mar 2007 Virtual Knot Invariants from Group Biquandles and Their Cocycles arxiv:math.gt/0703594v1 0 Mar 007 J. Scott Carter University of South Alabama Masahico Saito University of South Florida Susan G. Williams

More information

Poisson Lie 2-groups and Lie 2-bialgebras

Poisson Lie 2-groups and Lie 2-bialgebras Poisson Lie 2-groups and Lie 2-bialgebras PING XU Kolkata, December 2012 JOINT WITH ZHUO CHEN AND MATHIEU STIÉNON 1 Motivation 2 Strict 2-groups & crossed modules of groups 3 Strict Poisson Lie 2-groups

More information

Quantizations and classical non-commutative non-associative algebras

Quantizations and classical non-commutative non-associative algebras Journal of Generalized Lie Theory and Applications Vol. (008), No., 35 44 Quantizations and classical non-commutative non-associative algebras Hilja Lisa HURU and Valentin LYCHAGIN Department of Mathematics,

More information

Atiyah classes and homotopy algebras

Atiyah classes and homotopy algebras Atiyah classes and homotopy algebras Mathieu Stiénon Workshop on Lie groupoids and Lie algebroids Kolkata, December 2012 Atiyah (1957): obstruction to existence of holomorphic connections Rozansky-Witten

More information

arxiv:math/ v2 [math.qa] 29 Jan 2001

arxiv:math/ v2 [math.qa] 29 Jan 2001 DAMTP-98-117 arxiv:math/9904142v2 [math.qa] 29 Jan 2001 Cross Product Bialgebras Yuri Bespalov Part II Bernhard Drabant July 1998/March 1999 Abstract This is the central article of a series of three papers

More information

Transparency condition in the categories of Yetter-Drinfel d modules over Hopf algebras in braided categories

Transparency condition in the categories of Yetter-Drinfel d modules over Hopf algebras in braided categories São Paulo Journal of athematical Sciences 8, 1 (2014), 33 82 Transparency condition in the categories of Yetter-Drinfel d modules over opf algebras in braided categories. Femić IERL, Facultad de Ingeniería,

More information

Kathryn Hess. Category Theory, Algebra and Geometry Université Catholique de Louvain 27 May 2011

Kathryn Hess. Category Theory, Algebra and Geometry Université Catholique de Louvain 27 May 2011 MATHGEOM Ecole Polytechnique Fédérale de Lausanne Category Theory, Algebra and Geometry Université Catholique de Louvain 27 May 2011 Joint work with... Steve Lack (foundations) Jonathan Scott (application

More information

Lectures on Quantum Groups

Lectures on Quantum Groups Lectures in Mathematical Physics Lectures on Quantum Groups Pavel Etingof and Olivier Schiffinann Second Edition International Press * s. c *''.. \ir.ik,!.'..... Contents Introduction ix 1 Poisson algebras

More information

Deformation theory of algebraic structures

Deformation theory of algebraic structures Deformation theory of algebraic structures Second Congrès Canada-France June 2008 (Bruno Vallette) Deformation theory of algebraic structures June 2008 1 / 22 Data: An algebraic structure P A vector space

More information

An obstruction to tangles embedding

An obstruction to tangles embedding March 4, 2017 Overview 1 Introduction 2 2-cocycles 3 Quandle coloring of knots 4 Quandle coloring of tangles The 2-cocycle invariant for tangles 5 6 An n-tangle consists of n disjoint arcs in the 3-ball.

More information

Cross ProductBialgebras

Cross ProductBialgebras Journal of Algebra 240, 445 504 (2001) doi:10.1006/jabr.2000.8631, available online at http://www.idealibrary.com on Cross ProductBialgebras PartII Yuri Bespalov Bogolyubov Institute for Theoretical Physics,

More information

Kathryn Hess. International Conference on K-theory and Homotopy Theory Santiago de Compostela, 17 September 2008

Kathryn Hess. International Conference on K-theory and Homotopy Theory Santiago de Compostela, 17 September 2008 Institute of Geometry, Ecole Polytechnique Fédérale de Lausanne International Conference on K-theory and Homotopy Theory Santiago de Compostela, 17 September 2008 Joint work with John Rognes. Outline 1

More information

DISTRIBUTIVE PRODUCTS AND THEIR HOMOLOGY

DISTRIBUTIVE PRODUCTS AND THEIR HOMOLOGY DISTRIBUTIVE PRODUCTS AND THEIR HOMOLOGY Abstract. We develop a theory of sets with distributive products (called shelves and multi-shelves) and of their homology. We relate the shelf homology to the rack

More information

The shadow nature of positive and twisted quandle cocycle invariants of knots

The shadow nature of positive and twisted quandle cocycle invariants of knots The shadow nature of positive and twisted quandle cocycle invariants of knots Seiichi Kamada skamada@sci.osaka-cu.ac.jp Osaka City University Victoria Lebed lebed.victoria@gmail.com OCAMI, Osaka City University

More information

A quantum double construction in Rel

A quantum double construction in Rel Under consideration for publication in Math. Struct. in Comp. Science A quantum double construction in Rel M A S A H I T O H A S E G A W A Research Institute for Mathematical Sciences, Kyoto University,

More information

TWIST-SPUN KNOTS. 1. Knots and links. 2. Racks and quandles. 3. Classifying spaces and cohomology. 4. Twist-spun knots in R 4

TWIST-SPUN KNOTS. 1. Knots and links. 2. Racks and quandles. 3. Classifying spaces and cohomology. 4. Twist-spun knots in R 4 TWIST-SPUN KNOTS 1. Knots and links 2. Racks and quandles 3. Classifying spaces and cohomology 4. Twist-spun knots in R 4 1 A (REALLY) QUICK TRIP THROUGH KNOT THEORY A knot: an embedding S 1 S 3. A link:

More information

Differential Calculus

Differential Calculus Differential Calculus Mariusz Wodzicki December 19, 2015 1 Vocabulary 1.1 Terminology 1.1.1 A ground ring of coefficients Let k be a fixed unital commutative ring. We shall be refering to it throughout

More information

Quillen cohomology and Hochschild cohomology

Quillen cohomology and Hochschild cohomology Quillen cohomology and Hochschild cohomology Haynes Miller June, 2003 1 Introduction In their initial work ([?], [?], [?]), Michel André and Daniel Quillen described a cohomology theory applicable in very

More information

Categorical techniques for NC geometry and gravity

Categorical techniques for NC geometry and gravity Categorical techniques for NC geometry and gravity Towards homotopical algebraic quantum field theory lexander Schenkel lexander Schenkel School of Mathematical Sciences, University of Nottingham School

More information

Sheet 11. PD Dr. Ralf Holtkamp Prof. Dr. C. Schweigert Hopf algebras Winter term 2014/2015. Algebra and Number Theory Mathematics department

Sheet 11. PD Dr. Ralf Holtkamp Prof. Dr. C. Schweigert Hopf algebras Winter term 2014/2015. Algebra and Number Theory Mathematics department Algebra and Number Theory Mathematics department PD Dr. Ralf Holtkamp Prof. Dr. C. Schweigert Hopf algebras Winter term 014/015 Sheet 11 Problem 1. We consider the C-algebra H generated by C and X with

More information

Graded Calabi-Yau Algebras actions and PBW deformations

Graded Calabi-Yau Algebras actions and PBW deformations Actions on Graded Calabi-Yau Algebras actions and PBW deformations Q. -S. Wu Joint with L. -Y. Liu and C. Zhu School of Mathematical Sciences, Fudan University International Conference at SJTU, Shanghai

More information

Introduction to the Yang-Baxter Equation with Open Problems

Introduction to the Yang-Baxter Equation with Open Problems Axioms 2012, 1, 33-37; doi:10.3390/axioms1010033 Communication OPEN ACCESS axioms ISSN 2075-1680 www.mdpi.com/journal/axioms/ Introduction to the Yang-Baxter Equation with Open Problems Florin Nichita

More information

Deformations of a noncommutative surface of dimension 4

Deformations of a noncommutative surface of dimension 4 Deformations of a noncommutative surface of dimension 4 Sue Sierra University of Edinburgh Homological Methods in Algebra and Geometry, AIMS Ghana 2016 In this talk, I will describe the work of my student

More information

Stasheffs A -algebras and Homotopy Gerstenhaber Algebras. Tornike Kadeishvili A. Razmadze Mathematical Institute of Tbilisi State University

Stasheffs A -algebras and Homotopy Gerstenhaber Algebras. Tornike Kadeishvili A. Razmadze Mathematical Institute of Tbilisi State University 1 Stasheffs A -algebras and Homotopy Gerstenhaber Algebras Tornike Kadeishvili A. Razmadze Mathematical Institute of Tbilisi State University 1 Twisting Elements 2 A dg algebra (A, d : A A +1, : A A A

More information

Calculation of quandle cocycle invariants via marked graph diagrams

Calculation of quandle cocycle invariants via marked graph diagrams Calculation of quandle cocycle invariants via marked graph diagrams Jieon Kim (Jointly with S. Kamada and S. Y. Lee) Pusan National University, Busan, Korea August 25, 204 Knots and Low Dimensional Manifolds

More information

Virtual Tribrackets. Sam Nelson Shane Pico

Virtual Tribrackets. Sam Nelson Shane Pico Virtual Tribrackets Sam Nelson Shane Pico arxiv:1803.03210v2 [math.gt] 6 Dec 2018 Abstract We introduce virtual tribrackets, an algebraic structure for coloring regions in the planar complement of an oriented

More information

DEFORMATIONS OF ALGEBRAS IN NONCOMMUTATIVE ALGEBRAIC GEOMETRY EXERCISE SHEET 1

DEFORMATIONS OF ALGEBRAS IN NONCOMMUTATIVE ALGEBRAIC GEOMETRY EXERCISE SHEET 1 DEFORMATIONS OF ALGEBRAS IN NONCOMMUTATIVE ALGEBRAIC GEOMETRY EXERCISE SHEET 1 TRAVIS SCHEDLER Note: it is possible that the numbers referring to the notes here (e.g., Exercise 1.9, etc.,) could change

More information

Defects between Gapped Boundaries in (2 + 1)D Topological Phases of Matter

Defects between Gapped Boundaries in (2 + 1)D Topological Phases of Matter Defects between Gapped Boundaries in (2 + 1)D Topological Phases of Matter Iris Cong, Meng Cheng, Zhenghan Wang cong@g.harvard.edu Department of Physics Harvard University, Cambridge, MA January 13th,

More information

Knot invariants derived from quandles and racks

Knot invariants derived from quandles and racks ISSN 1464-8997 (on line) 1464-8989 (printed) 103 Geometry & Topology Monographs Volume 4: Invariants of knots and 3-manifolds (Kyoto 2001) Pages 103 117 Knot invariants derived from quandles and racks

More information

FOURIER - SATO TRANSFORM BRAID GROUP ACTIONS, AND FACTORIZABLE SHEAVES. Vadim Schechtman. Talk at

FOURIER - SATO TRANSFORM BRAID GROUP ACTIONS, AND FACTORIZABLE SHEAVES. Vadim Schechtman. Talk at , BRAID GROUP ACTIONS, AND FACTORIZABLE SHEAVES Vadim Schechtman Talk at Kavli Institute for the Physics and Mathematics of the Universe, Kashiwa-no-ha, October 2014 This is a report on a joint work with

More information

What is a quantum symmetry?

What is a quantum symmetry? What is a quantum symmetry? Ulrich Krähmer & Angela Tabiri U Glasgow TU Dresden CLAP 30/11/2016 Uli (U Glasgow) What is a quantum symmetry? CLAP 30/11/2016 1 / 20 Road map Classical maths: symmetries =

More information

Koszul duality for operads

Koszul duality for operads Koszul duality for operads Bruno Vallette (This is in Chapters 6 and 7 of Loday-Vallette; we ll do exercises 1,7,8,9,10.) 1 Motivation We are interested in an arbitrary of P -algebras. We would like to

More information

Rational Homotopy and Intrinsic Formality of E n -operads Part II

Rational Homotopy and Intrinsic Formality of E n -operads Part II Rational Homotopy and Intrinsic Formality of E n -operads Part II Benoit Fresse Université de Lille 1 φ 1 2 3 1 2 Les Diablerets, 8/23/2015 3 ( exp 1 2 3 ˆL }{{} t 12, 1 2 3 ) }{{} t 23 Benoit Fresse (Université

More information

Loop Groups and Lie 2-Algebras

Loop Groups and Lie 2-Algebras Loop Groups and Lie 2-Algebras Alissa S. Crans Joint work with: John Baez Urs Schreiber & Danny Stevenson in honor of Ross Street s 60th birthday July 15, 2005 Lie 2-Algebras A 2-vector space L is a category

More information

Thus we get. ρj. Nρj i = δ D(i),j.

Thus we get. ρj. Nρj i = δ D(i),j. 1.51. The distinguished invertible object. Let C be a finite tensor category with classes of simple objects labeled by a set I. Since duals to projective objects are projective, we can define a map D :

More information

Knot semigroups: a new algebraic approach to knots and braids

Knot semigroups: a new algebraic approach to knots and braids Knot semigroups: a new algebraic approach to knots and braids Alexei Vernitski University of Essex On the picture: the logo of a shopping centre in Colchester presents what in this talk we shall treat

More information

Modular Categories and Applications I

Modular Categories and Applications I I Modular Categories and Applications I Texas A&M University U. South Alabama, November 2009 Outline I 1 Topological Quantum Computation 2 Fusion Categories Ribbon and Modular Categories Fusion Rules and

More information

Cohomology of Categorical Self-Distributivity

Cohomology of Categorical Self-Distributivity Digital Commons@ Loyola Marymount University and Loyola Law chool Mathematics Faculty Works Mathematics --2008 Cohomology of Categorical elf-distributivity J. cott Carter University of outh Alabama Alissa.

More information

ON THE COBAR CONSTRUCTION OF A BIALGEBRA. 1. Introduction. Homology, Homotopy and Applications, vol.7(2), 2005, pp T.

ON THE COBAR CONSTRUCTION OF A BIALGEBRA. 1. Introduction. Homology, Homotopy and Applications, vol.7(2), 2005, pp T. Homology, Homotopy and Applications, vol.7(2), 2005, pp.109 122 ON THE COBAR CONSTRUCTION OF A BIALGEBRA T. KADEISHVILI (communicated by Tom Lada) Abstract We show that the cobar construction of a DG-bialgebra

More information

Evaluation of sl N -foams. Workshop on Quantum Topology Lille

Evaluation of sl N -foams. Workshop on Quantum Topology Lille Evaluation of sl N -foams Louis-Hadrien Robert Emmanuel Wagner Workshop on Quantum Topology Lille a b a a + b b a + b b + c c a a + b + c a b a a + b b a + b b + c c a a + b + c Definition (R. Wagner,

More information

TCC Homological Algebra: Assignment #3 (Solutions)

TCC Homological Algebra: Assignment #3 (Solutions) TCC Homological Algebra: Assignment #3 (Solutions) David Loeffler, d.a.loeffler@warwick.ac.uk 30th November 2016 This is the third of 4 problem sheets. Solutions should be submitted to me (via any appropriate

More information

Quantum Groups and Link Invariants

Quantum Groups and Link Invariants Quantum Groups and Link Invariants Jenny August April 22, 2016 1 Introduction These notes are part of a seminar on topological field theories at the University of Edinburgh. In particular, this lecture

More information

Remarks on Chern-Simons Theory. Dan Freed University of Texas at Austin

Remarks on Chern-Simons Theory. Dan Freed University of Texas at Austin Remarks on Chern-Simons Theory Dan Freed University of Texas at Austin 1 MSRI: 1982 2 Classical Chern-Simons 3 Quantum Chern-Simons Witten (1989): Integrate over space of connections obtain a topological

More information

Past Research Sarah Witherspoon

Past Research Sarah Witherspoon Past Research Sarah Witherspoon I work on the cohomology, structure, and representations of various types of rings, such as Hopf algebras and group-graded algebras. My research program has involved collaborations

More information

arxiv: v1 [math.gt] 11 Aug 2008

arxiv: v1 [math.gt] 11 Aug 2008 Link invariants from finite Coxeter racks Sam Nelson Ryan Wieghard arxiv:0808.1584v1 [math.gt] 11 Aug 2008 Abstract We study Coxeter racks over Z n and the knot and link invariants they define. We exploit

More information

COLOR LIE RINGS AND PBW DEFORMATIONS OF SKEW GROUP ALGEBRAS

COLOR LIE RINGS AND PBW DEFORMATIONS OF SKEW GROUP ALGEBRAS COLOR LIE RINGS AND PBW DEFORMATIONS OF SKEW GROUP ALGEBRAS S. FRYER, T. KANSTRUP, E. KIRKMAN, A.V. SHEPLER, AND S. WITHERSPOON Abstract. We investigate color Lie rings over finite group algebras and their

More information

Towers of algebras categorify the Heisenberg double

Towers of algebras categorify the Heisenberg double Towers of algebras categorify the Heisenberg double Joint with: Oded Yacobi (Sydney) Alistair Savage University of Ottawa Slides available online: AlistairSavage.ca Preprint: arxiv:1309.2513 Alistair Savage

More information

ALGEBRAS IN MONOIDAL CATEGORIES

ALGEBRAS IN MONOIDAL CATEGORIES F CRM 22 5 12 p. 1/24 ALGEBRAS IN MONOIDAL CATEGORIES J urg hs c en Fu F CRM 22 5 12 p. 2/24 Motivation MESSAGE : algebras in monoidal categories are natural and nice F CRM 22 5 12 p. 2/24 Motivation POSSIBLE

More information

Hochschild and cyclic homology of a family of Auslander algebras

Hochschild and cyclic homology of a family of Auslander algebras Hochschild and cyclic homology of a family of Auslander algebras Rachel Taillefer Abstract In this paper, we compute the Hochschild and cyclic homologies of the Auslander algebras of the Taft algebras

More information

Ezra Getzler and John D. S. Jones Harvard University and University of Warwick

Ezra Getzler and John D. S. Jones Harvard University and University of Warwick A -ALGEBRAS AND THE CYCLIC BAR COMPLEX Ezra Getzler and John D. S. Jones Harvard University and University of Warwick This paper arose from our use of Chen s theory of iterated integrals as a tool in the

More information

Unstable modules over the Steenrod algebra revisited

Unstable modules over the Steenrod algebra revisited 245 288 245 arxiv version: fonts, pagination and layout may vary from GTM published version Unstable modules over the Steenrod algebra revisited GEOREY M L POWELL A new and natural description of the category

More information

DEFORMATIONS OF (BI)TENSOR CATEGORIES

DEFORMATIONS OF (BI)TENSOR CATEGORIES DEFORMATIONS OF (BI)TENSOR CATEGORIES Louis Crane and David N. Yetter Department of Mathematics Kansas State University Manhattan, KS 66506 arxiv:q-alg/9612011v1 5 Dec 1996 1 Introduction In [1], a new

More information

arxiv:quant-ph/ v1 1 Jul 2002

arxiv:quant-ph/ v1 1 Jul 2002 Commutativity and the third Reidemeister movement Philippe Leroux Institut de Recherche Mathématique, Université de Rennes I and CNRS UMR 6625 Campus de Beaulieu, 35042 Rennes Cedex, France, philippe.leroux@univ-rennes.fr

More information

Relative Hopf Modules in the Braided Monoidal Category L M 1

Relative Hopf Modules in the Braided Monoidal Category L M 1 International Journal of Algebra, Vol. 8, 2014, no. 15, 733-738 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2014.4994 Relative Hopf Modules in the Braided Monoidal Category L M 1 Wenqiang

More information

Homological Algebra and Differential Linear Logic

Homological Algebra and Differential Linear Logic Homological Algebra and Differential Linear Logic Richard Blute University of Ottawa Ongoing discussions with Robin Cockett, Geoff Cruttwell, Keith O Neill, Christine Tasson, Trevor Wares February 24,

More information

Classical Yang-Baxter Equation and Its Extensions

Classical Yang-Baxter Equation and Its Extensions (Joint work with Li Guo, Xiang Ni) Chern Institute of Mathematics, Nankai University Beijing, October 29, 2010 Outline 1 What is classical Yang-Baxter equation (CYBE)? 2 Extensions of CYBE: Lie algebras

More information

Hopf Algebras. Zajj Daugherty. March 6, 2012

Hopf Algebras. Zajj Daugherty. March 6, 2012 Hopf Algebras Zajj Daugherty March 6, 2012 Big idea: The Hopf algebra structure is essentially what one needs in order to guarantee that tensor products of modules are also modules Definition A bialgebra

More information

Quantum Information, the Jones Polynomial and Khovanov Homology Louis H. Kauffman Math, UIC 851 South Morgan St. Chicago, IL 60607-7045 www.math.uic.edu/~kauffman http://front.math.ucdavis.edu/author/l.kauffman

More information

K theory of C algebras

K theory of C algebras K theory of C algebras S.Sundar Institute of Mathematical Sciences,Chennai December 1, 2008 S.Sundar Institute of Mathematical Sciences,Chennai ()K theory of C algebras December 1, 2008 1 / 30 outline

More information

arxiv: v1 [math.gr] 23 Dec 2010

arxiv: v1 [math.gr] 23 Dec 2010 Automorphism groups of Quandles arxiv:1012.5291v1 [math.gr] 23 Dec 2010 Mohamed Elhamdadi University of South Florida Ricardo Restrepo Georgia Institute of Technology Abstract Jennifer MacQuarrie University

More information

Lie theory of multiplicative structures.

Lie theory of multiplicative structures. Lie theory of multiplicative structures. T. Drummond (UFRJ) Workshop on Geometric Structures on Lie groupoids - Banff, 2017 Introduction Goal: Survey various results regarding the Lie theory of geometric

More information

ON A HIGHER STRUCTURE ON OPERADIC DEFORMATION COMPLEXES

ON A HIGHER STRUCTURE ON OPERADIC DEFORMATION COMPLEXES Theory and Applications of Categories, Vol. 33, No. 32, 2018, pp. 988 1030. ON A HIGHER STRUCTURE ON OPERADIC DEFORMATION COMPLEXES BORIS SHOIKHET Abstract. In this paper, we prove that there is a canonical

More information

A Survey of Quantum Enhancements

A Survey of Quantum Enhancements A Survey of Quantum Enhancements Sam Nelson ariv:1805.12230v1 [math.gt] 30 May 2018 Abstract In this short survey article we collect the current state of the art in the nascent field of quantum enhancements,

More information

Iterated Bar Complexes of E-infinity Algebras and Homology Theories

Iterated Bar Complexes of E-infinity Algebras and Homology Theories Iterated Bar Complexes of E-infinity Algebras and Homology Theories BENOIT FRESSE We proved in a previous article that the bar complex of an E -algebra inherits a natural E -algebra structure. As a consequence,

More information

Higher Algebra with Operads

Higher Algebra with Operads University of Nice Sophia Antipolis (Newton Institute, Cambridge) British Mathematical Colloquium March 27, 2013 Plan 1 2 3 Multicomplexes A -algebras Homotopy data and mixed complex structure Homotopy

More information

Universal K-matrices via quantum symmetric pairs

Universal K-matrices via quantum symmetric pairs Universal K-matrices via quantum symmetric pairs Martina Balagović (joint work with Stefan Kolb) School of Mathematics and Statistics Newcastle University Leicester, September 215 1. Introduction - Universal

More information

The Maschke Theorem for L-R-smash Products

The Maschke Theorem for L-R-smash Products 139ò16Ï ê Æ? Ð Vol.39, No.6 2010c12 ADVANCES IN MATHEMATICS Dec., 2010 The Maschke Theorem for L-R-smash Products NIU Ruifang, ZHOU Xiaoyan, WANG Yong, ZHANG Liangyun (Dept. of Math., Nanjing Agricultural

More information

CATEGORY THEORY. Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths.

CATEGORY THEORY. Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths. CATEGORY THEORY PROFESSOR PETER JOHNSTONE Cats have been around for 70 years. Eilenberg + Mac Lane =. Cats are about building bridges between different parts of maths. Definition 1.1. A category C consists

More information

CLASSICAL R-MATRICES AND NOVIKOV ALGEBRAS

CLASSICAL R-MATRICES AND NOVIKOV ALGEBRAS CLASSICAL R-MATRICES AND NOVIKOV ALGEBRAS DIETRICH BURDE Abstract. We study the existence problem for Novikov algebra structures on finite-dimensional Lie algebras. We show that a Lie algebra admitting

More information

FROM THE FORMALITY THEOREM OF KONTSEVICH AND CONNES-KREIMER ALGEBRAIC RENORMALIZATION TO A THEORY OF PATH INTEGRALS

FROM THE FORMALITY THEOREM OF KONTSEVICH AND CONNES-KREIMER ALGEBRAIC RENORMALIZATION TO A THEORY OF PATH INTEGRALS FROM THE FORMALITY THEOREM OF KONTSEVICH AND CONNES-KREIMER ALGEBRAIC RENORMALIZATION TO A THEORY OF PATH INTEGRALS Abstract. Quantum physics models evolved from gauge theory on manifolds to quasi-discrete

More information

THE NONCOMMUTATIVE TORUS

THE NONCOMMUTATIVE TORUS THE NONCOMMUTATIVE TORUS The noncommutative torus as a twisted convolution An ordinary two-torus T 2 with coordinate functions given by where x 1, x 2 [0, 1]. U 1 = e 2πix 1, U 2 = e 2πix 2, (1) By Fourier

More information

HOM-TENSOR CATEGORIES. Paul T. Schrader. A Dissertation

HOM-TENSOR CATEGORIES. Paul T. Schrader. A Dissertation HOM-TENSOR CATEGORIES Paul T. Schrader A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

More information

Skew braces. Leandro Vendramin Joint work with Agata Smoktunowicz. Universidad de Buenos Aires

Skew braces. Leandro Vendramin Joint work with Agata Smoktunowicz. Universidad de Buenos Aires Skew braces Leandro Vendramin Joint work with Agata Smoktunowicz Universidad de Buenos Aires Groups, rings and the Yang Baxter equation Spa, Belgium June 2017 In 1992 Drinfeld propose to study set-theoretical

More information

arxiv:math/ v2 [math.gt] 1 Mar 2007

arxiv:math/ v2 [math.gt] 1 Mar 2007 Cohomology of Categorical elf-distributivity arxiv:math/060747v [math.gt] Mar 007 J. cott Carter University of outh Alabama Mohamed Elhamdadi University of outh Florida February, 008 Abstract Alissa. Crans

More information

King s Research Portal

King s Research Portal King s Research Portal DOI: 10.1016/j.jalgebra.2013.02.042 Document Version Early version, also known as pre-print Link to publication record in King's Research Portal Citation for published version (APA):

More information

Chapter 9 Miscellany; Some applications to low-dimensional topology

Chapter 9 Miscellany; Some applications to low-dimensional topology Chapter 9 Miscellany; Some applications to low-dimensional topology Abstract In this chapter, we introduce some applications to low-dimensional topology. To be precise, in 9.1, we see the Blanchfield pairing

More information

Subfactors and Modular Tensor Categories

Subfactors and Modular Tensor Categories UNSW Topological matter, strings, K-theory and related areas University of Adelaide September 2016 Outline Motivation What is a modular tensor category? Where do modular tensor categories come from? Some

More information

FOUNDATIONS OF TOPOLOGICAL RACKS AND QUANDLES

FOUNDATIONS OF TOPOLOGICAL RACKS AND QUANDLES FOUNDATIONS OF TOPOLOGICAL RACKS AND QUANDLES MOHAMED ELHAMDADI AND EL-KAÏOUM M. MOUTUOU Dedicated to Professor Józef H. Przytycki for his 60th birthday ABSTRACT. We give a foundational account on topological

More information

Defects in topological field theory: from categorical tools to applications in physics and representation theory

Defects in topological field theory: from categorical tools to applications in physics and representation theory Defects in topological field theory: from categorical tools to applications in physics and representation theory Christoph Schweigert Mathematics Department Hamburg University based on work with Jürgen

More information

We then have an analogous theorem. Theorem 1.2.

We then have an analogous theorem. Theorem 1.2. 1. K-Theory of Topological Stacks, Ryan Grady, Notre Dame Throughout, G is sufficiently nice: simple, maybe π 1 is free, or perhaps it s even simply connected. Anyway, there are some assumptions lurking.

More information

R_ -MATRICES, TRIANGULAR L_ -BIALGEBRAS, AND QUANTUM_ GROUPS. Denis Bashkirov and Alexander A. Voronov. IMA Preprint Series #2444.

R_ -MATRICES, TRIANGULAR L_ -BIALGEBRAS, AND QUANTUM_ GROUPS. Denis Bashkirov and Alexander A. Voronov. IMA Preprint Series #2444. R_ -MATRICES, TRIANGULAR L_ -BIALGEBRAS, AND QUANTUM_ GROUPS By Denis Bashkirov and Alexander A. Voronov IMA Preprint Series #2444 (December 2014) INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS UNIVERSITY

More information

Categorical quantum mechanics

Categorical quantum mechanics Categorical quantum mechanics Chris Heunen 1 / 76 Categorical Quantum Mechanics? Study of compositional nature of (physical) systems Primitive notion: forming compound systems 2 / 76 Categorical Quantum

More information

Lie bialgebras real Cohomology

Lie bialgebras real Cohomology Journal of Lie Theory Volume 7 (1997) 287 292 C 1997 Heldermann Verlag Lie bialgebras real Cohomology Miloud Benayed Communicated by K.-H. Neeb Abstract. Let g be a finite dimensional real Lie bialgebra.

More information

Matilde Marcolli and Goncalo Tabuada. Noncommutative numerical motives and the Tannakian formalism

Matilde Marcolli and Goncalo Tabuada. Noncommutative numerical motives and the Tannakian formalism Noncommutative numerical motives and the Tannakian formalism 2011 Motives and Noncommutative motives Motives (pure): smooth projective algebraic varieties X cohomology theories H dr, H Betti, H etale,...

More information

arxiv: v1 [math.ra] 11 Apr 2016

arxiv: v1 [math.ra] 11 Apr 2016 arxiv:1604.02950v1 [math.ra] 11 Apr 2016 Rota-Baxter coalgebras and Rota-Baxter bialgebras Tianshui Ma and Linlin Liu 1 Department of Mathematics, School of Mathematics and Information Science, Henan Normal

More information

Research Article On Hopf-Cyclic Cohomology and Cuntz Algebra

Research Article On Hopf-Cyclic Cohomology and Cuntz Algebra ISRN Algebra Volume 2013, Article ID 793637, 5 pages http://dx.doi.org/10.1155/2013/793637 Research Article On Hopf-Cyclic Cohomology and Cuntz Algebra Andrzej Sitarz 1,2 1 Institute of Physics, Jagiellonian

More information

Vertex algebras, chiral algebras, and factorisation algebras

Vertex algebras, chiral algebras, and factorisation algebras Vertex algebras, chiral algebras, and factorisation algebras Emily Cliff University of Illinois at Urbana Champaign 18 September, 2017 Section 1 Vertex algebras, motivation, and road-plan Definition A

More information

Hopf cyclic cohomology and transverse characteristic classes

Hopf cyclic cohomology and transverse characteristic classes Hopf cyclic cohomoloy and transverse characteristic classes Lecture 2: Hopf cyclic complexes Bahram Ranipour, UNB Based on joint works with Henri Moscovici and with Serkan Sütlü Vanderbilt University May

More information

SOME RESULTS ON THE YANG-BAXTER EQUATIONS AND APPLICATIONS

SOME RESULTS ON THE YANG-BAXTER EQUATIONS AND APPLICATIONS SOME RESULTS ON THE YANG-BAXTER EQUATIONS AND APPLICATIONS F. F. NICHITA 1, B. P. POPOVICI 2 1 Institute of Mathematics Simion Stoilow of the Romanian Academy P.O. Box 1-764, RO-014700 Bucharest, Romania

More information

The Knot Quandle. Steven Read

The Knot Quandle. Steven Read The Knot Quandle Steven Read Abstract A quandle is a set with two operations that satisfy three conditions. For example, there is a quandle naturally associated to any group. It turns out that one can

More information