2.161 Signal Processing: Continuous and Discrete

Size: px
Start display at page:

Download "2.161 Signal Processing: Continuous and Discrete"

Transcription

1 MIT OpenCourseWare Signal Processing: Continuous and Discrete Fall 008 For information about citing these materials or our Terms of Use, visit:

2 M MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING.6 Signal Processing - Continuous and Discrete Fall Term 008 Solution of Problem Set Assigned: Oct., 008 Due: Oct. 9, 008 Problem : We have shown in class (see the Fourier handout): F {sin(ω c t)} = jπ (δ(ω ω c ) δ(ω + ω c )) F {cos(ω c t)} = π (δ(ω ω c ) + δ(ω + ω c )) (a) When f audio 0, f AM (t) = sin(ω c t), and from above F. M M? M? (b) There are several ways of doing this. For example (i) Expand f AM (t) into sinusoidal components using this trigonometric relationship: cosαsin β = (sin (α + β) + sin (β α)) f AM (t) = ( + af audio (t))sin (ω c t) = ( (0.5 cos(π 000t) cos(π 000t))sin(ω c i) = sin(ω c t) = sin(ω c t) +0.5 cos(π000t) sin(ω c t) +0.5 cos(π000t) sin(ω c t) +0.5 (sin((ω c + 000π)t) + sin((ω c 000π)t)) (sin((ω c + 000π)t) + sin((ω c 000π)t))

3 and take the Fourier transform of each of the five components: F AM (jω) = jπ{(δ(ω ω c ) δ(ω + ω c )) (δ(ω (ω c 000π)) δ(ω + (ω c 000π))) (δ(ω (ω c + 000π)) δ(ω + (ω c + 000π))) (δ(ω (ω c 000π)) δ(ω + (ω c 000π))) (δ(ω (ω c + 000π)) δ(ω + (ω c + 000π))) } giving a total of 0 impulse components in the spectrum. (ii) Alternatively you can recognize that the expansion to f AM (t) = sin(ω c t) cos(π000t) sin(ω c t) cos(π000t) sin(ω c t) involves time-domain products and these will result in frequency-domain convolutions, so that F AM (jω) = F c (jω) + F c (jω) F 000 (jω) + F c (jω) F 000 (jω) π π where F c (jω) = F {sin(ω c t)}, F 000 (jω) = F {0.5 cos(000πt)}, and F 000 (jω) = F {0.5 cos(000πt)}. The same result as in (i) will follow. H ω c 0 ω c ω 000π ω +000π c c ω 000π ω +000π c c ω c 000π ω c +000π ω c 000π ω +000π c (c) The following generalizes the results of part (b) H a a 0

4 = G (d) From the above figure it can be seen that the required bandwidth is ω u rad/s. Problem : This problem uses the time-reversal property of the Fourier transform, if F {f(t)} = F(jω) then F {f( t)} = F( jω), and if f(t) is real then F( jω) = F(jω), so that F {f( t)} = F(jω). Method(). G(jω) = F(jω)H(jω).. X(jω) = G(jω)H(jω). 3. Y (jω) = X(jω) = F(jω)H(jω)H(jω) = F(jω)H(jω)H(jω) = F(jω) H(jω). The equivalent transfer function is which is real, that is with zero phase shift. Method(). G(jω) = F(jω)H(jω).. X(jω) = F(jω)H(jω). H eq = H(jω) 3. Y (jω) = G(jω) + X(jω) = F(jω)H(jω) + F(jω)H(jω) = F(jω)R {H(jω)}. The equivalent transfer function is which is real, that is with zero phase shift. H eq = R {H(jω)} Note that because it squares the frequency response magnitude, method () will have a sharper cut-off characteristic than method (). Problem 3: Note: There was a typo in the problem statement, that stated that the phase-shift at 50 Hz should be π π. The intention was for a phase shift of rad. The all-pass transfer function will only generate a phase-lead, therefore an extra inversion is required to create a lag. No penalty is imposed for missing this point. M I F = A M : I =

5 K! = N ) + L = " O L! H(jω) = θ φ = θ π since θ + φ = π, then: ( ) ω H(jω) = π tan. a π First Solution: this solution requires three op-amps for phase shift. At 50 Hz: ( ) π 00π H(jω) = = π tan. a giving a = 00π. The filter can be achieved with the following block diagram: I N I Consider the following circuit, which is derived from Fig. 7 in the op-amp filter handout: 8 E ) L # $ )! 8 K J For amplifier A V in v v v = but v = v R R and for amplifier A v = v or v = R 3 Csv R3 Cs Eliminating v v R =. V in R R 3 Cs + (R + R ) For amplifier A 3 R6 R6 V out = v v R5 R ( ) R 6 R 3 C R 6 = s v R 5 R

6 ) + " ) L and substituting for v gives the transfer function V out (s) R R 6 s R 5 /(R 3 R C) =. V in (s) R R 5 s + (R + R )/(R R 3 C) For an all-pass filter with a = 00π we require R 5 R + R = 00π and = 00π. R 3 R C R R 3 C Let C = µf, R 3 = R = 0 kω, then R 5 = 3. kω. Let R = 0 kω, then R =. kω. For unity gain we require R R 6 R R 5 =, or R 6 = =.6 kω. R R 5 R Alternative Solution: this solution requires only two op-amps for π phase shift! Write the transfer function as: H(s) = s a a = s + a s + a and simply implement a first-order block and a summer. Consider the circuit shown below: 8 E L! # 8 K J For amplifier A, v /V in = Z in /Z f, where Z in = R and Z = R /(R Cs+) are the input and feedback impedances respectively. Then v V in = R C. (s + /(R C)) Amplifier A is simply an inverting summer, and R 5 R 5 v out = R 3 V in R v R 5 R 5 = V in +. V in R3 R R C (s + /(R C)) Let R 3 = R = R 5, then ( ) V out /(R C) =. V in (s + /(R C))

7 which actually has the implicit inversion required in the (erroneous) problem statement. Let R 3 = R = R 5 = 0 kω, and C = 0.µF. Then = a = 00π giving R = 3.83kΩ R C = a = 00π giving R = 5.9kΩ R C Problem : (a) Define Ω c as the either upper or lower -3db (0.707) response frequencies. So from the definition of Ω c : jω c H bp (jω c ) = = (jωc ) p + jω c + Ω Ω Now define α = c > 0, then: Ωp Ω c α values can be found from: α = ( + ) ± ( + ) Now define equation roots as α u > α l > 0: Ω = Ωp Ω Ω + p jω c α = ( + ) ± + ( ) α = ( + ) ± + ( ) α u = ( + ) + + ( ) c = α α α + j ( α ) = ( α ) + ( α ) + α α + α = α α ( + + = 0 )α p

8 αl = ( + + ( ) ) Now note that for a stable filter > 0 and hence: ( ) Ω u = Ω p ( ) Ω l = Ω p + + (b) Δ = (Ω u Ω l ) > 0 Δ = Ω p(α u + α l α u α l ) Δ = Ω p (( + ) ( + ( + ( ) ) )) Δ = Ω p( + ( + + ) Δ = Ω ( + p ) Δ = Ω p ( ) Δ = Δ = Alternatively, we can further simplify Ω u and Ω l by realizing that we have a complete square form under square root and proceed from there: ( ) Ω u = Ω p = Ωp ( + + ) = ( + + ) () () ( ) Ω l = Ω p + + = Ω p ( + ) () = Ω p ( + ) () Δ = (Ω u Ω l ) =

9 (c) Note that = 00 (π) rad/s and Δ = 0 (π) rad/s: H bp (s) = H bp (s) = s Ωp s + s + Ω p Δs s + Δs + Ω p H bp (s) = 0πs s + 0πs + (00π) π Problem 5: Given y(t) = sin(ω 0 t) and y (t) = sin(ω t) with ω 0 < ω N = < ω ΔT (a) Assume ω = kω N ω 0 for k a positive integer, then and when t = nδt, for integer N, π y (t) = sin((kω N ω 0 )t) = sin((k ω 0 )t) ΔT y (nδt) = sin( ω 0 NΔT) = sin(ω 0 NΔT) = y(nδt) (b) Assume ω = kω N + ω 0 for k a positive integer, then π y (t) = sin((kω N + ω 0 )t) = sin((k ΔT and when t = nδt, for integer N, + ω 0 )t) y (nδt) = sin(ω 0 NΔT) = y(nδt) (c) To graphically demonstrate the concept of frequency folding and sign changes (i) Assume ΔT =.0 s. so that ω N = 50π rad/s (5Hz). Let ω = 80π rad/s (0Hz) so that k = and ω 0 = 0π rad/s (0 Hz). The following plot shows y (t) = sin(80πt), the samples taken at 0.0 sec intervals, and y 0 (t), showing the outof-phase aliased component at a frequency of 0π rad/s.

10 y(t) = sin(80 pi t) y(t) y(ndt) (samples) y(t) (aliased) t (sec) (ii) Assume ΔT =.0 s. so that ω N = 50π rad/s (5 Hz). Let ω = 0π rad/s (60 Hz) so that k = and ω 0 = 0π rad/s (0Hz). The following plot shows y (t) = sin(0πt), the samples taken at 0.0 sec intervals, and y 0 (t), showing the in-phase aliased component at a frequency of 0π rad/s. y(t) = sin(0 pi t) y(t) y(ndt) (samples) y(t) (aliased) t (sec) The above examples show that frequencies of 60 Hz and 0 Hz will both be aliased to an apparent component of 0 Hz. (d) From parts (a) and (b) we see that an under-sampled sinusoid, that is a sinusoids is

11 above the Nyquist frequency ω N will fold into either an in-phase or out-of phase sinusoid, The frequencies of the folded sinusoids are given by: ω 0 = { ω kω N, ω > ω N (in-phase) kω N ω, ω < ω N (out-of-phase) Given y(t) = 5 sin(π(5)t) + sin(π(75)t) + 3 sin(π(5)t) sampled at 00 samples/sec. Half the sampling frequency is 50 Hz (ω N = 00π rad/s). Using the equation above we find that the 75Hz sinusoid folds into an out-of-phase sinusoid at 5 Hz, and the 5 Hz sinusoid folds into a 5 Hz in-phase sinusoid. Therefore the aliased waveform is y(t) = 5 sin(π(5)t) sin(π(5)t) + 3 sin(π(5)t) = 6 sin(π(5)t) The following plot demonstrates this. 8 6 y(t) 0 6 y(t) aliased samples t (sec)

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Homework 4 May 2017 1. An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Determine the impulse response of the system. Rewriting as y(t) = t e (t

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 2011) Final Examination December 19, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 1 pm 4 2 pm Grades will be determined by the correctness of your answers

More information

2.161 Signal Processing: Continuous and Discrete

2.161 Signal Processing: Continuous and Discrete MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 28 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal. EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuous-time LTI system that the input signal = 3 u(t) produces

More information

2.161 Signal Processing: Continuous and Discrete

2.161 Signal Processing: Continuous and Discrete MI OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 8 For information about citing these materials or our erms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSES INSIUE

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

Assignment 4 Solutions Continuous-Time Fourier Transform

Assignment 4 Solutions Continuous-Time Fourier Transform Assignment 4 Solutions Continuous-Time Fourier Transform ECE 3 Signals and Systems II Version 1.01 Spring 006 1. Properties of complex numbers. Let c 1 α 1 + jβ 1 and c α + jβ be two complex numbers. a.

More information

Homework 7 Solution EE235, Spring Find the Fourier transform of the following signals using tables: te t u(t) h(t) = sin(2πt)e t u(t) (2)

Homework 7 Solution EE235, Spring Find the Fourier transform of the following signals using tables: te t u(t) h(t) = sin(2πt)e t u(t) (2) Homework 7 Solution EE35, Spring. Find the Fourier transform of the following signals using tables: (a) te t u(t) h(t) H(jω) te t u(t) ( + jω) (b) sin(πt)e t u(t) h(t) sin(πt)e t u(t) () h(t) ( ejπt e

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.011: Introduction to Communication, Control and Signal Processing QUIZ 1, March 16, 2010 ANSWER BOOKLET

More information

Homework 5 EE235, Summer 2013 Solution

Homework 5 EE235, Summer 2013 Solution Homework 5 EE235, Summer 23 Solution. Fourier Series. Determine w and the non-zero Fourier series coefficients for the following functions: (a f(t 2 cos(3πt + sin(πt + π 3 w π f(t e j3πt + e j3πt + j2

More information

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n.

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n. ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Consider the following periodic signal, depicted below: {, if n t < n +, for any integer n,

More information

Circuit Analysis Using Fourier and Laplace Transforms

Circuit Analysis Using Fourier and Laplace Transforms EE2015: Electrical Circuits and Networks Nagendra Krishnapura https://wwweeiitmacin/ nagendra/ Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India July-November

More information

EE 16B Final, December 13, Name: SID #:

EE 16B Final, December 13, Name: SID #: EE 16B Final, December 13, 2016 Name: SID #: Important Instructions: Show your work. An answer without explanation is not acceptable and does not guarantee any credit. Only the front pages will be scanned

More information

Assignment 3 Solutions

Assignment 3 Solutions Assignment Solutions Networks and systems August 8, 7. Consider an LTI system with transfer function H(jw) = input is sin(t + π 4 ), what is the output? +jw. If the Solution : C For an LTI system with

More information

Homework 8 Solutions

Homework 8 Solutions EE264 Dec 3, 2004 Fall 04 05 HO#27 Problem Interpolation (5 points) Homework 8 Solutions 30 points total Ω = 2π/T f(t) = sin( Ω 0 t) T f (t) DAC ˆf(t) interpolated output In this problem I ll use the notation

More information

Signals and Systems Spring 2004 Lecture #9

Signals and Systems Spring 2004 Lecture #9 Signals and Systems Spring 2004 Lecture #9 (3/4/04). The convolution Property of the CTFT 2. Frequency Response and LTI Systems Revisited 3. Multiplication Property and Parseval s Relation 4. The DT Fourier

More information

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1 ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Let x be a periodic continuous-time signal with period, such that {, for.5 t.5 x(t) =, for.5

More information

Transform Representation of Signals

Transform Representation of Signals C H A P T E R 3 Transform Representation of Signals and LTI Systems As you have seen in your prior studies of signals and systems, and as emphasized in the review in Chapter 2, transforms play a central

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, Signals & Systems Sampling P1

Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, Signals & Systems Sampling P1 Homework: 4.50 & 4.51 of the attachment Tutorial Problems: 7.41, 7.44, 7.47, 7.49 Signals & Systems Sampling P1 Undersampling & Aliasing Undersampling: insufficient sampling frequency ω s < 2ω M Perfect

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 2-May-05 COURSE: ECE-2025 NAME: GT #: LAST, FIRST (ex: gtz123a) Recitation Section: Circle the date & time when

More information

X. Chen More on Sampling

X. Chen More on Sampling X. Chen More on Sampling 9 More on Sampling 9.1 Notations denotes the sampling time in second. Ω s = 2π/ and Ω s /2 are, respectively, the sampling frequency and Nyquist frequency in rad/sec. Ω and ω denote,

More information

Lecture 8: Signal Reconstruction, DT vs CT Processing. 8.1 Reconstruction of a Band-limited Signal from its Samples

Lecture 8: Signal Reconstruction, DT vs CT Processing. 8.1 Reconstruction of a Band-limited Signal from its Samples EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 8: Signal Reconstruction, D vs C Processing Oct 24, 2001 Prof: J. Bilmes

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal rocessing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions 8-90 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 08 Midterm Solutions Name: Andrew ID: Problem Score Max 8 5 3 6 4 7 5 8 6 7 6 8 6 9 0 0 Total 00 Midterm Solutions. (8 points) Indicate whether

More information

V. IIR Digital Filters

V. IIR Digital Filters Digital Signal Processing 5 March 5, V. IIR Digital Filters (Deleted in 7 Syllabus). (dded in 7 Syllabus). 7 Syllabus: nalog filter approximations Butterworth and Chebyshev, Design of IIR digital filters

More information

ANALOG AND DIGITAL SIGNAL PROCESSING CHAPTER 3 : LINEAR SYSTEM RESPONSE (GENERAL CASE)

ANALOG AND DIGITAL SIGNAL PROCESSING CHAPTER 3 : LINEAR SYSTEM RESPONSE (GENERAL CASE) 3. Linear System Response (general case) 3. INTRODUCTION In chapter 2, we determined that : a) If the system is linear (or operate in a linear domain) b) If the input signal can be assumed as periodic

More information

6.003: Signals and Systems. CT Fourier Transform

6.003: Signals and Systems. CT Fourier Transform 6.003: Signals and Systems CT Fourier Transform April 8, 200 CT Fourier Transform Representing signals by their frequency content. X(jω)= x(t)e jωt dt ( analysis equation) x(t)= 2π X(jω)e jωt dω ( synthesis

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

ECE 308 SIGNALS AND SYSTEMS SPRING 2013 Examination #2 14 March 2013

ECE 308 SIGNALS AND SYSTEMS SPRING 2013 Examination #2 14 March 2013 ECE 308 SIGNALS AND SYSTEMS SPRING 2013 Examination #2 14 March 2013 Name: Instructions: The examination lasts for 75 minutes and is closed book, closed notes. No electronic devices are permitted, including

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.003: Signals and Systems CT Feedback and Control October 20, 2011 1 Mid-term Examination #2 Wednesday, October 26, 7:30-9:30pm, No recitations on the day of the exam. Coverage: Lectures 1 12 Recitations

More information

EE Homework 13 - Solutions

EE Homework 13 - Solutions EE3054 - Homework 3 - Solutions. (a) The Laplace transform of e t u(t) is s+. The pole of the Laplace transform is at which lies in the left half plane. Hence, the Fourier transform is simply the Laplace

More information

ECE3050 Assignment 7

ECE3050 Assignment 7 ECE3050 Assignment 7. Sketch and label the Bode magnitude and phase plots for the transfer functions given. Use loglog scales for the magnitude plots and linear-log scales for the phase plots. On the magnitude

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuous-time active filters. (3 points) Continuous time filters use resistors

More information

H(s) = 2(s+10)(s+100) (s+1)(s+1000)

H(s) = 2(s+10)(s+100) (s+1)(s+1000) Problem 1 Consider the following transfer function H(s) = 2(s10)(s100) (s1)(s1000) (a) Draw the asymptotic magnitude Bode plot for H(s). Solution: The transfer function is not in standard form to sketch

More information

George Mason University Signals and Systems I Spring 2016

George Mason University Signals and Systems I Spring 2016 George Mason University Signals and Systems I Spring 206 Problem Set #6 Assigned: March, 206 Due Date: March 5, 206 Reading: This problem set is on Fourier series representations of periodic signals. The

More information

EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3. Name:

EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3. Name: EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3 Instructions: Closed book, closed notes; Computers and cell phones are not allowed Scientific calculators are allowed Complete

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2

Multimedia Signals and Systems - Audio and Video. Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Multimedia Signals and Systems - Audio and Video Signal, Image, Video Processing Review-Introduction, MP3 and MPEG2 Kunio Takaya Electrical and Computer Engineering University of Saskatchewan December

More information

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS DESIGN OF CMOS ANALOG INEGRAED CIRCUIS Franco Maloberti Integrated Microsistems Laboratory University of Pavia Discrete ime Signal Processing F. Maloberti: Design of CMOS Analog Integrated Circuits Discrete

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels) GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-14 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 IT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete all 2008 or information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. assachusetts

More information

7. Find the Fourier transform of f (t)=2 cos(2π t)[u (t) u(t 1)]. 8. (a) Show that a periodic signal with exponential Fourier series f (t)= δ (ω nω 0

7. Find the Fourier transform of f (t)=2 cos(2π t)[u (t) u(t 1)]. 8. (a) Show that a periodic signal with exponential Fourier series f (t)= δ (ω nω 0 Fourier Transform Problems 1. Find the Fourier transform of the following signals: a) f 1 (t )=e 3 t sin(10 t)u (t) b) f 1 (t )=e 4 t cos(10 t)u (t) 2. Find the Fourier transform of the following signals:

More information

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit dwm/courses/2tf

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit   dwm/courses/2tf Time-Frequency Analysis II (HT 20) 2AH 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 20 For hints and answers visit www.robots.ox.ac.uk/ dwm/courses/2tf David Murray. A periodic

More information

Up-Sampling (5B) Young Won Lim 11/15/12

Up-Sampling (5B) Young Won Lim 11/15/12 Up-Sampling (5B) Copyright (c) 9,, Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version. or any later version

More information

ECE 201 Fall 2009 Final Exam

ECE 201 Fall 2009 Final Exam ECE 01 Fall 009 Final Exam December 16, 009 Division 0101: Tan (11:30am) Division 001: Clark (7:30 am) Division 0301: Elliott (1:30 pm) Instructions 1. DO NOT START UNTIL TOLD TO DO SO.. Write your Name,

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.11: Introduction to Communication, Control and Signal Processing QUIZ 1, March 16, 21 QUESTION BOOKLET

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2)

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2) E.5 Signals & Linear Systems Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & ) 1. Sketch each of the following continuous-time signals, specify if the signal is periodic/non-periodic,

More information

OPERATIONAL AMPLIFIER APPLICATIONS

OPERATIONAL AMPLIFIER APPLICATIONS OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Non-inverting Configuration (Chapter 2.3) 2.4 Difference

More information

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name:

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name: ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, 205 Name:. The quiz is closed book, except for one 2-sided sheet of handwritten notes. 2. Turn off

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

Chap 4. Sampling of Continuous-Time Signals

Chap 4. Sampling of Continuous-Time Signals Digital Signal Processing Chap 4. Sampling of Continuous-Time Signals Chang-Su Kim Digital Processing of Continuous-Time Signals Digital processing of a CT signal involves three basic steps 1. Conversion

More information

EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 19, Cover Sheet

EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 19, Cover Sheet EE301 Signals and Systems In-Class Exam Exam 3 Thursday, Apr. 19, 2012 Cover Sheet Test Duration: 75 minutes. Coverage: Chaps. 5,7 Open Book but Closed Notes. One 8.5 in. x 11 in. crib sheet Calculators

More information

Sinusoidal Steady State Analysis

Sinusoidal Steady State Analysis Sinusoidal Steady State Analysis 9 Assessment Problems AP 9. [a] V = 70/ 40 V [b] 0 sin(000t +20 ) = 0 cos(000t 70 ).. I = 0/ 70 A [c] I =5/36.87 + 0/ 53.3 =4+j3+6 j8 =0 j5 =.8/ 26.57 A [d] sin(20,000πt

More information

2A1H Time-Frequency Analysis II

2A1H Time-Frequency Analysis II 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 209 For any corrections see the course page DW Murray at www.robots.ox.ac.uk/ dwm/courses/2tf. (a) A signal g(t) with period

More information

Problem Sheet 1 Examples of Random Processes

Problem Sheet 1 Examples of Random Processes RANDOM'PROCESSES'AND'TIME'SERIES'ANALYSIS.'PART'II:'RANDOM'PROCESSES' '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''Problem'Sheets' Problem Sheet 1 Examples of Random Processes 1. Give

More information

6.003: Signals and Systems. Applications of Fourier Transforms

6.003: Signals and Systems. Applications of Fourier Transforms 6.003: Signals and Systems Applications of Fourier Transforms November 7, 20 Filtering Notion of a filter. LTI systems cannot create new frequencies. can only scale magnitudes and shift phases of existing

More information

Module 4. Related web links and videos. 1. FT and ZT

Module 4. Related web links and videos. 1.  FT and ZT Module 4 Laplace transforms, ROC, rational systems, Z transform, properties of LT and ZT, rational functions, system properties from ROC, inverse transforms Related web links and videos Sl no Web link

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. I Reading:

More information

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002.

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002. The Johns Hopkins University Department of Electrical and Computer Engineering 505.460 Introduction to Linear Systems Fall 2002 Final exam Name: You are allowed to use: 1. Table 3.1 (page 206) & Table

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

ECE Circuit Theory. Final Examination. December 5, 2008

ECE Circuit Theory. Final Examination. December 5, 2008 ECE 212 H1F Pg 1 of 12 ECE 212 - Circuit Theory Final Examination December 5, 2008 1. Policy: closed book, calculators allowed. Show all work. 2. Work in the provided space. 3. The exam has 3 problems

More information

6.003 (Fall 2011) Quiz #3 November 16, 2011

6.003 (Fall 2011) Quiz #3 November 16, 2011 6.003 (Fall 2011) Quiz #3 November 16, 2011 Name: Kerberos Username: Please circle your section number: Section Time 2 11 am 3 1 pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

This homework will not be collected or graded. It is intended to help you practice for the final exam. Solutions will be posted.

This homework will not be collected or graded. It is intended to help you practice for the final exam. Solutions will be posted. 6.003 Homework #14 This homework will not be collected or graded. It is intended to help you practice for the final exam. Solutions will be posted. Problems 1. Neural signals The following figure illustrates

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Homework 6 Solutions

Homework 6 Solutions 8-290 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 208 Homework 6 Solutions. Part One. (2 points) Consider an LTI system with impulse response h(t) e αt u(t), (a) Compute the frequency response

More information

4.5. Applications of Trigonometry to Waves. Introduction. Prerequisites. Learning Outcomes

4.5. Applications of Trigonometry to Waves. Introduction. Prerequisites. Learning Outcomes Applications of Trigonometry to Waves 4.5 Introduction Waves and vibrations occur in many contexts. The water waves on the sea and the vibrations of a stringed musical instrument are just two everyday

More information

Lecture 7 ELE 301: Signals and Systems

Lecture 7 ELE 301: Signals and Systems Lecture 7 ELE 30: Signals and Systems Prof. Paul Cuff Princeton University Fall 20-2 Cuff (Lecture 7) ELE 30: Signals and Systems Fall 20-2 / 22 Introduction to Fourier Transforms Fourier transform as

More information

Homework 6 EE235, Spring 2011

Homework 6 EE235, Spring 2011 Homework 6 EE235, Spring 211 1. Fourier Series. Determine w and the non-zero Fourier series coefficients for the following functions: (a 2 cos(3πt + sin(1πt + π 3 w π e j3πt + e j3πt + 1 j2 [ej(1πt+ π

More information

IB Paper 6: Signal and Data Analysis

IB Paper 6: Signal and Data Analysis IB Paper 6: Signal and Data Analysis Handout 5: Sampling Theory S Godsill Signal Processing and Communications Group, Engineering Department, Cambridge, UK Lent 2015 1 / 85 Sampling and Aliasing All of

More information

6.003: Signals and Systems. CT Fourier Transform

6.003: Signals and Systems. CT Fourier Transform 6.003: Signals and Systems CT Fourier Transform April 8, 200 CT Fourier Transform Representing signals by their frequency content. X(jω)= x(t)e jωt dt ( analysis equation) x(t)= X(jω)e jωt dω ( synthesis

More information

EC Signals and Systems

EC Signals and Systems UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS Continuous time signals (CT signals), discrete time signals (DT signals) Step, Ramp, Pulse, Impulse, Exponential 1. Define Unit Impulse Signal [M/J 1], [M/J

More information

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ

Frequency Response. Re ve jφ e jωt ( ) where v is the amplitude and φ is the phase of the sinusoidal signal v(t). ve jφ 27 Frequency Response Before starting, review phasor analysis, Bode plots... Key concept: small-signal models for amplifiers are linear and therefore, cosines and sines are solutions of the linear differential

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 05 IIR Design 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Digital Filters Ying Sun

Digital Filters Ying Sun Digital Filters Ying Sun Digital filters Finite impulse response (FIR filter: h[n] has a finite numbers of terms. Infinite impulse response (IIR filter: h[n] has infinite numbers of terms. Causal filter:

More information

Fourier transform representation of CT aperiodic signals Section 4.1

Fourier transform representation of CT aperiodic signals Section 4.1 Fourier transform representation of CT aperiodic signals Section 4. A large class of aperiodic CT signals can be represented by the CT Fourier transform (CTFT). The (CT) Fourier transform (or spectrum)

More information

EE 224 Signals and Systems I Review 1/10

EE 224 Signals and Systems I Review 1/10 EE 224 Signals and Systems I Review 1/10 Class Contents Signals and Systems Continuous-Time and Discrete-Time Time-Domain and Frequency Domain (all these dimensions are tightly coupled) SIGNALS SYSTEMS

More information

4.1 Introduction. 2πδ ω (4.2) Applications of Fourier Representations to Mixed Signal Classes = (4.1)

4.1 Introduction. 2πδ ω (4.2) Applications of Fourier Representations to Mixed Signal Classes = (4.1) 4.1 Introduction Two cases of mixed signals to be studied in this chapter: 1. Periodic and nonperiodic signals 2. Continuous- and discrete-time signals Other descriptions: Refer to pp. 341-342, textbook.

More information

Test II Michael R. Gustafson II

Test II Michael R. Gustafson II 'XNH8QLYHUVLW\ (GPXQG73UDWW-U6FKRRORI(QJLQHHULQJ EGR 224 Spring 2016 Test II Michael R. Gustafson II Name (please print) In keeping with the Community Standard, I have neither provided nor received any

More information

NAME: ht () 1 2π. Hj0 ( ) dω Find the value of BW for the system having the following impulse response.

NAME: ht () 1 2π. Hj0 ( ) dω Find the value of BW for the system having the following impulse response. University of California at Berkeley Department of Electrical Engineering and Computer Sciences Professor J. M. Kahn, EECS 120, Fall 1998 Final Examination, Wednesday, December 16, 1998, 5-8 pm NAME: 1.

More information

Time Varying Circuit Analysis

Time Varying Circuit Analysis MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set

More information

6.1 Introduction

6.1 Introduction 6. Introduction A.C Circuits made up of resistors, inductors and capacitors are said to be resonant circuits when the current drawn from the supply is in phase with the impressed sinusoidal voltage. Then.

More information

ELEN 4810 Midterm Exam

ELEN 4810 Midterm Exam ELEN 4810 Midterm Exam Wednesday, October 26, 2016, 10:10-11:25 AM. One sheet of handwritten notes is allowed. No electronics of any kind are allowed. Please record your answers in the exam booklet. Raise

More information

Frequency response. Pavel Máša - XE31EO2. XE31EO2 Lecture11. Pavel Máša - XE31EO2 - Frequency response

Frequency response. Pavel Máša - XE31EO2. XE31EO2 Lecture11. Pavel Máša - XE31EO2 - Frequency response Frequency response XE3EO2 Lecture Pavel Máša - Frequency response INTRODUCTION Frequency response describe frequency dependence of output to input voltage magnitude ratio and its phase shift as a function

More information

Chapter 4 The Fourier Series and Fourier Transform

Chapter 4 The Fourier Series and Fourier Transform Chapter 4 The Fourier Series and Fourier Transform Fourier Series Representation of Periodic Signals Let x(t) be a CT periodic signal with period T, i.e., xt ( + T) = xt ( ), t R Example: the rectangular

More information

ECGR4124 Digital Signal Processing Midterm Spring 2010

ECGR4124 Digital Signal Processing Midterm Spring 2010 ECGR4124 Digital Signal Processing Midterm Spring 2010 Name: LAST 4 DIGITS of Student Number: Do NOT begin until told to do so Make sure that you have all pages before starting Open book, 1 sheet front/back

More information

LECTURE 21: Butterworh & Chebeyshev BP Filters. Part 1: Series and Parallel RLC Circuits On NOT Again

LECTURE 21: Butterworh & Chebeyshev BP Filters. Part 1: Series and Parallel RLC Circuits On NOT Again LECTURE : Butterworh & Chebeyshev BP Filters Part : Series and Parallel RLC Circuits On NOT Again. RLC Admittance/Impedance Transfer Functions EXAMPLE : Series RLC. H(s) I out (s) V in (s) Y in (s) R Ls

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Syllabus ECE 316, Spring 2015 Final Grades Homework (6 problems per week): 25% Exams (midterm and final): 50% (25:25) Random Quiz: 25% Textbook M. Roberts, Signals and Systems, 2nd

More information

Down-Sampling (4B) Young Won Lim 11/15/12

Down-Sampling (4B) Young Won Lim 11/15/12 Down-Sampling (B) /5/ Copyright (c) 9,, Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version. or any later

More information

Driven RLC Circuits Challenge Problem Solutions

Driven RLC Circuits Challenge Problem Solutions Driven LC Circuits Challenge Problem Solutions Problem : Using the same circuit as in problem 6, only this time leaving the function generator on and driving below resonance, which in the following pairs

More information

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1 Module 4 Single-phase A ircuits ersion EE IIT, Kharagpur esson 4 Solution of urrent in -- Series ircuits ersion EE IIT, Kharagpur In the last lesson, two points were described:. How to represent a sinusoidal

More information

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr.

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. Final Exam of ECE301, Section 3 (CRN 17101-003) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and

More information

R-L-C Circuits and Resonant Circuits

R-L-C Circuits and Resonant Circuits P517/617 Lec4, P1 R-L-C Circuits and Resonant Circuits Consider the following RLC series circuit What's R? Simplest way to solve for is to use voltage divider equation in complex notation. X L X C in 0

More information

Discrete Fourier Transform

Discrete Fourier Transform Discrete Fourier Transform Valentina Hubeika, Jan Černocký DCGM FIT BUT Brno, {ihubeika,cernocky}@fit.vutbr.cz Diskrete Fourier transform (DFT) We have just one problem with DFS that needs to be solved.

More information

Chapter 6 THE SAMPLING PROCESS 6.1 Introduction 6.2 Fourier Transform Revisited

Chapter 6 THE SAMPLING PROCESS 6.1 Introduction 6.2 Fourier Transform Revisited Chapter 6 THE SAMPLING PROCESS 6.1 Introduction 6.2 Fourier Transform Revisited Copyright c 2005 Andreas Antoniou Victoria, BC, Canada Email: aantoniou@ieee.org July 14, 2018 Frame # 1 Slide # 1 A. Antoniou

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 12

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 12 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 12 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use

More information