Confidence Sets Based on Shrinkage Estimators

Size: px
Start display at page:

Download "Confidence Sets Based on Shrinkage Estimators"

Transcription

1 Confidence Sets Based on Shrinkage Estimators Mikkel Plagborg-Møller April 12, 2017

2 Shrinkage estimators in applied work { } ˆβ shrink = argmin β ˆQ(β) + λc(β) Shrinkage/penalized estimators popular in economics: Random effects. High-dimensional prediction. Smoothing jagged functions. Shiller (1973); Barnichon & Brownlees (2017) Estimating fixed effects. Chetty et al. (2014); Chamberlain (2016) Shrinking toward theory. Hansen (2016); Fessler & Kasy (2017) Shrinkage parameter λ often data-dependent. 2

3 Challenges of shrinkage inference How to calculate SEs for shrinkage estimators? With data-dependent shrinkage parameter λ, asy. distribution often discontinuous in true parameters. Impossible to estimate CDF of ˆβ shrink uniformly consistently. Leeb & Pötscher (2005) Standard bootstrap typically doesn t work. Beran (2010) Applied researchers often just undersmooth (i.e., SE for usual point estimator). Not always valid. 3

4 This project Class of generalized ridge regression estimators: Vinod (1978) ˆβ M,W (λ) = argmin β R n { β ˆβ 2 W + λ Mβ 2}. Shrinkage parameter λ selected by unbiased risk estimate. Gaussian location model: ˆβ N n (β, Σ), known Σ. Conditional QLR test for linear hypothesis on β. Exact size. Conditional QLR confidence region by test inversion. Simulations show favorable average length of CIs. Uniform asymptotic validity even when data is non-gaussian. 4

5 Relationship to literature Large stats lit uses analytically convenient transformations and priors. Casella & Hwang (1982, 1984, 1987, 2012); Tseng & Brown (1997) My starting point: How to calculate SEs for given ridge estimator? Arbitrary correlation structure, arbitrary shrinkage hypothesis. CSs tied to (and always contain) meaningful point estimator. Tests/CSs have Empirical Bayes (random effects) interpretation. But I do not start from decision-theoretic first principles. Impossible to uniformly dominate expected volume of Wald ellipsoid for 1-D or 2-D problems. Stein (1962); Brown (1966); Joshi (1969) 5

6 Other related literature Shrinkage: Stein (1956); James & Stein (1961) Projection shrinkage: Bock (1975); Oman (1982); Casella & Hwang (1987) Unbiased risk estimate: Mallows (1973); Stein (1973, 1981); Berger (1985); Claeskens & Hjort (2003); Hansen (2010) Asymptotics for shrinkage: Hansen (2016) Uniform inference: Andrews et al. (2011); McCloskey (2015) Post-regularization inference: Chernozhukov et al. (2015) 6

7 Outline 1 Shrinkage estimators and Unbiased Risk Estimate 2 Testing 3 Confidence sets (and simulations) 4 Uniform asymptotic validity 5 Summary and next steps

8 Gaussian location model For now, consider finite-sample Gaussian location model β R n unknown. Σ symmetric p.d. and known. ˆβ N n (β, Σ). Will later consider asymptotic framework for which the Gaussian model is the right limit experiment. Plug in consistent estimator ˆΣ. 7

9 General shrinkage estimator class { ˆβ M,W (λ) = argmin β ˆβ 2 W + λ Mβ 2} = Θ M,W (λ) ˆβ, β R n Θ M,W (λ) = (I n + λw 1 M M) 1. M R m n, W R n n symmetric p.d. Example: M = Penalizes jaggedness R(n 2) n. Whittaker (1923); Shiller (1972); Hodrick & Prescott (1981); Wahba (1990) 8

10 8 6 response, basis points horizon, months y t : GZ excess bond premium. x t : high-freq. FFF shock. Controls: 2 lags of y t, x t, log(cpi), log(ip), 1yrTreas. Sample:

11 Projection shrinkage Shrinkage particularly tractable when W = I n and M = P R n n is orthogonal projection matrix: P = P = P 2. Projection shrinkage towards linear subspace span(i n P). Stein (1956); Oman (1982a,b); Bock (1985); Casella & Hwang (1987) ˆβ P (λ) = argmin { β ˆβ 2 + λ Pβ 2} β R n = λ P ˆβ + (I n P) ˆβ. Example: I n P = proj. matrix from regression onto basis functions. 10

12 5 response, basis points horizon, months y t : GZ excess bond premium. x t : high-freq. FFF shock. Controls: 2 lags of y t, x t, log(cpi), log(ip), 1yrTreas. Sample:

13 Unbiased Risk Estimate MSE risk criterion: R M,W (λ) = E Unbiased Risk Estimate (URE): ( ) ˆβ M,W (λ) β 2 W. Bias/var. Mallows (1973); Stein (1973, 1981); Berger (1985); Hansen (2010) ˆR M,W (λ) = ˆβ M,W (λ) ˆβ 2 W + 2 tr{w Θ M,W (λ)σ}. If rk(m) = m or M = P, URE is strictly convex in Define ˆλ M,W = argmin λ 0 ˆR M,W (λ). λ 1+λ. May equal. lim λ ˆβ M,W (λ) well defined if M full rank or proj. 12

14 1 estimated MSE, normalized ˆR P ( x 1 x ), x [0, 1) λ/(1+λ) y t : GZ excess bond premium. x t : high-freq. FFF shock. Controls: 2 lags of y t, x t, log(cpi), log(ip), 1yrTreas. Sample:

15 Optimal projection shrinkage For projection shrinkage, can minimize URE in closed form: ˆβ P (ˆλ P ) = ( 1 tr(σ ) P) P ˆβ 2 + P ˆβ + (I n P) ˆβ, James-Stein shrinkage towards linear subspace. Stein (1956); James & Stein (1961); Oman (1982a,b); Bock (1985) Σ P = PΣP. 14

16 Optimal projection shrinkage For projection shrinkage, can minimize URE in closed form: ˆβ P (ˆλ P ) = ( 1 tr(σ ) P) P ˆβ 2 + P ˆβ + (I n P) ˆβ, James-Stein shrinkage towards linear subspace. Stein (1956); James & Stein (1961); Oman (1982a,b); Bock (1985) Proposition (Hansen, 2016): If tr(σ P ) > 4ρ(Σ P ), E β Σ P = PΣP. ( ˆβ P (ˆλ P ) β 2) ( < E β ˆβ β 2) for all β. Necessary cond n: rk(p) > 4. E.g., if I n P is projection onto p basis functions, then need n > p

17 Outline 1 Shrinkage estimators and Unbiased Risk Estimate 2 Testing 3 Confidence sets (and simulations) 4 Uniform asymptotic validity 5 Summary and next steps

18 Hypothesis testing in shrinkage applications R R r n full row rank. No UMP test exists. H 0 : Rβ = b, H 1 : Rβ b. Usual Wald test is UMP unbiased/invariant and admissible. If we re already using shrinkage point estimator, might want hypothesis test tied to this estimator as well. Obtain CS by inversion. My proposed test is biased+noninvariant, so may achieve higher power than usual Wald test for some DGPs. 15

19 Empirical Bayes quasi-likelihood ratio test Base hypothesis test on (negative) quasi-log-likelihood ˆL M,W (β) = β ˆβ 2 W + ˆλ M,W Mβ 2. Empirical Bayes (random effects) interpretation: β data N ( ˆβ M,W (ˆλ M,W ), (W + ˆλ M,W M M) 1). QLR test statistic of Rβ = b: min β : Rβ=b ˆL M,W (β) min ˆL M,W (β) β = R ˆβ M,W (ˆλ M,W ) b 2 (R(W +ˆλ M,W M M) 1 R ) 1 16

20 Null distribution impractical LR M,W (b) = R ˆβ M,W (ˆλ M,W ) b 2 (R(W +ˆλ M,W M M) 1 R ) 1 Assume Var(RZ MZ) nonsingular, Z N n (0, W 1 ). Then LR well defined even when ˆλ M,W =. Holds in many cases. If Var(RZ MZ) singular, can use ad hoc LR statistic LR M,W (b) = R ˆβ M,W (ˆλ M,W ) b 2 (RW 1 R ) 1. 17

21 Null distribution impractical LR M,W (b) = R ˆβ M,W (ˆλ M,W ) b 2 (R(W +ˆλ M,W M M) 1 R ) 1 Assume Var(RZ MZ) nonsingular, Z N n (0, W 1 ). Then LR well defined even when ˆλ M,W =. Holds in many cases. If Var(RZ MZ) singular, can use ad hoc LR statistic LR M,W (b) = R ˆβ M,W (ˆλ M,W ) b 2 (RW 1 R ) 1. Practical problem: Null distribution of LR statistic depends on entire n-dimensional parameter vector β. Proposed solution: Condition on sufficient statistic for n r nuisance parameters. Andrews & Mikusheva (2016) 17

22 Sufficient statistic for nuisance parameters Define ζ = ΣR (RΣR ) 1 R n r and P = ζr R n n. Statistic ˆν = (I n P) ˆβ is S-ancillary wrt. Rβ : ˆβ ˆν F Rβ,Σ, ˆν F (In P)β,Σ. It would be uncontroversial to condition on ˆν in the absence of prior information linking Rβ and (I n P)β. In practice, the prior information Mβ 1 may not substantially constrain the relationship between Rβ and (I n P)β. Then conditioning wastes little information. Severini (1995) I condition on ˆν. 18

23 Critical value by simulation Conditional QLR test rejects H 0 if LR M,W (b) > q 1 α,m,w (b, ˆν). Conditional critical value given ˆν = ν: q 1 α,m,w (b, ν) = quantile 1 α ( R β( λ; U) b 2 (R(W + λ(u)m M) 1 R ) 1 ), where U N r (b, RΣR ), β(λ; U) = Θ M,W (λ)(ζu + ν) for all λ 0, { } λ(u) = argmin β(λ; U) (ζu + ν) 2 W + 2 tr(w Θ M,W (λ)σ). λ 0 By design, conditional (and thus unconditional) size = 1 α. 19

24 Outline 1 Shrinkage estimators and Unbiased Risk Estimate 2 Testing 3 Confidence sets (and simulations) 4 Uniform asymptotic validity 5 Summary and next steps

25 Confidence set by test inversion Invert CQLR test to obtain CS for b = Rβ : Ĉ M,W = { b R r : LR } M,W (b) q 1 α,m,w (b, ˆν). Do this by grid search. Simulate quantile at each point. Feasible in one or two dimensions (proj. shrinkage fast). Uniform band If M full rank or proj., can compute simple, finite upper bound on critical value. More Ĉ M,W contained in bounded ellipsoid centered at R ˆβ M,W (ˆλ M,W ). Limits grid search. 20

26 Properties of shrinkage confidence set 1 ĈM,W always contains shrinkage point estimate. 2 Generally not symmetric around point estimate. 3 Empirical Bayes intuition: CS should have small volume for DGPs where shrinkage estimator has low MSE. 4 Appears to not always be convex in simulations. 5 Converges a.s. to usual Wald ellipsoid as Mβ, M fixed. Appears difficult to characterize expected volume. Even for projection shrinkage, conditional power of CQLR test depends on 6 parameters. 21

27 Simulation study of confidence intervals β i = ˆβ N n (β, Σ), 1 i 1 n 1 if K = 0, sin 2πK(i 1) n 1 if K > 0, Σ ij = σ i σ j κ i j, σ i = σ 0 ( 1 + (i 1) ϕ 1 n 1 Consider projection shrinkage toward quadratic polynomial. Lower bound on expected length relative to Wald CI: Pratt (1961) ). (1 α)φ 1 (1 α) + (2π) 1/2 e 1 2 (Φ 1 (1 α)) 2 Φ 1 (1 α/2) for α =

28 MSE ˆβ(ˆλ) Length Ĉ n K κ σ 0 ϕ Tot 1st Mid 1st Mid MSE relative to ˆβ, average length relative to Wald. Level = 90%. 1st = β 1, Mid = β 1+[n/2].

29 Takeaways from simulation β 1+[n/2] : Expected length of CI close to performance limit. β 1 : Expected length competitive with Wald CI, but sometimes slightly wider. Intuition: Fewer relevant parameters to average across. Shrinkage works less well when... 1 n is small. 2 Shrinkage hypothesis Mβ = 0 is neither approximately true nor dramatically false. 3 Correlations are high. 4 Variance of MLE of nuisance parameters large relative to variance of MLE of parameter of interest. 24

30 Empirical Bayes HPD set ˆL M,W (β) = β ˆβ 2 W + ˆλ M,W Mβ 2, β data N ( ˆβ M,W (ˆλ M,W ), (W + ˆλ M,W M M) 1). Empirical Bayes 1 α Highest Posterior Density set for Rβ : Ĉ EB = Doesn t control frequentist coverage. { b R r : LR } M,W (b) χ 2 r,1 α. Like shrinkage CS, but non-random critical value. 25

31 Minimum coverage discrepancy with EB HPD set Symmetric set difference: A B = (A B)\(A B). Proposition (following Andrews & Mikusheva, 2016) Let C be any similar confidence set for Rβ (like ĈM,W ): P β ( Rβ C ) = 1 α for all β R n. Then P β ( ) ( ) Rβ ĈM,W ĈEB P β Rβ C ĈEB for all β R n. Proof 26

32 Outline 1 Shrinkage estimators and Unbiased Risk Estimate 2 Testing 3 Confidence sets (and simulations) 4 Uniform asymptotic validity 5 Summary and next steps

33 Uniform asymptotic size control CQLR test achieves uniform asymptotic size control, provided ˆβ is uniformly asy. normal, and ˆΣ is uniformly consistent for Σ. Uniform frequentist validity stands in stark contrast to other approaches. Undersmoothing: Pretend λ is small, ignore bias of shrinkage estimator as well as variability in λ. Switching rule: Use Wald SE if M ˆβ > c, otherwise use asymptotics under assumption Mβ = 0. Random effects: Treat random effects assumption as part of the DGP rather than just a prior. Size control wrt. random effects distribution. 27

34 Assumption: Preliminary estimator well-behaved Assumption Define S = {A S n + : c 1/ρ(A 1 ) ρ(a) c} for fixed c, c > 0. The distribution of the data F T for sample size T is indexed by three parameters β B R n, Σ S, and γ Γ. The estimators ( ˆβ, ˆΣ) R n S n + satisfy the following: For all sequences {β T, Σ T, γ T } T 1 B S Γ and all subsequences {k T } T 1 of {T } T 1, kt ˆΣ 1/2 ( ˆβ β kt ) (ˆΣ Σ kt ) d F kt (β kt,σ kt,γ kt ) N n(0, I n ), p 0, as T. F kt (β kt,σ kt,γ kt ) S n = set of symmetric positive definite n n matrices. 28

35 Shrinkage test is uniformly valid Let LR and ˆq 1 α denote CQLR test statistic and quantile obtained by plugging in T 1 ˆΣ in place of Σ. (Suppress M, W.) Proposition Let the previous assumption hold. Assume either rk(m) = m or M = P. Assume also Var(RZ MZ) is nonsingular, Z N n (0, W 1 ). Then ( lim inf inf Prob T (β,σ,γ) R n F T (β,σ,γ) LR(Rβ) ˆq 1 α (Rβ, ˆν)) = 1 α. S Γ 29

36 Shrinkage test is uniformly valid Let LR and ˆq 1 α denote CQLR test statistic and quantile obtained by plugging in T 1 ˆΣ in place of Σ. (Suppress M, W.) Proposition Let the previous assumption hold. Assume either rk(m) = m or M = P. Assume also Var(RZ MZ) is nonsingular, Z N n (0, W 1 ). Then ( lim inf inf Prob T (β,σ,γ) R n F T (β,σ,γ) LR(Rβ) ˆq 1 α (Rβ, ˆν)) = 1 α. S Γ Caveat: I have only written down the full proof for proj. shrinkage. I believe I have the arguments worked out for the general case. Proof idea: Consider drifting parameters β T... 1 If T Mβ T, we converge to non-shrinkage case. 2 If T Mβ T is bounded, we re in the Gaussian model in the limit. 29

37 Outline 1 Shrinkage estimators and Unbiased Risk Estimate 2 Testing 3 Confidence sets (and simulations) 4 Uniform asymptotic validity 5 Summary and next steps

38 Summary Considered setting where generalized ridge regression point estimator is of interest: smoothing, shrinking toward average, penalization, etc. Proposed conditional QLR test based on same quasi-log-likelihood as shrinkage point estimator. Exact conditional size in Gaussian location model. Asymptotic uniform size control more generally. Shrinkage confidence set by test inversion. Contains shrinkage point estimate. Minimum coverage discrepancy with EB HPD set among similar CSs. Computationally feasible in 1 2 dimensions. Proj. shrinkage fast. Promising simulation evidence. 30

39 Next steps More simulation evidence. Comparison of 2-D ellipse with infeasible optimum. Empirics: impulse responses, MIDAS, exchangeable parameters,...? Analytical/low-dimensional power/volume comparisons. Probably only feasible for special cases, e.g., Σ = I n. 31

40 Thank you

41 W = I n for simplicity. URE captures bias/variance tradeoff Risk decomposition: Claeskens & Hjort (2003) R M,In (λ) = tr { [I n Θ M,In (λ)] 2 β β } + tr { Θ M,In (λ) 2 Σ }. }{{}}{{} bias squared variance Unbiased estimate: β β = E( ˆβ ˆβ ) Σ. Plug in: R M,In (λ) = tr { [I n Θ M,In (λ)] 2 ( ˆβ ˆβ Σ) } + tr { Θ M,In (λ) 2 Σ } = ˆR M,In (λ) tr(σ). Back 33

42 Triangle inequality: Bound on critical value LR M,W (Rβ) R( ˆβ M,W (ˆλ M,W ) ˆβ) V (ˆλ) 1 + R( ˆβ β) V (ˆλ) 1. Let Z N n (0, W 1 ). For any β R n and A R n n symm. p.d., ( R(β ˆβ) 2 β ˆβ 2 V (ˆλ) 1 A ρ RA 1 R Var(RZ MZ) 1). Since ˆR M,W (ˆλ M,W ) ˆR M,W (0), { ˆβ M,W (ˆλ M,W ) ˆβ 2 W 2 tr MΣM (MW 1 M ) 1}. Under the null H 0 : Rβ = Rβ, R( ˆβ β) 2 (RΣR ) 1 χ 2 (r). Back 34

43 Uniform confidence band Supremum test statistic of H 0 : β i = β i, i = 1,..., n: ŜLR M,W (β) = sup i=1,...,n ˆβ i,m,w (ˆλ M,W ) β i e i (W 1 + ˆλ M,W M M) 1. e i Simulate null critical value q 1 α,m,w (β) for any β. Simultaneous confidence band: rectangular envelope of inverted test. n C M,W = inf β i, sup β i. i=1 β : ŜLR(β) q 1 α (β) β : ŜLR(β) q 1 α (β) Computationally challenging. Can sample from band. Inoue & Kilian (2016) Back 35

44 Coverage discrepancy: proof sketch Proof reinterprets Andrews & Mikusheva (2016) result on conditional testing. =1 α ( ) { [ }}{ P β Rβ C ĈEB = E β 1(Rβ C) ] [ ] +E β 1(Rβ ĈEB) [ 2E β 1(Rβ C)1(Rβ ] ĈEB) 36

45 Coverage discrepancy: proof sketch Proof reinterprets Andrews & Mikusheva (2016) result on conditional testing. =1 α ( ) { [ }}{ P β Rβ C ĈEB = E β 1(Rβ C) ] [ ] +E β 1(Rβ ĈEB) [ 2E β 1(Rβ C)1(Rβ ] ĈEB) ( ) ( ) P β Rβ C ĈEB P β Rβ ĈM,W ĈEB [{ = 2E β 1(Rβ ĈM,W ) 1(Rβ C) } ] 1(Rβ ĈEB) [{ = 2E β 1(Rβ ĈM,W ) 1(Rβ C) } )] 1( LR M,W (Rβ ) χ 2 r,1 α 36

46 Similarity of C and completeness of the Gaussian family imply conditional similarity (like ĈM,W ): ( P β Rβ C ) ˆν = 1 α. By law of iterated expectations, [{ } ( )] 1(Rβ ĈM,W ) 1(Rβ C) 1 q 1 α,m,w (Rβ, ˆν) χ 2 r,1 α = 0. E β 37

47 Similarity of C and completeness of the Gaussian family imply conditional similarity (like ĈM,W ): ( P β Rβ C ) ˆν = 1 α. By law of iterated expectations, [{ } ( )] 1(Rβ ĈM,W ) 1(Rβ C) 1 q 1 α,m,w (Rβ, ˆν) χ 2 r,1 α = 0. E β ( ) ( ) P β Rβ C ĈEB P β Rβ ĈM,W ĈEB [ { = 2E β 1(Rβ ĈM,W ) 1(Rβ C) } { ) ( )} ] 1( LR M,W (Rβ ) χ 2 r,1 α 1 q 1 α,m,w (Rβ, ˆν) χ 2 r,1 α Variable inside the expectation is a.s. nonnegative by def n of ĈM,W. 37

48 Similarity of C and completeness of the Gaussian family imply conditional similarity (like ĈM,W ): ( P β Rβ C ) ˆν = 1 α. By law of iterated expectations, [{ } ( )] 1(Rβ ĈM,W ) 1(Rβ C) 1 q 1 α,m,w (Rβ, ˆν) χ 2 r,1 α = 0. E β ( ) ( ) P β Rβ C ĈEB P β Rβ ĈM,W ĈEB [ { = 2E β 1(Rβ ĈM,W ) 1(Rβ C) } { ) ( )} ] 1( LR M,W (Rβ ) χ 2 r,1 α 1 q 1 α,m,w (Rβ, ˆν) χ 2 r,1 α Variable inside the expectation is a.s. nonnegative by def n of ĈM,W. Crucial: EB set inverts same test stat., but non-random crit. val. Back 37

Confidence Sets Based on Shrinkage Estimators

Confidence Sets Based on Shrinkage Estimators Confidence Sets Based on Shrinkage Estimators Mikkel Plagborg-Møller Harvard University June 2017 Shrinkage estimators in applied work ˆβ shrink = argmin β { ˆQ(β) + λc(β) } Shrinkage/penalized estimators

More information

Part III. A Decision-Theoretic Approach and Bayesian testing

Part III. A Decision-Theoretic Approach and Bayesian testing Part III A Decision-Theoretic Approach and Bayesian testing 1 Chapter 10 Bayesian Inference as a Decision Problem The decision-theoretic framework starts with the following situation. We would like to

More information

Lecture 20 May 18, Empirical Bayes Interpretation [Efron & Morris 1973]

Lecture 20 May 18, Empirical Bayes Interpretation [Efron & Morris 1973] Stats 300C: Theory of Statistics Spring 2018 Lecture 20 May 18, 2018 Prof. Emmanuel Candes Scribe: Will Fithian and E. Candes 1 Outline 1. Stein s Phenomenon 2. Empirical Bayes Interpretation of James-Stein

More information

This model of the conditional expectation is linear in the parameters. A more practical and relaxed attitude towards linear regression is to say that

This model of the conditional expectation is linear in the parameters. A more practical and relaxed attitude towards linear regression is to say that Linear Regression For (X, Y ) a pair of random variables with values in R p R we assume that E(Y X) = β 0 + with β R p+1. p X j β j = (1, X T )β j=1 This model of the conditional expectation is linear

More information

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3

Hypothesis Testing. 1 Definitions of test statistics. CB: chapter 8; section 10.3 Hypothesis Testing CB: chapter 8; section 0.3 Hypothesis: statement about an unknown population parameter Examples: The average age of males in Sweden is 7. (statement about population mean) The lowest

More information

Machine learning, shrinkage estimation, and economic theory

Machine learning, shrinkage estimation, and economic theory Machine learning, shrinkage estimation, and economic theory Maximilian Kasy December 14, 2018 1 / 43 Introduction Recent years saw a boom of machine learning methods. Impressive advances in domains such

More information

The outline for Unit 3

The outline for Unit 3 The outline for Unit 3 Unit 1. Introduction: The regression model. Unit 2. Estimation principles. Unit 3: Hypothesis testing principles. 3.1 Wald test. 3.2 Lagrange Multiplier. 3.3 Likelihood Ratio Test.

More information

Averaging Estimators for Regressions with a Possible Structural Break

Averaging Estimators for Regressions with a Possible Structural Break Averaging Estimators for Regressions with a Possible Structural Break Bruce E. Hansen University of Wisconsin y www.ssc.wisc.edu/~bhansen September 2007 Preliminary Abstract This paper investigates selection

More information

Statistical Inference

Statistical Inference Statistical Inference Liu Yang Florida State University October 27, 2016 Liu Yang, Libo Wang (Florida State University) Statistical Inference October 27, 2016 1 / 27 Outline The Bayesian Lasso Trevor Park

More information

STA 732: Inference. Notes 10. Parameter Estimation from a Decision Theoretic Angle. Other resources

STA 732: Inference. Notes 10. Parameter Estimation from a Decision Theoretic Angle. Other resources STA 732: Inference Notes 10. Parameter Estimation from a Decision Theoretic Angle Other resources 1 Statistical rules, loss and risk We saw that a major focus of classical statistics is comparing various

More information

Statistics 203: Introduction to Regression and Analysis of Variance Penalized models

Statistics 203: Introduction to Regression and Analysis of Variance Penalized models Statistics 203: Introduction to Regression and Analysis of Variance Penalized models Jonathan Taylor - p. 1/15 Today s class Bias-Variance tradeoff. Penalized regression. Cross-validation. - p. 2/15 Bias-variance

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 02: Linear Methods for Regression Department of Statistics & Biostatistics Rutgers University September 13 2011 Regression Problem Quantitative generic output variable Y. Generic

More information

Supplement to Quantile-Based Nonparametric Inference for First-Price Auctions

Supplement to Quantile-Based Nonparametric Inference for First-Price Auctions Supplement to Quantile-Based Nonparametric Inference for First-Price Auctions Vadim Marmer University of British Columbia Artyom Shneyerov CIRANO, CIREQ, and Concordia University August 30, 2010 Abstract

More information

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff IEOR 165 Lecture 7 Bias-Variance Tradeoff 1 Bias-Variance Tradeoff Consider the case of parametric regression with β R, and suppose we would like to analyze the error of the estimate ˆβ in comparison to

More information

Simultaneous Confidence Bands: Theoretical Comparisons and Recommendations for Practice

Simultaneous Confidence Bands: Theoretical Comparisons and Recommendations for Practice Simultaneous Confidence Bands: Theoretical Comparisons and Recommendations for Practice PRELIMINARY AND INCOMPLETE José Luis Montiel Olea Columbia University montiel.olea@gmail.com Mikkel Plagborg-Møller

More information

Efficient Shrinkage in Parametric Models

Efficient Shrinkage in Parametric Models Efficient Shrinkage in Parametric Models Bruce E. Hansen University of Wisconsin September 2012 Revised: June 2015 Abstract This paper introduces shrinkage for general parametric models. We show how to

More information

Habilitationsvortrag: Machine learning, shrinkage estimation, and economic theory

Habilitationsvortrag: Machine learning, shrinkage estimation, and economic theory Habilitationsvortrag: Machine learning, shrinkage estimation, and economic theory Maximilian Kasy May 25, 218 1 / 27 Introduction Recent years saw a boom of machine learning methods. Impressive advances

More information

Central Bank of Chile October 29-31, 2013 Bruce Hansen (University of Wisconsin) Structural Breaks October 29-31, / 91. Bruce E.

Central Bank of Chile October 29-31, 2013 Bruce Hansen (University of Wisconsin) Structural Breaks October 29-31, / 91. Bruce E. Forecasting Lecture 3 Structural Breaks Central Bank of Chile October 29-31, 2013 Bruce Hansen (University of Wisconsin) Structural Breaks October 29-31, 2013 1 / 91 Bruce E. Hansen Organization Detection

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 6 Jakub Mućk Econometrics of Panel Data Meeting # 6 1 / 36 Outline 1 The First-Difference (FD) estimator 2 Dynamic panel data models 3 The Anderson and Hsiao

More information

BIOS 312: Precision of Statistical Inference

BIOS 312: Precision of Statistical Inference and Power/Sample Size and Standard Errors BIOS 312: of Statistical Inference Chris Slaughter Department of Biostatistics, Vanderbilt University School of Medicine January 3, 2013 Outline Overview and Power/Sample

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Carl N. Morris. University of Texas

Carl N. Morris. University of Texas EMPIRICAL BAYES: A FREQUENCY-BAYES COMPROMISE Carl N. Morris University of Texas Empirical Bayes research has expanded significantly since the ground-breaking paper (1956) of Herbert Robbins, and its province

More information

LECTURE ON HAC COVARIANCE MATRIX ESTIMATION AND THE KVB APPROACH

LECTURE ON HAC COVARIANCE MATRIX ESTIMATION AND THE KVB APPROACH LECURE ON HAC COVARIANCE MARIX ESIMAION AND HE KVB APPROACH CHUNG-MING KUAN Institute of Economics Academia Sinica October 20, 2006 ckuan@econ.sinica.edu.tw www.sinica.edu.tw/ ckuan Outline C.-M. Kuan,

More information

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis.

401 Review. 6. Power analysis for one/two-sample hypothesis tests and for correlation analysis. 401 Review Major topics of the course 1. Univariate analysis 2. Bivariate analysis 3. Simple linear regression 4. Linear algebra 5. Multiple regression analysis Major analysis methods 1. Graphical analysis

More information

Least Squares Model Averaging. Bruce E. Hansen University of Wisconsin. January 2006 Revised: August 2006

Least Squares Model Averaging. Bruce E. Hansen University of Wisconsin. January 2006 Revised: August 2006 Least Squares Model Averaging Bruce E. Hansen University of Wisconsin January 2006 Revised: August 2006 Introduction This paper developes a model averaging estimator for linear regression. Model averaging

More information

Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility

Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility American Economic Review: Papers & Proceedings 2016, 106(5): 400 404 http://dx.doi.org/10.1257/aer.p20161082 Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility By Gary Chamberlain*

More information

Understanding Regressions with Observations Collected at High Frequency over Long Span

Understanding Regressions with Observations Collected at High Frequency over Long Span Understanding Regressions with Observations Collected at High Frequency over Long Span Yoosoon Chang Department of Economics, Indiana University Joon Y. Park Department of Economics, Indiana University

More information

Model comparison and selection

Model comparison and selection BS2 Statistical Inference, Lectures 9 and 10, Hilary Term 2008 March 2, 2008 Hypothesis testing Consider two alternative models M 1 = {f (x; θ), θ Θ 1 } and M 2 = {f (x; θ), θ Θ 2 } for a sample (X = x)

More information

Summary and discussion of: Exact Post-selection Inference for Forward Stepwise and Least Angle Regression Statistics Journal Club

Summary and discussion of: Exact Post-selection Inference for Forward Stepwise and Least Angle Regression Statistics Journal Club Summary and discussion of: Exact Post-selection Inference for Forward Stepwise and Least Angle Regression Statistics Journal Club 36-825 1 Introduction Jisu Kim and Veeranjaneyulu Sadhanala In this report

More information

Model Selection and Geometry

Model Selection and Geometry Model Selection and Geometry Pascal Massart Université Paris-Sud, Orsay Leipzig, February Purpose of the talk! Concentration of measure plays a fundamental role in the theory of model selection! Model

More information

Lecture 8 Inequality Testing and Moment Inequality Models

Lecture 8 Inequality Testing and Moment Inequality Models Lecture 8 Inequality Testing and Moment Inequality Models Inequality Testing In the previous lecture, we discussed how to test the nonlinear hypothesis H 0 : h(θ 0 ) 0 when the sample information comes

More information

ROBUST CONFIDENCE SETS IN THE PRESENCE OF WEAK INSTRUMENTS By Anna Mikusheva 1, MIT, Department of Economics. Abstract

ROBUST CONFIDENCE SETS IN THE PRESENCE OF WEAK INSTRUMENTS By Anna Mikusheva 1, MIT, Department of Economics. Abstract ROBUST CONFIDENCE SETS IN THE PRESENCE OF WEAK INSTRUMENTS By Anna Mikusheva 1, MIT, Department of Economics Abstract This paper considers instrumental variable regression with a single endogenous variable

More information

Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III)

Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III) Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III) Florian Pelgrin HEC September-December 2010 Florian Pelgrin (HEC) Constrained estimators September-December

More information

Lecture 32: Asymptotic confidence sets and likelihoods

Lecture 32: Asymptotic confidence sets and likelihoods Lecture 32: Asymptotic confidence sets and likelihoods Asymptotic criterion In some problems, especially in nonparametric problems, it is difficult to find a reasonable confidence set with a given confidence

More information

A more powerful subvector Anderson and Rubin test in linear instrumental variables regression. Patrik Guggenberger Pennsylvania State University

A more powerful subvector Anderson and Rubin test in linear instrumental variables regression. Patrik Guggenberger Pennsylvania State University A more powerful subvector Anderson and Rubin test in linear instrumental variables regression Patrik Guggenberger Pennsylvania State University Joint work with Frank Kleibergen (University of Amsterdam)

More information

δ -method and M-estimation

δ -method and M-estimation Econ 2110, fall 2016, Part IVb Asymptotic Theory: δ -method and M-estimation Maximilian Kasy Department of Economics, Harvard University 1 / 40 Example Suppose we estimate the average effect of class size

More information

Cross-Validation with Confidence

Cross-Validation with Confidence Cross-Validation with Confidence Jing Lei Department of Statistics, Carnegie Mellon University WHOA-PSI Workshop, St Louis, 2017 Quotes from Day 1 and Day 2 Good model or pure model? Occam s razor We really

More information

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science 1 Likelihood Ratio Tests that Certain Variance Components Are Zero Ciprian M. Crainiceanu Department of Statistical Science www.people.cornell.edu/pages/cmc59 Work done jointly with David Ruppert, School

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Ridge regression. Patrick Breheny. February 8. Penalized regression Ridge regression Bayesian interpretation

Ridge regression. Patrick Breheny. February 8. Penalized regression Ridge regression Bayesian interpretation Patrick Breheny February 8 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/27 Introduction Basic idea Standardization Large-scale testing is, of course, a big area and we could keep talking

More information

Multiscale Adaptive Inference on Conditional Moment Inequalities

Multiscale Adaptive Inference on Conditional Moment Inequalities Multiscale Adaptive Inference on Conditional Moment Inequalities Timothy B. Armstrong 1 Hock Peng Chan 2 1 Yale University 2 National University of Singapore June 2013 Conditional moment inequality models

More information

Projection Inference for Set-Identified Svars

Projection Inference for Set-Identified Svars Projection Inference for Set-Identified Svars Bulat Gafarov (PSU), Matthias Meier (University of Bonn), and José-Luis Montiel-Olea (Columbia) September 21, 2016 1 / 38 Introduction: Set-id. SVARs SVAR:

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

g-priors for Linear Regression

g-priors for Linear Regression Stat60: Bayesian Modeling and Inference Lecture Date: March 15, 010 g-priors for Linear Regression Lecturer: Michael I. Jordan Scribe: Andrew H. Chan 1 Linear regression and g-priors In the last lecture,

More information

Econ 5150: Applied Econometrics Dynamic Demand Model Model Selection. Sung Y. Park CUHK

Econ 5150: Applied Econometrics Dynamic Demand Model Model Selection. Sung Y. Park CUHK Econ 5150: Applied Econometrics Dynamic Demand Model Model Selection Sung Y. Park CUHK Simple dynamic models A typical simple model: y t = α 0 + α 1 y t 1 + α 2 y t 2 + x tβ 0 x t 1β 1 + u t, where y t

More information

Cross-Validation with Confidence

Cross-Validation with Confidence Cross-Validation with Confidence Jing Lei Department of Statistics, Carnegie Mellon University UMN Statistics Seminar, Mar 30, 2017 Overview Parameter est. Model selection Point est. MLE, M-est.,... Cross-validation

More information

Let us first identify some classes of hypotheses. simple versus simple. H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided

Let us first identify some classes of hypotheses. simple versus simple. H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided Let us first identify some classes of hypotheses. simple versus simple H 0 : θ = θ 0 versus H 1 : θ = θ 1. (1) one-sided H 0 : θ θ 0 versus H 1 : θ > θ 0. (2) two-sided; null on extremes H 0 : θ θ 1 or

More information

VALIDITY OF SUBSAMPLING AND PLUG-IN ASYMPTOTIC INFERENCE FOR PARAMETERS DEFINED BY MOMENT INEQUALITIES

VALIDITY OF SUBSAMPLING AND PLUG-IN ASYMPTOTIC INFERENCE FOR PARAMETERS DEFINED BY MOMENT INEQUALITIES Econometric Theory, 2009, Page 1 of 41. Printed in the United States of America. doi:10.1017/s0266466608090257 VALIDITY OF SUBSAMPLING AND PLUG-IN ASYMPTOTIC INFERENCE FOR PARAMETERS DEFINED BY MOMENT

More information

Some Curiosities Arising in Objective Bayesian Analysis

Some Curiosities Arising in Objective Bayesian Analysis . Some Curiosities Arising in Objective Bayesian Analysis Jim Berger Duke University Statistical and Applied Mathematical Institute Yale University May 15, 2009 1 Three vignettes related to John s work

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2

MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2 MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2 1 Bootstrapped Bias and CIs Given a multiple regression model with mean and

More information

Math 181B Homework 1 Solution

Math 181B Homework 1 Solution Math 181B Homework 1 Solution 1. Write down the likelihood: L(λ = n λ X i e λ X i! (a One-sided test: H 0 : λ = 1 vs H 1 : λ = 0.1 The likelihood ratio: where LR = L(1 L(0.1 = 1 X i e n 1 = λ n X i e nλ

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 57 Table of Contents 1 Sparse linear models Basis Pursuit and restricted null space property Sufficient conditions for RNS 2 / 57

More information

Bayesian methods in economics and finance

Bayesian methods in economics and finance 1/26 Bayesian methods in economics and finance Linear regression: Bayesian model selection and sparsity priors Linear Regression 2/26 Linear regression Model for relationship between (several) independent

More information

Lecture 11 Weak IV. Econ 715

Lecture 11 Weak IV. Econ 715 Lecture 11 Weak IV Instrument exogeneity and instrument relevance are two crucial requirements in empirical analysis using GMM. It now appears that in many applications of GMM and IV regressions, instruments

More information

Peter Hoff Minimax estimation October 31, Motivation and definition. 2 Least favorable prior 3. 3 Least favorable prior sequence 11

Peter Hoff Minimax estimation October 31, Motivation and definition. 2 Least favorable prior 3. 3 Least favorable prior sequence 11 Contents 1 Motivation and definition 1 2 Least favorable prior 3 3 Least favorable prior sequence 11 4 Nonparametric problems 15 5 Minimax and admissibility 18 6 Superefficiency and sparsity 19 Most of

More information

MCMC CONFIDENCE SETS FOR IDENTIFIED SETS. Xiaohong Chen, Timothy M. Christensen, and Elie Tamer. May 2016 COWLES FOUNDATION DISCUSSION PAPER NO.

MCMC CONFIDENCE SETS FOR IDENTIFIED SETS. Xiaohong Chen, Timothy M. Christensen, and Elie Tamer. May 2016 COWLES FOUNDATION DISCUSSION PAPER NO. MCMC CONFIDENCE SETS FOR IDENTIFIED SETS By Xiaohong Chen, Timothy M. Christensen, and Elie Tamer May 2016 COWLES FOUNDATION DISCUSSION PAPER NO. 2037 COWLES FOUNDATION FOR RESEARCH IN ECONOMICS YALE UNIVERSITY

More information

optimal inference in a class of nonparametric models

optimal inference in a class of nonparametric models optimal inference in a class of nonparametric models Timothy Armstrong (Yale University) Michal Kolesár (Princeton University) September 2015 setup Interested in inference on linear functional Lf in regression

More information

Lecture 2: Statistical Decision Theory (Part I)

Lecture 2: Statistical Decision Theory (Part I) Lecture 2: Statistical Decision Theory (Part I) Hao Helen Zhang Hao Helen Zhang Lecture 2: Statistical Decision Theory (Part I) 1 / 35 Outline of This Note Part I: Statistics Decision Theory (from Statistical

More information

simple if it completely specifies the density of x

simple if it completely specifies the density of x 3. Hypothesis Testing Pure significance tests Data x = (x 1,..., x n ) from f(x, θ) Hypothesis H 0 : restricts f(x, θ) Are the data consistent with H 0? H 0 is called the null hypothesis simple if it completely

More information

Nonparametric Inference via Bootstrapping the Debiased Estimator

Nonparametric Inference via Bootstrapping the Debiased Estimator Nonparametric Inference via Bootstrapping the Debiased Estimator Yen-Chi Chen Department of Statistics, University of Washington ICSA-Canada Chapter Symposium 2017 1 / 21 Problem Setup Let X 1,, X n be

More information

Cointegrated VAR s. Eduardo Rossi University of Pavia. November Rossi Cointegrated VAR s Financial Econometrics / 56

Cointegrated VAR s. Eduardo Rossi University of Pavia. November Rossi Cointegrated VAR s Financial Econometrics / 56 Cointegrated VAR s Eduardo Rossi University of Pavia November 2013 Rossi Cointegrated VAR s Financial Econometrics - 2013 1 / 56 VAR y t = (y 1t,..., y nt ) is (n 1) vector. y t VAR(p): Φ(L)y t = ɛ t The

More information

Lecture notes on statistical decision theory Econ 2110, fall 2013

Lecture notes on statistical decision theory Econ 2110, fall 2013 Lecture notes on statistical decision theory Econ 2110, fall 2013 Maximilian Kasy March 10, 2014 These lecture notes are roughly based on Robert, C. (2007). The Bayesian choice: from decision-theoretic

More information

Regime switching models

Regime switching models Regime switching models Structural change and nonlinearities Matthieu Stigler Matthieu.Stigler at gmail.com April 30, 2009 Version 1.1 This document is released under the Creative Commons Attribution-Noncommercial

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Spring 2017 Econ 574 Roger Koenker. Lecture 14 GEE-GMM

Spring 2017 Econ 574 Roger Koenker. Lecture 14 GEE-GMM University of Illinois Department of Economics Spring 2017 Econ 574 Roger Koenker Lecture 14 GEE-GMM Throughout the course we have emphasized methods of estimation and inference based on the principle

More information

Long-Run Covariability

Long-Run Covariability Long-Run Covariability Ulrich K. Müller and Mark W. Watson Princeton University October 2016 Motivation Study the long-run covariability/relationship between economic variables great ratios, long-run Phillips

More information

Vector Auto-Regressive Models

Vector Auto-Regressive Models Vector Auto-Regressive Models Laurent Ferrara 1 1 University of Paris Nanterre M2 Oct. 2018 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

What s New in Econometrics. Lecture 13

What s New in Econometrics. Lecture 13 What s New in Econometrics Lecture 13 Weak Instruments and Many Instruments Guido Imbens NBER Summer Institute, 2007 Outline 1. Introduction 2. Motivation 3. Weak Instruments 4. Many Weak) Instruments

More information

Analysis Methods for Supersaturated Design: Some Comparisons

Analysis Methods for Supersaturated Design: Some Comparisons Journal of Data Science 1(2003), 249-260 Analysis Methods for Supersaturated Design: Some Comparisons Runze Li 1 and Dennis K. J. Lin 2 The Pennsylvania State University Abstract: Supersaturated designs

More information

Political Science 236 Hypothesis Testing: Review and Bootstrapping

Political Science 236 Hypothesis Testing: Review and Bootstrapping Political Science 236 Hypothesis Testing: Review and Bootstrapping Rocío Titiunik Fall 2007 1 Hypothesis Testing Definition 1.1 Hypothesis. A hypothesis is a statement about a population parameter The

More information

VAR Models and Applications

VAR Models and Applications VAR Models and Applications Laurent Ferrara 1 1 University of Paris West M2 EIPMC Oct. 2016 Overview of the presentation 1. Vector Auto-Regressions Definition Estimation Testing 2. Impulse responses functions

More information

Quick Review on Linear Multiple Regression

Quick Review on Linear Multiple Regression Quick Review on Linear Multiple Regression Mei-Yuan Chen Department of Finance National Chung Hsing University March 6, 2007 Introduction for Conditional Mean Modeling Suppose random variables Y, X 1,

More information

Testing Statistical Hypotheses

Testing Statistical Hypotheses E.L. Lehmann Joseph P. Romano Testing Statistical Hypotheses Third Edition 4y Springer Preface vii I Small-Sample Theory 1 1 The General Decision Problem 3 1.1 Statistical Inference and Statistical Decisions

More information

Estimation under Ambiguity

Estimation under Ambiguity Estimation under Ambiguity R. Giacomini (UCL), T. Kitagawa (UCL), H. Uhlig (Chicago) Giacomini, Kitagawa, Uhlig Ambiguity 1 / 33 Introduction Questions: How to perform posterior analysis (inference/decision)

More information

Statistics: Learning models from data

Statistics: Learning models from data DS-GA 1002 Lecture notes 5 October 19, 2015 Statistics: Learning models from data Learning models from data that are assumed to be generated probabilistically from a certain unknown distribution is a crucial

More information

Review. December 4 th, Review

Review. December 4 th, Review December 4 th, 2017 Att. Final exam: Course evaluation Friday, 12/14/2018, 10:30am 12:30pm Gore Hall 115 Overview Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 6: Statistics and Sampling Distributions Chapter

More information

ROBUST CONFIDENCE SETS IN THE PRESENCE OF WEAK INSTRUMENTS By Anna Mikusheva 1, MIT, Department of Economics. Abstract

ROBUST CONFIDENCE SETS IN THE PRESENCE OF WEAK INSTRUMENTS By Anna Mikusheva 1, MIT, Department of Economics. Abstract ROBUST CONFIDENCE SETS IN THE PRESENCE OF WEAK INSTRUMENTS By Anna Mikusheva 1, MIT, Department of Economics Abstract This paper considers instrumental variable regression with a single endogenous variable

More information

Instrumental Variables Estimation and Weak-Identification-Robust. Inference Based on a Conditional Quantile Restriction

Instrumental Variables Estimation and Weak-Identification-Robust. Inference Based on a Conditional Quantile Restriction Instrumental Variables Estimation and Weak-Identification-Robust Inference Based on a Conditional Quantile Restriction Vadim Marmer Department of Economics University of British Columbia vadim.marmer@gmail.com

More information

LECTURE 5 NOTES. n t. t Γ(a)Γ(b) pt+a 1 (1 p) n t+b 1. The marginal density of t is. Γ(t + a)γ(n t + b) Γ(n + a + b)

LECTURE 5 NOTES. n t. t Γ(a)Γ(b) pt+a 1 (1 p) n t+b 1. The marginal density of t is. Γ(t + a)γ(n t + b) Γ(n + a + b) LECTURE 5 NOTES 1. Bayesian point estimators. In the conventional (frequentist) approach to statistical inference, the parameter θ Θ is considered a fixed quantity. In the Bayesian approach, it is considered

More information

Applied Econometrics (QEM)

Applied Econometrics (QEM) Applied Econometrics (QEM) based on Prinicples of Econometrics Jakub Mućk Department of Quantitative Economics Jakub Mućk Applied Econometrics (QEM) Meeting #3 1 / 42 Outline 1 2 3 t-test P-value Linear

More information

P Values and Nuisance Parameters

P Values and Nuisance Parameters P Values and Nuisance Parameters Luc Demortier The Rockefeller University PHYSTAT-LHC Workshop on Statistical Issues for LHC Physics CERN, Geneva, June 27 29, 2007 Definition and interpretation of p values;

More information

Statistical Measures of Uncertainty in Inverse Problems

Statistical Measures of Uncertainty in Inverse Problems Statistical Measures of Uncertainty in Inverse Problems Workshop on Uncertainty in Inverse Problems Institute for Mathematics and Its Applications Minneapolis, MN 19-26 April 2002 P.B. Stark Department

More information

Time Series and Forecasting Lecture 4 NonLinear Time Series

Time Series and Forecasting Lecture 4 NonLinear Time Series Time Series and Forecasting Lecture 4 NonLinear Time Series Bruce E. Hansen Summer School in Economics and Econometrics University of Crete July 23-27, 2012 Bruce Hansen (University of Wisconsin) Foundations

More information

Testing Simple Hypotheses R.L. Wolpert Institute of Statistics and Decision Sciences Duke University, Box Durham, NC 27708, USA

Testing Simple Hypotheses R.L. Wolpert Institute of Statistics and Decision Sciences Duke University, Box Durham, NC 27708, USA Testing Simple Hypotheses R.L. Wolpert Institute of Statistics and Decision Sciences Duke University, Box 90251 Durham, NC 27708, USA Summary: Pre-experimental Frequentist error probabilities do not summarize

More information

Econ 2148, spring 2019 Statistical decision theory

Econ 2148, spring 2019 Statistical decision theory Econ 2148, spring 2019 Statistical decision theory Maximilian Kasy Department of Economics, Harvard University 1 / 53 Takeaways for this part of class 1. A general framework to think about what makes a

More information

Lecture 3. Inference about multivariate normal distribution

Lecture 3. Inference about multivariate normal distribution Lecture 3. Inference about multivariate normal distribution 3.1 Point and Interval Estimation Let X 1,..., X n be i.i.d. N p (µ, Σ). We are interested in evaluation of the maximum likelihood estimates

More information

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models

Economics 536 Lecture 7. Introduction to Specification Testing in Dynamic Econometric Models University of Illinois Fall 2016 Department of Economics Roger Koenker Economics 536 Lecture 7 Introduction to Specification Testing in Dynamic Econometric Models In this lecture I want to briefly describe

More information

ST5215: Advanced Statistical Theory

ST5215: Advanced Statistical Theory Department of Statistics & Applied Probability Wednesday, October 5, 2011 Lecture 13: Basic elements and notions in decision theory Basic elements X : a sample from a population P P Decision: an action

More information

1 Mixed effect models and longitudinal data analysis

1 Mixed effect models and longitudinal data analysis 1 Mixed effect models and longitudinal data analysis Mixed effects models provide a flexible approach to any situation where data have a grouping structure which introduces some kind of correlation between

More information

Peter Hoff Minimax estimation November 12, Motivation and definition. 2 Least favorable prior 3. 3 Least favorable prior sequence 11

Peter Hoff Minimax estimation November 12, Motivation and definition. 2 Least favorable prior 3. 3 Least favorable prior sequence 11 Contents 1 Motivation and definition 1 2 Least favorable prior 3 3 Least favorable prior sequence 11 4 Nonparametric problems 15 5 Minimax and admissibility 18 6 Superefficiency and sparsity 19 Most of

More information

Consistent high-dimensional Bayesian variable selection via penalized credible regions

Consistent high-dimensional Bayesian variable selection via penalized credible regions Consistent high-dimensional Bayesian variable selection via penalized credible regions Howard Bondell bondell@stat.ncsu.edu Joint work with Brian Reich Howard Bondell p. 1 Outline High-Dimensional Variable

More information

Robust Backtesting Tests for Value-at-Risk Models

Robust Backtesting Tests for Value-at-Risk Models Robust Backtesting Tests for Value-at-Risk Models Jose Olmo City University London (joint work with Juan Carlos Escanciano, Indiana University) Far East and South Asia Meeting of the Econometric Society

More information

Linear Model Selection and Regularization

Linear Model Selection and Regularization Linear Model Selection and Regularization Recall the linear model Y = β 0 + β 1 X 1 + + β p X p + ɛ. In the lectures that follow, we consider some approaches for extending the linear model framework. In

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Previous lecture. P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing.

Previous lecture. P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing. Previous lecture P-value based combination. Fixed vs random effects models. Meta vs. pooled- analysis. New random effects testing. Interaction Outline: Definition of interaction Additive versus multiplicative

More information

Good Confidence Intervals for Categorical Data Analyses. Alan Agresti

Good Confidence Intervals for Categorical Data Analyses. Alan Agresti Good Confidence Intervals for Categorical Data Analyses Alan Agresti Department of Statistics, University of Florida visiting Statistics Department, Harvard University LSHTM, July 22, 2011 p. 1/36 Outline

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information