Single-Predicate Derivations

Size: px
Start display at page:

Download "Single-Predicate Derivations"

Transcription

1 Single-Predicate Derivations Let s do some derivations. Start with an easy one: Practice #1: Fb, Gb Ⱶ (ꓱx)(Fx Gx) Imagine that I have a frog named Bob. The above inference might go like this: Bob is friendly. Bob is green. Therefore, there exists something that is both friendly and green. That seems intuitive. Let s prove it: 1 (1) Fb A 2 (2) Gb A 1, 2 (3) Fb Gb 1, 2, I 1, 2 (4) (ꓱx)(Fx Gx) 3, ꓱI The derivation above simply requires conjunction-introduction followed by existentialintroduction. Let s do a more challenging one. Derive this sequent: Practice #2: (ꓯy)(Gy Lc), (ꓱx)Gx Ⱶ (ꓱz)Lz Remember that x, y, and z are variables, but c is a name. So, the argument might go like this: For all things, if that thing is God, then Chad is loved. God exists. Therefore, something exists that is loved. Here s the beginning of the derivation: Let s begin by assuming the quantifier-less portion of (1) for the purposes of ꓱE: 3 (3) Gx Ass. (ꓱE) * * Remember: The exception was only that our chosen variable (in this case x ) cannot occur freely in any prior assumption. And it doesn t! While x DOES occur in one prior assumption (on line 2), it is bound in line (2), not free. We can now use ꓯE to get rid of the universal quantifier in line (1). Don t forget that the y can be any variable. Below, I will make it an x : 1

2 3 (3) Gx Ass. (ꓱE) 1 (4) Gx Lc 1, ꓯE * 1, 3 (5) Lc 3, 4, E 1, 3 (6) (ꓱz)Lz 5, ꓱI * Remember: The exception was only that our chosen variable (in this case x ) cannot occur freely in the assumption that it rests on. And it doesn t! In fact, in line (1), x does not occur at all. We obtained the conclusion on line (6), but apparently we re not done yet. Why not? Reason: Notice that line (6) rests on (1) and (3). What we were aiming for in the conclusion on line (n) was that same formula, but resting instead on lines (1) and (2). What next? Don t forget that our assumption on line (3) was for the purpose of performing an ꓱE, but we haven t yet performed one! Let s do that: 3 (3) Gx Ass. (ꓱE) 1 (4) Gx Lc 1, ꓯE 1, 3 (5) Lc 3, 4, E 1, 3 (6) (ꓱz)Lz 5, ꓱI 2 (7) Gx (ꓱz)Lz 3, 6, I 1, 2 (8) (ꓱz)Lz 2, 7, ꓱE Remember that when we perform an ꓱE, it discharges the original assumption that was made for the purposes of the ꓱE i.e., it discharges line (3) while bringing back in the original quantified formula to rest on it instead i.e., the conclusion rests on (2). Let s do some more. Here are two equivalence relations between ꓯ and ꓱ that you will use frequently: Quantifier Negations (1) (ꓯx)Δx (ꓱx) Δx (2) (ꓱx)Δx (ꓯx) Δx Line (1) is intuitively true. For instance, Not all things are dogs means the same thing as At least one non-dog exists. (ꓯx)Dx (ꓱx) Dx Line (2) is also intuitive. For instance, Unicorns do not exist means the same thing as, All things are non-unicorns. (ꓱx)Ux (ꓯx) Ux 2

3 Remember when we learned that we could do without the operator? Well, we could also do without either the ꓯ or the ꓱ (we just need one of the two). For instance, we don t need ꓱ. Every time we wanted to write (ꓱx)Δx, we could just write (ꓯx) Δx instead. But, having both ꓯ and ꓱ makes logic a lot easier. To memorize these easily, just remember that, to convert from one quantifier to the other, you negate BOTH the quantifier AND the quantified wff. For instance, (ꓯx)Δx is equivalent to (ꓱx) Δx while (ꓱx)Δx (ꓯx) Δx. Let s do some derivations for these quantifier negations equivalence relations. Here s (2) from right to left: Practice #3: S124: (ꓯx) Lx Ⱶ (ꓱx)Lx Since the target is a negation, we ll try assuming it without the dash (for reductio): 1 (n) (ꓱx)Lx? Notice lines (1) and (2) contain Lx and Lx. These seem like good candidates for a contradiction. We can easily get Lx by using ꓯE on line (1). But, the only way we can get Lx is by assuming it (for ꓱE?). Let s see how far we can get with that: 3 (3) Lx Ass. (ꓱE) * 1 (4) Lx 1, ꓯE ** * This is permissible because x does not occur freely in any prior assumption. ** This is permissible because x does not occur freely in the assumption that it rests on namely, line (1). But, the contradiction we ve derived in line (5) does NOT rest on the assumption in (2). So, we cannot negate it. It looks like we can only use our contradiction to negate line (1). Let s do that: 3 (3) Lx Ass. (ꓱE) 1 (4) Lx 1, ꓯE 3 (6) (ꓯx) Lx 1, 5, I 1 (n) (ꓱx)Lx? 3

4 Note that we COULD combine (1) and (6) to get another contradiction at this point, but then that contradiction would rest on lines (1) and (3). Negating either of those lines won t help us. What we WANT is to negate our assumption in line (2)! If we could get a contradiction that rests on line (2), THEN we could negate it to get the conclusion. We can do that. Remember how ꓱE works. We assume the unbound wff for purposes of ꓱE, derive some other wff from that assumption, then use I, and finally use ꓱE to end up with a wff that rests ONLY on our original existentially quantified statement: 3 (3) Lx Ass. (ꓱE) 1 (4) Lx 1, ꓯE 3 (6) (ꓯx) Lx 1, 5, I - (7) Lx (ꓯx) Lx 3, 6, I 2 (8) (ꓯx) Lx 2, 7, ꓱE 1, 2 (9) (ꓯx) Lx (ꓯx) Lx 1, 8, I 1 (10) (ꓱx)Lx 2, 9, I Okay! That was a bit tricky. Practice #4: Let s do one more. This one is even trickier than the last. S125: (ꓯx)Lx Ⱶ (ꓱx) Lx As it turns out, we have to assume the negation of the conclusion again for purposes of a reductio. But, what then? 2 (2) (ꓱx) Lx Ass. (Red.) 1 (n) (ꓱx) Lx? Well, we ve assumed line (2) for the purposes of a reductio, so that means we need to get a contradiction somehow. It would be nice if we could derive (ꓯx)Lx since we already have its negation on line (1). So, let s aim for the following: 4

5 2 (2) (ꓱx) Lx Ass. (Red.) 1, 2 (n-2) (ꓯx)Lx (ꓯx)Lx (derived a contradiction to be used for reductio) 1 (n-1) (ꓱx) Lx 2, n-2, I (negating line (2) due to derived contradiction) 1 (n) (ꓱx) Lx n-1, E (simply getting rid of the double-negation) Ok, so, the target is (ꓯx)Lx which means our target is really just Lx since we can use ꓯI once we have that. So, let s assume the negation of our target for the purposes of ANOTHER reductio: 2 (2) (ꓱx) Lx Ass. (Red.) #1 3 (3) Lx Ass. (Red.) #2 (assume the opposite of target for reductio) 3 (4) (ꓱx) Lx 3, ꓱI (simply adding ꓱ to our assumption) 2, 3 (5) (ꓱx) Lx (ꓱx) Lx 2, 4, I (2+4 to derive a contradiction for reductio #2) 2 (6) Lx 3, 5, I (negating assumption from (3) due to contradiction) 2 (7) Lx 6, E (simply getting rid of the double-negation) 2 (8) (ꓯx)Lx 7, ꓯI * (simply adding ꓯ to line 7) 1, 2 (9) (ꓯx)Lx (ꓯx)Lx 1, 8, I (1+8 to derive a contradiction for reductio #1) 1 (10) (ꓱx) Lx 2, 9, I (negating assumption from (2) due to contradiction) 1 (11) (ꓱx) Lx 10, E (simply getting rid of the double-negation) Whew! We did it! * This is permissible because x does not occur freely in the assumption that it rests on namely, line (2). While x DOES occur in line (2), it is bound by the existential quantifier there. 5

Derivations, part 2. Let s dive in to some derivations that require the use of the last four rules:

Derivations, part 2. Let s dive in to some derivations that require the use of the last four rules: Derivations, part 2 Let s dive in to some derivations that require the use of the last four rules: 1. I Derivations: Let s start with some derivations that use conditional-introduction. (a) Here s an easy

More information

Identity. We often use the word identical to simply mean looks the same. For instance:

Identity. We often use the word identical to simply mean looks the same. For instance: Identity 1. Introduction: In this lesson, we are going to learn how to express statements about identity; or, namely, we re going to learn how to say that two things are identical. We often use the word

More information

Natural deduction for truth-functional logic

Natural deduction for truth-functional logic Natural deduction for truth-functional logic Phil 160 - Boston University Why natural deduction? After all, we just found this nice method of truth-tables, which can be used to determine the validity or

More information

The predicate calculus is complete

The predicate calculus is complete The predicate calculus is complete Hans Halvorson The first thing we need to do is to precisify the inference rules UI and EE. To this end, we will use A(c) to denote a sentence containing the name c,

More information

Arguments and Proofs. 1. A set of sentences (the premises) 2. A sentence (the conclusion)

Arguments and Proofs. 1. A set of sentences (the premises) 2. A sentence (the conclusion) Arguments and Proofs For the next section of this course, we will study PROOFS. A proof can be thought of as the formal representation of a process of reasoning. Proofs are comparable to arguments, since

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

CHAPTER 6 - THINKING ABOUT AND PRACTICING PROPOSITIONAL LOGIC

CHAPTER 6 - THINKING ABOUT AND PRACTICING PROPOSITIONAL LOGIC 1 CHAPTER 6 - THINKING ABOUT AND PRACTICING PROPOSITIONAL LOGIC Here, you ll learn: what it means for a logic system to be finished some strategies for constructing proofs Congratulations! Our system of

More information

HOW TO CREATE A PROOF. Writing proofs is typically not a straightforward, algorithmic process such as calculating

HOW TO CREATE A PROOF. Writing proofs is typically not a straightforward, algorithmic process such as calculating HOW TO CREATE A PROOF ALLAN YASHINSKI Abstract We discuss how to structure a proof based on the statement being proved Writing proofs is typically not a straightforward, algorithmic process such as calculating

More information

Supplementary Logic Notes CSE 321 Winter 2009

Supplementary Logic Notes CSE 321 Winter 2009 1 Propositional Logic Supplementary Logic Notes CSE 321 Winter 2009 1.1 More efficient truth table methods The method of using truth tables to prove facts about propositional formulas can be a very tedious

More information

1.1 Statements and Compound Statements

1.1 Statements and Compound Statements Chapter 1 Propositional Logic 1.1 Statements and Compound Statements A statement or proposition is an assertion which is either true or false, though you may not know which. That is, a statement is something

More information

Deduction by Daniel Bonevac. Chapter 3 Truth Trees

Deduction by Daniel Bonevac. Chapter 3 Truth Trees Deduction by Daniel Bonevac Chapter 3 Truth Trees Truth trees Truth trees provide an alternate decision procedure for assessing validity, logical equivalence, satisfiability and other logical properties

More information

One-to-one functions and onto functions

One-to-one functions and onto functions MA 3362 Lecture 7 - One-to-one and Onto Wednesday, October 22, 2008. Objectives: Formalize definitions of one-to-one and onto One-to-one functions and onto functions At the level of set theory, there are

More information

Intermediate Logic. Natural Deduction for TFL

Intermediate Logic. Natural Deduction for TFL Intermediate Logic Lecture Two Natural Deduction for TFL Rob Trueman rob.trueman@york.ac.uk University of York The Trouble with Truth Tables Natural Deduction for TFL The Trouble with Truth Tables The

More information

Quadratic Equations Part I

Quadratic Equations Part I Quadratic Equations Part I Before proceeding with this section we should note that the topic of solving quadratic equations will be covered in two sections. This is done for the benefit of those viewing

More information

Lesson 21 Not So Dramatic Quadratics

Lesson 21 Not So Dramatic Quadratics STUDENT MANUAL ALGEBRA II / LESSON 21 Lesson 21 Not So Dramatic Quadratics Quadratic equations are probably one of the most popular types of equations that you ll see in algebra. A quadratic equation has

More information

MA103 STATEMENTS, PROOF, LOGIC

MA103 STATEMENTS, PROOF, LOGIC MA103 STATEMENTS, PROOF, LOGIC Abstract Mathematics is about making precise mathematical statements and establishing, by proof or disproof, whether these statements are true or false. We start by looking

More information

Logic. Propositional Logic: Syntax. Wffs

Logic. Propositional Logic: Syntax. Wffs Logic Propositional Logic: Syntax Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about

More information

One sided tests. An example of a two sided alternative is what we ve been using for our two sample tests:

One sided tests. An example of a two sided alternative is what we ve been using for our two sample tests: One sided tests So far all of our tests have been two sided. While this may be a bit easier to understand, this is often not the best way to do a hypothesis test. One simple thing that we can do to get

More information

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this.

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this. Preface Here are my online notes for my Calculus II course that I teach here at Lamar University. Despite the fact that these are my class notes they should be accessible to anyone wanting to learn Calculus

More information

Inference and Proofs (1.6 & 1.7)

Inference and Proofs (1.6 & 1.7) EECS 203 Spring 2016 Lecture 4 Page 1 of 9 Introductory problem: Inference and Proofs (1.6 & 1.7) As is commonly the case in mathematics, it is often best to start with some definitions. An argument for

More information

Lecture 17: Floyd-Hoare Logic for Partial Correctness

Lecture 17: Floyd-Hoare Logic for Partial Correctness Lecture 17: Floyd-Hoare Logic for Partial Correctness Aims: To look at the following inference rules Page 1 of 9 sequence; assignment and consequence. 17.1. The Deduction System for Partial Correctness

More information

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2:

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: 03 17 08 3 All about lines 3.1 The Rectangular Coordinate System Know how to plot points in the rectangular coordinate system. Know the

More information

Logic. Propositional Logic: Syntax

Logic. Propositional Logic: Syntax Logic Propositional Logic: Syntax Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about

More information

Predicate Logic. Predicates. Math 173 February 9, 2010

Predicate Logic. Predicates. Math 173 February 9, 2010 Math 173 February 9, 2010 Predicate Logic We have now seen two ways to translate English sentences into mathematical symbols. We can capture the logical form of a sentence using propositional logic: variables

More information

MAT137 - Term 2, Week 2

MAT137 - Term 2, Week 2 MAT137 - Term 2, Week 2 This lecture will assume you have watched all of the videos on the definition of the integral (but will remind you about some things). Today we re talking about: More on the definition

More information

Examples: P: it is not the case that P. P Q: P or Q P Q: P implies Q (if P then Q) Typical formula:

Examples: P: it is not the case that P. P Q: P or Q P Q: P implies Q (if P then Q) Typical formula: Logic: The Big Picture Logic is a tool for formalizing reasoning. There are lots of different logics: probabilistic logic: for reasoning about probability temporal logic: for reasoning about time (and

More information

Descriptive Statistics (And a little bit on rounding and significant digits)

Descriptive Statistics (And a little bit on rounding and significant digits) Descriptive Statistics (And a little bit on rounding and significant digits) Now that we know what our data look like, we d like to be able to describe it numerically. In other words, how can we represent

More information

Logic, Sets, and Proofs

Logic, Sets, and Proofs Logic, Sets, and Proofs David A. Cox and Catherine C. McGeoch Amherst College 1 Logic Logical Operators. A logical statement is a mathematical statement that can be assigned a value either true or false.

More information

N H 2 2 NH 3 and 2 NH 3 N H 2

N H 2 2 NH 3 and 2 NH 3 N H 2 Chemical Equilibrium Notes (Chapter 18) So far, we ve talked about all chemical reactions as if they go only in one direction. However, as with many things in life, chemical reactions can go both in the

More information

Basics of Proofs. 1 The Basics. 2 Proof Strategies. 2.1 Understand What s Going On

Basics of Proofs. 1 The Basics. 2 Proof Strategies. 2.1 Understand What s Going On Basics of Proofs The Putnam is a proof based exam and will expect you to write proofs in your solutions Similarly, Math 96 will also require you to write proofs in your homework solutions If you ve seen

More information

Main topics for the First Midterm Exam

Main topics for the First Midterm Exam Main topics for the First Midterm Exam The final will cover Sections.-.0, 2.-2.5, and 4.. This is roughly the material from first three homeworks and three quizzes, in addition to the lecture on Monday,

More information

Deduction by Daniel Bonevac. Chapter 8 Identity and Functions

Deduction by Daniel Bonevac. Chapter 8 Identity and Functions Deduction by Daniel Bonevac Chapter 8 Identity and Functions Introduction 1 This chapter introduces two important extensions of Q that make it quite a bit more powerful. The first is the mathematical relation

More information

Formal Logic: Quantifiers, Predicates, and Validity. CS 130 Discrete Structures

Formal Logic: Quantifiers, Predicates, and Validity. CS 130 Discrete Structures Formal Logic: Quantifiers, Predicates, and Validity CS 130 Discrete Structures Variables and Statements Variables: A variable is a symbol that stands for an individual in a collection or set. For example,

More information

cis32-ai lecture # 18 mon-3-apr-2006

cis32-ai lecture # 18 mon-3-apr-2006 cis32-ai lecture # 18 mon-3-apr-2006 today s topics: propositional logic cis32-spring2006-sklar-lec18 1 Introduction Weak (search-based) problem-solving does not scale to real problems. To succeed, problem

More information

Section 3.1: Direct Proof and Counterexample 1

Section 3.1: Direct Proof and Counterexample 1 Section 3.1: Direct Proof and Counterexample 1 In this chapter, we introduce the notion of proof in mathematics. A mathematical proof is valid logical argument in mathematics which shows that a given conclusion

More information

Preparing for the CS 173 (A) Fall 2018 Midterm 1

Preparing for the CS 173 (A) Fall 2018 Midterm 1 Preparing for the CS 173 (A) Fall 2018 Midterm 1 1 Basic information Midterm 1 is scheduled from 7:15-8:30 PM. We recommend you arrive early so that you can start exactly at 7:15. Exams will be collected

More information

SYMBOLIC LOGIC UNIT 10: SINGULAR SENTENCES

SYMBOLIC LOGIC UNIT 10: SINGULAR SENTENCES SYMBOLIC LOGIC UNIT 10: SINGULAR SENTENCES Singular Sentences name Paris is beautiful (monadic) predicate (monadic) predicate letter Bp individual constant Singular Sentences Bp These are our new simple

More information

TheFourierTransformAndItsApplications-Lecture28

TheFourierTransformAndItsApplications-Lecture28 TheFourierTransformAndItsApplications-Lecture28 Instructor (Brad Osgood):All right. Let me remind you of the exam information as I said last time. I also sent out an announcement to the class this morning

More information

CS 3110: Proof Strategy and Examples. 1 Propositional Logic Proof Strategy. 2 A Proof Walkthrough

CS 3110: Proof Strategy and Examples. 1 Propositional Logic Proof Strategy. 2 A Proof Walkthrough CS 3110: Proof Strategy and Examples 1 Propositional Logic Proof Strategy The fundamental thing you have to do is figure out where each connective is going to come from. Sometimes the answer is very simple;

More information

a. Introduction to metatheory

a. Introduction to metatheory a. Introduction to metatheory a.i. Disclaimer The two additional lectures are aimed at students who haven t studied Elements of Deductive Logic students who have are unlikely to find much, if anything,

More information

LECTURE 1. Logic and Proofs

LECTURE 1. Logic and Proofs LECTURE 1 Logic and Proofs The primary purpose of this course is to introduce you, most of whom are mathematics majors, to the most fundamental skills of a mathematician; the ability to read, write, and

More information

STEP Support Programme. Pure STEP 1 Questions

STEP Support Programme. Pure STEP 1 Questions STEP Support Programme Pure STEP 1 Questions 2012 S1 Q4 1 Preparation Find the equation of the tangent to the curve y = x at the point where x = 4. Recall that x means the positive square root. Solve the

More information

Review Solutions, Exam 2, Operations Research

Review Solutions, Exam 2, Operations Research Review Solutions, Exam 2, Operations Research 1. Prove the weak duality theorem: For any x feasible for the primal and y feasible for the dual, then... HINT: Consider the quantity y T Ax. SOLUTION: To

More information

Section 5-7 : Green's Theorem

Section 5-7 : Green's Theorem Section 5-7 : Green's Theorem In this section we are going to investigate the relationship between certain kinds of line integrals (on closed paths) and double integrals. Let s start off with a simple

More information

Quantifiers Here is a (true) statement about real numbers: Every real number is either rational or irrational.

Quantifiers Here is a (true) statement about real numbers: Every real number is either rational or irrational. Quantifiers 1-17-2008 Here is a (true) statement about real numbers: Every real number is either rational or irrational. I could try to translate the statement as follows: Let P = x is a real number Q

More information

Solution to Proof Questions from September 1st

Solution to Proof Questions from September 1st Solution to Proof Questions from September 1st Olena Bormashenko September 4, 2011 What is a proof? A proof is an airtight logical argument that proves a certain statement in general. In a sense, it s

More information

A Few Examples of Limit Proofs

A Few Examples of Limit Proofs A Few Examples of Limit Proofs x (7x 4) = 10 SCRATCH WORK First, we need to find a way of relating x < δ and (7x 4) 10 < ɛ. We will use algebraic manipulation to get this relationship. Remember that the

More information

Truth Table Definitions of Logical Connectives

Truth Table Definitions of Logical Connectives Truth Table Definitions of Logical Connectives 1. Truth Functions: Logicians DEFINE logical operators in terms of their relation to the truth or falsehood of the statement(s) that they are operating on.

More information

Learning Goals: In-Class. Using Logical Equivalences. Outline. Worked Problem: Even Squares

Learning Goals: In-Class. Using Logical Equivalences. Outline. Worked Problem: Even Squares CPSC 121: Models of Computation 2013W2 Proof Techniques (Part B) Steve Wolfman, based on notes by Patrice Belleville and others snick snack Learning Goals: In-Class By the end of this unit, you should

More information

Some Review Problems for Exam 1: Solutions

Some Review Problems for Exam 1: Solutions Math 3355 Fall 2018 Some Review Problems for Exam 1: Solutions Here is my quick review of proof techniques. I will focus exclusively on propositions of the form p q, or more properly, x P (x) Q(x) or x

More information

Guide to Proofs on Discrete Structures

Guide to Proofs on Discrete Structures CS103 Handout 17 Spring 2018 Guide to Proofs on Discrete Structures In Problem Set One, you got practice with the art of proofwriting in general (as applied to numbers, sets, puzzles, etc.) Problem Set

More information

1 Functions and Sets. 1.1 Sets and Subsets. Phil 450: The Limits of Logic Jeff Russell, Fall 2014

1 Functions and Sets. 1.1 Sets and Subsets. Phil 450: The Limits of Logic Jeff Russell, Fall 2014 1 Phil 450: The Limits of Logic Jeff Russell, Fall 2014 Any statement that is not an Axiom (Ax) or a Definition (Def) or a Remark (R) or an Example is an Exercise. Unless it says otherwise, the exercise

More information

Chapter 5 Simplifying Formulas and Solving Equations

Chapter 5 Simplifying Formulas and Solving Equations Chapter 5 Simplifying Formulas and Solving Equations Look at the geometry formula for Perimeter of a rectangle P = L W L W. Can this formula be written in a simpler way? If it is true, that we can simplify

More information

CS1800: Mathematical Induction. Professor Kevin Gold

CS1800: Mathematical Induction. Professor Kevin Gold CS1800: Mathematical Induction Professor Kevin Gold Induction: Used to Prove Patterns Just Keep Going For an algorithm, we may want to prove that it just keeps working, no matter how big the input size

More information

i.e. The conclusion to the following argument says If you had an A, then you d have a ~(B v Z).

i.e. The conclusion to the following argument says If you had an A, then you d have a ~(B v Z). 7.5 Conditional Proof (CP): Conditional Proof is a different way to do proofs. Using CP will always get you a horseshoe statement, so the best time to use it is when your conclusion is either a horseshoe

More information

Proving logical equivalencies (1.3)

Proving logical equivalencies (1.3) EECS 203 Spring 2016 Lecture 2 Page 1 of 6 Proving logical equivalencies (1.3) One thing we d like to do is prove that two logical statements are the same, or prove that they aren t. Vocabulary time In

More information

CM10196 Topic 2: Sets, Predicates, Boolean algebras

CM10196 Topic 2: Sets, Predicates, Boolean algebras CM10196 Topic 2: Sets, Predicates, oolean algebras Guy McCusker 1W2.1 Sets Most of the things mathematicians talk about are built out of sets. The idea of a set is a simple one: a set is just a collection

More information

Adam Blank Spring 2017 CSE 311. Foundations of Computing I

Adam Blank Spring 2017 CSE 311. Foundations of Computing I Adam Blank Spring 2017 CSE 311 Foundations of Computing I Pre-Lecture Problem Suppose that p, and p (q r) are true. Is q true? Can you prove it with equivalences? CSE 311: Foundations of Computing Lecture

More information

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This document was written and copyrighted by Paul Dawkins. Use of this document and its online version is governed by the Terms and Conditions of Use located at. The online version of this document is

More information

Sec. 1 Simplifying Rational Expressions: +

Sec. 1 Simplifying Rational Expressions: + Chapter 9 Rational Epressions Sec. Simplifying Rational Epressions: + The procedure used to add and subtract rational epressions in algebra is the same used in adding and subtracting fractions in 5 th

More information

Quantifiers. P. Danziger

Quantifiers. P. Danziger - 2 Quantifiers P. Danziger 1 Elementary Quantifiers (2.1) We wish to be able to use variables, such as x or n in logical statements. We do this by using the two quantifiers: 1. - There Exists 2. - For

More information

Solving Exponential and Logarithmic Equations

Solving Exponential and Logarithmic Equations Solving Exponential and Logarithmic Equations We will now use the properties of logarithms along with the fact that exponential and logarithmic functions are inverses of each other to solve problems involving

More information

Completeness in the Monadic Predicate Calculus. We have a system of eight rules of proof. Let's list them:

Completeness in the Monadic Predicate Calculus. We have a system of eight rules of proof. Let's list them: Completeness in the Monadic Predicate Calculus We have a system of eight rules of proof. Let's list them: PI At any stage of a derivation, you may write down a sentence φ with {φ} as its premiss set. TC

More information

Proofs: A General How To II. Rules of Inference. Rules of Inference Modus Ponens. Rules of Inference Addition. Rules of Inference Conjunction

Proofs: A General How To II. Rules of Inference. Rules of Inference Modus Ponens. Rules of Inference Addition. Rules of Inference Conjunction Introduction I Proofs Computer Science & Engineering 235 Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu A proof is a proof. What kind of a proof? It s a proof. A proof is a proof. And when

More information

CS 360, Winter Morphology of Proof: An introduction to rigorous proof techniques

CS 360, Winter Morphology of Proof: An introduction to rigorous proof techniques CS 30, Winter 2011 Morphology of Proof: An introduction to rigorous proof techniques 1 Methodology of Proof An example Deep down, all theorems are of the form If A then B, though they may be expressed

More information

Notes on Propositional and First-Order Logic (CPSC 229 Class Notes, January )

Notes on Propositional and First-Order Logic (CPSC 229 Class Notes, January ) Notes on Propositional and First-Order Logic (CPSC 229 Class Notes, January 23 30 2017) John Lasseter Revised February 14, 2017 The following notes are a record of the class sessions we ve devoted to the

More information

A Little Deductive Logic

A Little Deductive Logic A Little Deductive Logic In propositional or sentential deductive logic, we begin by specifying that we will use capital letters (like A, B, C, D, and so on) to stand in for sentences, and we assume that

More information

1 Limits and continuity

1 Limits and continuity 1 Limits and continuity Question 1. Which of the following its can be evaluated by continuity ( plugging in )? sin(x) (a) x + 1 (d) x 3 x 2 + x 6 (b) e x sin(x) (e) x 2 + x 6 (c) x 2 x 2 + x 6 (f) n (

More information

Collins' notes on Lemmon's Logic

Collins' notes on Lemmon's Logic Collins' notes on Lemmon's Logic (i) Rule of ssumption () Insert any formula at any stage into a proof. The assumed formula rests upon the assumption of itself. (ii) Double Negation (DN) a. b. ( Two negations

More information

UNDERSTANDING FUNCTIONS

UNDERSTANDING FUNCTIONS Learning Centre UNDERSTANDING FUNCTIONS Function As a Machine A math function can be understood as a machine that takes an input and produces an output. Think about your CD Player as a machine that takes

More information

Understanding Exponents Eric Rasmusen September 18, 2018

Understanding Exponents Eric Rasmusen September 18, 2018 Understanding Exponents Eric Rasmusen September 18, 2018 These notes are rather long, but mathematics often has the perverse feature that if someone writes a long explanation, the reader can read it much

More information

Theory of Computation CS3102 Spring 2014

Theory of Computation CS3102 Spring 2014 Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death Nathan Brunelle Department of Computer Science University of Virginia www.cs.virginia.edu/~njb2b/theory

More information

Basic Logic and Proof Techniques

Basic Logic and Proof Techniques Chapter 3 Basic Logic and Proof Techniques Now that we have introduced a number of mathematical objects to study and have a few proof techniques at our disposal, we pause to look a little more closely

More information

Big-oh stuff. You should know this definition by heart and be able to give it,

Big-oh stuff. You should know this definition by heart and be able to give it, Big-oh stuff Definition. if asked. You should know this definition by heart and be able to give it, Let f and g both be functions from R + to R +. Then f is O(g) (pronounced big-oh ) if and only if there

More information

A Little Deductive Logic

A Little Deductive Logic A Little Deductive Logic In propositional or sentential deductive logic, we begin by specifying that we will use capital letters (like A, B, C, D, and so on) to stand in for sentences, and we assume that

More information

The Natural Deduction Pack

The Natural Deduction Pack The Natural Deduction Pack Alastair Carr March 2018 Contents 1 Using this pack 2 2 Summary of rules 3 3 Worked examples 5 31 Implication 5 32 Universal quantifier 6 33 Existential quantifier 8 4 Practice

More information

Math Lecture 3 Notes

Math Lecture 3 Notes Math 1010 - Lecture 3 Notes Dylan Zwick Fall 2009 1 Operations with Real Numbers In our last lecture we covered some basic operations with real numbers like addition, subtraction and multiplication. This

More information

Proseminar on Semantic Theory Fall 2013 Ling 720 Propositional Logic: Syntax and Natural Deduction 1

Proseminar on Semantic Theory Fall 2013 Ling 720 Propositional Logic: Syntax and Natural Deduction 1 Propositional Logic: Syntax and Natural Deduction 1 The Plot That Will Unfold I want to provide some key historical and intellectual context to the model theoretic approach to natural language semantics,

More information

Isomorphisms and Well-definedness

Isomorphisms and Well-definedness Isomorphisms and Well-definedness Jonathan Love October 30, 2016 Suppose you want to show that two groups G and H are isomorphic. There are a couple of ways to go about doing this depending on the situation,

More information

Algebra Exam. Solutions and Grading Guide

Algebra Exam. Solutions and Grading Guide Algebra Exam Solutions and Grading Guide You should use this grading guide to carefully grade your own exam, trying to be as objective as possible about what score the TAs would give your responses. Full

More information

1 Introduction; Integration by Parts

1 Introduction; Integration by Parts 1 Introduction; Integration by Parts September 11-1 Traditionally Calculus I covers Differential Calculus and Calculus II covers Integral Calculus. You have already seen the Riemann integral and certain

More information

Warm-Up Problem. Write a Resolution Proof for. Res 1/32

Warm-Up Problem. Write a Resolution Proof for. Res 1/32 Warm-Up Problem Write a Resolution Proof for Res 1/32 A second Rule Sometimes throughout we need to also make simplifications: You can do this in line without explicitly mentioning it (just pretend you

More information

MATH 22 INFERENCE & QUANTIFICATION. Lecture F: 9/18/2003

MATH 22 INFERENCE & QUANTIFICATION. Lecture F: 9/18/2003 MATH 22 Lecture F: 9/18/2003 INFERENCE & QUANTIFICATION Sixty men can do a piece of work sixty times as quickly as one man. One man can dig a post-hole in sixty seconds. Therefore, sixty men can dig a

More information

PL Proofs Introduced. Chapter A1. A1.1 Choices, choices

PL Proofs Introduced. Chapter A1. A1.1 Choices, choices Chapter A1 PL Proofs Introduced Outside the logic classroom, when we want to convince ourselves that an inference is valid, we don t often use techniques like the truth-table test or tree test. Instead

More information

CHAPTER 7: TECHNIQUES OF INTEGRATION

CHAPTER 7: TECHNIQUES OF INTEGRATION CHAPTER 7: TECHNIQUES OF INTEGRATION DAVID GLICKENSTEIN. Introduction This semester we will be looking deep into the recesses of calculus. Some of the main topics will be: Integration: we will learn how

More information

Introducing Proof 1. hsn.uk.net. Contents

Introducing Proof 1. hsn.uk.net. Contents Contents 1 1 Introduction 1 What is proof? 1 Statements, Definitions and Euler Diagrams 1 Statements 1 Definitions Our first proof Euler diagrams 4 3 Logical Connectives 5 Negation 6 Conjunction 7 Disjunction

More information

Propositional Logic Translation, 6.1. I. The form of an argument

Propositional Logic Translation, 6.1. I. The form of an argument Philosophy 109, Modern Logic, Queens College Russell Marcus, Instructor email: philosophy@thatmarcusfamily.org website: http://philosophy.thatmarcusfamily.org Office phone: (718) 997-5287 Propositional

More information

Guide to Proofs on Sets

Guide to Proofs on Sets CS103 Winter 2019 Guide to Proofs on Sets Cynthia Lee Keith Schwarz I would argue that if you have a single guiding principle for how to mathematically reason about sets, it would be this one: All sets

More information

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 15 Propositional Calculus (PC)

Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras. Lecture - 15 Propositional Calculus (PC) Mathematical Logic Prof. Arindama Singh Department of Mathematics Indian Institute of Technology, Madras Lecture - 15 Propositional Calculus (PC) So, now if you look back, you can see that there are three

More information

Instructor (Brad Osgood)

Instructor (Brad Osgood) TheFourierTransformAndItsApplications-Lecture17 Instructor (Brad Osgood):Is the screen fading and yes, Happy Halloween to everybody. Only one noble soul here came dressed as a Viking. All right. All right.

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. alculus III Preface Here are my online notes for my alculus III course that I teach here at Lamar University. espite the fact that these are my class notes, they should be accessible to anyone wanting

More information

Chapter 5 Simplifying Formulas and Solving Equations

Chapter 5 Simplifying Formulas and Solving Equations Chapter 5 Simplifying Formulas and Solving Equations Look at the geometry formula for Perimeter of a rectangle P = L + W + L + W. Can this formula be written in a simpler way? If it is true, that we can

More information

Logic. Definition [1] A logic is a formal language that comes with rules for deducing the truth of one proposition from the truth of another.

Logic. Definition [1] A logic is a formal language that comes with rules for deducing the truth of one proposition from the truth of another. Math 0413 Appendix A.0 Logic Definition [1] A logic is a formal language that comes with rules for deducing the truth of one proposition from the truth of another. This type of logic is called propositional.

More information

Instructor (Brad Osgood)

Instructor (Brad Osgood) TheFourierTransformAndItsApplications-Lecture20 Instructor (Brad Osgood):There we go. All right, the exams remember the exams? I think they ve all been graded, and the scores have all been entered, although

More information

Expansion of Terms. f (x) = x 2 6x + 9 = (x 3) 2 = 0. x 3 = 0

Expansion of Terms. f (x) = x 2 6x + 9 = (x 3) 2 = 0. x 3 = 0 Expansion of Terms So, let s say we have a factorized equation. Wait, what s a factorized equation? A factorized equation is an equation which has been simplified into brackets (or otherwise) to make analyzing

More information

Hyperreal Numbers: An Elementary Inquiry-Based Introduction. Handouts for a course from Canada/USA Mathcamp Don Laackman

Hyperreal Numbers: An Elementary Inquiry-Based Introduction. Handouts for a course from Canada/USA Mathcamp Don Laackman Hyperreal Numbers: An Elementary Inquiry-Based Introduction Handouts for a course from Canada/USA Mathcamp 2017 Don Laackman MATHCAMP, WEEK 3: HYPERREAL NUMBERS DAY 1: BIG AND LITTLE DON & TIM! Problem

More information

Computer Science 280 Spring 2002 Homework 2 Solutions by Omar Nayeem

Computer Science 280 Spring 2002 Homework 2 Solutions by Omar Nayeem Computer Science 280 Spring 2002 Homework 2 Solutions by Omar Nayeem Part A 1. (a) Some dog does not have his day. (b) Some action has no equal and opposite reaction. (c) Some golfer will never be eated

More information

CSE 331 Winter 2018 Reasoning About Code I

CSE 331 Winter 2018 Reasoning About Code I CSE 331 Winter 2018 Reasoning About Code I Notes by Krysta Yousoufian Original lectures by Hal Perkins Additional contributions from Michael Ernst, David Notkin, and Dan Grossman These notes cover most

More information

Grades 7 & 8, Math Circles 10/11/12 October, Series & Polygonal Numbers

Grades 7 & 8, Math Circles 10/11/12 October, Series & Polygonal Numbers Faculty of Mathematics Waterloo, Ontario N2L G Centre for Education in Mathematics and Computing Introduction Grades 7 & 8, Math Circles 0//2 October, 207 Series & Polygonal Numbers Mathematicians are

More information