RFSS: Lecture 4 Alpha Decay

Size: px
Start display at page:

Download "RFSS: Lecture 4 Alpha Decay"

Transcription

1 RFSS: Lecture 4 Alpha Decay Reaings Nuclear an Raiochemistry: Chapter 3 Moern Nuclear Chemistry: Chapter 7 Energetics of Alpha Decay Geiger Nuttall base theory Theory of Alpha Decay Hinrance Factors Different between theory an measurement Heavy Particle Raioactivity Proton Raioactivity Ientifie at positively charge particle by Rutherfor Helium nucleus ( 4 He + ) base on observe emission bans Energetics Alpha ecay energies 4-9 MeV Originally thought to be monoenergetic, fine structure iscovere A Z (A-4) (Z-) + 4 He + Q 1

2 Fine Structure an Energetics Different alpha ecay energies for same isotope Relative intensities vary an couple with gamma ecay Over 350 alpha emitting nuclei Alpha energy use to evelop ecay schemes All nuclei with mass A > 150 are thermoynamically unstable against alpha emission Q is positive However alpha emission generally seen for heaviest nuclei, A 10 Energy ranges 1.8 MeV ( 144 N) to 11.6 MeV ( 1m Po) half-life of 144 N is 5x10 9 times longer then 1m Po Alpha ecay observe for negative bining energies

3 Q values generally increase with A variation ue to shell effects can impact tren increase Peaks at N=16 shell For isotopes ecay energy generally ecreases with increasing mass 8 neutron close shell in rare earth region increase in Q -ecay for nuclei with N=84 as it ecays to N=8 aughter short-live -emitters near oubly magic 100 Sn 107 Te, 108 Te, 111 Xe alpha emitters have been ientifie by proton ripline above A=100 Energetics 3

4 Alpha Decay Energetics Q value positive for alpha ecay Q value excees alpha ecay energy m T = m T m an T represent aughter From semiempirical mass equation emission of an -particle lowers Coulomb energy of nucleus increases stability of heavy nuclei while not affecting overall bining energy per nucleon tightly boun -particle has approximately same bining energy/nucleon as original nucleus * Emitte particle must have reasonable energy/nucleon * Energetic reason for alpha rather than proton Energies of alpha particles generally increase with atomic number of parent Q T Q Q = T = = T = T Q m (1 + m mt m + T ) mt + m m (1 + m = T ) = Q( m 4 m + m )

5 Energetics Calculation of Q value from mass excess 38 U 34 Th + + Q Isotope Δ (MeV) 38 U Th He.449 Q = ( ) = 4.70 MeV Q energy ivie between particle an heavy recoiling aughter kinetic energy of alpha particle will be slightly less than Q value Conservation of momentum in ecay, aughter an alpha are equal ρ =ρ recoil momentum an -particle momentum are equal in magnitue an opposite in irection p =mt where m= mass an T=kinetic energy 38 U alpha ecay energy m 34 T = Q( T ) MeV m + 5 = 4.70( = m )

6 Energetics Kinetic energy of emitte particle is less than Coulomb barrier -particle an aughter nucleus Equation specific of alpha Particles touching Z e Z Vc = = 1. 44MeV For 38 1/ 3 1/ 3 R 4πε A U ecay o 1.( + 4 ) (90) 59MeV fm c = 1.44MeV fm = 8MeV 1 /3 1/ 1.( ) fm 9.3 fm V 3 fm Alpha ecay energies are small compare to require energy for reverse reaction Alpha particle carries as much energy as possible from Q value, For even-even nuclei, alpha ecay leas to groun state of aughter nucleus as little angular momentum as possible groun state spins of even-even parents, aughters an alpha particle are l=0 6

7 Some ecays of o-a nuclei populate aughter excite states with spin of parent Leas to alpha fine structure Orbital angular momentum of particle can be zero 83% of alpha ecay of 49 Cf goes to 9 th excite state of 45 Cm lowest lying state with parent spin an parity Long range alpha ecay Decay from excite state of parent nucleus to groun state of aughter 1m Po.9 MeV above 1 Po groun state Decays to groun state of 08 Pb * MeV alpha particle Systematics from Coulomb potential larger mass Higher mass accelerates proucts aughter an alpha particle start further apart mass parabolas from semiempirical mass equation cut through nuclear mass surface at constant A Explains beta ecay in ecay chain Energetics Beta Decay to Energy minimum, then Alpha ecay to ifferent A Branche Decay 7

8 Distance of closest approach for scattering of a 4. MeV alpha particle is ~6 fm Distance at which alpha particle stops moving towars aughter Repulsion from Coulomb barrier Alpha particle shoul not get near nucleus shoul be trappe behin a potential energy barrier Wave functions are only completely confine by infinitely high potential energy barriers With finite size barrier wave function has ifferent behavior main component insie barrier finite piece outsie barrier Tunneling trappe particle has component of wave function outsie potential barrier Some probability to go through barrier Relate to ecay probability Higher energy has higher tunneling probability Alpha ecay theory V c Alpha ecay energy 8

9 Alpha Decay Theory Closer particle energy to barrier maximum more likely particle will penetrate barrier More energetic alpha will encounter barrier more often Increase probability of barrier penetration ue Geiger Nuttall law of alpha ecay logt = A + 1/ 1 T = mv Q a constants A an B have Z epenence. simple relationship escribes ata on -ecay over 0 orers of magnitue in ecay constant or half-life 1 MeV change in -ecay energy results in a change of 10 5 in half-life B 9

10 Expane Alpha Half Life Calculation More accurate moels of half life are possible Example from Hatsukawa, Nakahara an Hoffman log ( t ) = A A( Z)( A Q ) [arccos X (1 ] C( Z, 1/ 10 1/ X X + N p C( Z, N) = 0 Outsie of close shells C( Z, N) = [ (8 Z) 0.070(16 N) C( Z, N) = [ ( Z 8) 0.067(16 N) 1/3 1/3 Q X = 1.49( A + 4 )( ) Z e 78 Z 8; 100 N 16 8 Z 90; 100 N 16 Theoretical escription of alpha emission base on calculating rate in terms of two factors rate at which an alpha particle appears at insie wall of nucleus probability that alpha particle tunnels through barrier λ =P*f f is frequency factor 10 P is transmission coefficient )

11 Alpha Decay Theory Now have aitional factor that escribes probability of preformation of alpha particle insie parent nucleus prior to ecay No clear way to calculate preformation probability empirical estimates have been mae theoretical estimates of emission rates are higher than observe rates uncertainties in theoretical estimates contribute to ifferences preformation factor can be estimate for each measure case Evaluation of frequency for alpha particle to reach ege of a nucleus estimate as velocity ivie by istance across nucleus twice raius, on orer of fm lower limit for velocity obtaine from kinetic energy of emitte alpha particle * Use this to etermine velocity of alpha particle in nucleus particle is moving insie a potential energy well an its velocity shoul be larger an correspon to well epth plus external energy On orer of 10 1 s -1 f = v R ( V o + Q) / µ R µ = M M M + M Reuce mass 11

12 Alpha Decay Calculations Alpha particle barrier penetration from Gamow T=e -G Determination of ecay constant from potential information R h 4π = 1/ λ exp (µ) ( U ( r) T ) µ R1 h R1 1/ r Using square-well potential, integrating an substituting Z aughter, z alpha Zze 1 T = = µ v R µ = M M M + M Zze B = R 1 λ = 1/ 1/ h 8πZze T T T exp arccos 1 µ R1 hv B B B 1/ 1

13 From Gamow t Gamow calculations 1/ = ln λ logt = A + 1/ = ln fp B Q a ln (( Vo + Q µ Calculate emission rate typically one orer of magnitue larger than observe rate observe half-lives are longer than preicte Observation suggest a route to evaluate alpha particle pre-formation factor = ) e G 13

14 Even-even nuclei unergoing l=0 ecay average preformation factor is ~ 10 - neglects effects of angular momentum Alpha Decay Theory Assumes -particle carries off no orbital angular momentum (l = 0) If ecay takes place to or from excite state some angular momentum may be carrie off by -particle Results in change in ecay constant when compare to calculate 14

15 Hinere -Decay Previous erivation only hols for even-even nuclei o-o, even-o, an o-even nuclei have longer half-lives than preicte ue to hinrance factors Assumes existence of pre-forme -particles Groun-state transition from nucleus containing o nucleon in highest fille state can take place only if that nucleon becomes part of -particle therefore another nucleon pair is broken less favorable situation than formation of an -particle from alreay existing pairs in an even-even nucleus * may give rise to observe hinrance -particle is assemble from existing pairs in such a nucleus, prouct nucleus will be in an excite state this may explain higher probability transitions to excite states Hinrance from ifference between calculation an measure half-life Hinrance factors between 1 an 3E4 Hinrance factors etermine by ratio of measure alpha ecay half life over calculate alpha ecay half life ratio of calculate alpha ecay constant over measure alpha ecay constant t t 1/ 1/ measure calculate = calculate λ = λ measure Hinrance factor 15

16 Hinrance Factors Transition of 41 Am (5/-) to 37 Np states of 37 Np (5/+) groun state an (7/+) 1 st excite state have hinrance factors of about 500 (re circle) Main transition to 60 kev above groun state is 5/-, almost unhinere 16

17 Hinrance Factors 5 classes of hinrance factors base on hinrance values hinrance factors increase with increasing change in spin Parity change also increases hinrance factor Between 1 an 4, transition is calle a favore emitte alpha particle is assemble from two low lying pairs of nucleons in parent nucleus, leaving o nucleon in its initial orbital Hinrance factor of 4-10 inicates a mixing or favorable overlap between initial an final nuclear states involve in transition Factors of inicate that spin projections of initial an final states are parallel, but wave function overlap is not favorable Factors of inicate transitions with a change in parity but with projections of initial an final states being parallel Hinrance factors of >1000 inicate that transition involves a parity change an a spin flip 17

18 Heavy Particle Decay Possible to calculate Q values for emission of heavier nuclei Is energetically possible for a large range of heavy nuclei to emit other light nuclei. Q-values for carbon ion emission by a large range of nuclei calculate with smooth liqui rop mass equation without shell corrections Decay to oubly magic 08 Pb from 0 Ra for 1 C emission Actually foun 14 C from,3 Ra large neutron excess favors emission of neutron-rich light proucts emission probability is much smaller than alpha ecay simple barrier penetration estimate can be attribute to very small probability to preform 14 C resiue insie heavy nucleus 18

19 For proton-rich nuclei, Q value for proton emission can be positive Line where Q p is positive, proton rip line Describes forces holing nuclei together Similar theory to alpha ecay no preformation factor for proton proton energies, even for heavier nuclei, are low (Ep~1 to MeV) barriers are large (80 fm) Long half life Proton Decay 19

20 Topic Review Unerstan an utilize systematics an energetics involve in alpha ecay Calculate Q values for alpha ecay Relate to alpha energy an fine structure Correlate Q value an half-life Moels for alpha ecay constant Tunneling an potentials Hinere of alpha ecay Unerstan proton an other charge particle emission 0

21 Homework Questions Calculate alpha ecay Q value an Coulomb barrier potential for following, compare values 1 Bi, 10 Po, 38 Pu, 39 Pu, 40 Am, 41 Am What is basis for aughter recoil uring alpha ecay? What is relationship between Q a an alpha ecay energy (T a ) What are some general trens observe in alpha ecay? Compare calculate an experimental alpha ecay half life for following isotopes 38 Pu, 39 Pu, 41 Pu, 45 Pu Determine hinrance values for o A Pu isotopes above What are hinrance factor trens? How woul one preict half-life of an alpha ecay from experimental ata? 1

22 Question Respon to the PDF quiz for lecture 4 Sen in when complete Comment on the blog

Theoretical Studies on the α-decay Half-Lives of Even-Even Lv Isotopes

Theoretical Studies on the α-decay Half-Lives of Even-Even Lv Isotopes International Journal of Energy an Power Engineering 17; 6(1: 1-5 http://www.sciencepublishinggroup.com/j/ijepe oi: 1.11648/j.ijepe.1761.11 ISSN: 36-957X (Print; ISSN: 36-96X (Online Theoretical Stuies

More information

α-decay Half-Lives for Pb Isotopes Within Gamow-Like Model

α-decay Half-Lives for Pb Isotopes Within Gamow-Like Model Raiation Science an Technology 7; 3(4): 36-4 http://www.sciencepublishinggroup.com/j/rst oi:.648/j.rst.734. α-decay Half-Lives for Pb Isotopes Within Gamow-Like Moel Dashty T. Akrawy, Akre Coputer Institute,

More information

More Energetics of Alpha Decay The energy released in decay, Q, is determined by the difference in mass of the parent nucleus and the decay products, which include the daughter nucleus and the particle.

More information

CHEM 312 Lecture 7: Fission

CHEM 312 Lecture 7: Fission CHEM 312 Lecture 7: Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics The Probability of Fission Fission Product Distributions

More information

Alpha Decay. Decay alpha particles are monoenergetic. Nuclides with A>150 are unstable against alpha decay. E α = Q (1-4/A)

Alpha Decay. Decay alpha particles are monoenergetic. Nuclides with A>150 are unstable against alpha decay. E α = Q (1-4/A) Alpha Decay Because the binding energy of the alpha particle is so large (28.3 MeV), it is often energetically favorable for a heavy nucleus to emit an alpha particle Nuclides with A>150 are unstable against

More information

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011 Alpha decay Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 21, 2011 NUCS 342 (Lecture 13) February 21, 2011 1 / 29 Outline 1 The decay processes NUCS 342 (Lecture

More information

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011 Alpha decay Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 21, 2011 NUCS 342 (Lecture 13) February 21, 2011 1 / 27 Outline 1 The Geiger-Nuttall law NUCS 342 (Lecture

More information

Composite Nucleus (Activated Complex)

Composite Nucleus (Activated Complex) Lecture 10: Nuclear Potentials and Radioactive Decay I. Nuclear Stability and Basic Decay Modes A. Schematic Representation: Synthesis Equilibration Decay X + Y + Energy A Z * Z ( 10 20 s) ( ~ 10 16 10

More information

Introduction to Nuclear Science

Introduction to Nuclear Science Introduction to Nuclear Science PIXIE-PAN Summer Science Program University of Notre Dame 2006 Tony Hyder, Professor of Physics Topics we will discuss Ground-state properties of the nucleus Radioactivity

More information

Stability of heavy elements against alpha and cluster radioactivity

Stability of heavy elements against alpha and cluster radioactivity CHAPTER III Stability of heavy elements against alpha and cluster radioactivity The stability of heavy and super heavy elements via alpha and cluster decay for the isotopes in the heavy region is discussed

More information

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938 Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics The Probability of Fission Fission Product Distributions Total Kinetic

More information

Chapter 44. Nuclear Structure

Chapter 44. Nuclear Structure Chapter 44 Nuclear Structure Milestones in the Development of Nuclear Physics 1896: the birth of nuclear physics Becquerel discovered radioactivity in uranium compounds Rutherford showed the radiation

More information

α particles, β particles, and γ rays. Measurements of the energy of the nuclear

α particles, β particles, and γ rays. Measurements of the energy of the nuclear .101 Applied Nuclear Physics (Fall 004) Lecture (1/1/04) Nuclear ecays References: W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967), Chap 4. A nucleus in an excited state is unstable

More information

An α decay is a nuclear transformation in which a nucleus reduces its energy by emitting an α-particle. Z 2 X N He 2, A X X + α.

An α decay is a nuclear transformation in which a nucleus reduces its energy by emitting an α-particle. Z 2 X N He 2, A X X + α. Chapter 14 α Decay Note to students and other readers: This Chapter is intended to supplement Chapter 8 of Krane s excellent book, Introductory Nuclear Physics. Kindly read the relevant sections in Krane

More information

Lecture 33 Chapter 22, Sections 1-2 Nuclear Stability and Decay. Energy Barriers Types of Decay Nuclear Decay Kinetics

Lecture 33 Chapter 22, Sections 1-2 Nuclear Stability and Decay. Energy Barriers Types of Decay Nuclear Decay Kinetics Lecture 33 Chapter 22, Sections -2 Nuclear Stability and Decay Energy Barriers Types of Decay Nuclear Decay Kinetics Nuclear Chemistry Nuclei Review Nucleons: protons and neutrons Atomic number number

More information

RFSS: Lecture 2 Nuclear Properties

RFSS: Lecture 2 Nuclear Properties RFSS: Lecture 2 Nuclear Properties Readings: Modern Nuclear Chemistry: Chapter 2 Nuclear Properties Nuclear and Radiochemistry: Chapter 1 Introduction, Chapter 2 Atomic Nuclei Nuclear properties Masses

More information

FACTS WHY? C. Alpha Decay Probability 1. Energetics: Q α positive for all A>140 nuclei

FACTS WHY? C. Alpha Decay Probability 1. Energetics: Q α positive for all A>140 nuclei C. Alpha Decay Probability 1. Energetics: Q α positive for all A>140 nuclei 2. Range of Measured Half-Lives (~10 44 ) 10 16 y > t 1/2 > 10 21 s 3. Why α? a. Proton & Neutron Emission: Q p, Q n are negative

More information

Introduction to Nuclear Science

Introduction to Nuclear Science Introduction to Nuclear Science PAN Summer Science Program University of Notre Dame June, 2014 Tony Hyder Professor of Physics Topics we will discuss Ground-state properties of the nucleus size, shape,

More information

Chem 481 Lecture Material 1/30/09

Chem 481 Lecture Material 1/30/09 Chem 481 Lecture Material 1/30/09 Nature of Radioactive Decay The Standard Model in physics postulates that all particles in nature are composed of quarks and leptons and that they interact by exchange

More information

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry: RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics an Astrophysics PHY-302 Dr. E. Rizvi Lecture 2 - Introuction Notation Nuclies A Nuclie is a particular an is esignate by the following notation: A CN = Atomic Number (no. of Protons) A

More information

RFSS: Lecture 6 Gamma Decay

RFSS: Lecture 6 Gamma Decay RFSS: Lecture 6 Gamma Decay Readings: Modern Nuclear Chemistry, Chap. 9; Nuclear and Radiochemistry, Chapter 3 Energetics Decay Types Transition Probabilities Internal Conversion Angular Correlations Moessbauer

More information

Chapter 22 - Nuclear Chemistry

Chapter 22 - Nuclear Chemistry Chapter - Nuclear Chemistry - The Nucleus I. Introduction A. Nucleons. Neutrons and protons B. Nuclides. Atoms identified by the number of protons and neutrons in the nucleus 8 a. radium-8 or 88 Ra II.

More information

CHEM 312: Lecture 9 Part 1 Nuclear Reactions

CHEM 312: Lecture 9 Part 1 Nuclear Reactions CHEM 312: Lecture 9 Part 1 Nuclear Reactions Readings: Modern Nuclear Chemistry, Chapter 10; Nuclear and Radiochemistry, Chapter 4 Notation Energetics of Nuclear Reactions Reaction Types and Mechanisms

More information

α particles, β particles, and γ rays. Measurements of the energy of the nuclear

α particles, β particles, and γ rays. Measurements of the energy of the nuclear .101 Applied Nuclear Physics (Fall 006) Lecture (1/4/06) Nuclear Decays References: W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New York, 1967), Chap 4. A nucleus in an excited state is unstable

More information

Bohr Model of the Hydrogen Atom

Bohr Model of the Hydrogen Atom Class 2 page 1 Bohr Moel of the Hyrogen Atom The Bohr Moel of the hyrogen atom assumes that the atom consists of one electron orbiting a positively charge nucleus. Although it oes NOT o a goo job of escribing

More information

Chemistry 1000 Lecture 3: Nuclear stability. Marc R. Roussel

Chemistry 1000 Lecture 3: Nuclear stability. Marc R. Roussel Chemistry 1000 Lecture 3: Nuclear stability Marc R. Roussel Radioactive decay series Source: Wikimedia commons, http://commons.wikimedia.org/wiki/file: Decay_Chain_Thorium.svg Forces between nucleons Electrostatic

More information

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle Radioactivity George Starkschall, Ph.D. Lecture Objectives Identify methods for making radioactive isotopes Recognize the various types of radioactive decay Interpret an energy level diagram for radioactive

More information

Instead, the probability to find an electron is given by a 3D standing wave.

Instead, the probability to find an electron is given by a 3D standing wave. Lecture 24-1 The Hydrogen Atom According to the Uncertainty Principle, we cannot know both the position and momentum of any particle precisely at the same time. The electron in a hydrogen atom cannot orbit

More information

NERS 312 Elements of Nuclear Engineering and Radiological Sciences II aka Nuclear Physics for Nuclear Engineers Lecture Notes for Chapter 14: α decay

NERS 312 Elements of Nuclear Engineering and Radiological Sciences II aka Nuclear Physics for Nuclear Engineers Lecture Notes for Chapter 14: α decay NERS 312 Elements of Nuclear Engineering and Radiological Sciences II aka Nuclear Physics for Nuclear Engineers Lecture Notes for Chapter 14: α decay Supplement to (Krane II: Chapter 8) The lecture number

More information

Introduction to Nuclear Physics and Nuclear Decay

Introduction to Nuclear Physics and Nuclear Decay Introduction to Nuclear Physics and Nuclear Decay Larry MacDonald macdon@uw.edu Nuclear Medicine Basic Science Lectures September 6, 2011 toms Nucleus: ~10-14 m diameter ~10 17 kg/m 3 Electron clouds:

More information

Decay Mechanisms. The laws of conservation of charge and of nucleons require that for alpha decay, He + Q 3.1

Decay Mechanisms. The laws of conservation of charge and of nucleons require that for alpha decay, He + Q 3.1 Decay Mechanisms 1. Alpha Decay An alpha particle is a helium-4 nucleus. This is a very stable entity and alpha emission was, historically, the first decay process to be studied in detail. Almost all naturally

More information

Lecture 1. Introduction to Nuclear Science

Lecture 1. Introduction to Nuclear Science Lecture 1 Introduction to Nuclear Science Composition of atoms Atoms are composed of electrons and nuclei. The electrons are held in the atom by a Coulomb attraction between the positively charged nucleus

More information

Lesson 1. Introduction to Nuclear Science

Lesson 1. Introduction to Nuclear Science Lesson 1 Introduction to Nuclear Science Introduction to Nuclear Chemistry What is nuclear chemistry? What is the relation of nuclear chemistry to other parts of chemistry? Nuclear chemistry vs nuclear

More information

c E If photon Mass particle 8-1

c E If photon Mass particle 8-1 Nuclear Force, Structure and Models Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear Structure) Characterization

More information

Phys102 Lecture 29, 30, 31 Nuclear Physics and Radioactivity

Phys102 Lecture 29, 30, 31 Nuclear Physics and Radioactivity Phys10 Lecture 9, 30, 31 Nuclear Physics and Radioactivity Key Points Structure and Properties of the Nucleus Alpha, Beta and Gamma Decays References 30-1,,3,4,5,6,7. Atomic Structure Nitrogen (N) Atom

More information

Physics 1C. Lecture 29A. "Nuclear powered vacuum cleaners will probably be a reality within 10 years. " --Alex Lewyt, 1955

Physics 1C. Lecture 29A. Nuclear powered vacuum cleaners will probably be a reality within 10 years.  --Alex Lewyt, 1955 Physics 1C Lecture 29A "Nuclear powered vacuum cleaners will probably be a reality within 10 years. " --Alex Lewyt, 1955 The Nucleus All nuclei are composed of protons and neutrons (they can also be called

More information

Part II Particle and Nuclear Physics Examples Sheet 4

Part II Particle and Nuclear Physics Examples Sheet 4 Part II Particle and Nuclear Physics Examples Sheet 4 T. Potter Lent/Easter Terms 018 Basic Nuclear Properties 8. (B) The Semi-Empirical mass formula (SEMF) for nuclear masses may be written in the form

More information

Nuclear Physics Part 2A: Radioactive Decays

Nuclear Physics Part 2A: Radioactive Decays Nuclear Physics Part 2A: Radioactive Decays Last modified: 23/10/2018 Links What is a Decay? Alpha Decay Definition Q-value Example Not Every Alpha Decay is Possible Beta Decay β rays are electrons Anti-particles

More information

Chapter VI: Beta decay

Chapter VI: Beta decay Chapter VI: Beta decay 1 Summary 1. General principles 2. Energy release in decay 3. Fermi theory of decay 4. Selections rules 5. Electron capture decay 6. Other decays 2 General principles (1) The decay

More information

NJCTL.org 2015 AP Physics 2 Nuclear Physics

NJCTL.org 2015 AP Physics 2 Nuclear Physics AP Physics 2 Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Chapter 30 Nuclear Physics and Radioactivity

Chapter 30 Nuclear Physics and Radioactivity Chapter 30 Nuclear Physics and Radioactivity 30.1 Structure and Properties of the Nucleus Nucleus is made of protons and neutrons Proton has positive charge: Neutron is electrically neutral: 30.1 Structure

More information

Chapter VIII: Nuclear fission

Chapter VIII: Nuclear fission Chapter VIII: Nuclear fission 1 Summary 1. General remarks 2. Spontaneous and induced fissions 3. Nucleus deformation 4. Mass distribution of fragments 5. Number of emitted electrons 6. Radioactive decay

More information

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart?

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? Question 32.1 The Nucleus There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? a) Coulomb repulsive force doesn t act inside the nucleus b) gravity overpowers the Coulomb repulsive

More information

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron.

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron. 1 Lecture 3 Nuclear Decay modes, Nuclear Sizes, shapes, and the Liquid drop model Introduction to Decay modes (continued) Gamma Decay Electromagnetic radiation corresponding to transition of nucleus from

More information

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983)

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983) Fundamental Forces Force Relative Strength Range Carrier Observed? Gravity 10-39 Infinite Graviton No Weak 10-6 Nuclear W+ W- Z Yes (1983) Electromagnetic 10-2 Infinite Photon Yes (1923) Strong 1 Nuclear

More information

Types of radiation resulting from radioactive decay can be summarized in a simple chart. Only X-rays, Auger electrons and internal conversion

Types of radiation resulting from radioactive decay can be summarized in a simple chart. Only X-rays, Auger electrons and internal conversion General information Nuclei are composed of combinations of nucleons (protons and neutrons); certain combinations of these nucleons (i.e., certain nuclides) possess a high degree of stability while others

More information

Alpha Particle scattering

Alpha Particle scattering Introuction Alpha Particle scattering Revise Jan. 11, 014 In this lab you will stuy the interaction of α-particles ( 4 He) with matter, in particular energy loss an elastic scattering from a gol target

More information

2007 Fall Nuc Med Physics Lectures

2007 Fall Nuc Med Physics Lectures 2007 Fall Nuc Med Physics Lectures Tuesdays, 9:30am, NN203 Date Title Lecturer 9/4/07 Introduction to Nuclear Physics RS 9/11/07 Decay of radioactivity RS 9/18/07 Interactions with matter RM 9/25/07 Radiation

More information

From Last Time. Stronger than coulomb force, But much shorter range than coulomb force.

From Last Time. Stronger than coulomb force, But much shorter range than coulomb force. From Last Time Nucleus is small, tightly bound system of protons & neutrons. Proton number determines the element. Different isotopes have different # neutrons. Some isotopes unstable, radioactively decay

More information

Supplement 1: Beta Decay

Supplement 1: Beta Decay Phys. 69: Nuclear Instrumentation Physics Department Yarmouk University Supplement : Beta Decay Introduction Energy Release in β Decay Dr. Nidal M. Ershaidat Introduction Electron emission, positron emission

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 140) Lecture 18 Modern Physics Nuclear Physics Nuclear properties Binding energy Radioactivity The Decay Process Natural Radioactivity Last lecture: 1. Quantum physics Electron Clouds

More information

Alpha-Energies of different sources with Multi Channel Analyzer

Alpha-Energies of different sources with Multi Channel Analyzer Physical Structure of Matter Radioactivity Alpha-Energies of different sources with Multi Channel Analyzer What you can learn about Decay series Radioactive equilibrium Isotopic properties Decay energy

More information

[1] (c) Some fruits, such as bananas, are naturally radioactive because they contain the unstable isotope of potassium-40 ( K.

[1] (c) Some fruits, such as bananas, are naturally radioactive because they contain the unstable isotope of potassium-40 ( K. (a) State, with a reason, whether or not protons and neutrons are fundamental particles....... [] (b) State two fundamental particles that can be classified as leptons.... [] (c) Some fruits, such as bananas,

More information

Chem 481 Lecture Material 1/23/09

Chem 481 Lecture Material 1/23/09 Chem 481 Lecture Material 1/23/09 Nature of Radioactive Decay Radiochemistry Nomenclature nuclide - This refers to a nucleus with a specific number of protons and neutrons. The composition of a nuclide

More information

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chapter 37 Nuclear Chemistry Copyright (c) 2 by Michael A. Janusa, PhD. All rights reserved. 37. Radioactivity Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off

More information

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability Basic Nuclear Theory Lecture 1 The Atom and Nuclear Stability Introduction Nuclear power is made possible by energy emitted from either nuclear fission or nuclear fusion. Current nuclear power plants utilize

More information

Multiple Choice Questions

Multiple Choice Questions Nuclear Physics & Nuclear Reactions Practice Problems PSI AP Physics B 1. The atomic nucleus consists of: (A) Electrons (B) Protons (C)Protons and electrons (D) Protons and neutrons (E) Neutrons and electrons

More information

4 Nuclear Stability And Instability

4 Nuclear Stability And Instability 4 Nuclear Stability nd Instability Figure 4.1 Plot of N vs. Each black dot in Figure 4.1 represents a stable nuclide. Where more than one dot appears for a particular atomic number, those dots represent

More information

STATISTICAL MODEL OF DECAY OF EXCITED NUCLEI

STATISTICAL MODEL OF DECAY OF EXCITED NUCLEI Nuclear Reaction Vieo Project FLNR JINR STATISTICAL MODL OF DCAY OF XCITD NUCLI Level ensity The level ensity of the atomic nucleus consisting of Z pons an N neutrons with the total angular momentum J

More information

UNIT 13: NUCLEAR CHEMISTRY

UNIT 13: NUCLEAR CHEMISTRY UNIT 13: NUCLEAR CHEMISTRY REVIEW: ISOTOPE NOTATION An isotope notation is written as Z A X, where X is the element, A is the mass number (sum of protons and neutrons), and Z is the atomic number. For

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 37 Modern Physics Nuclear Physics Radioactivity Nuclear reactions http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 29 1 Lightning Review Last lecture: 1. Nuclear

More information

Alpha decay, ssion, and nuclear reactions

Alpha decay, ssion, and nuclear reactions Alpha decay, ssion, and nuclear reactions March 11, 2002 1 Energy release in alpha-decay ² Consider a nucleus which is stable against decay by proton or neutron emission { the least bound nucleon still

More information

Nice Try. Introduction: Development of Nuclear Physics 20/08/2010. Nuclear Binding, Radioactivity. SPH4UI Physics

Nice Try. Introduction: Development of Nuclear Physics 20/08/2010. Nuclear Binding, Radioactivity. SPH4UI Physics SPH4UI Physics Modern understanding: the ``onion picture Nuclear Binding, Radioactivity Nucleus Protons tom and neutrons Let s see what s inside! 3 Nice Try Introduction: Development of Nuclear Physics

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

Nuclear Decays. Alpha Decay

Nuclear Decays. Alpha Decay Nuclear Decays The first evidence of radioactivity was a photographic plate, wrapped in black paper and placed under a piece of uranium salt by Henri Becquerel on February 26, 1896. Like many events in

More information

LECTURE 23 NUCLEI. Instructor: Kazumi Tolich

LECTURE 23 NUCLEI. Instructor: Kazumi Tolich LECTURE 23 NUCLEI Instructor: Kazumi Tolich Lecture 23 2 Reading chapter 32.1 to 32.2 Nucleus Radioactivity Mass and energy 3 The famous equation by Einstein tells us that mass is a form of energy. E =

More information

Physics 3204 UNIT 3 Test Matter Energy Interface

Physics 3204 UNIT 3 Test Matter Energy Interface Physics 3204 UNIT 3 Test Matter Energy Interface 2005 2006 Time: 60 minutes Total Value: 33 Marks Formulae and Constants v = f λ E = hf h f = E k + W 0 E = m c 2 p = h λ 1 A= A T 0 2 t 1 2 E k = ½ mv 2

More information

SOURCES of RADIOACTIVITY

SOURCES of RADIOACTIVITY Section 9: SOURCES of RADIOACTIVITY This section briefly describes various sources of radioactive nuclei, both naturally occurring and those produced artificially (man-made) in, for example, reactors or

More information

Some Beta-Decay Basics. Michael Edmison. Bluffton University

Some Beta-Decay Basics. Michael Edmison. Bluffton University Some Beta-Decay Basics Michael Edmiston Bluffton University The figure at bottom of the page is known as a Segrè Chart. The Segrè Chart is one way to arrange and observe information about nuclei. A Segrè

More information

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N.

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N. Lecture : The nucleus and nuclear instability Nuclei are described using the following nomenclature: A Z Element N Z is the atomic number, the number of protons: this defines the element. A is called the

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Nuclear Reactions in Stellar Interiors Binding Energy Coulomb Barrier Penetration Hydrogen Burning Reactions

More information

Nuclear Chemistry. Decay Reactions The most common form of nuclear decay reactions are the following:

Nuclear Chemistry. Decay Reactions The most common form of nuclear decay reactions are the following: Nuclear Chemistry Nuclear reactions are transmutation of the one element into another. We can describe nuclear reactions in a similar manner as regular chemical reactions using ideas of stoichiometry,

More information

DOING PHYSICS WITH MATLAB QUANTUM MECHANICS THEORY OF ALPHA DECAY. Ian Cooper. School of Physics, University of Sydney.

DOING PHYSICS WITH MATLAB QUANTUM MECHANICS THEORY OF ALPHA DECAY. Ian Cooper. School of Physics, University of Sydney. DOING PHYSICS WITH MATLAB QUANTUM MECHANICS THEORY OF ALPHA DECAY Ian Cooper School of Physics, University of Sydney ian.cooper@sydney.edu.au DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS qp_alpha_theory.m This

More information

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? Nuclear Physics Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Allowed beta decay May 18, 2017

Allowed beta decay May 18, 2017 Allowed beta decay May 18, 2017 The study of nuclear beta decay provides information both about the nature of the weak interaction and about the structure of nuclear wave functions. Outline Basic concepts

More information

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c)

MockTime.com. Ans: (b) Q6. Curie is a unit of [1989] (a) energy of gamma-rays (b) half-life (c) radioactivity (d) intensity of gamma-rays Ans: (c) Chapter Nuclei Q1. A radioactive sample with a half life of 1 month has the label: Activity = 2 micro curies on 1 8 1991. What would be its activity two months earlier? [1988] 1.0 micro curie 0.5 micro

More information

Radioactive Decay and Radiometric Dating

Radioactive Decay and Radiometric Dating Radioactive Decay and Radiometric Dating Extra credit: chapter 7 in Bryson See online (link fixed) or moodle Radioactivity and radiometric dating Atomic nucleus Radioactivity Allows us to put numerical

More information

Chapter 30 Questions 8. Quoting from section 30-3, K radioactivity was found in every case to be unaffected

Chapter 30 Questions 8. Quoting from section 30-3, K radioactivity was found in every case to be unaffected Physics 111 Fall 007 Homework Solutions Week #10 Giancoli Chapter 30 Chapter 30 Questions 8. Quoting from section 30-3, K radioactivity was found in every case to be unaffected by the strongest physical

More information

Physics of Radioactive Decay. Purpose. Return to our patient

Physics of Radioactive Decay. Purpose. Return to our patient Physics of Radioactive Decay George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Purpose To demonstrate qualitatively the various processes by which unstable nuclides

More information

Slide 1 / 57. Nuclear Physics & Nuclear Reactions Practice Problems

Slide 1 / 57. Nuclear Physics & Nuclear Reactions Practice Problems Slide 1 / 57 Nuclear Physics & Nuclear Reactions Practice Problems Slide 2 / 57 Multiple Choice Slide 3 / 57 1 The atomic nucleus consists of: A B C D E Electrons Protons Protons and electrons Protons

More information

Sources of Radiation

Sources of Radiation Radioactivity Sources of Radiation Natural Sources Cosmic Radiation The Earth is constantly bombarded by radiation from outside our solar system. interacts in the atmosphere to create secondary radiation

More information

7.2 RADIOACTIVE DECAY HW/Study Packet

7.2 RADIOACTIVE DECAY HW/Study Packet 7.2 RADIOACTIVE DECAY HW/Study Packet Required: Tsokos, pp 373-378 Hamper pp 244-255 SL/HL Supplemental: Cutnell and Johnson, pp 963-979, 986-990 REMEMBER TO. Work through all of the example problems in

More information

SECTION C: NUCLEAR RADIATION AND NUCLEAR ENERGY LOSS PROCESSES. " N & = '!t and so N = N 0. implying ln! N $

SECTION C: NUCLEAR RADIATION AND NUCLEAR ENERGY LOSS PROCESSES.  N & = '!t and so N = N 0. implying ln! N $ SECTO C: UCLEAR RADATO AD UCLEAR EERGY LOSS PROCESSES n this section we discuss decay and transmutation processes in nuclei (including α, β, and γ decay, as well as fission and fusion processes), using

More information

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom Basic science A knowledge of basic physics is essential to understanding how radiation originates and behaves. This chapter works through what an atom is; what keeps it stable vs. radioactive and unstable;

More information

Radioactivity. The Nobel Prize in Physics 1903 for their work on radioactivity. Henri Becquerel Pierre Curie Marie Curie

Radioactivity. The Nobel Prize in Physics 1903 for their work on radioactivity. Henri Becquerel Pierre Curie Marie Curie Radioactivity Toward the end of the 19 th century, minerals were found that would darken a photographic plate even in the absence of light. This phenomenon is now called radioactivity. Marie and Pierre

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 21 Study Guide Concepts 1. There are several modes of radioactive decay: (1) alpha (α) decay, (2) beta (β) decay, (3) gamma (γ)

More information

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 13 Synthesis of heavier elements introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The triple α Reaction When hydrogen fusion ends, the core of a star collapses and the temperature can reach

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

Chapter Three (Nuclear Radiation)

Chapter Three (Nuclear Radiation) Al-Mustansiriyah University College of Science Physics Department Fourth Grade Nuclear Physics Dr. Ali A. Ridha Chapter Three (Nuclear Radiation) (3-1) Nuclear Radiation Whenever a nucleus can attain a

More information

Nuclear Chemistry. Proposal: build a nuclear power plant in Broome County. List the pros & cons

Nuclear Chemistry. Proposal: build a nuclear power plant in Broome County. List the pros & cons Nuclear Chemistry Proposal: build a nuclear power plant in Broome County. List the pros & cons 1 Nuclear Chemistry Friend or Fiend 2 The Nucleus What is in the nucleus? How big is it vs. the atom? How

More information

Nuclear Shell model. C. Prediction of spins and Parities: GROUND RULES 1. Even-Even Nuclei. I π = 0 +

Nuclear Shell model. C. Prediction of spins and Parities: GROUND RULES 1. Even-Even Nuclei. I π = 0 + Nuclear Shell model C. Prediction of spins and Parities: GOUND ULES 1. Even-Even Nuclei I π = 0 + ULE: ll nucleon orbitals are filled pairwise, i.e., ν,l, j, m j state followed by ν, l, j, m j state NO

More information

Chapter 10 - Nuclear Physics

Chapter 10 - Nuclear Physics The release of atomic energy has not created a new problem. It has merely made more urgent the necessity of solving an existing one. -Albert Einstein David J. Starling Penn State Hazleton PHYS 214 Ernest

More information

Radioactivity. Nuclear Physics. # neutrons vs# protons Where does the energy released in the nuclear 11/29/2010 A=N+Z. Nuclear Binding, Radioactivity

Radioactivity. Nuclear Physics. # neutrons vs# protons Where does the energy released in the nuclear 11/29/2010 A=N+Z. Nuclear Binding, Radioactivity Physics 1161: Lecture 25 Nuclear Binding, Radioactivity Sections 32-1 32-9 Marie Curie 1867-1934 Radioactivity Spontaneous emission of radiation from the nucleus of an unstable isotope. Antoine Henri Becquerel

More information

THE NUCLEUS OF AN ATOM

THE NUCLEUS OF AN ATOM VISUAL PHYSICS ONLINE THE NUCLEUS OF AN ATOM Models of the atom positive charge uniformly distributed over a sphere J. J. Thomson model of the atom (1907) ~2x10-10 m plum-pudding model: positive charge

More information

CHARGED PARTICLE INTERACTIONS

CHARGED PARTICLE INTERACTIONS CHARGED PARTICLE INTERACTIONS Background Charged Particles Heavy charged particles Charged particles with Mass > m e α, proton, deuteron, heavy ion (e.g., C +, Fe + ), fission fragment, muon, etc. α is

More information

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e +

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e + β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Last Lecture: Radioactivity, Nuclear decay Radiation damage This lecture: nuclear physics in medicine and fusion and fission Final

More information

Little Boy Atomic Bomb. Spring 2010 PHYS 53 Eradat SJSU 2

Little Boy Atomic Bomb. Spring 2010 PHYS 53 Eradat SJSU 2 Chapter 43 Nuclear Physics 1. Properties of nuclei 2. Nuclear binding and nuclear structure 3. Nuclear stability and radioactivity 4. Activities and half lives 5. Biological effects of radiation 6. Nuclear

More information

Radioactivity and energy levels

Radioactivity and energy levels Radioactivity and energy levels Book page 497-503 Review of radioactivity β ; Free neutron proton β- decay is continuous β : Proton in nucleus neutron antineutrino neutrino Summary of useful equations

More information

CHAPTER I. Introduction. There are 117 elements (Z=1-118) known at present, of which 94 occur naturally on

CHAPTER I. Introduction. There are 117 elements (Z=1-118) known at present, of which 94 occur naturally on CHAPTER I Introduction There are 117 elements (Z=1-118) known at present, of which 94 occur naturally on the earth. Eighty elements have stable isotopes, namely all elements with atomic numbers 1 to 82,

More information