1.571 Structural Analysis and Control Prof. Connor Section 5: Non-linear Analysis of Members. π -- γ. v 2. v 1. dx du. v, x. u, x.

Size: px
Start display at page:

Download "1.571 Structural Analysis and Control Prof. Connor Section 5: Non-linear Analysis of Members. π -- γ. v 2. v 1. dx du. v, x. u, x."

Transcription

1 5. Deformation nalysis Y.57 Structural nalysis and Control rof. Connor Section 5: Non-linear nalysis of Members dy ( + ε y )dy π -- γ y ( + ε ) X 5.. Deformation of a fiber initially aligned with. u u u u v v + u u + du + u u u du ( + u, ) v v v ( + ε ) v, dv dv v, ( + u, ) ( + ε ) ( + u, ) + v, + ε + ε + u, + u, + v, ε ( + ε ) u, ( + u, ) + v, ε u, ε v, u, For small strain ( ε «) u, v, ε u, Structural nalysis and Control Section 5 rof Connor age of 7

2 If the member does not eperience large relative rotations, then the non-linear term can be ignored. u, Then for small relative rotations ε u, + --v, 5.. Deformation of a fiber dy initially aligned with y. roceed as done for to obtain: For small strain v, ε y v, y y + --u, y For small relative rotations ε y v, y + --u, y 5..3 Shear deformation ~ u, y For small rotations ~ v, γ u, y + v,.57 Structural nalysis and Control Section 5 rof Connor age of 7

3 5. Straight eams - Non-inear nalysis for lane Members Y y 5.. ial Strain For small rotations X u u ysinβ v v y( cosβ ) v β «sinβ β cosβ ε ε ( u ) ( v) ( u ysinβ) -- v ε u, yβ, + -- ( v, ) ε ε yβ, ε o yχ 5.. Shear Strain γ γ u v y β + v, ( u y ysinβ) ( v ).57 Structural nalysis and Control Section 5 rof Connor age 3 of 7

4 5..3 Summarizing Define ε ( y) ε ' γ γ' ε ' ε yβ, ε u, + --v, γ' v, β 5..4 pply the principle of virtual displacements - Take a deformable body resisting some eternal loads - roduce a perturbation (a virtual displacement) - If body is in state of equilibrium, the first order work done by the stresses is equal to the first order work done by the eternally applied forces i.e. ( σ ε ) d Vol Forces Virtual Displacements For a beam: Internal virtual work is caused by stresses σ, τ y {( σ 'δε ' + τ y 'δγ y ) d } d Forces Virtual Displacements Then ε ' ε yβ, ε yχ ε u, + --v, u v ( ε + δε ) ( u + δu) ( v δv) ( ε + δε ) u δu v δv ( ε + δε ) u δu v v δv δv δε δu v δv δv δu, + v, δv, β δβ y( χ + δχ) y ( + ) y β y δβ yδχ y δβ y β,.57 Structural nalysis and Control Section 5 rof Connor age 4 of 7

5 Therefore δε ' δε yδβ, Right hand side of the virtual work equation Giving v γ' v, β β γ ( v + δv) γ' + δγ' β δβ γ+ δγ δv δγ' δβ δv, δβ δγ {( σ 'δε ' + τ y 'δγ y ) d} σ 'δε ' ( σ 'δε σ yδβ, ) d σ 'δε ' ( Fδε + Mδβ, ) τ y 'δγ' y d Vδγ RHS ( Fδε + Mδβ, + Vδγ) Integrating by parts uv' uv u'v RHS ( Fδu + Fv, δv + Mδβ + Vδv) δuf, δv ( Fv, ) V, + + δβ( M, + V) eft hand side of the virtual work equation HS b y δv + b δu + mδβ + δp Differentiating both RHS and HS wrt, recognizing that the first RHS term is a constant and that both the second RHS term and the HS are integrated over the same interval, we get ( F, + b )δu + ( V, + ( Fv, ), + b y )δv+ ( M, + V+ m)δβ.57 Structural nalysis and Control Section 5 rof Connor age 5 of 7

6 Since δu, δv, and δβ are independent, each term becomes and independent epression F, + b V, + ( Fv, ), + b y M, + V+ m These are the governing equations of equilibrium for a non-linear member. Note: in V, + ( Fv, ), + b y, ( Fv, ), source of -δ effect. 5.3 Compatibility Equations F σ ' d Eε ' d E u, + --v, yβ, d F u, Ed+ --v, E d β, yed If y is measured from the mechanical centroid ye d Then where where F D S u, + --v, M Ed yσ ' d u, + --v, Eyd + β, Ey d M D β, D Ey d M τ y d Gγ' d Gv, ( β) d V ( v, β) Gd.57 Structural nalysis and Control Section 5 rof Connor age 6 of 7

7 Summarizing F, + b V, + ( Fv, ), + b y M, + V+ m F D S u, + --v, M D β, V ( v, β) oundary conditions u or F β or M v or V+ Fv, y Note y effective shear 5.3. Eamples of boundary conditions a k r k u v β F M k r β( ) ; M without spring V v, k e v ( ) u v β F β V v,.57 Structural nalysis and Control Section 5 rof Connor age 7 of 7

8 Eample b y b m D,, constant F, + b F ( ) constant D S u, + --v, u, v, u ( ) u ( ) v, M D β, M, D β, M, + V+ m D β, + V V D β, V v, D β T v, V β β D β, V, + ( Fv, ), + b y D β, v, + b y D D β, β, β, D + b y T D β, β, + b y Define β, β, D µ D b y D Structural nalysis and Control Section 5 rof Connor age 8 of 7

9 Solving for β and then v, starting with β, + µ β, µ -----b y β C + µ ( C 4 sin µ + C 5 cosµ ) + β part v β D β, v C + C 3 + C 4 cosµ + C 5 sin µ + v part For b y M D β, ( C 4 cosµ C 5 sinµ ) + D ( β part ), V D β, V µ( C 4 sinµ + C 5 cosµ ) D ( β part v C 3 + C 4 M C 4 C 4 C v C + C 5 sinµ M C 5 sinµ C For a non-trivial solution sinµ (ie µ nπ, n,, ) For So n µ π µ π π D cr π D π D Structural nalysis and Control Section 5 rof Connor age 9 of 7

10 5.4 Member Relations Geometrically Non-inear Case Y, v u β β v v v v u V M X, u V F v v F ( µ) λ D D EI D ( cosµ) µ sinµ D µ ( sin µ µ cosµ ) D µ ( µ sinµ) + ssumption: Neglect transverse shear deformation wrt bending deformation u u v u u v β β F F V F F V M M.57 Structural nalysis and Control Section 5 rof Connor age of 7

11 5.4. Member Equations u u v, Set e r -- --v, u u e r F ( u u + e r ) (member in compression) M M D ( β + β ) D ( β + β ) V V Write member equations as If F V M ikewise D D D V ( β + β ) D D u v β Forces due to span loads D D u F k T ( r) () i u + k u + F + F Note: This formulation is wrt local frame and must be transformed to use global frame 3 D D v β e r ( r) F k u k u F () i F F V M ( r) F k u + k u + F + D D D D u v β () i F D D u D D v β e r F k T ( r) u k u F.57 Structural nalysis and Control Section 5 rof Connor age of 7

12 5.5 pplications. Frame W W H I H I C I C Consider I H W v oundary Conditions β β v v ---- v v W V H End actions at Write y D V D v W W v H D M v V H kv For W k D W D If we apply 6 k D W cr π D µ π π k D W π for W 6 cr cr.57 Structural nalysis and Control Section 5 rof Connor age of 7

13 Cantilever W H, v oundary Conditions β v M V H W Solution v M β ---- V D H β v ---- v ---- k H v Note, from elementary mechanics for a cantilevered column D k H Then If W cr π D ( ) π D If W t the critical load 3D k H 3 inear case k H µ D ( D ) π -- π D -- π D -- π D 3 -- k H.57 Structural nalysis and Control Section 5 rof Connor age 3 of 7

14 t -- cr µ π cosµ.445 sinµ k H D π D So, about a 4% reduction in stiffness due to aial loading. 3 Simply Supported eam-column M * v oundary Conditions Solution M v M M * v M β + β If β ---- β M D β k β k 3 D (inear case).57 Structural nalysis and Control Section 5 rof Connor age 4 of 7

15 4 Multi Span eam-column Hv, C C Segment - (from eample 3) M, β M k β Segment -C k β Hv, C C β C v C oundary Conditions M C v M k β V C H M, β (be careful of sign convention) H Solution i) ii) M M C D v C β + β C k D v C β C + β β Use i) and ii) to solve β and β C in terms of v C D D D v C β k β C β + β C ---- v 3 C Then substitute in epression for H H D β C β v C v C Structural nalysis and Control Section 5 rof Connor age 5 of 7

16 5.5 Incremental Formulation 5.5. Some simplifications. v v Take v, Then e r v, e r ( ) ssume s are constant during incremental motion. This results in k, k, and k constant. (ie dk ) 3. Consider small increment, ie work with first order change. ( r) df k u + k u + df + () i df df T ( r) u + k u + df + k () i df ( r) df ( r) df ( r) df df ( r) e r ( ) F F r D S F F D S ( u u ) + e r operating on df ( r) df r) F d + df d v d v D df S ( u u ) v v Structural nalysis and Control Section 5 rof Connor age 6 of 7

17 Then df ( r) F ( v v ) ( v v ) D S + ( u u ) ( v v ) df ( r) K R ( u u ) 5.5. Summarizing K R F D S i df ( k + K R ) u + ( k K R ) u + df () df ( k + K R ) T i u + ( k + K R ) u + df () These two epressions define the tangent stiffness for a member. One usually retains the non-linear terms only when the aial force is compressive since the stiffness is reduced. tensile aial force increases the stiffness inearized Stability nalysis. Take in K R.. Find aial forces with linear analysis (ie ignore K R.) Evaluate s. 3. Test determinant of tangent stiffness matri..57 Structural nalysis and Control Section 5 rof Connor age 7 of 7

4.5 The framework element stiffness matrix

4.5 The framework element stiffness matrix 45 The framework element stiffness matri Consider a 1 degree-of-freedom element that is straight prismatic and symmetric about both principal cross-sectional aes For such a section the shear center coincides

More information

1.571 Structural Analysis and Control Prof. Connor Section 3: Analysis of Cable Supported Structures

1.571 Structural Analysis and Control Prof. Connor Section 3: Analysis of Cable Supported Structures .57 Structural Analysis and Control Prof. Connor Section 3: Analysis of Cale Supported Structures Many high performance structures include cales and cale systems. Analysis and design of cale systems is

More information

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

More information

Comb Resonator Design (2)

Comb Resonator Design (2) Lecture 6: Comb Resonator Design () -Intro. to Mechanics of Materials Sh School of felectrical ti lengineering i and dcomputer Science, Si Seoul National University Nano/Micro Systems & Controls Laboratory

More information

Symmetric Bending of Beams

Symmetric Bending of Beams Symmetric Bending of Beams beam is any long structural member on which loads act perpendicular to the longitudinal axis. Learning objectives Understand the theory, its limitations and its applications

More information

Lecture 7: The Beam Element Equations.

Lecture 7: The Beam Element Equations. 4.1 Beam Stiffness. A Beam: A long slender structural component generally subjected to transverse loading that produces significant bending effects as opposed to twisting or axial effects. MECH 40: Finite

More information

Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly

Consider an elastic spring as shown in the Fig.2.4. When the spring is slowly .3 Strain Energy Consider an elastic spring as shown in the Fig..4. When the spring is slowly pulled, it deflects by a small amount u 1. When the load is removed from the spring, it goes back to the original

More information

7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory 7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

More information

3. BEAMS: STRAIN, STRESS, DEFLECTIONS

3. BEAMS: STRAIN, STRESS, DEFLECTIONS 3. BEAMS: STRAIN, STRESS, DEFLECTIONS The beam, or flexural member, is frequently encountered in structures and machines, and its elementary stress analysis constitutes one of the more interesting facets

More information

14. *14.8 CASTIGLIANO S THEOREM

14. *14.8 CASTIGLIANO S THEOREM *14.8 CASTIGLIANO S THEOREM Consider a body of arbitrary shape subjected to a series of n forces P 1, P 2, P n. Since external work done by forces is equal to internal strain energy stored in body, by

More information

Theories of Straight Beams

Theories of Straight Beams EVPM3ed02 2016/6/10 7:20 page 71 #25 This is a part of the revised chapter in the new edition of the tetbook Energy Principles and Variational Methods in pplied Mechanics, which will appear in 2017. These

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

Comb resonator design (2)

Comb resonator design (2) Lecture 6: Comb resonator design () -Intro Intro. to Mechanics of Materials School of Electrical l Engineering i and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory

More information

CHAPTER 5. Beam Theory

CHAPTER 5. Beam Theory CHPTER 5. Beam Theory SangJoon Shin School of Mechanical and erospace Engineering Seoul National University ctive eroelasticity and Rotorcraft Lab. 5. The Euler-Bernoulli assumptions One of its dimensions

More information

CHAPTER 7 DEFLECTIONS OF BEAMS

CHAPTER 7 DEFLECTIONS OF BEAMS CHPTER 7 DEFLECTIONS OF EMS OJECTIVES Determine the deflection and slope at specific points on beams and shafts, using various analytical methods including: o o o The integration method The use of discontinuity

More information

Section 1: Review of Elasticity

Section 1: Review of Elasticity Finite Elements in Elasticit Section : Review of Elasticit Stress & Strain 2 Constitutive Theor 3 Energ Methods Section : Stress and Strain Stress at a point Q : F = lim A 0 A F = lim A 0 A F = lim A 0

More information

1.571 Structural Analysis and Control Prof. Connor Section 2: Linear Formulation for a General Planar Member. x X

1.571 Structural Analysis and Control Prof. Connor Section 2: Linear Formulation for a General Planar Member. x X .57 Structural nalysis and Control Prof. Connor Section 2: Linear Formulation for a General Planar Member 2. Geometric elations: Plane Curve Y t 2 t j y r i X = ( θ) y = y ( θ) θ = Parameter to define

More information

ME 323 Examination #2

ME 323 Examination #2 ME 33 Eamination # SOUTION Novemer 14, 17 ROEM NO. 1 3 points ma. The cantilever eam D of the ending stiffness is sujected to a concentrated moment M at C. The eam is also supported y a roller at. Using

More information

Introduction to Finite Element Method. Dr. Aamer Haque

Introduction to Finite Element Method. Dr. Aamer Haque Introduction to Finite Element Method 4 th Order Beam Equation Dr. Aamer Haque http://math.iit.edu/~ahaque6 ahaque7@iit.edu Illinois Institute of Technology July 1, 009 Outline Euler-Bernoulli Beams Assumptions

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

Lecture notes Models of Mechanics

Lecture notes Models of Mechanics Lecture notes Models of Mechanics Anders Klarbring Division of Mechanics, Linköping University, Sweden Lecture 7: Small deformation theories Klarbring (Mechanics, LiU) Lecture notes Linköping 2012 1 /

More information

Chapter 5 Structural Elements: The truss & beam elements

Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 1 Chapter 5 Structural Elements: The truss & beam elements Institute of Structural Engineering Page 2 Chapter Goals Learn how to formulate the Finite Element Equations

More information

Nonlinear RC beam element model under combined action of axial, bending and shear

Nonlinear RC beam element model under combined action of axial, bending and shear icccbe 21 Nottingham University Press Proceedings of the International Conference on Computing in Civil and Building ngineering W Tiani (ditor) Nonlinear RC beam element model under combined action of

More information

The bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b.

The bending moment diagrams for each span due to applied uniformly distributed and concentrated load are shown in Fig.12.4b. From inspection, it is assumed that the support moments at is zero and support moment at, 15 kn.m (negative because it causes compression at bottom at ) needs to be evaluated. pplying three- Hence, only

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Fifth SI Edition CHTER 1 MECHNICS OF MTERILS Ferdinand. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Introduction Concept of Stress Lecture Notes: J. Walt Oler Teas Tech University Contents

More information

MECH 401 Mechanical Design Applications

MECH 401 Mechanical Design Applications MECH 40 Mechanical Design Applications Dr. M. K. O Malley Master Notes Spring 008 Dr. D. M. McStravick Rice University Design Considerations Stress Deflection Strain Stiffness Stability Often the controlling

More information

- Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the axes.

- Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the axes. 4. Shear and Moment functions - Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the aes. - The design of such members requires a detailed knowledge of the

More information

Continuum Models of Discrete Particle Systems with Particle Shape Considered

Continuum Models of Discrete Particle Systems with Particle Shape Considered Introduction Continuum Models of Discrete Particle Systems with Particle Shape Considered Matthew R. Kuhn 1 Ching S. Chang 2 1 University of Portland 2 University of Massachusetts McMAT Mechanics and Materials

More information

The CR Formulation: BE Plane Beam

The CR Formulation: BE Plane Beam 6 The CR Formulation: BE Plane Beam 6 Chapter 6: THE CR FORMUATION: BE PANE BEAM TABE OF CONTENTS Page 6. Introduction..................... 6 4 6.2 CR Beam Kinematics................. 6 4 6.2. Coordinate

More information

Introduction to Structural Member Properties

Introduction to Structural Member Properties Introduction to Structural Member Properties Structural Member Properties Moment of Inertia (I): a mathematical property of a cross-section (measured in inches 4 or in 4 ) that gives important information

More information

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering (3.8-3.1, 3.14) MAE 316 Strength of Mechanical Components NC State Universit Department of Mechanical & Aerospace Engineering 1 Introduction MAE 316 is a continuation of MAE 314 (solid mechanics) Review

More information

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONE-WAY SLABS A. J. Clark School of Engineering Department of Civil

More information

Lecture 5: Pure bending of beams

Lecture 5: Pure bending of beams Lecture 5: Pure bending of beams Each end of an initiall straight, uniform beam is subjected to equal and opposite couples. The moment of the couples is denoted b (units of F-L. t is shown in solid mechanics

More information

Lecture Pure Twist

Lecture Pure Twist Lecture 4-2003 Pure Twist pure twist around center of rotation D => neither axial (σ) nor bending forces (Mx, My) act on section; as previously, D is fixed, but (for now) arbitrary point. as before: a)

More information

Stability Of Structures: Continuous Models

Stability Of Structures: Continuous Models 5 Stabilit Of Structures: Continuous Models SEN 311 ecture 5 Slide 1 Objective SEN 311 - Structures This ecture covers continuous models for structural stabilit. Focus is on aiall loaded columns with various

More information

Types of Structures & Loads

Types of Structures & Loads Structure Analysis I Chapter 4 1 Types of Structures & Loads 1Chapter Chapter 4 Internal lloading Developed in Structural Members Internal loading at a specified Point In General The loading for coplanar

More information

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323 Problem 9.1 Two beam segments, AC and CD, are connected together at C by a frictionless pin. Segment CD is cantilevered from a rigid support at D, and segment AC has a roller support at A. a) Determine

More information

Chapter 7. ELASTIC INSTABILITY Dr Rendy Thamrin; Zalipah Jamellodin

Chapter 7. ELASTIC INSTABILITY Dr Rendy Thamrin; Zalipah Jamellodin Chapter 7 ESTIC INSTIITY Dr Rendy Thamrin; Zalipah Jamellodin 7. INTRODUCTION TO ESTIC INSTIITY OF COUN ND FRE In structural analysis problem, the aim is to determine a configuration of loaded system,

More information

Module 2 Stresses in machine elements

Module 2 Stresses in machine elements Module 2 Stresses in machine elements Lesson 3 Strain analysis Instructional Objectives At the end of this lesson, the student should learn Normal and shear strains. 3-D strain matri. Constitutive equation;

More information

9.1 Introduction to bifurcation of equilibrium and structural

9.1 Introduction to bifurcation of equilibrium and structural Module 9 Stability and Buckling Readings: BC Ch 14 earning Objectives Understand the basic concept of structural instability and bifurcation of equilibrium. Derive the basic buckling load of beams subject

More information

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002 REVIEW FOR EXM II. J. Clark School of Engineering Department of Civil and Environmental Engineering b Dr. Ibrahim. ssakkaf SPRING 00 ENES 0 Mechanics of Materials Department of Civil and Environmental

More information

Section 6: PRISMATIC BEAMS. Beam Theory

Section 6: PRISMATIC BEAMS. Beam Theory Beam Theory There are two types of beam theory aailable to craft beam element formulations from. They are Bernoulli-Euler beam theory Timoshenko beam theory One learns the details of Bernoulli-Euler beam

More information

Stability Analysis of Laminated Composite Thin-Walled Beam Structures

Stability Analysis of Laminated Composite Thin-Walled Beam Structures Paper 224 Civil-Comp Press, 2012 Proceedings of the Eleventh International Conference on Computational Structures echnolog, B.H.V. opping, (Editor), Civil-Comp Press, Stirlingshire, Scotland Stabilit nalsis

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Pure Bending Ch 2 Aial Loading & Parallel Loading: uniform normal stress and shearing stress distribution Ch 3 Torsion:

More information

Mechanical Design in Optical Engineering

Mechanical Design in Optical Engineering OPTI Buckling Buckling and Stability: As we learned in the previous lectures, structures may fail in a variety of ways, depending on the materials, load and support conditions. We had two primary concerns:

More information

Beams on elastic foundation

Beams on elastic foundation Beams on elastic foundation I Basic concepts The beam lies on elastic foundation when under the applied eternal loads, the reaction forces of the foundation are proportional at every point to the deflection

More information

6. Bending CHAPTER OBJECTIVES

6. Bending CHAPTER OBJECTIVES CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where

More information

Chapter 2: Deflections of Structures

Chapter 2: Deflections of Structures Chapter 2: Deflections of Structures Fig. 4.1. (Fig. 2.1.) ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 1 (2.1) (4.1) (2.2) Fig.4.2 Fig.2.2 ASTU, Dept. of C Eng., Prepared by: Melkamu E. Page 2

More information

EE C245 ME C218 Introduction to MEMS Design Fall 2010

EE C245 ME C218 Introduction to MEMS Design Fall 2010 EE C245 ME C218 Introduction to MEMS Design Fall 2010 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 94720 Lecture EE C245:

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

Beams. Beams are structural members that offer resistance to bending due to applied load

Beams. Beams are structural members that offer resistance to bending due to applied load Beams Beams are structural members that offer resistance to bending due to applied load 1 Beams Long prismatic members Non-prismatic sections also possible Each cross-section dimension Length of member

More information

Module 1. Energy Methods in Structural Analysis

Module 1. Energy Methods in Structural Analysis Module 1 Energy Methods in Structural Analysis esson 5 Virtual Work Instructional Objecties After studying this lesson, the student will be able to: 1. Define Virtual Work.. Differentiate between external

More information

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis

Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods of Structural Analysis uke University epartment of Civil and Environmental Engineering CEE 42L. Matrix Structural Analysis Henri P. Gavin Fall, 22 Review of Strain Energy Methods and Introduction to Stiffness Matrix Methods

More information

Chapter 4 Deflection and Stiffness

Chapter 4 Deflection and Stiffness Chapter 4 Deflection and Stiffness Asst. Prof. Dr. Supakit Rooppakhun Chapter Outline Deflection and Stiffness 4-1 Spring Rates 4-2 Tension, Compression, and Torsion 4-3 Deflection Due to Bending 4-4 Beam

More information

UNIT-IV SLOPE DEFLECTION METHOD

UNIT-IV SLOPE DEFLECTION METHOD UNITIV SOPE EETION ETHO ontinuous beams and rigid frames (with and without sway) Symmetry and antisymmetry Simplification for hinged end Support displacements Introduction: This method was first proposed

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

4. BEAMS: CURVED, COMPOSITE, UNSYMMETRICAL

4. BEAMS: CURVED, COMPOSITE, UNSYMMETRICAL 4. BEMS: CURVED, COMPOSITE, UNSYMMETRICL Discussions of beams in bending are usually limited to beams with at least one longitudinal plane of symmetry with the load applied in the plane of symmetry or

More information

Outline. Organization. Stresses in Beams

Outline. Organization. Stresses in Beams Stresses in Beams B the end of this lesson, ou should be able to: Calculate the maimum stress in a beam undergoing a bending moment 1 Outline Curvature Normal Strain Normal Stress Neutral is Moment of

More information

Virtual Work & Energy Methods. External Energy-Work Transformation

Virtual Work & Energy Methods. External Energy-Work Transformation External Energy-Work Transformation Virtual Work Many structural problems are statically determinate (support reactions & internal forces can be found by simple statics) Other methods are required when

More information

2 marks Questions and Answers

2 marks Questions and Answers 1. Define the term strain energy. A: Strain Energy of the elastic body is defined as the internal work done by the external load in deforming or straining the body. 2. Define the terms: Resilience and

More information

Example 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60.

Example 3.7 Consider the undeformed configuration of a solid as shown in Figure 3.60. 162 3. The linear 3-D elasticity mathematical model The 3-D elasticity model is of great importance, since it is our highest order hierarchical model assuming linear elastic behavior. Therefore, it provides

More information

M.S Comprehensive Examination Analysis

M.S Comprehensive Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... M.S Comprehensive

More information

MECE 3321: Mechanics of Solids Chapter 6

MECE 3321: Mechanics of Solids Chapter 6 MECE 3321: Mechanics of Solids Chapter 6 Samantha Ramirez Beams Beams are long straight members that carry loads perpendicular to their longitudinal axis Beams are classified by the way they are supported

More information

Chapter 3. Load and Stress Analysis

Chapter 3. Load and Stress Analysis Chapter 3 Load and Stress Analysis 2 Shear Force and Bending Moments in Beams Internal shear force V & bending moment M must ensure equilibrium Fig. 3 2 Sign Conventions for Bending and Shear Fig. 3 3

More information

ENG2000 Chapter 7 Beams. ENG2000: R.I. Hornsey Beam: 1

ENG2000 Chapter 7 Beams. ENG2000: R.I. Hornsey Beam: 1 ENG2000 Chapter 7 Beams ENG2000: R.I. Hornsey Beam: 1 Overview In this chapter, we consider the stresses and moments present in loaded beams shear stress and bending moment diagrams We will also look at

More information

3. Stability of built-up members in compression

3. Stability of built-up members in compression 3. Stability of built-up members in compression 3.1 Definitions Build-up members, made out by coupling two or more simple profiles for obtaining stronger and stiffer section are very common in steel structures,

More information

Basic principles of steel structures. Dr. Xianzhong ZHAO

Basic principles of steel structures. Dr. Xianzhong ZHAO Basic principles of steel structures Dr. Xianzhong ZHAO.zhao@mail.tongji.edu.cn www.sals.org.cn 1 Introduction Resistance of cross-section Compression members Outlines Overall stabilit of uniform (solid

More information

University of Groningen

University of Groningen University of Groningen Nature-inspired microfluidic propulsion using magnetic actuation Khaderi, S. N.; Baltussen, M. G. H. M.; Anderson, P. D.; Ioan, D.; den Toonder, J.M.J.; Onck, Patrick Published

More information

THE COLLAPSE LOAD IN SUBMARINE PIPELINES UNDER COMPRESSIVE LOAD AND INTERNAL PRESSURE

THE COLLAPSE LOAD IN SUBMARINE PIPELINES UNDER COMPRESSIVE LOAD AND INTERNAL PRESSURE SDSS Rio 010 STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista,. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, September 8-10, 010 THE COLLASE LOAD IN SUBMARINE IELINES UNDER COMRESSIVE LOAD

More information

Errata Sheet for S. D. Rajan, Introduction to Structural Analysis & Design (1 st Edition) John Wiley & Sons Publication

Errata Sheet for S. D. Rajan, Introduction to Structural Analysis & Design (1 st Edition) John Wiley & Sons Publication S D Rajan, Introduction to Structural Analsis & Design ( st Edition) Errata Sheet for S D Rajan, Introduction to Structural Analsis & Design ( st Edition) John Wile & Sons Publication Chapter Page Correction

More information

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I

Institute of Structural Engineering Page 1. Method of Finite Elements I. Chapter 2. The Direct Stiffness Method. Method of Finite Elements I Institute of Structural Engineering Page 1 Chapter 2 The Direct Stiffness Method Institute of Structural Engineering Page 2 Direct Stiffness Method (DSM) Computational method for structural analysis Matrix

More information

F = 0 can't be satisfied.

F = 0 can't be satisfied. 11/9/1 Equilibrium of eams 1. asics 1.1. Reactions: Draw D ount number of reactions (R) and number of internal hinges (H). If R < H 3 > unstable beam staticall determinate staticall indeterminate (a) (b)

More information

LECTURE 13 Strength of a Bar in Pure Bending

LECTURE 13 Strength of a Bar in Pure Bending V. DEMENKO MECHNCS OF MTERLS 015 1 LECTURE 13 Strength of a Bar in Pure Bending Bending is a tpe of loading under which bending moments and also shear forces occur at cross sections of a rod. f the bending

More information

Theory and Analysis of Structures

Theory and Analysis of Structures 7 Theory and nalysis of Structures J.Y. Richard iew National University of Singapore N.E. Shanmugam National University of Singapore 7. Fundamental Principles oundary Conditions oads and Reactions Principle

More information

Analysis of Thick Cantilever Beam Using New Hyperbolic Shear Deformation Theory

Analysis of Thick Cantilever Beam Using New Hyperbolic Shear Deformation Theory International Journal of Research in Advent Technology, Vol.4, No.5, May 16 E-ISSN: 1-967 Analysis of Thick Cantilever Beam Using New Hyperbolic Shear Deformation Theory Mr. Mithun. K. Sawant 1, Dr. Ajay.

More information

Slender Structures Load carrying principles

Slender Structures Load carrying principles Slender Structures Load carrying principles Continuously Elastic Supported (basic) Cases: Etension, shear Euler-Bernoulli beam (Winkler 1867) v2017-2 Hans Welleman 1 Content (preliminary schedule) Basic

More information

C:\Users\whit\Desktop\Active\304_2012_ver_2\_Notes\4_Torsion\1_torsion.docx 6

C:\Users\whit\Desktop\Active\304_2012_ver_2\_Notes\4_Torsion\1_torsion.docx 6 C:\Users\whit\Desktop\Active\304_2012_ver_2\_Notes\4_Torsion\1_torsion.doc 6 p. 1 of Torsion of circular bar The cross-sections rotate without deformation. The deformation that does occur results from

More information

Chapter 12 Elastic Stability of Columns

Chapter 12 Elastic Stability of Columns Chapter 12 Elastic Stability of Columns Axial compressive loads can cause a sudden lateral deflection (Buckling) For columns made of elastic-perfectly plastic materials, P cr Depends primarily on E and

More information

Rigid and Braced Frames

Rigid and Braced Frames RH 331 Note Set 12.1 F2014abn Rigid and raced Frames Notation: E = modulus of elasticit or Young s modulus F = force component in the direction F = force component in the direction FD = free bod diagram

More information

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 4 ME 76 Spring 017-018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a

More information

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass

CIVL 8/7117 Chapter 12 - Structural Dynamics 1/75. To discuss the dynamics of a single-degree-of freedom springmass CIV 8/77 Chapter - /75 Introduction To discuss the dynamics of a single-degree-of freedom springmass system. To derive the finite element equations for the time-dependent stress analysis of the one-dimensional

More information

Second Order Analysis In the previous classes we looked at a method that determines the load corresponding to a state of bifurcation equilibrium of a perfect frame by eigenvalye analysis The system was

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 14 The Slope-Deflection ethod: An Introduction Introduction As pointed out earlier, there are two distinct methods

More information

Preliminaries: Beam Deflections Virtual Work

Preliminaries: Beam Deflections Virtual Work Preliminaries: Beam eflections Virtual Work There are several methods available to calculate deformations (displacements and rotations) in beams. They include: Formulating moment equations and then integrating

More information

Development of Truss Equations

Development of Truss Equations CIVL 7/87 Chapter 3 - Truss Equations - Part /53 Chapter 3a Development of Truss Equations Learning Objectives To derive the stiffness matri for a bar element. To illustrate how to solve a bar assemblage

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics

More information

Strain Transformation equations

Strain Transformation equations Strain Transformation equations R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 8 Table of Contents 1. Stress transformation

More information

PART I. Basic Concepts

PART I. Basic Concepts PART I. Basic Concepts. Introduction. Basic Terminology of Structural Vibration.. Common Vibration Sources.. Forms of Vibration.3 Structural Vibration . Basic Terminology of Structural Vibration The term

More information

ME 475 Modal Analysis of a Tapered Beam

ME 475 Modal Analysis of a Tapered Beam ME 475 Modal Analysis of a Tapered Beam Objectives: 1. To find the natural frequencies and mode shapes of a tapered beam using FEA.. To compare the FE solution to analytical solutions of the vibratory

More information

Generalized Single Degree of Freedom Systems

Generalized Single Degree of Freedom Systems Single Degree of Freedom http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano April, 16 Outline Until now our were described

More information

Indeterminate Analysis Force Method 1

Indeterminate Analysis Force Method 1 Indeterminate Analysis Force Method 1 The force (flexibility) method expresses the relationships between displacements and forces that exist in a structure. Primary objective of the force method is to

More information

L2. Bending of beams: Normal stresses, PNA: , CCSM: chap 9.1-2

L2. Bending of beams: Normal stresses, PNA: , CCSM: chap 9.1-2 L2. Bending of beams: ormal stresses, P: 233-239, CCSM: chap 9.1-2 àcoordinate system üship coordinate system übeam coordinate system üstress resultats - Section forces üstress - strain tensors (recall

More information

Flexural Analysis of Deep Aluminum Beam

Flexural Analysis of Deep Aluminum Beam Journal of Soft Computing in Civil Engineering -1 (018) 71-84 journal homepage: http://www.jsoftcivil.com/ Fleural Analysis of Deep Aluminum Beam P. Kapdis 1, U. Kalwane 1, U. Salunkhe 1 and A. Dahake

More information

ME 323 Examination #2 April 11, 2018

ME 323 Examination #2 April 11, 2018 ME 2 Eamination #2 April, 2 PROBLEM NO. 25 points ma. A thin-walled pressure vessel is fabricated b welding together two, open-ended stainless-steel vessels along a 6 weld line. The welded vessel has an

More information

Ph.D. Preliminary Examination Analysis

Ph.D. Preliminary Examination Analysis UNIVERSITY OF CALIFORNIA, BERKELEY Spring Semester 2014 Dept. of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials Name:......................................... Ph.D.

More information

Laith Batarseh. internal forces

Laith Batarseh. internal forces Next Previous 1/8/2016 Chapter seven Laith Batarseh Home End Definitions When a member is subjected to external load, an and/or moment are generated inside this member. The value of the generated internal

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

Application of Finite Element Method to Create Animated Simulation of Beam Analysis for the Course of Mechanics of Materials

Application of Finite Element Method to Create Animated Simulation of Beam Analysis for the Course of Mechanics of Materials International Conference on Engineering Education and Research "Progress Through Partnership" 4 VSB-TUO, Ostrava, ISSN 156-35 Application of Finite Element Method to Create Animated Simulation of Beam

More information

FEA CODE WITH MATLAB. Finite Element Analysis of an Arch ME 5657 FINITE ELEMENT METHOD. Submitted by: ALPAY BURAK DEMIRYUREK

FEA CODE WITH MATLAB. Finite Element Analysis of an Arch ME 5657 FINITE ELEMENT METHOD. Submitted by: ALPAY BURAK DEMIRYUREK FEA CODE WITH MATAB Finite Element Analysis of an Arch ME 5657 FINITE EEMENT METHOD Submitted by: APAY BURAK DEMIRYUREK This report summarizes the finite element analysis of an arch-beam with using matlab.

More information

Basic Energy Principles in Stiffness Analysis

Basic Energy Principles in Stiffness Analysis Basic Energy Principles in Stiffness Analysis Stress-Strain Relations The application of any theory requires knowledge of the physical properties of the material(s) comprising the structure. We are limiting

More information