Titles and abstracts

Size: px
Start display at page:

Download "Titles and abstracts"

Transcription

1 Titles and abstracts Workshop Effective Methods for Diophantine Problems *** Mike Bennett (University of British Columbia) An old and new approach to Goormaghtigh s equation This is joint work with Adela Gherga and Dijana Kreso. I will discuss an attempt to solve a classical polynomial-exponential Diophantine equation via machinery based upon off-diagonal Padé approximation. Our main result is that the equation x m 1 x 1 = yn 1 y 1 has, for integers m > n > 2 and y > x > 1, with gcd(m 1, n 1) > 1, at most finitely many solutions with n fixed. Csanád Bertók (University of Debrecen) Solving exponential Diophantine equations by using local methods By using Baker s theory it is possible to derive upper bounds for the size of the solutions of a wide family of Diophantine equations. However when the number of terms in an equation is large then this method cannot be used. For some special cases we may use other tools to achieve bounds for the number of solutions, but these methods also fail when we start to increase the number of terms. In this short talk we will present an algorithm and theoretical results which can be used to find all solutions of a wide variety of exponential Diophantine equations. We will illustrate our method by examples and numerical results as well. Yuri Bilu (Université Bordeaux) A j-invariant of a CM elliptic curve is not a unit A singular modulus is a j-invariant of an elliptic curve with Complex Multiplication. It is known since the 19th century that any singular modulus is an algebraic integer. Masser asked in 2011 whether only finitely many of them are units (invertible elements in the ring of all algebraic integers); call them singular units. Habegger (2015) answered this positively, proving that there exist at most finitely many singular units. However, his argument was non-effective (dependent on Siegel s zero through using the Duke Equidistribution Theorem), and did not provide any upper bound for the 1

2 size of these singular units. I will report on a recent joint work with Philipp Habegger and Lars Kühne, where we prove that singular units do not exist at all. First, we show that the absolute value of the discriminant of any singular unit is bounded by Next, we use computer-assisted arguments to rule out singular units with discriminants smaller than this bound. Yann Bugeaud (Université Strasbourg) Polynomial root separation We discuss how close the nonzero difference between two roots of an irreducible, integer polynomial can be in terms of its degree and the absolute values of its coefficients. Let d 2 be an integer and e(d) the infimum of the real numbers δ for which α i α j H(P ) δ 1 i<j k holds for every integer polynomial P (X) of degree d and sufficiently large height H(P ), with distinct roots α 1,..., α d. In 1964, Mahler established that e(d) d 1. It is easy to see that e(2) = 1. Evertse (2004) and, independently and by means of a simpler approach, Schönhage (2006) established that e(3) = 2. However, the exact value of e(d) for d 4 remains unknown: it has been established by Bugeaud and Dujella (2011) that e(d) exceeds d/2, but we can even not rule out that e(d) = d 1. We survey recent results on this and related questions. Sander Dahmen (VU Amsterdam) Some modular and related methods We will discuss several aspects of modular methods and related/analogous methods, such as (hyper)elliptic Frey curve constructions and number field enumerations. These will be illustrated by (sometimes partly) solving explicit Diophantine problems, including classical ones like Thue-Mahler equations and generalized Fermat equations, as well as other types. Finally, we will also briefly touch upon a somewhat different theme, namely the automation and formalization of proofs in this setting. 2

3 Netan Dogra (Imperial College, London) Unlikely intersections and the Chabauty-Kim method in higher dimensions A crucial input in Chabauty s method for curves over Q (and in its generalisation due to Kim) is the finiteness of zeroes of p-adic (iterated) integrals on curves. To extend the Chabauty-Kim method to number fields and to higher dimensional varieties, one must control the zeroes of iterated integrals on higher dimensional varieties. In my talk I will explain an unlikely intersection result for the zeroes of such functions and its Diophantine applications. Kálmán Győry (University of Debrecen) 35 years of collaboration with Jan-Hendrik Evertse In my lecture some old and new joint results will be presented from the following topics: (1) Decomposable form equations and unit equations (their equivalence, finiteness criteria, quantitative and effective results, applications), (2) Discriminant equations (quantitative and effective results, applications), (3) Effective finiteness results for Diophantine equations over finitely generated domains. Ariyan Javanpeykar (Universität Mainz) Arithmetic hyperbolicity A variety is arithmetically hyperbolic if it has only finitely many integral points. What properties do (or should) such varieties have? Lang s conjecture predicts for instance that such varieties have a finite automorphism group. We will explain how one can prove that projective arithmetically hyperbolic varieties have only finitely many automorphisms. Rafael von Känel (Princeton University) Solving cubic Thue equations via Shimura-Taniyama conjecture In this talk we discuss a practical method which allows to find all S-integral solutions of cubic Thue equations (over Q). After explaining the general strategy which combines the method of Faltings (Arakelov, Parshin, Szpiro) with the Shimura-Taniyama conjecture, we consider some aspects of the elliptic logarithm sieve used in our method. This is joint work with Benjamin Matschke. 3

4 Makoto Kawashima (Osaka University) A lower bound for linear forms in logarithms of algebraic numbers via Padé approximation Let K be an algebraic number field. For (α 1,..., α m ) K m of sufficiently small absolute value, we present a new lower bound for the absolute value of linear forms in 1, log(1 α 1 ),..., log(1 α m ) with rational coefficients, by means of Hermite-Padé approximation. We give results both in the complex case and the p-adic case. This is a joint work with Noriko Hirata-Kohno. Arno Kret (University of Amsterdam) Integral points on Hilbert modular varieties We will discuss a joint project with Rafael von Känel in which we studied integral points on Hilbert modular varieties. In particular we shall present explicit upper bounds for the height and number of integral points on Hilbert modular varieties. We shall also explain the strategy of proof. Florian Luca (University of Witwatersrand/University of Ostrava) X-coordinates of Pell equations in various sequences Let d > 1 be a squarefree integer and (X n, Y n ) be the nth solution of the Pell equation X 2 dy 2 = ±1. Given your favourite set of positive integers U, one can ask what can we say about those d such that X n U for some n? Formulated in this way, the question has many solutions d since one can always pick u U and write u 2 ± 1 = dv 2 with integers d and v such that d is squarefree obtaining in this way that (u, v) is a solution of the Pell equation corresponding to d. What about if we ask that X n U for at least two different n s? Then the answer is very different. For example, if U is the set of squares, then it is a classical result of Ljunggren that the only such d is 1785 for which both X 1 and X 2 are squares. In my talk, I will survey recent results about this problem when U is the set of Fibonacci numbers, Tribonacci numbers, k-generalized Fibonacci numbers, sums of two Fibonacci numbers, rep-digits (in base 10 or any integer base b 2), and factorials. The proofs use linear forms in logarithms and computations. These results have been obtained in joint work with various colleagues such as J. J. Bravo, C. A. Gómez, A. Montejano, L. Szalay and A. Togbé and recent Ph.D. students M. Ddamulira, B. Faye and M. Sias. 4

5 Benjamin Matschke (Koç University) Solving cubic Thue Mahler equations via the Shimura Taniyama conjecture In this talk we present a practical algorithm to solve cubic Thue Mahler equations. Our algorithm relies on new height bounds, which we obtained using the method of Faltings (Arakelov, Parshin, Szpiro) combined with the Shimura Taniyama conjecture (without relying on lower bounds on linear forms in logarithms), as well as several improved and new sieves. As an application, we computed the solutions of large classes of Thue Mahler equations. Evertse proved an upper bound for the number of solutions for general Thue Mahler equations of arbitrary degree over number fields. We used our resulting data to motivate conjectures and questions on the number of solutions, also for associated diophantine problems. This is joint work with Rafael von Känel. Héctor Pastén (Harvard University) Shimura curves and the abc conjecture I will explain some new connections between the abc conjecture and modular forms. In particular, I will outline a proof of a new unconditional estimate for the abc conjecture: the product of the p-adic valuations of an abc triple (p varying over the factors of abc) is bounded polynomially in the radical of abc. Similarly, the fudge factor of elliptic curves is bounded polynomially in the conductor. The proofs involve a number of tools such as Shimura curves, CM points, analytic number theory, and Arakelov geometry. Some intermediate results are of independent interest, such as bounds for the Manin constant beyond the semi-stable case. If time permits, I will also explain some results towards Szpiro s conjecture over totally real number fields which are compatible with the discriminant term appearing in Vojta s conjecture for algebraic points of bounded degree. István Pink (University of Debrecen) Some applications of Baker s method to Diophantine equations In this talk we will concentrate on some applications of the famous method of Baker to Diophantine equations. After a concise introduction to the theory of linear forms in logarithms of algebraic numbers we give a brief survey on some classical results in Diophantine number theory involving Baker s method. Then we point out several refinements of the original work of 5

6 Baker and we indicate how the combination of these refinements with some other effective methods (e.g. LLL algorithm, local method, hypergeometric method) may lead to effective resolution of Diophantine equations of certain type. Marusia Rebolledo (Université Blaise Pascal Clermont-Ferrand) A moduli interpretation for the non-split Cartan modular curves Here, we are interested in the modular curves associated to non-split Cartan subgroups or their normalizer in GL 2 (F p ). These modular curves appear for instance in Serre s problem of classifying all possible Galois structures of p-torsion points on elliptic curves over number fields. With Christian Wuthrich, we proposed a description of those curves as moduli spaces, namely classifying elliptic curves endowed with a level structure that we call a necklace. I will show how this description allows to recover some classical results (on elliptic points, degenerate maps, Hecke operators etc.) as well as gives a more explicit and geometric version of a theorem of Chen. László Remete (University of Debrecen) Thue equations and monogenity of algebraic number fields An algebraic number field K of degree n is called monogene if its ring of integers Z K is a simple ring extension of Z, that is Z K = Z[α]. In this case {1, α,..., α n 1 } is an integral basis of K called power integral basis. To decide if a number field is monogene and to determine all generators of power integral bases are classical problems of algebraic number theory. These problems lead to special types of Diophantine equations, called index form equations, that can often be reduced to various types of Thue equations. Therefore the effective methods for solving Thue equations and related equations can be very well applied in monogenity problems. Starting from cubic and quartic number fields we describe several results on monogenity of number fields, involving some very recent results on infinite parametric families of pure fields and simplest sextic fields. Tarlok Shorey (Institute for Advanced Study, Bangalore) Baker s explicit abc-conjecture Alan Baker in 2004 formulated an explicit version of the abc-conjecture. I shall speak on it together with its recent applications. 6

7 Samir Siksek (Warwick University) Frey curves, short character sums and a problem of Erdős Consider the following Diophantine problem: n(n + d)(n + 2d) (n + (k 1)d) = y l, gcd(n, d) = 1, where n, d, y are integers and the exponent l is prime. There are obvious solutions with y = 0 or d = 0. A long-standing conjecture of Erdős states that if k is suitably large then the only solutions are the obvious ones. We show that if k is suitably large then either the solution is one of the obvious ones, or l < exp(10 k ). Our methods include Frey curves and Galois representations, the prime number theorem for Dirichlet characters, and results on exceptional zeros of Dirichlet L-functions. This is joint work with Mike Bennett. Cameron Stewart (University of Waterloo) On the number of solutions of S-unit equations In this talk we shall discuss results obtained on the number of solutions of S-unit equations and related Diophantine equations. In particular we shall focus on the work of Jan-Hendrik Evertse in this context. Rob Tijdeman (University of Leiden) On the equation ax n + by n = c and its generalizations The title equation is basic for several classes of Diophantine equations such as S-unit equations, Thue(-Mahler) equations and values of linear recurrence sequences. Here we assume that a, b, c are fixed nonzero rational integers and n 3. In 1909 Thue proved that the number of solutions x, y Z is finite. Siegel showed in 1937 that if ab is sufficiently large compared to c, there is at most one solution (x, y). The Gelfond-Baker method implies that n is bounded. In his thesis Evertse used an improvement of Siegel s result to give an upper bound for the number of solutions depending only on n and c. In the lecture the history of the title equation and some of its generalizations will be summarized. 7

Combinatorial Diophantine Equations

Combinatorial Diophantine Equations Combinatorial Diophantine Equations Szabolcs Tengely Arctic Number Theory School, Helsinki May 21, 2011 Integer sequences Problem: find intersection of integer sequences Some well-known sequences: perfect

More information

Abstracts. Bounded Height Problems and Irrationality Francesco Amoroso (joint work with P. Corvaja and U. Zannier)

Abstracts. Bounded Height Problems and Irrationality Francesco Amoroso (joint work with P. Corvaja and U. Zannier) Abstracts Bounded Height Problems and Irrationality Francesco Amoroso (joint work with P. Corvaja and U. Zannier) In this talk we describe a quite unexpected connection between bounded height problems

More information

Diophantine Approximation July 28 - August 2, 2003

Diophantine Approximation July 28 - August 2, 2003 M. Bennett Diophantine Approximation July 28 - August 2, 2003 List of abstracts Rational Torsion Subgroups of Elliptic Curves in Short Weierstrass Form A recent paper claimed to show that an elliptic curve

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/20949 holds various files of this Leiden University dissertation. Author: Javan Peykar, Ariyan Title: Arakelov invariants of Belyi curves Issue Date: 2013-06-11

More information

Diophantine equations and beyond

Diophantine equations and beyond Diophantine equations and beyond lecture King Faisal prize 2014 Gerd Faltings Max Planck Institute for Mathematics 31.3.2014 G. Faltings (MPIM) Diophantine equations and beyond 31.3.2014 1 / 23 Introduction

More information

Fibonacci numbers of the form p a ± p b

Fibonacci numbers of the form p a ± p b Fibonacci numbers of the form p a ± p b Florian Luca 1 and Pantelimon Stănică 2 1 IMATE, UNAM, Ap. Postal 61-3 (Xangari), CP. 8 089 Morelia, Michoacán, Mexico; e-mail: fluca@matmor.unam.mx 2 Auburn University

More information

Elliptic Curves and the abc Conjecture

Elliptic Curves and the abc Conjecture Elliptic Curves and the abc Conjecture Anton Hilado University of Vermont October 16, 2018 Anton Hilado (UVM) Elliptic Curves and the abc Conjecture October 16, 2018 1 / 37 Overview 1 The abc conjecture

More information

Florian Luca Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P , Morelia, Michoacán, México

Florian Luca Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P , Morelia, Michoacán, México Florian Luca Instituto de Matemáticas, Universidad Nacional Autonoma de México, C.P. 8180, Morelia, Michoacán, México e-mail: fluca@matmor.unam.mx Laszlo Szalay Department of Mathematics and Statistics,

More information

P -adic root separation for quadratic and cubic polynomials

P -adic root separation for quadratic and cubic polynomials P -adic root separation for quadratic and cubic polynomials Tomislav Pejković Abstract We study p-adic root separation for quadratic and cubic polynomials with integer coefficients. The quadratic and reducible

More information

LINEAR FORMS IN LOGARITHMS

LINEAR FORMS IN LOGARITHMS LINEAR FORMS IN LOGARITHMS JAN-HENDRIK EVERTSE April 2011 Literature: T.N. Shorey, R. Tijdeman, Exponential Diophantine equations, Cambridge University Press, 1986; reprinted 2008. 1. Linear forms in logarithms

More information

Arithmetic elliptic curves in general position. CMI Workshop in Oxford, December 2015 Ulf Kühn, Universität Hamburg

Arithmetic elliptic curves in general position. CMI Workshop in Oxford, December 2015 Ulf Kühn, Universität Hamburg Talk on Mochizuki s paper Arithmetic elliptic curves in general position CMI Workshop in Oxford, December 2015 Ulf Kühn, Universität Hamburg 1/30 Overview abc-conjecture. Let >0, then there exists a apple

More information

The Diophantine equation x(x + 1) (x + (m 1)) + r = y n

The Diophantine equation x(x + 1) (x + (m 1)) + r = y n The Diophantine equation xx + 1) x + m 1)) + r = y n Yu.F. Bilu & M. Kulkarni Talence) and B. Sury Bangalore) 1 Introduction Erdős and Selfridge [7] proved that a product of consecutive integers can never

More information

RECIPES FOR TERNARY DIOPHANTINE EQUATIONS OF SIGNATURE (p, p, k)

RECIPES FOR TERNARY DIOPHANTINE EQUATIONS OF SIGNATURE (p, p, k) RECIPES FOR TERNARY DIOPHANTINE EQUATIONS OF SIGNATURE (p, p, k) MICHAEL A. BENNETT Abstract. In this paper, we survey recent work on ternary Diophantine equations of the shape Ax n + By n = Cz m for m

More information

On Siegel s lemma outside of a union of varieties. Lenny Fukshansky Claremont McKenna College & IHES

On Siegel s lemma outside of a union of varieties. Lenny Fukshansky Claremont McKenna College & IHES On Siegel s lemma outside of a union of varieties Lenny Fukshansky Claremont McKenna College & IHES Universität Magdeburg November 9, 2010 1 Thue and Siegel Let Ax = 0 (1) be an M N linear system of rank

More information

Outline of the Seminar Topics on elliptic curves Saarbrücken,

Outline of the Seminar Topics on elliptic curves Saarbrücken, Outline of the Seminar Topics on elliptic curves Saarbrücken, 11.09.2017 Contents A Number theory and algebraic geometry 2 B Elliptic curves 2 1 Rational points on elliptic curves (Mordell s Theorem) 5

More information

Diophantine and tropical geometry

Diophantine and tropical geometry Diophantine and tropical geometry David Zureick-Brown joint with Eric Katz (Waterloo) and Joe Rabinoff (Georgia Tech) Slides available at http://www.mathcs.emory.edu/~dzb/slides/ University of Colorado-Boulder

More information

LECTURE 2 FRANZ LEMMERMEYER

LECTURE 2 FRANZ LEMMERMEYER LECTURE 2 FRANZ LEMMERMEYER Last time we have seen that the proof of Fermat s Last Theorem for the exponent 4 provides us with two elliptic curves (y 2 = x 3 + x and y 2 = x 3 4x) in the guise of the quartic

More information

NOTES ON DIOPHANTINE APPROXIMATION

NOTES ON DIOPHANTINE APPROXIMATION NOTES ON DIOPHANTINE APPROXIMATION Jan-Hendrik Evertse December 11, 2007 8 Approximation of algebraic numbers Literature: W.M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics 785, Springer

More information

Results and open problems related to Schmidt s Subspace Theorem. Jan-Hendrik Evertse

Results and open problems related to Schmidt s Subspace Theorem. Jan-Hendrik Evertse Results and open problems related to Schmidt s Subspace Theorem Jan-Hendrik Evertse Universiteit Leiden 29 ièmes Journées Arithmétiques July 6, 2015, Debrecen Slides can be downloaded from http://pub.math.leidenuniv.nl/

More information

DIOPHANTINE EQUATIONS AND DIOPHANTINE APPROXIMATION

DIOPHANTINE EQUATIONS AND DIOPHANTINE APPROXIMATION DIOPHANTINE EQUATIONS AND DIOPHANTINE APPROXIMATION JAN-HENDRIK EVERTSE 1. Introduction Originally, Diophantine approximation is the branch of number theory dealing with problems such as whether a given

More information

Introduction Diophantine Equations The ABC conjecture Consequences. The ABC conjecture. Brian Conrad. September 12, 2013

Introduction Diophantine Equations The ABC conjecture Consequences. The ABC conjecture. Brian Conrad. September 12, 2013 The ABC conjecture Brian Conrad September 12, 2013 Introduction The ABC conjecture was made by Masser and Oesterlé in 1985, inspired by work of Szpiro. A proof was announced in Sept. 2012 by Mochizuki.

More information

PRODUCTS OF CONSECUTIVE INTEGERS

PRODUCTS OF CONSECUTIVE INTEGERS PRODUCTS OF CONSECUTIVE INTEGERS MICHAEL A. BENNETT Abstract. In this paper, we deduce a number of results on the arithmetic structure of products of integers in short intervals. By way of example, we

More information

RECENT RESULTS ON LINEAR RECURRENCE SEQUENCES

RECENT RESULTS ON LINEAR RECURRENCE SEQUENCES RECENT RESULTS ON LINEAR RECURRENCE SEQUENCES Jan-Hendrik Evertse (Leiden) General Mathematics Colloquium, Delft May 19, 2005 1 INTRODUCTION A linear recurrence sequence U = {u n } n=0 (in C) is a sequence

More information

CLASSICAL AND MODULAR APPROACHES TO EXPONENTIAL DIOPHANTINE EQUATIONS I. FIBONACCI AND LUCAS PERFECT POWERS

CLASSICAL AND MODULAR APPROACHES TO EXPONENTIAL DIOPHANTINE EQUATIONS I. FIBONACCI AND LUCAS PERFECT POWERS CLASSICAL AND MODULAR APPROACHES TO EXPONENTIAL DIOPHANTINE EQUATIONS I. FIBONACCI AND LUCAS PERFECT POWERS YANN BUGEAUD, MAURICE MIGNOTTE, SAMIR SIKSEK Abstract. This is the first in a series of papers

More information

Effective results for unit equations over finitely generated domains. Jan-Hendrik Evertse

Effective results for unit equations over finitely generated domains. Jan-Hendrik Evertse Effective results for unit equations over finitely generated domains Jan-Hendrik Evertse Universiteit Leiden Joint work with Kálmán Győry (Debrecen) Paul Turán Memorial Conference, Budapest August 22,

More information

On integer solutions to x 2 dy 2 = 1, z 2 2dy 2 = 1

On integer solutions to x 2 dy 2 = 1, z 2 2dy 2 = 1 ACTA ARITHMETICA LXXXII.1 (1997) On integer solutions to x 2 dy 2 = 1, z 2 2dy 2 = 1 by P. G. Walsh (Ottawa, Ont.) 1. Introduction. Let d denote a positive integer. In [7] Ono proves that if the number

More information

A parametric family of quartic Thue equations

A parametric family of quartic Thue equations A parametric family of quartic Thue equations Andrej Dujella and Borka Jadrijević Abstract In this paper we prove that the Diophantine equation x 4 4cx 3 y + (6c + 2)x 2 y 2 + 4cxy 3 + y 4 = 1, where c

More information

Diophantine Equations 11Dxx

Diophantine Equations 11Dxx Diophantine Equations 11Dxx [1] Fadwa S. Abu Muriefah, Florian Luca, and Alain Togbé, On the Diophantine equation x 2 + 5 a 13 b = y n, Glasg. Math. J. 50 (2008), no. 1, 175 181. MR MR2381741 (2008m:11071)

More information

On repdigits as product of consecutive Lucas numbers

On repdigits as product of consecutive Lucas numbers Notes on Number Theory and Discrete Mathematics Print ISSN 1310 5132, Online ISSN 2367 8275 Vol. 24, 2018, No. 3, 5 102 DOI: 10.7546/nntdm.2018.24.3.5-102 On repdigits as product of consecutive Lucas numbers

More information

Geometry of points over Q of small height Part II

Geometry of points over Q of small height Part II Geometry of points over Q of small height Part II Georgia Institute of Technology MSRI Introductory Workshop on Rational and Integral Points on Higher-dimensional Varieties January 21, 2006 Lehmer s problem

More information

Tables of elliptic curves over number fields

Tables of elliptic curves over number fields Tables of elliptic curves over number fields John Cremona University of Warwick 10 March 2014 Overview 1 Why make tables? What is a table? 2 Simple enumeration 3 Using modularity 4 Curves with prescribed

More information

Computing a Lower Bound for the Canonical Height on Elliptic Curves over Q

Computing a Lower Bound for the Canonical Height on Elliptic Curves over Q Computing a Lower Bound for the Canonical Height on Elliptic Curves over Q John Cremona 1 and Samir Siksek 2 1 School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7

More information

GENERALIZED FERMAT EQUATIONS : A MISCELLANY

GENERALIZED FERMAT EQUATIONS : A MISCELLANY GENERALIZED FERMAT EQUATIONS : A MISCELLANY MICHAEL A. BENNETT, IMIN CHEN, SANDER R. DAHMEN AND SOROOSH YAZDANI Abstract. This paper is devoted to the generalized Fermat equation x p + y q = z r, where

More information

Root separation for irreducible integer polynomials

Root separation for irreducible integer polynomials Root separation for irreducible integer polynomials Yann Bugeaud and Andrej Dujella 1 Introduction The height H(P ) of an integer polynomial P (x) is the maximum of the absolute values of its coefficients.

More information

Fifteen problems in number theory

Fifteen problems in number theory Acta Univ. Sapientiae, Mathematica, 2, 1 (2010) 72 83 Fifteen problems in number theory Attila Pethő University of Debrecen Department of Computer Science and Number Theory Research Group Hungarian Academy

More information

MODULAR FORMS AND EFFECTIVE DIOPHANTINE APPROXIMATION

MODULAR FORMS AND EFFECTIVE DIOPHANTINE APPROXIMATION MODULAR FORMS AND EFFECTIVE DIOPHANTINE APPROXIMATION M. RAM MURTY AND HECTOR PASTEN Abstract. After the work of G. Frey, it is known that an appropriate bound for the Faltings height of elliptic curves

More information

Unit equations in characteristic p. Peter Koymans

Unit equations in characteristic p. Peter Koymans Unit equations in characteristic p Peter Koymans Universiteit Leiden XXX th Journées Arithmétiques Caen, France, July 2017 Introduction Let K be a number field with unit group OK. For fixed a, b, c K consider

More information

GENERALIZED FERMAT EQUATIONS: A MISCELLANY. Contents

GENERALIZED FERMAT EQUATIONS: A MISCELLANY. Contents GENERALIZED FERMAT EQUATIONS: A MISCELLANY MICHAEL A. BENNETT, IMIN CHEN, SANDER R. DAHMEN AND SOROOSH YAZDANI Abstract. This paper is devoted to the generalized Fermat equation x p + y q = z r, where

More information

Root separation for irreducible integer polynomials

Root separation for irreducible integer polynomials Root separation for irreducible integer polynomials Yann Bugeaud and Andrej Dujella Abstract We establish new results on root separation of integer, irreducible polynomials of degree at least four. These

More information

Almost fifth powers in arithmetic progression

Almost fifth powers in arithmetic progression Almost fifth powers in arithmetic progression L. Hajdu and T. Kovács University of Debrecen, Institute of Mathematics and the Number Theory Research Group of the Hungarian Academy of Sciences Debrecen,

More information

Arithmetic properties of the Ramanujan function

Arithmetic properties of the Ramanujan function Proc. Indian Acad. Sci. (Math. Sci.) Vol. 116, No. 1, February 2006, pp. 1 8. Printed in India Arithmetic properties of the Ramanujan function FLORIAN LUCA 1 and IGOR E SHPARLINSKI 2 1 Instituto de Matemáticas,

More information

Diophantine Approximation and Algebraic Curves

Diophantine Approximation and Algebraic Curves Diophantine Approximation and Algebraic Curves Michael Bennett (University of British Columbia), Aaron Levin (Michigan State University), Jeff Thunder (Northern Illinois University) July 2 7, 2017 1 Introduction

More information

Beyond Fermat s Last Theorem

Beyond Fermat s Last Theorem Beyond Fermat s Last Theorem David Zureick-Brown Emory University UC Irvine math club a 2 + b 2 = c 2 Basic Problem (Solving Diophantine Equations) Analysis Let f 1,..., f m Z[x 1,..., x n ] be polynomials.

More information

P -ADIC ROOT SEPARATION FOR QUADRATIC AND CUBIC POLYNOMIALS. Tomislav Pejković

P -ADIC ROOT SEPARATION FOR QUADRATIC AND CUBIC POLYNOMIALS. Tomislav Pejković RAD HAZU. MATEMATIČKE ZNANOSTI Vol. 20 = 528 2016): 9-18 P -ADIC ROOT SEPARATION FOR QUADRATIC AND CUBIC POLYNOMIALS Tomislav Pejković Abstract. We study p-adic root separation for quadratic and cubic

More information

Elliptic Curves: An Introduction

Elliptic Curves: An Introduction Elliptic Curves: An Introduction Adam Block December 206 Introduction The goal of the following paper will be to explain some of the history of and motivation for elliptic curves, to provide examples and

More information

Projects on elliptic curves and modular forms

Projects on elliptic curves and modular forms Projects on elliptic curves and modular forms Math 480, Spring 2010 In the following are 11 projects for this course. Some of the projects are rather ambitious and may very well be the topic of a master

More information

Endomorphism algebras of semistable abelian varieties over Q of GL(2)-type

Endomorphism algebras of semistable abelian varieties over Q of GL(2)-type of semistable abelian varieties over Q of GL(2)-type UC Berkeley Tatefest May 2, 2008 The abelian varieties in the title are now synonymous with certain types of modular forms. (This is true because we

More information

Rational Points on Curves in Practice. Michael Stoll Universität Bayreuth Journées Algophantiennes Bordelaises Université de Bordeaux June 8, 2017

Rational Points on Curves in Practice. Michael Stoll Universität Bayreuth Journées Algophantiennes Bordelaises Université de Bordeaux June 8, 2017 Rational Points on Curves in Practice Michael Stoll Universität Bayreuth Journées Algophantiennes Bordelaises Université de Bordeaux June 8, 2017 The Problem Let C be a smooth projective and geometrically

More information

arxiv: v1 [math.nt] 9 Sep 2017

arxiv: v1 [math.nt] 9 Sep 2017 arxiv:179.2954v1 [math.nt] 9 Sep 217 ON THE FACTORIZATION OF x 2 +D GENERALIZED RAMANUJAN-NAGELL EQUATION WITH HUGE SOLUTION) AMIR GHADERMARZI Abstract. Let D be a positive nonsquare integer such that

More information

Bjorn Poonen. MSRI Introductory Workshop on Rational and Integral Points on Higher-dimensional Varieties. January 17, 2006

Bjorn Poonen. MSRI Introductory Workshop on Rational and Integral Points on Higher-dimensional Varieties. January 17, 2006 University of California at Berkeley MSRI Introductory Workshop on Rational and Integral Points on Higher-dimensional (organized by Jean-Louis Colliot-Thélène, Roger Heath-Brown, János Kollár,, Alice Silverberg,

More information

A POSITIVE PROPORTION OF THUE EQUATIONS FAIL THE INTEGRAL HASSE PRINCIPLE

A POSITIVE PROPORTION OF THUE EQUATIONS FAIL THE INTEGRAL HASSE PRINCIPLE A POSITIVE PROPORTION OF THUE EQUATIONS FAIL THE INTEGRAL HASSE PRINCIPLE SHABNAM AKHTARI AND MANJUL BHARGAVA Abstract. For any nonzero h Z, we prove that a positive proportion of integral binary cubic

More information

Some. Manin-Mumford. Problems

Some. Manin-Mumford. Problems Some Manin-Mumford Problems S. S. Grant 1 Key to Stark s proof of his conjectures over imaginary quadratic fields was the construction of elliptic units. A basic approach to elliptic units is as follows.

More information

JAN-HENDRIK EVERTSE AND KÁLMÁN GYŐRY

JAN-HENDRIK EVERTSE AND KÁLMÁN GYŐRY EFFECTIVE RESULTS FOR DIOPHANTINE EQUATIONS OVER FINITELY GENERATED DOMAINS: A SURVEY JAN-HENDRIK EVERTSE AND KÁLMÁN GYŐRY Abstract. We give a survey of our recent effective results on unit equations in

More information

Fundamental groups, polylogarithms, and Diophantine

Fundamental groups, polylogarithms, and Diophantine Fundamental groups, polylogarithms, and Diophantine geometry 1 X: smooth variety over Q. So X defined by equations with rational coefficients. Topology Arithmetic of X Geometry 3 Serious aspects of the

More information

Introduction to Arithmetic Geometry

Introduction to Arithmetic Geometry Introduction to Arithmetic Geometry 18.782 Andrew V. Sutherland September 5, 2013 What is arithmetic geometry? Arithmetic geometry applies the techniques of algebraic geometry to problems in number theory

More information

The ABC Conjecture and its Consequences on Curves

The ABC Conjecture and its Consequences on Curves The ABC Conjecture and its Consequences on Curves Sachi Hashimoto University of Michigan Fall 2014 1 Introduction 1.1 Pythagorean Triples We begin with a problem that most high school students have seen

More information

Pacific Journal of Mathematics

Pacific Journal of Mathematics Pacific Journal of Mathematics ON THE DIOPHANTINE EQUATION xn 1 x 1 = y Yann Bugeaud, Maurice Mignotte, and Yves Roy Volume 193 No. 2 April 2000 PACIFIC JOURNAL OF MATHEMATICS Vol. 193, No. 2, 2000 ON

More information

How many elliptic curves can have the same prime conductor? Alberta Number Theory Days, BIRS, 11 May Noam D. Elkies, Harvard University

How many elliptic curves can have the same prime conductor? Alberta Number Theory Days, BIRS, 11 May Noam D. Elkies, Harvard University How many elliptic curves can have the same prime conductor? Alberta Number Theory Days, BIRS, 11 May 2013 Noam D. Elkies, Harvard University Review: Discriminant and conductor of an elliptic curve Finiteness

More information

15 Elliptic curves and Fermat s last theorem

15 Elliptic curves and Fermat s last theorem 15 Elliptic curves and Fermat s last theorem Let q > 3 be a prime (and later p will be a prime which has no relation which q). Suppose that there exists a non-trivial integral solution to the Diophantine

More information

Algebraic Geometry: Elliptic Curves and 2 Theorems

Algebraic Geometry: Elliptic Curves and 2 Theorems Algebraic Geometry: Elliptic Curves and 2 Theorems Chris Zhu Mentor: Chun Hong Lo MIT PRIMES December 7, 2018 Chris Zhu Elliptic Curves and 2 Theorems December 7, 2018 1 / 16 Rational Parametrization Plane

More information

Generalized Fibonacci numbers of the form 2 a + 3 b + 5 c

Generalized Fibonacci numbers of the form 2 a + 3 b + 5 c Generalized Fibonacci numbers of the form 2 a + 3 b + 5 c Diego Marques 1 Departamento de Matemática, Universidade de Brasília, Brasília, 70910-900, Brazil Abstract For k 2, the k-generalized Fibonacci

More information

MICHAEL A. BENNETT, YANN BUGEAUD AND MAURICE MIGNOTTE

MICHAEL A. BENNETT, YANN BUGEAUD AND MAURICE MIGNOTTE PERFECT POWERS WITH FEW BINARY DIGITS AND RELATED DIOPHANTINE PROBLEMS MICHAEL A. BENNETT, YANN BUGEAUD AND MAURICE MIGNOTTE Abstract. We prove that, for any fixed base x 2 and sufficiently large prime,

More information

ON THE SOLUTIONS OF A FAMILY OF QUARTIC THUE EQUATIONS II ALAIN TOGBÉ

ON THE SOLUTIONS OF A FAMILY OF QUARTIC THUE EQUATIONS II ALAIN TOGBÉ ON THE SOLUTIONS OF A FAMILY OF QUARTIC THUE EQUATIONS II ALAIN TOGBÉ 1 2 ALAIN TOGBÉ On the solutions of a family of quartic Thue equations II Alain Togbé Purdue University North Central, Westville Indiana

More information

Table of Contents. 2013, Pearson Education, Inc.

Table of Contents. 2013, Pearson Education, Inc. Table of Contents Chapter 1 What is Number Theory? 1 Chapter Pythagorean Triples 5 Chapter 3 Pythagorean Triples and the Unit Circle 11 Chapter 4 Sums of Higher Powers and Fermat s Last Theorem 16 Chapter

More information

ON POWER VALUES OF POLYNOMIALS. A. Bérczes, B. Brindza and L. Hajdu

ON POWER VALUES OF POLYNOMIALS. A. Bérczes, B. Brindza and L. Hajdu ON POWER VALUES OF POLYNOMIALS ON POWER VALUES OF POLYNOMIALS A. Bérczes, B. Brindza and L. Hajdu Abstract. In this paper we give a new, generalized version of a result of Brindza, Evertse and Győry, concerning

More information

Elliptic curves over function fields 1

Elliptic curves over function fields 1 Elliptic curves over function fields 1 Douglas Ulmer and July 6, 2009 Goals for this lecture series: Explain old results of Tate and others on the BSD conjecture over function fields Show how certain classes

More information

Why the ABC conjecture

Why the ABC conjecture Why the ABC conjecture Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA Kummer classes and anabelian geometry U. Vermont, September 10 11, 2016 (The Farside, Gary Larson) 1 What is the ABC

More information

Computing coefficients of modular forms

Computing coefficients of modular forms Computing coefficients of modular forms (Work in progress; extension of results of Couveignes, Edixhoven et al.) Peter Bruin Mathematisch Instituut, Universiteit Leiden Théorie des nombres et applications

More information

POWERS IN LUCAS SEQUENCES VIA GALOIS REPRESENTATIONS

POWERS IN LUCAS SEQUENCES VIA GALOIS REPRESENTATIONS POWERS IN LUCAS SEQUENCES VIA GALOIS REPRESENTATIONS JESSE SILLIMAN AND ISABEL VOGT Abstract. Let u n be a nondegenerate Lucas sequence. We generalize the results of Bugeaud, Mignotte, and Siksek [6] to

More information

Determining elements of minimal index in an infinite family of totally real bicyclic biquadratic number fields

Determining elements of minimal index in an infinite family of totally real bicyclic biquadratic number fields Determining elements of minimal index in an infinite family of totally real bicyclic biquadratic number fields István Gaál, University of Debrecen, Mathematical Institute H 4010 Debrecen Pf.12., Hungary

More information

Elliptic Curves and Mordell s Theorem

Elliptic Curves and Mordell s Theorem Elliptic Curves and Mordell s Theorem Aurash Vatan, Andrew Yao MIT PRIMES December 16, 2017 Diophantine Equations Definition (Diophantine Equations) Diophantine Equations are polynomials of two or more

More information

Two Diophantine Approaches to the Irreducibility of Certain Trinomials

Two Diophantine Approaches to the Irreducibility of Certain Trinomials Two Diophantine Approaches to the Irreducibility of Certain Trinomials M. Filaseta 1, F. Luca 2, P. Stănică 3, R.G. Underwood 3 1 Department of Mathematics, University of South Carolina Columbia, SC 29208;

More information

ON A THEOREM OF TARTAKOWSKY

ON A THEOREM OF TARTAKOWSKY ON A THEOREM OF TARTAKOWSKY MICHAEL A. BENNETT Dedicated to the memory of Béla Brindza Abstract. Binomial Thue equations of the shape Aa n Bb n = 1 possess, for A and B positive integers and n 3, at most

More information

The Schanuel paradigm

The Schanuel paradigm The Schanuel paradigm Jonathan Pila University of Oxford 2014 Clay Research Conference, Oxford Themes Schanuel s conjecture, analogues, in particular Functional analogues and their connections with certain

More information

AN EXTENSION OF A THEOREM OF EULER. 1. Introduction

AN EXTENSION OF A THEOREM OF EULER. 1. Introduction AN EXTENSION OF A THEOREM OF EULER NORIKO HIRATA-KOHNO, SHANTA LAISHRAM, T. N. SHOREY, AND R. TIJDEMAN Abstract. It is proved that equation (1 with 4 109 does not hold. The paper contains analogous result

More information

On a Question of Wintner Concerning the Sequence of Integers Composed of Primes from a Given Set

On a Question of Wintner Concerning the Sequence of Integers Composed of Primes from a Given Set On a Question of Wintner Concerning the Sequence of Integers Composed of Primes from a Given Set by Jeongsoo Kim A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

arxiv: v1 [math.nt] 3 Jun 2016

arxiv: v1 [math.nt] 3 Jun 2016 Absolute real root separation arxiv:1606.01131v1 [math.nt] 3 Jun 2016 Yann Bugeaud, Andrej Dujella, Tomislav Pejković, and Bruno Salvy Abstract While the separation(the minimal nonzero distance) between

More information

On Schmidt s Subspace Theorem. Jan-Hendrik Evertse

On Schmidt s Subspace Theorem. Jan-Hendrik Evertse On Schmidt s Subspace Theorem Jan-Hendrik Evertse Universiteit Leiden Winter school on Lang s and Vojta s conjectures March 3, 2014, CIRM, Luminy Slides can be downloaded from http://www.math.leidenuniv.nl/

More information

Integral Points on Curves Defined by the Equation Y 2 = X 3 + ax 2 + bx + c

Integral Points on Curves Defined by the Equation Y 2 = X 3 + ax 2 + bx + c MSc Mathematics Master Thesis Integral Points on Curves Defined by the Equation Y 2 = X 3 + ax 2 + bx + c Author: Vadim J. Sharshov Supervisor: Dr. S.R. Dahmen Examination date: Thursday 28 th July, 2016

More information

PUBLICATIONS ALEXANDRU BUIUM

PUBLICATIONS ALEXANDRU BUIUM PUBLICATIONS ALEXANDRU BUIUM 1. Research Monographs [1] Differential Function Fields and Moduli of Algebraic Varieties, Lecture Notes in Math. 1226, Springer 1986. [2] Differential Algebraic Groups of

More information

POWERS FROM PRODUCTS OF CONSECUTIVE TERMS IN ARITHMETIC PROGRESSION

POWERS FROM PRODUCTS OF CONSECUTIVE TERMS IN ARITHMETIC PROGRESSION POWERS FROM PRODUCTS OF CONSECUTIVE TERMS IN ARITHMETIC PROGRESSION MICHAEL A. BENNETT, KÁLMÁN GYŐRY, AND LAJOS HAJDU Dedicated to Professor R. Tijdeman on the occasion of his sixtieth birthday Abstract.

More information

SQUARES FROM SUMS OF FIXED POWERS. Mark Bauer and Michael A. Bennett University of Calgary and University of British Columbia, Canada

SQUARES FROM SUMS OF FIXED POWERS. Mark Bauer and Michael A. Bennett University of Calgary and University of British Columbia, Canada SQUARES FROM SUMS OF FIXED POWERS Mark Bauer and Michael A. Bennett University of Calgary and University of British Columbia, Canada Abstract. In this paper, we show that if p and q are positive integers,

More information

Diophantine equations

Diophantine equations Diophantine equations So far, we have considered solutions to equations over the real and complex numbers. This chapter instead focuses on solutions over the integers, natural and rational numbers. There

More information

Even perfect numbers among generalized Fibonacci sequences

Even perfect numbers among generalized Fibonacci sequences Even perfect numbers among generalized Fibonacci sequences Diego Marques 1, Vinicius Vieira 2 Departamento de Matemática, Universidade de Brasília, Brasília, 70910-900, Brazil Abstract A positive integer

More information

A family of quartic Thue inequalities

A family of quartic Thue inequalities A family of quartic Thue inequalities Andrej Dujella and Borka Jadrijević Abstract In this paper we prove that the only primitive solutions of the Thue inequality x 4 4cx 3 y + (6c + 2)x 2 y 2 + 4cxy 3

More information

Power values of polynomials and binomial Thue Mahler equations

Power values of polynomials and binomial Thue Mahler equations Publ. Math. Debrecen 65/3-4 (2004), 341 362 Power values of polynomials and binomial Thue Mahler equations By K. GYŐRY (Debrecen), I. PINK (Debrecen) and A. PINTÉR (Debrecen) To the memory of Professors

More information

PAlmetto Number Theory Series

PAlmetto Number Theory Series PAlmetto Number Theory Series Abstracts for December 4-5, 2010, Meeting Plenary Speakers Michael Bennett (University of British Columbia). Title: Perfect powers with few binary digits and related Diophantine

More information

MICHAEL A. BENNETT, YANN BUGEAUD AND MAURICE MIGNOTTE

MICHAEL A. BENNETT, YANN BUGEAUD AND MAURICE MIGNOTTE PERFECT POWERS WITH FEW BINARY DIGITS AND RELATED DIOPHANTINE PROBLEMS MICHAEL A. BENNETT, YANN BUGEAUD AND MAURICE MIGNOTTE Abstract. We prove that, for any fixed base x 2 and sufficiently large prime,

More information

O-minimality and Diophantine Geometry

O-minimality and Diophantine Geometry O-minimality and Diophantine Geometry Jonathan Pila University of Oxford ICM 2014, Seoul Themes Rational points on definable sets in o-minimal structures and applications to some Diophantine problems comprehended

More information

Abstracts of papers. Amod Agashe

Abstracts of papers. Amod Agashe Abstracts of papers Amod Agashe In this document, I have assembled the abstracts of my work so far. All of the papers mentioned below are available at http://www.math.fsu.edu/~agashe/math.html 1) On invisible

More information

Diophantine quadruples and Fibonacci numbers

Diophantine quadruples and Fibonacci numbers Diophantine quadruples and Fibonacci numbers Andrej Dujella Department of Mathematics, University of Zagreb, Croatia Abstract A Diophantine m-tuple is a set of m positive integers with the property that

More information

POWER VALUES OF SUMS OF PRODUCTS OF CONSECUTIVE INTEGERS. 1. Introduction. (x + j).

POWER VALUES OF SUMS OF PRODUCTS OF CONSECUTIVE INTEGERS. 1. Introduction. (x + j). POWER VALUES OF SUMS OF PRODUCTS OF CONSECUTIVE INTEGERS L. HAJDU, S. LAISHRAM, SZ. TENGELY Abstract. We investigate power values of sums of products of consecutive integers. We give general finiteness

More information

Powers of Two as Sums of Two Lucas Numbers

Powers of Two as Sums of Two Lucas Numbers 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 17 (014), Article 14.8.3 Powers of Two as Sums of Two Lucas Numbers Jhon J. Bravo Mathematics Department University of Cauca Street 5 No. 4-70 Popayán,

More information

Power values of sums of products of consecutive integers

Power values of sums of products of consecutive integers isid/ms/2015/15 October 12, 2015 http://www.isid.ac.in/ statmath/index.php?module=preprint Power values of sums of products of consecutive integers L. Hajdu, S. Laishram and Sz. Tengely Indian Statistical

More information

Lesson 2 The Unit Circle: A Rich Example for Gaining Perspective

Lesson 2 The Unit Circle: A Rich Example for Gaining Perspective Lesson 2 The Unit Circle: A Rich Example for Gaining Perspective Recall the definition of an affine variety, presented last lesson: Definition Let be a field, and let,. Then the affine variety, denoted

More information

PRODUCTS OF THREE FACTORIALS

PRODUCTS OF THREE FACTORIALS PRODUCTS OF THREE FACTORIALS A. DUJELLA, F. NAJMAN, N. SARADHA AND T. N. SHOREY Abstract. We study a question of Erdős and Graham on products of three factorials being a square. 1. Introduction For any

More information

THE JACOBIAN AND FORMAL GROUP OF A CURVE OF GENUS 2 OVER AN ARBITRARY GROUND FIELD E. V. Flynn, Mathematical Institute, University of Oxford

THE JACOBIAN AND FORMAL GROUP OF A CURVE OF GENUS 2 OVER AN ARBITRARY GROUND FIELD E. V. Flynn, Mathematical Institute, University of Oxford THE JACOBIAN AND FORMAL GROUP OF A CURVE OF GENUS 2 OVER AN ARBITRARY GROUND FIELD E. V. Flynn, Mathematical Institute, University of Oxford 0. Introduction The ability to perform practical computations

More information

Polynomial root separation examples

Polynomial root separation examples Journal of Symbolic Computation 4 (2006) 080 090 www.elsevier.com/locate/jsc Polynomial root separation examples Arnold Schönhage Institut für Informati III, Universität Bonn, Römerstr. 64, D-537 Bonn,

More information

1 Absolute values and discrete valuations

1 Absolute values and discrete valuations 18.785 Number theory I Lecture #1 Fall 2015 09/10/2015 1 Absolute values and discrete valuations 1.1 Introduction At its core, number theory is the study of the ring Z and its fraction field Q. Many questions

More information

Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 31 (2004) 19 24

Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 31 (2004) 19 24 Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 31 (2004) 19 24 PRIMITIVE DIVISORS OF LUCAS SEQUENCES AND PRIME FACTORS OF x 2 + 1 AND x 4 + 1 Florian Luca (Michoacán, México) Abstract. In this

More information