Potential Sweep Methods (Ch. 6)

Size: px
Start display at page:

Download "Potential Sweep Methods (Ch. 6)"

Transcription

1 Potential Sweep Methods (Ch. 6) Nernstian (reversible) systems Totally irreversible systems Quasireversible systems Cyclic voltammetry Multicomponent systems & multistep charge transfers

2 Introduction Linear sweep voltammetry (LSV) Cyclic voltammetry (CV)

3 Nernstian (reversible) systems Solution of the boundary value problem O + ne = R (semi-infinite linear diffusion, initially O present) E(t) = E i vt Sweep rate (or scan rate): v (V/s) Rapid e-transfer rate at the electrode surface C O (0, t)/c R (0, t) = f(t) = exp[nf (E i -vt-e 0 )/RT] σ = (nf/rt)v i = nfac O *(πd O σ) 1/2 χ(σt)

4

5 Peak current and potential Peak current: π 1/2 χ(σt) = i p = (F 3 /RT) 1/2 n 3/2 AD O 1/2 C O *v 1/2 At 25 C, for A in cm 2, D O in cm 2 /s, C O* in mol/cm 3, v in V/s i p in amperes i p = (2.69 x 10 5 )n 3/2 AD O 1/2 C O *v 1/2 Peak potential, E p E p = E 1/ (RT/nF) = E 1/2 28.5/n mv at 25 C Half-peak potential, E p/2 E p/2 = E 1/ (RT/nF) = E 1/ /n mv at 25 C E 1/2 is located between E p and E p/2 E p E p/2 = 2.20(RT/nF) = 56.5/n mv at C For reversible wave, E p is independent of scan rate, i p is proportional to v 1/2

6

7 Spherical electrodes and UMEs Spherical electrode (e.g., a hanging mercury drop) φ(σt): tabulated function (Table 6.2.1) i = i(plane) + nfad O C O *φ(σt)/r 0 For large v in conventional-sized electrode i(plane) >> 2 nd term Same for hemispherical & UME at fast scan rate For UME at very small v: r 0 is small i(plane) << 2 nd term voltammogram is a steady-state response independent of v v << RTD/nFr 0 2 r 0 = 5 μm, D = 10-5 cm 2 /s, T = 298 K steady-state voltammogram at v < 1 V/s r 0 = 0.5 μm steady-state behavior up to 10 V/s Transition from typical peak-shaped voltammograms at fast v to steady-state voltammograms at small v

8

9 cf. For potential sweep (Ch.1) Linear potential sweep with a sweep rate v (in V/s) E = vt E = E R + E C = ir s + q/c d vt = R s (dq/dt) + q/c d If q = 0 at t = 0, i = vc d [1 exp(-t/r s C d )] - Current rises from 0 and attains a steady-state value (vc d ): measure C d

10 Effect of double-layer capacitance & uncompensated resistance Charging current at potential sweep i c = AC d v Faradaic current measured with baseline of i c i p varies with v 1/2, i c varies with v i c more important at faster v i c /i p = [C d v 1/2 (10-5 )]/[2.69n 3/2 D O 1/2 C O* ] At high v & low C O* severe distortion of the LSV wave R u cause E p to be a function of v

11

12 Totally irreversible systems Solution of the boundary value problem k f Totally irreversible one-step, one-electron reaction: O + e R Where k f = k 0 e αf(e(t) E0 ), E(t) = E i vt i/fa = D O ( C O (x, t)/ x) x=0 = k f (t)c O (0, t) k f (t)c O (0, t) = k fi C O (0, t)e bt Where b = αfv & k fi = k 0 exp[-αf(e i E 0 )] i = FAC O *D O 1/2 v 1/2 (αf/rt) 1/2 χ(bt) χ(bt) (Table 6.3.1). i varies with v 1/2 and C O * For spherical electrodes i = i(plane) + FAD O C O *φ(bt)/r 0

13

14 Peak current and potential Maximum χ(bt) at π 1/2 χ(bt) = Peak current i p = (2.99 x 10 5 )α 1/2 AC O* D O 1/2 v 1/2 n-electron process with RDS: n in right side Peak potential α(e p E 0 ) + (RT/F)ln[(πD O b) 1/2 /k 0 ] = -0.21(RT/F) = mv at 25 C Or E p = E 0 -(RT/αF)[ ln(d O 1/2 /k 0 ) + ln(αfv/rt) 1/2 ] E p E p/2 = 1.857RT/αF = 47.7/α mv at 25 C E p : ftn of v for reduction, 1.15RT/αF (or 30/α mv at 25 C) negative shift for tenfold increase in v i p = 0.227FAC O* k 0 exp[-αf(e P E 0 )] i p vs. E p E 0 plot at different v: slope of αf and intercept proportional to k 0 n-electron process with RDS: n in right side

15 Quasireversible systems For one-step, one-electron system k f O + e = R k b For the quasireversible one-step, one-electron case (5.5.3, p. 191) i/fa = D O ( C O (x, t)/ x) x=0 = k f C O (0, t) k b C R (0, t) Where k f = k 0 e αf(e E0 ) & k b = k 0 e (1 α)f(e E0 ), f = F/RT The shape of peak & peak parameters ftns of α & Λ Λ = k 0 /(D O 1-α D Rα fv) 1/2 Or for D O = D R = D Λ = k 0 /(Dfv) 1/2 Current i = FAD O 1/2 C O* f 1/2 v 1/2 Ψ(E) Ψ(E) (Fig ): Λ > 10 approach to the reversible

16 Ψ(E) I. Λ = 10 II. Λ = 1 III. Λ = 0.1 IV. Λ = 0.01 Dashed line: reversible

17 Cyclic voltammetry (0 < t λ) E = E i vt (t > λ) E = E i 2vλ + vt Nernstian systems i-t curve at different E λ

18 i-e curve (CV) at different E λ (1) E λ (1) E 1/2 90/n, (2) E 1/2 130/n, (3) E 1/2 200/n mv, (4) after i pc 0 i pa /i pc = 1 for nernstian regardless of scan rate, E λ (> 35/n mv past E pc ), D

19 i pa /i pc kinetic information If actual baseline cannot be determined, i pa /i pc = (i pa ) 0 /i pc (i sp ) 0 /i pc Reversal charging current is same as forward scan, but opposite sign ΔE p = E pa E pc ~ 2.3RT/nF (or 59/n mv at 25 C)

20 Quasireversible systems Wave shape & ΔE p ftns of v, k 0, α & E λ If E λ > 90/n mv beyond cathodic peak small E λ effect Ψ = Λπ -1/2 = [k 0 (D O /D R ) α ]/(πd O fv) 1/2 (1) Ψ = 0.5, α = 0.7, (2) Ψ = 0.5, α = 0.3, (3) Ψ = 7, α = 0.5, (4) Ψ = 0.25, α = 0.5

21 For 0.3 < α < 0.7 ΔE p independent of α; depend only on Ψ estimating k 0 in quasireversible systems ΔE p vs. v ΔE p vs Ψ

22 Multicomponent systems & Multistep charge transfers O & O system

23 Method for obtaining baselines Constant E after 1 Sweep stop beyond E p1

24 In vivo applications of LSV & CV e.g., rat brain

Chapter 6 Potential Sweep Methods

Chapter 6 Potential Sweep Methods Chapter 6 Potential Sweep Methods Linear Sweep Voltammetry E Perturbation signal: E(t) E i + υt E i E f υ = scan rate = ± V/s Time Ox + e - Red i p α C o i 0 /2 i p E (vs. ref) Macroelectrodes: max. 1000

More information

Kinetics of electrode reactions (Ch. 3)

Kinetics of electrode reactions (Ch. 3) Kinetics of electrode reactions (Ch. 3) Review of homogeneous kinetics Dynamic equilibrium. Arrhenius equation. Transition state theory Essentials of electrode reactions Butler-Volmer model of electrode

More information

1298 Lecture #18 of 18

1298 Lecture #18 of 18 Lecture #18 of 18 1298 1299 Q: What s in this set of lectures? A: B&F Chapters 9, 10, and 6 main concepts: Sections 9.1 9.4: Sections 10.1 10.4: Rotating (Ring-)Disk Electrochemistry Electrochemical Impedance

More information

Chapter 14 Chemically Modified Electrodes

Chapter 14 Chemically Modified Electrodes Electrodes prepared by surface modification to produce an electrode suited for a particular function different properties from those of the unmodified substrate. Interest in surface modification: Protection

More information

Cyclic Voltammetry. Fundamentals of cyclic voltammetry

Cyclic Voltammetry. Fundamentals of cyclic voltammetry Cyclic Voltammetry Cyclic voltammetry is often the first experiment performed in an electrochemical study of a compound, biological material, or an electrode surface. The effectiveness of cv results from

More information

Voltammetry. Voltammetry and Polarograph. Chapter 23. Polarographic curves -- Voltammograms

Voltammetry. Voltammetry and Polarograph. Chapter 23. Polarographic curves -- Voltammograms Chapter 23 Voltammetry Voltammetry and Polarograph Electrochemistry techniques based on current (i) measurement as function of voltage (E appl ) Voltammetry Usually when the working electrode is solid,

More information

Subject: A Review of Techniques for Electrochemical Analysis

Subject: A Review of Techniques for Electrochemical Analysis Application Note E-4 Subject: A Review of Techniques for Electrochemical Analysis INTRODUCTION Electrochemistry is the study of the chemical response of a system to an electrical stimulation. The scientist

More information

Goals. The laboratory instructor has already purged the solutions of dissolved. Purging the from these solutions prevents spurious

Goals. The laboratory instructor has already purged the solutions of dissolved. Purging the from these solutions prevents spurious Goals 41 Cyclic Voltammetry XXGoals The goals of this experiment are to: Learn how to set up a screen-printed electrode Learn how to operate the Gamry potentiostat Determine the redox potential of potassium

More information

CH 117 PS3 Solutions

CH 117 PS3 Solutions CH 117 PS3 Jim Maiolo Revisions, Notes, etc. Feb 22, 2017 KMP Problem 1 2 A) In order to determine if this is a mass-limited process, we should compare its behavior to the integrated Cottrell equation:

More information

Electron Transfer Rates in DNA Films as a Function of Tether Length. T. Gregory Drummond, Michael G. Hill, and Jacqueline K.

Electron Transfer Rates in DNA Films as a Function of Tether Length. T. Gregory Drummond, Michael G. Hill, and Jacqueline K. Electron Transfer Rates in DNA Films as a Function of Tether Length T. Gregory Drummond, Michael G. Hill, and Jacqueline K. Barton Division of Chemistry and Chemical Engineering California Institute of

More information

Solution Purging. Goals. 1. Purge both solutions with an inert gas (preferably N 2

Solution Purging. Goals. 1. Purge both solutions with an inert gas (preferably N 2 Goals 43 Cyclic Voltammetry XXGoals The goals of this experiment are to: Learn how to set up a screen-printed electrode Learn how to operate the Gamry potentiostat Determine the redox potential of potassium

More information

STUDY OF Zn (II) IN DIFFERENT SODIUM SALTS AS SUPPORTING ELECTROLYTES USING CYCLIC VOLTAMMETRIC TECHNIQUE

STUDY OF Zn (II) IN DIFFERENT SODIUM SALTS AS SUPPORTING ELECTROLYTES USING CYCLIC VOLTAMMETRIC TECHNIQUE Int. J. Chem. Sci.: 8(3), 2010, 1511-1516 STUDY OF Zn (II) IN DIFFERENT SODIUM SALTS AS SUPPORTING ELECTROLYTES USING CYCLIC VOLTAMMETRIC TECHNIQUE PRASHANT MEHTA * and R. S. SINDAL a National Law University,

More information

Basic Concepts in Electrochemistry

Basic Concepts in Electrochemistry Basic Concepts in Electrochemistry 1 Electrochemical Cell Electrons Current + - Voltage Source ANODE Current CATHODE 2 Fuel Cell Electrons (2 e) Current - + Electrical Load ANODE Current CATHODE H 2 2H

More information

Chapter 25. Voltammetry

Chapter 25. Voltammetry Chapter 5. Voltammetry Excitation Signal in Voltammetry Voltammetric Instrumentation Hydrodynamic Voltammetry Cyclic Voltammetry Pulse Voltammetry High-Frequency and High-Speed Voltammetry Application

More information

Fundamental molecular electrochemistry - potential sweep voltammetry

Fundamental molecular electrochemistry - potential sweep voltammetry Fundamental molecular electrochemistry - potential sweep voltammetry Potential (aka voltammetric) sweep methods are the most common electrochemical methods in use by chemists today They provide an efficient

More information

Electrochemical Techniques: Cyclic Voltammetry

Electrochemical Techniques: Cyclic Voltammetry Electrochemical Techniques: Cyclic Voltammetry Cyclic Voltammetry of Ferrocene Carboxylic Acid 1. Aims To use cyclic voltammetry to investigate the solution electrochemistry of a simple redox couple. 2.

More information

690 Lecture #10 of 18

690 Lecture #10 of 18 Lecture #10 of 18 690 691 Q: What s in this set of lectures? A: B&F Chapters 4 & 5 main concepts: Section 4.4.2: Section 5.1: Section 5.2: Section 5.3 & 5.9: Fick s Second Law of Diffusion Overview of

More information

CYCLIC VOLTAMMETRIC STUDY OF Pb (II) IN DIFFERENT SODIUM SALTS AS SUPPORTING ELECTROLYTES

CYCLIC VOLTAMMETRIC STUDY OF Pb (II) IN DIFFERENT SODIUM SALTS AS SUPPORTING ELECTROLYTES Int. J. Chem. Sci.: 8(1), 2010, 345-350 CYCLIC VOLTAMMETRIC STUDY OF Pb (II) IN DIFFERENT SODIUM SALTS AS SUPPORTING ELECTROLYTES PRASHANT MEHTA * and R. S. SINDAL a National Law University, NH # 65, Nagour

More information

Supporting information. Electrochemistry and Electrogenerated Chemiluminescence of 1,3,5-

Supporting information. Electrochemistry and Electrogenerated Chemiluminescence of 1,3,5- Supporting information Electrochemistry and Electrogenerated Chemiluminescence of 1,3,5- Tri(anthracen-10-yl)-benzene-centered Starburst Oligofluorenes Honglan Qi,, Chengxiao Zhang, Zhi Huang, Lei Wang*,

More information

Electrode Kinetics 1

Electrode Kinetics 1 Electrode Kinetics 1 Background Consider the reaction given below: A B (1) Let k f and k b are the rate constants of the forward and backward reactions 2 Reaction rates Rate of the forward reaction is

More information

In all electrochemical methods, the rate of oxidation & reduction depend on: 1) rate & means by which soluble species reach electrode surface (mass

In all electrochemical methods, the rate of oxidation & reduction depend on: 1) rate & means by which soluble species reach electrode surface (mass Voltammetry Methods based on an electrolytic cell Apply potential or current to electrochemical cell & concentrations change at electrode surface due to oxidation & reduction reactions Can have 2 or 3

More information

1237 Lecture #17 of 18

1237 Lecture #17 of 18 Lecture #17 of 18 1237 1238 Q: What s in this set of lectures? A: B&F Chapter 3 main concepts: Sections 3.1 & 3.6: Homogeneous Electron-Transfer (ET) (Arrhenius, Eyring, TST (ACT), Marcus Theory) Sections

More information

Cyclic Voltammetry. Objective: To learn the basics of cyclic voltammetry with a well-behaved echem system

Cyclic Voltammetry. Objective: To learn the basics of cyclic voltammetry with a well-behaved echem system Cyclic Voltammetry Objective: To learn the basics of cyclic voltammetry with a well-behaved echem system Introduction Cyclic voltammetry (CV) is a popular electroanalytical technique for its relative simplicity

More information

Electrochemical Impedance Spectroscopy (EIS)

Electrochemical Impedance Spectroscopy (EIS) CHEM465/865, 24-3, Lecture 26-28, 19 th Nov., 24 Please, note the following error in the notes lecture19+2 (Hydrodynamic electrodes and Microelectrodes: on page two, 3 rd line, the correct expression for

More information

Square-wave Voltammetry of Two-step Electrode Reaction

Square-wave Voltammetry of Two-step Electrode Reaction Int. J. Electrochem. Sci., 9 (2014) 435-444 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Square-wave Voltammetry of Two-step Electrode Reaction Šebojka Komorsky-Lovrić and Milivoj

More information

Components of output signal in Chronoamperometry

Components of output signal in Chronoamperometry Chronoamperometry Stationary electrode Unstirred = mass transport by diffusion Constant potential Measure current vs time Theory assume Ox + n e - Red - both Ox and Red are soluble - reversible reaction

More information

239 Lecture #4 of 18

239 Lecture #4 of 18 Lecture #4 of 18 239 240 Q: What s in this set of lectures? A: Introduction, Review, and B&F Chapter 1, 15 & 4 main concepts: Section 1.1: Redox reactions Chapter 15: Electrochemical instrumentation Section

More information

Electroanalytical Chemistry

Electroanalytical Chemistry Electroanalytical Chemistry Electrochemical Cell All electrochemical measurements take place in an electrochemical cell. The cell consists of two electrodes immersed in electrically conductive solution.

More information

Lecture 3. Electrochemical Sensing.

Lecture 3. Electrochemical Sensing. Lecture 3 Potential-Controlled Techniques in Electrochemical Sensing. Enzymatic Electrodes. Cyclic voltammetry The most widely used technique for acquiring quantitative information about e/chemical reaction

More information

Proton-Coupled Electron Transfer Kinetics for the Hydrogen Evolution Reaction of Hangman Porphyrins

Proton-Coupled Electron Transfer Kinetics for the Hydrogen Evolution Reaction of Hangman Porphyrins Electronic Supplementary Information Proton-Coupled Electron Transfer Kinetics for the Hydrogen Evolution Reaction of Hangman Porphyrins Manolis M. Roubelakis, D. Kwabena Bediako, Dilek K. Dogutan and

More information

CV Sim Simulation of the simple redox reaction (E) I The effect of the scan rate

CV Sim Simulation of the simple redox reaction (E) I The effect of the scan rate 7 CV Sim Simulation of the simple redox reaction (E) I The effect of the scan rate I Introduction CV Sim is a powerful tool implemented in EC- Lab that allows the user to simulate current vs. potential

More information

POLAROGRAPHY/ VOLTAMMETRY

POLAROGRAPHY/ VOLTAMMETRY POLAROGRAPHY/ VOLTAMMETRY Introduction Instrumentation, common techniques Direct Current (DC) polarography Mercury electrodes (DME, SMDE, HMDE) Polarographic currents Tast polarography Ilkovič equation

More information

The Effect of the Interfacial Potential Distribution on the. Measurement of the Rate Constant for Electron Transfer between

The Effect of the Interfacial Potential Distribution on the. Measurement of the Rate Constant for Electron Transfer between The Effect of the Interfacial Potential Distribution on the Measurement of the Rate Constant for Electron Transfer between Electrodes and Redox Adsorbates Michael J. Honeychurch* Department of Chemistry,

More information

VII. Porous Media Lecture 36: Electrochemical Supercapacitors

VII. Porous Media Lecture 36: Electrochemical Supercapacitors VII. Porous Media Lecture 36: Electrochemical Supercapacitors MIT Student (and MZB) 1. Transmission Line Model for Linear Response Last time, we took the supercapacitor limit of a general porous medium

More information

Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces

Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces Supplemental Materials for Correlating Hydrogen Evolution Reaction Activity in Alkaline Electrolyte to Hydrogen Binding Energy on Monometallic Surfaces Wenchao Sheng, a MyatNoeZin Myint, a Jingguang G.

More information

DigiElch 8 from ElchSoft

DigiElch 8 from ElchSoft Redefining Electrochemical Measurement DigiElch 8 from ElchSoft Electrochemical Simulation Software DigiElch 8 from ElchSoft is a simulation program for electrochemical experiments. DigiElch 8 offers a

More information

Electronic Supplementary Information for: 3D-Printed Plastic Components Tailored for Electrolysis

Electronic Supplementary Information for: 3D-Printed Plastic Components Tailored for Electrolysis Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information for: 3D-Printed Plastic Components Tailored

More information

Monographs in Electrochemistry Series Editor: F. Scholz. Sibel A. Ozkan Jean-Michel Kauffmann Petr Zuman

Monographs in Electrochemistry Series Editor: F. Scholz. Sibel A. Ozkan Jean-Michel Kauffmann Petr Zuman Monographs in Electrochemistry Series Editor: F. Scholz Sibel A. Ozkan Jean-Michel Kauffmann Petr Zuman Electroanalysis in Biomedical and Pharmaceutical Sciences Voltammetry, Amperometry, Biosensors, Applications

More information

( ) = CV where C= CV ( ) is the capacitance which can be a function. Notes by MIT Student (and MZB)

( ) = CV where C= CV ( ) is the capacitance which can be a function. Notes by MIT Student (and MZB) 10.66 05/09/014 near Sweep Voltammetry near Sweep Voltammetry V ( t) dq Definition of Current: I = where Q is charge dt Definition of an ideal Capacitor: Q of voltage but not time Substitution: ( ) =±

More information

DigiElch 8 TM from ElchSoft

DigiElch 8 TM from ElchSoft Redefining Electrochemical Measurement DigiElch 8 TM from ElchSoft DigiElch 8 TM from ElchSoft is a simulation program for electrochemical experiments. DigiElch 8 offers a number of unique features compared

More information

Evaluation of Uncompensated Solution Resistance for Electrodes with Spherical-Cap Geometry

Evaluation of Uncompensated Solution Resistance for Electrodes with Spherical-Cap Geometry Anal. Chem. 2000, 72, 454-458 Evaluation of Uncompensated Solution Resistance for Electrodes with Spherical-Cap Geometry Sun Hee Hong, Charoenkwan Kraiya, Mark W. Lehmann, and Dennis H. Evans* Department

More information

POLAROGRAPHY/ VOLTAMMETRY

POLAROGRAPHY/ VOLTAMMETRY POLAROGRAPHY/ VOLTAMMETRY Introduction Instrumentation, common techniques Direct Current (DC) polarography Mercury electrodes (DME, SMDE, HMDE) Polarographic currents Tast polarography Ilkovič equation

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Fig. S1 XRD patterns of a-nifeo x

More information

Electrogravimetry. All Cu is plated out Nothing else plates out

Electrogravimetry. All Cu is plated out Nothing else plates out Electrogravimetry Apply potential to cause a soluble species to reduce or deposit on a solid electrode e.g., reduce Cu 2+ onto Pt cathode Cu 2+ (aq) + 2 e - Cu (metal on Pt) Change in weight of dried cathode

More information

Hydrodynamic Electrodes and Microelectrodes

Hydrodynamic Electrodes and Microelectrodes CHEM465/865, 2004-3, Lecture 20, 27 th Sep., 2004 Hydrodynamic Electrodes and Microelectrodes So far we have been considering processes at planar electrodes. We have focused on the interplay of diffusion

More information

529 Lecture #8 of 18

529 Lecture #8 of 18 Lecture #8 of 18 529 530 Q: What s in this set of lectures? A: Introduction, Review, and B&F Chapter 1, 15 & 4 main concepts: Section 1.1: Redox reactions Chapter 15: Electrochemical instrumentation Section

More information

ANALYSIS OF LEAD IN SEAWATER

ANALYSIS OF LEAD IN SEAWATER ANALYSIS OF LEAD IN SEAWATER BY DIFFERENTIAL PULSE POLAROGRAPHY Introduction Electrochemical methods of analysis can be used for the quantitative analysis of any electroactive species any species that

More information

CH 117 PS4 Solutions

CH 117 PS4 Solutions CH 117 PS4 Jim Maiolo March 7, 2009 Comments and points from KMP 2017 Problem 1 20 pts A) The first thing to do here is to understand the possible structures of 7-HCFPA. In the linear structure Fe-Pt-Fe-Pt-Fe-Pt-Fe

More information

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries

Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for. Flexible Zn-Air Batteries Nickel Sulfides Freestanding Holey Films as Air-Breathing Electrodes for Flexible Zn-Air Batteries Kyle Marcus, 1,# Kun Liang, 1,# Wenhan Niu, 1,# Yang Yang 1,* 1 NanoScience Technology Center, Department

More information

Supplemental Information (SI): Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of

Supplemental Information (SI): Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of Supplemental Information (SI: Cobalt-iron (oxyhydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism Michaela S. Burke, Matthew G. Kast,

More information

Nanoscale electrochemistry

Nanoscale electrochemistry Electrical characterisation of nanoscale samples & biochemical interfaces: methods and electronic instrumentation Nanoscale electrochemistry Giorgio Ferrari Dipartimento di elettronica, informazione e

More information

Electrochemical behaviour of alkaline copper complexes

Electrochemical behaviour of alkaline copper complexes Proc. Indian Acad. Sci. (Chem. Sci.), Vol. 112, No. 5, October 2000, pp. 543 550 Indian Academy of Sciences Electrochemical behaviour of alkaline copper complexes 1. Introduction C L ARAVINDA a, S M MAYANNA

More information

623 Lecture #9 of 18

623 Lecture #9 of 18 Lecture #9 of 18 623 624 Q: What s in this set of lectures? A: B&F Chapters 4 & 5 main concepts: Section 4.4.2: Section 5.1: Section 5.2: Section 5.3 & 5.9: Fick s Second Law of Diffusion Overview of step

More information

Supporting Information. In-Situ Detection of the Adsorbed Fe(II) Intermediate and the Mechanism of

Supporting Information. In-Situ Detection of the Adsorbed Fe(II) Intermediate and the Mechanism of Supporting Information In-Situ Detection of the Adsorbed Fe(II) Intermediate and the Mechanism of Magnetite Electrodeposition by Scanning Electrochemical Microscopy Mohsin A Bhat, #, Nikoloz Nioradze,

More information

Supporting Information. Electrochemistry and Electrogenerated Chemiluminescence of π-stacked Poly(fluorene

Supporting Information. Electrochemistry and Electrogenerated Chemiluminescence of π-stacked Poly(fluorene Supporting Information Electrochemistry and Electrogenerated Chemiluminescence of π-stacked Poly(fluorene methylene) Oligomers. Multiple, Interacting Electron Transfers Honglan Qi, Jinho Chang, Sameh H.

More information

Fixed surface concentration. t 1 < t 2 < t 3 C O. t 1 t 2 t 3. Concentration. Distance

Fixed surface concentration. t 1 < t 2 < t 3 C O. t 1 t 2 t 3. Concentration. Distance Fixed surface concentration O * oncentration t 1 < t 2 < t 3 t 1 t 2 t 3 Distance Fixed surface concentration onsider the t 1 < t 2 < t 3 * O concentration profile t 3 when t 1 t the sample 2 t 3 length

More information

was called potentiostatische Dreieckspannungsmethode

was called potentiostatische Dreieckspannungsmethode 81 2.1 Linear Sweep and Cyclic Voltammetry Bernd Speiser Institut f.. ur Organische Chemie, T.. ubingen, Germany 2.1.1 Introduction 2.1.1.1 Historical Background On the basis of polarography [1, 2], a

More information

Temperature effects on the potential window of water and acetonitrile and heterogeneous electron transfer rates of outer sphere redox probes

Temperature effects on the potential window of water and acetonitrile and heterogeneous electron transfer rates of outer sphere redox probes University of Iowa Iowa Research Online Theses and Dissertations Fall 2014 Temperature effects on the potential window of water and acetonitrile and heterogeneous electron transfer rates of outer sphere

More information

Capacity fade studies of Lithium Ion cells

Capacity fade studies of Lithium Ion cells Capacity fade studies of Lithium Ion cells by Branko N. Popov, P.Ramadass, Bala S. Haran, Ralph E. White Center for Electrochemical Engineering, Department of Chemical Engineering, University of South

More information

CHAPTER 1: INTRODUCTION. In this book, we will look at some of the fun analytical. things that electrochemists have done and are currently doing.

CHAPTER 1: INTRODUCTION. In this book, we will look at some of the fun analytical. things that electrochemists have done and are currently doing. CHAPTER 1: NTRODUCTON n this book, we will look at some of the fun analytical things that electrochemists have done and are currently doing. We start with inorganic electrochemistry which allows us to

More information

Chapter 28 Solutions

Chapter 28 Solutions Chapter 8 Solutions 8.1 (a) P ( V) R becomes 0.0 W (11.6 V) R so R 6.73 Ω (b) V IR so 11.6 V I (6.73 Ω) and I 1.7 A ε IR + Ir so 15.0 V 11.6 V + (1.7 A)r r 1.97 Ω Figure for Goal Solution Goal Solution

More information

206 Lecture #4 of 17

206 Lecture #4 of 17 Lecture #4 of 17 206 207 Q: What s in this set of lectures? A: B&F Chapters 1, 15 & 4 main concepts: Section 1.1: Redox reactions Chapter 15: Electrochemical instrumentation Section 1.2: Charging interfaces

More information

The Study of Multiple Electron Transfer Reactions by Cyclic Voltammetry

The Study of Multiple Electron Transfer Reactions by Cyclic Voltammetry The Study of ultiple Electron Transfer Reactions by Cyclic Voltammetry Adrian W. Bott, Ph.D. Bioanalytical Systems West Lafayette, IN 47906-1382 Phone: 765-463-4527 FAX: 765-497-1102 E-ail: awb@bioanalytical.com

More information

Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT) sample. (a, b) TEM images of CNT; (c) EDS of CNT.

Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT) sample. (a, b) TEM images of CNT; (c) EDS of CNT. 1 Supplementary Figure 1 Morphology and composition of the original carbon nanotube (CNT sample. (a, b TEM images of CNT; (c EDS of CNT. Cobalt is not detected in the original CNT sample (Note: The accidentally

More information

3. Potentials and thermodynamics

3. Potentials and thermodynamics Electrochemical Energy Engineering, 2012 3. Potentials and thermodynamics Learning subject 1. Electrochemical reaction 2. Thermodynamics and potential 3. Nernst equation Learning objective 1. To set up

More information

470 Lecture #7 of 18

470 Lecture #7 of 18 Lecture #7 of 18 470 471 Q: What s in this set of lectures? A: Introduction, Review, and B&F Chapter 1, 15 & 4 main concepts: Section 1.1: Redox reactions Chapter 15: Electrochemical instrumentation Section

More information

VI. EIS STUDIES LEAD NANOPOWDER

VI. EIS STUDIES LEAD NANOPOWDER VI. EIS STUDIES LEAD NANOPOWDER 74 26. EIS Studies of Pb nanospheres Impedance (valid for both DC and AC), a complex resistance occurs when current flows through a circuit (composed of various resistors,

More information

Cyclic Voltammetry - A Versatile Electrochemical Method Investigating Electron Transfer Processes

Cyclic Voltammetry - A Versatile Electrochemical Method Investigating Electron Transfer Processes World Journal of Chemical Education, 2015, Vol. 3, No. 5, 115-119 Available online at http://pubs.sciepub.com/wjce/3/5/2 Science and Education Publishing DOI:10.12691/wjce-3-5-2 Cyclic Voltammetry - A

More information

Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure

Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure Supporting Information Heterogeneous electron transfer at Au/SAM junctions in a room-temperature ionic liquid under pressure Tina D. Dolidze, Dimitri E. Khoshtariya,* Peter Illner and Rudi van Eldik* a)

More information

CHAPTER 2 Experimental Section

CHAPTER 2 Experimental Section CHAPTER 2 Experimental Section 2.1. Introduction This chapter deals with the method of preparation of electrodes, electrode pre-treatment procedures and electrochemical cell arrangements for the experimental

More information

surface c, c. Concentrations in bulk s b s b red red ox red

surface c, c. Concentrations in bulk s b s b red red ox red CHEM465/865, 26-3, Lecture 16, Oct. 13, 26 compact layer S c ox,red b c ox,red Note, that we explicitly distinguish concentrations at surface bulk b red c, c from those in s red b ox s ox c, c. Concentrations

More information

Influence of Self-Assembling Redox Mediators on Charge Transfer at Hydrophobic Electrodes

Influence of Self-Assembling Redox Mediators on Charge Transfer at Hydrophobic Electrodes Supporting Information Influence of Self-Assembling Redox Mediators on Charge Transfer at Hydrophobic Electrodes Timothy J. Smith, Chenxuan Wang, and Nicholas L. Abbott* Department of Chemical and Biological

More information

Standard Operating Procedure. edaq Potentionstat. Miramar College Potentiostat. -Report by Marianne Samonte, Dec 2009

Standard Operating Procedure. edaq Potentionstat. Miramar College Potentiostat. -Report by Marianne Samonte, Dec 2009 Standard Operating Procedure edaq Potentionstat Miramar College Potentiostat -Report by Marianne Samonte, Dec 2009 I. Instrument Description of Potentiostat and ecorder The components of the edaq ecorder

More information

Templated electrochemical fabrication of hollow. molybdenum sulfide micro and nanostructures. with catalytic properties for hydrogen production

Templated electrochemical fabrication of hollow. molybdenum sulfide micro and nanostructures. with catalytic properties for hydrogen production Supporting Information Templated electrochemical fabrication of hollow molybdenum sulfide micro and nanostructures with catalytic properties for hydrogen production Adriano Ambrosi, Martin Pumera* Division

More information

Basic Concepts of Electrochemistry

Basic Concepts of Electrochemistry ELECTROCHEMISTRY Electricity-driven Chemistry or Chemistry-driven Electricity Electricity: Chemistry (redox): charge flow (electrons, holes, ions) reduction = electron uptake oxidation = electron loss

More information

Supporting Information

Supporting Information Supporting Information Detection of CO2 in the Electrochemical Reduction of Carbon Dioxide in DMF by Scanning Electrochemical Microscopy Tianhan Kai, Min Zhou, Zhiyao Duan, Graeme A. Henkelman, Allen J.

More information

TUTORIAL 4. Proof. Computing the potential at the center and pole respectively,

TUTORIAL 4. Proof. Computing the potential at the center and pole respectively, TUTORIAL 4 Problem 1 An inverted hemispherical bowl of radius R carries a uniform surface charge density σ. Find the potential difference between the north pole and the center. Proof. Computing the potential

More information

CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY

CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY CHAPTER-5 CYCLIC VOLTAMETRIC STUDIES OF NOVEL INDOLE ANALOGUES PREPARED IN THE PRESENT STUDY Page No. 175-187 5.1 Introduction 5.2 Theoretical 5.3 Experimental 5.4 References 5. 1 Introduction Electrochemical

More information

Mobility and Reactivity of Oxygen Adspecies on Platinum Surface

Mobility and Reactivity of Oxygen Adspecies on Platinum Surface Mobility and Reactivity of Oxygen Adspecies on Platinum Surface Wei Wang, Jie Zhang, Fangfang Wang, Bing-Wei Mao, Dongping Zhan*, Zhong-Qun Tian State Key Laboratory of Physical Chemistry of Solid Surfaces,

More information

Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite as an Efficient Oxygen Reduction Reaction Catalyst and Supercapacitor Material

Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite as an Efficient Oxygen Reduction Reaction Catalyst and Supercapacitor Material Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite as an Efficient Oxygen Reduction Reaction Catalyst and Supercapacitor Material Shaikh Parwaiz, 1 Kousik Bhunia, 1 Ashok Kumar Das, 1 Mohammad Mansoob

More information

i i ne. (1) i The potential difference, which is always defined to be the potential of the electrode minus the potential of the electrolyte, is ln( a

i i ne. (1) i The potential difference, which is always defined to be the potential of the electrode minus the potential of the electrolyte, is ln( a We re going to calculate the open circuit voltage of two types of electrochemical system: polymer electrolyte membrane (PEM) fuel cells and lead-acid batteries. To do this, we re going to make use of two

More information

Enhances Photoelectrochemical Water Oxidation

Enhances Photoelectrochemical Water Oxidation -Supporting Information- Exposure of WO 3 Photoanodes to Ultraviolet Light Enhances Photoelectrochemical Water Oxidation Tengfei Li, Jingfu He, Bruno Peña, Curtis P. Berlinguette* Departments of Chemistry

More information

Introduction of Electrode Processes (Ch. 1)

Introduction of Electrode Processes (Ch. 1) Introduction of Electrode Processes (Ch. 1) Introduction Electrochemical cells & reactions: thermodynamics and potentials Nonfaradaic processes & electrode-solution interface Capacitance and charge of

More information

Supplemental Information for. A Sulfonate Functionalized Viologen Enabling Neutral Cation Exchange

Supplemental Information for. A Sulfonate Functionalized Viologen Enabling Neutral Cation Exchange Supplemental Information for A Sulfonate Functionalized Viologen Enabling Neutral Cation Exchange Aqueous Organic Redox Flow Batteries towards Renewable Energy Storage Camden DeBruler, Bo Hu, Jared Moss,

More information

Supporting information: Stability limits of tin-based electrocatalyst supports. Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany

Supporting information: Stability limits of tin-based electrocatalyst supports. Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany Supporting information: Stability limits of tin-based electrocatalyst supports Simon Geiger a,*, Olga Kasian a, Andrea M. Mingers a, Karl J. J. Mayrhofer a,b,c, Serhiy Cherevko a,b,* a Department of Interface

More information

Analysis of Hydroquinone/Quinone Redox Couple Through the Use of Cyclic Voltammetry

Analysis of Hydroquinone/Quinone Redox Couple Through the Use of Cyclic Voltammetry Analysis of Hydroquinone/Quinone Redox Couple Through the Use of Cyclic Voltammetry Adam Woodard and Katrin Henry Ta: Jie Ding Abstract: The hydroquinone/quinone redox couple was studied under various

More information

Study of Electrode Mechanism by Cyclic Voltammetry

Study of Electrode Mechanism by Cyclic Voltammetry Study of Electrode Mechanism by Cyclic Voltammetry Please note that this experiment is NT in the P. Chem lab in Mergenthaler. Students doing this experiment should go directly to Dunning Hall 14. Purpose

More information

Amperometric biosensors

Amperometric biosensors Electrochemical biosensors II: Amperometric biosensors Lecture 2 Amperometric Sensors: Problem formulation amperometric techniques have some selectivity as every RedOx reaction has it s own characteristic

More information

19 Experimental techniques for electrode kinetics non-stationary methods

19 Experimental techniques for electrode kinetics non-stationary methods 19 Experimental techniques for electrode kinetics non-stationary methods 19.1 Overview In electrochemical kinetics, the electrode potential is the most important variable that is controlled by the experimentalist,

More information

Simulation of Neurotransmitter Sensing by Cyclic Voltammetry under Mechanical Motion of a Neural Electrode

Simulation of Neurotransmitter Sensing by Cyclic Voltammetry under Mechanical Motion of a Neural Electrode Simulation of Neurotransmitter Sensing by Cyclic Voltammetry under Mechanical Motion of a Neural Electrode Seonhye Han 1, Michael Polanco 2, Hargsoon Yoon 1, Sebastian Bawab 2 1 Neural Engineering and

More information

Supplementary Figure 1. Characterization of immobilized cobalt protoporphyrin electrode. The cyclic voltammogram of: (a) pyrolytic graphite

Supplementary Figure 1. Characterization of immobilized cobalt protoporphyrin electrode. The cyclic voltammogram of: (a) pyrolytic graphite Supplementary Figure 1. Characterization of immobilized cobalt protoporphyrin electrode. The cyclic voltammogram of: (a) pyrolytic graphite electrode; (b) pyrolytic graphite electrode with 100 µl 0.5 mm

More information

Enhanced performance of a Bi-modified graphite felt as the positive. Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R.

Enhanced performance of a Bi-modified graphite felt as the positive. Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery Z. González, A. Sánchez, C. Blanco, M. Granda, R. Menéndez, R. Santamaría Instituto Nacional

More information

CHAPTER 4 CHEMICAL MODIFICATION OF ACTIVATED CARBON CLOTH FOR POTENTIAL USE AS ELECTRODES IN CAPACITIVE DEIONIZATION PROCESS

CHAPTER 4 CHEMICAL MODIFICATION OF ACTIVATED CARBON CLOTH FOR POTENTIAL USE AS ELECTRODES IN CAPACITIVE DEIONIZATION PROCESS CHAPTER 4 CHEMICAL MODIFICATION OF ACTIVATED CARBON CLOTH FOR POTENTIAL USE AS ELECTRODES IN CAPACITIVE DEIONIZATION PROCESS 4.1 INTRODUCTION Capacitive deionization (CDI) is one of the promising energy

More information

This is a preprint manuscript. Please, download the final and much nicer version at:

This is a preprint manuscript. Please, download the final and much nicer version at: This is a preprint manuscript. Please, download the final and much nicer version at: https://doi.org/10.1021/acs.jchemed.5b00755 Electrochemical study and determination of electroactive species with screen-printed

More information

ELECTROCHEMICAL AND SPECTRAL STUDIES OF

ELECTROCHEMICAL AND SPECTRAL STUDIES OF ELECTROCHEMICAL AND SPECTRAL STUDIES OF [ Cu(acac)(phen)(H2O)] ClO 4 C. Mihailciuc, E. Volanschi, M. Uriasu abstract: The complex [ Cu(acac)(phen)(H2O)] was investigated by using both cyclic and differential

More information

Experiment 1C. The Rotating Ring-Disk Electrode

Experiment 1C. The Rotating Ring-Disk Electrode Experiment 1C The Rotating Ring-Disk Electrode Experiment Overview When one sets the potential of an electrode away from the equilibrium potential, a current flows. The amount a potential deviates away

More information

Introduction to EIS (Electrochemical Impedance Spectroscopy) with EC- Lab /EC-Lab Express

Introduction to EIS (Electrochemical Impedance Spectroscopy) with EC- Lab /EC-Lab Express Introduction to EIS (Electrochemical Impedance Spectroscopy) with EC- Lab /EC-Lab Express N. Murer, J.-P. Diard 1 /23 OBJECTIVES Understand what is performed during an impedance measurement. Understand

More information

Supporting Information. One-Pot Synthesis of Reduced Graphene

Supporting Information. One-Pot Synthesis of Reduced Graphene Supporting Information One-Pot Synthesis of Reduced Graphene Oxide/Metal (oxide) Composites Xu Wu, Yuqian Xing, David Pierce, Julia Xiaojun Zhao* a Department of Chemistry, University of North Dakota,

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1. a) SEM image of Cu foil after electropolishing (5 µm scale bar). SEM images of Cu foils treated with H 2 plasma at 100W for 2 minutes b) as prepared and

More information

Staircase Potentio Electrochemical Impedance Spectroscopy and automatic successive ZFit analysis

Staircase Potentio Electrochemical Impedance Spectroscopy and automatic successive ZFit analysis Application note #18 Staircase Potentio Electrochemical Impedance Spectroscopy and automatic successive ZFit analysis I- Introduction It is sometimes useful to automate measurements. With EC-Lab and EC-Lab

More information