Final Exam Solutions, MAC 3474 Calculus 3 Honors, Fall 2018

Size: px
Start display at page:

Download "Final Exam Solutions, MAC 3474 Calculus 3 Honors, Fall 2018"

Transcription

1 Finl xm olutions, MA 3474 lculus 3 Honors, Fll 28. Find the re of the prt of the sddle surfce z xy/ tht lies inside the cylinder x 2 + y 2 2 in the first positive) octnt; is positive constnt. olution: The surfce is the grph z gx, y) xy/ where x, y) nd is the prt of the disk x 2 + y 2 2 tht lies in the first qudrnt x, y. Therefore the surfce re Jcobin is d JdA + g x) 2 + g y) 2 da + y/) 2 + x/) 2 da The surfce integrl is then trnsformed to the double integrl over nd the ltter is evluted in polr coordintes: π2 2 d JdA + u2 udu π2 4 dθ + r/) 2 rdr π 2 ) z dz 2 2 where the substitutions u r/ [, ], dr du, nd z + u 2 [, 2], dz 2udu, hve been mde. 2. Find the center of mss of the prt of the sphericl shell 2 x 2 + y 2 + z 2 b 2 tht lies bove the xy plne if the mss density t point is proportionl to the distnce from the point to the z xis. olution: ince the shpe of the shell is invrint under rottions bout the z xis, while the mss density depends only on the distnce from the z xis nd, hence, is lso invrint under such rottions, the center of mss must be on the z xis, x c y c. The mss density is σ k x 2 + y 2 for some constnt k. Therefore, using sphericl coordintes to evlute the totl mss M nd the moment M z, σ kρsinφ) nd dv ρ 2 sinφ)dv, M π σ dv k sin 2 φ)dφ π2 k 8 b4 4 ) M z zσ dv k z c 5 b5 5 ) M z M 6 5π b b ρ 3 dρ πk π b sin 2 φ)cosφ)dφ b 5 5 b 4 4 b ρsinφ) ρ 2 sinφ)dρdφdθ 6 cos2φ))dφ 4 b4 4 ) ρcosφ)ρsinφ) ρ 2 sinφ)dρdφdθ ρ 4 dρ 3 sin3 φ) π/2 5 b5 5 ) 3. vlute the line integrl of the vector field F zx,yz, z 2 long the portion of the helix rt) 2sin t, 2cos t, t tht lies inside the ellipsoid x 2 + y 2 + 2z 2 6.

2 olution: The vlues of the prmeter t corresponding to the points of intersection of the helix with the ellipsoid determined by the substitution of the prmetric equtions into the ellipsoid eqution: 4sin 2 t) + 4cos 2 t) + 2t t 2 6 t ± o, t for the prt of the helix tht lies inside the ellipsoid. Then the substitution of the prmetric eqution into F gives the vector field Ft) on the helix nd the line integrl is reduced to n ordinry integrl Ft) r t)dt 2t sint), 2t cost), t 2 2cost), 2sint), dt 4t cost)sint) 4t cost)sint) + t 2 ) dt t 2 dt etermine whether the vector field F 2x yz, 4y xz, 6z xy is conservtive nd evlute its line integrl long the contour tht consists of the four stright line segments: A,, ) B, 2, 3),, ), 2, 3),, ). olution: The components of the vector re polynomil nd, hence, the domin of F is the whole spce which is simply connected. The curl of F vnishes: ê ê 2 ê 3 F det x y z x x), y y)), z z) 2x yz 4y xz 6z xy The vector field is conservtive nd there exists fx, y, z) such tht F grd f. By the fundmentl theorem for line integrls f) FA) f,, ) f,, ) The problem is reduced to finding the potentil f. Integrting the reltion f x F with respect to x, fx, y, z) x 2 xyz + gy, z) for some gy, z). The substitution of f into the reltion f y F 2 yields g y 4y from which it follows tht gy, z) 2y2 + hz) for some hz). Finlly, the substitution of f into f z F 3 yields the eqution for h: h 6z or hz) 3z 2 + so tht fx, y, z) x 2 + 2y 2 + 3z 2 xyz +. Therefore f,, ) f,, ) 5. Alterntively: Owing to pth-independence of the line integrl of conservtive vector field, ny convenient pth from A to cn be chosen. For exmple, stright line: x t, y t, z t, t [, ]. The line integrl is then evluted just like in Problem 3: the function Ft) r t) 2t 3t 2 is integrted over [, ] the integrl is equl to 5). 5. Find the flux of the vector field F zx, zy, xy cross the prt of the sddle surfce z xy tht lies between two cylinders x 2 + y 2 nd x 2 + y 2 4. The surfce of integrtion is oriented upwrd s viewed from the tip of the z xis. olution: The surfce is the grph z gx, y) xy where x, y) nd is the nnulus x 2 + y 2 2 with rdii nd 2. An upwrd norml is n g x, g y, y, x,. The surfce intgerl for the flux is converted into double integrl by the substitution d n da

3 nd ˆn n/ n ) nd the ltter is evluted in polr coordintes: F ˆnd 2 F n da zx, zy, xy y, x, da zgx,y) zxy π 2x 2 y 2 + xy)da 2 x 2 y 2 da 2 π sin 2 2θ)dθ 6 26 ) 2 8 π sin 2 θ)cos 2 θ)dθ r 5 dr cos4θ))dθ 2π 4 Note tht the integrl of xy over vnishes by symmetry the first equlity in the second eqution line bove). 6. Use the contour trnsformtion in the line integrl bsed on the Green s theorem to evlute the line integrl of the vector field F e x siny) 2x, e x cosy) 2 over the upper prt of the circle x 2 + y 2 2x y ) oriented from the origin to the point 2, ). Hint: Apply Green s theorem to the line integrl of F long the boundry of the hlf-disk x 2 + y 2 2x, y. olution: Let be the contour of integrtion in question nd 2 be the intervl x 2, y, oriented from, ) to, 2). Then the union 2 ) is the positively counterclockwise)oriented boundry of the hlf-disk described in the hint. By Green s theorem F dx + F 2 dy + 2 ) F2 F dx + F 2 dy x F ) da y e x cosy) e x cosy))da becuse is the hlf-disk of rdius centered t, )). Therefore F dx + F 2 dy F dx + F 2 dy F dx + F 2 dy 2 Note tht dy nd y on 2. F x, )dx 2x)dx 4 7. Use Green s theorem to find the re of n stroid bounded by the curve x cos 3 t), y b sin 3 t), t 2π. olution: One hs A) xdy 3 π 6 b 3 π 6 b 3π 8 b π π xt)dyt) 3b cos 4 t)sin 2 t)dt 3 π 4 b cos 2 t)sin 2 2t)dt ) ) + cos2t) cos4t) dt cos4t) + cos2t) 2[ ] ) cos2t) + cos6t) dt where the double ngle formuls were used sin2t) 2cost)sint), sin 2 u) cos2u)), nd 2 cos 2 u) + cos2u)), nd the product formul cosα)cosβ) [cosα β) + cosα + β)] to 2 2 evlute the integrl.

4 8. Use tokes theorem to evlute the line integrl of the vector field F y, x z, y long the closed contour tht is the intersection of the cylinder x 2 + y 2 nd the prboloid z x ) 2 + y 2 ; the contour is oriented clockwise s viewed from the tip of the z xis. olution: hoose the grph z gx, y) x ) 2 + y 2, where x, y) nd is the disk x 2 + y 2, to be the surfce whose boundry is the contour of integrtion. The induced orienttion of is downwrd in order for to hold nd norml vector is n g x, g y, 2x ), 2y,. Next Then by tokes theorem, ê ê 2 ê 3 B curlf det x y z 2,, 2 y x z y B ˆnd B n da 2,, 2 2x ), 2y, da zgx,y) 4x 6)dA 6 da 6A) 6π Note tht the integrl of x over vnishes by symmetry. Alterntively: One cn show tht lies in plne whose prt encircled by cn be chosen s in the tokes theorem. Indeed, the substitution of y 2 x 2 into z x ) 2 + y 2 yields z x 2 2x++ x 2 ) 2 2x which implies tht the coordintes of the points of intersection i.e., points of ) lie in the plne z 2 2x so tht the grph z gx, y) 2 2x, x, y), cn lso be used. 9. Use the Guss-Ostrogrdsky divergence) theorem to evlute the flux of the vector field F 3xy 2 z + e zy, 3yx 2 z, z 3 + cosxy) cross the closed surfce oriented outwrd tht is the boundry of the portion of the bll x 2 + y 2 + z 2 R 2 in the first octnt x, y, z ). Wht kind of source does the field hve inside sink or fucet)? olution: By the divergence theorem the flux surfce integrl cn be reduced to triple integrl over the solid enclosed by the surfce of integrtion, which is evluted in sphericl coordintes: F ˆn d 3 divfdv R 3 π 2 6 R6 π 4 R6 4 sin4 φ) π/2 π 6 R6 + π R5 > 3x 2 z + 3y 2 z + 3z 2 )dv ρ 3 sin 2 φ)cosφ) + ρ 2 cos 2 φ) ) ρ 2 sinφ)dρdφdθ sin 3 φ)cosφ)dφ + 3 π 2 5 R5 cos 2 φ)sinφ)dφ 3π R5 3 cos3 φ) π/2 ince the outwrd net flux is positive, the vector field F hs net fucet source in the solid enclosed by.

5 xtr credit. Let be simple, smooth, closed curve in the plne n r d, where r x, y, z, nd let A be the re of the prt of the plne encircled by. If is oriented counterclockwise s viewed from the tip of the norml vector n, find the line integrl of the vector field F n r long. xpress your nswer in terms of the given quntities A, d, nd n. olution: Using the bc cb rule for double cross product, the curl of F is computed: B curlf n r) n r) n )r ndivr n ) x, y, z 3n n 2n Note n )x n nd similrly for the other components of r. By tokes theorem B ˆnd 2n ˆnd 2 n d 2 n A becuse ˆn n/ b the unit norml vector). Remrk. The curl of F cn lso be clculted by direct evlution of the cross products using the determinnts): F n 2 z n 3 y, n 3 x n z, n y n 2 x so tht ê ê 2 ê 3 B curlf det x y z 2n, 2n 2, 2n 3 2n n 2 z n 3 y n 3 x n z n y n 2 x

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

MATH 13 FINAL STUDY GUIDE, WINTER 2012

MATH 13 FINAL STUDY GUIDE, WINTER 2012 MATH 13 FINAL TUY GUI, WINTR 2012 This is ment to be quick reference guide for the topics you might wnt to know for the finl. It probbly isn t comprehensive, but should cover most of wht we studied in

More information

(b) Let S 1 : f(x, y, z) = (x a) 2 + (y b) 2 + (z c) 2 = 1, this is a level set in 3D, hence

(b) Let S 1 : f(x, y, z) = (x a) 2 + (y b) 2 + (z c) 2 = 1, this is a level set in 3D, hence Problem ( points) Find the vector eqution of the line tht joins points on the two lines L : r ( + t) i t j ( + t) k L : r t i + (t ) j ( + t) k nd is perpendiculr to both those lines. Find the set of ll

More information

df dt f () b f () a dt

df dt f () b f () a dt Vector lculus 16.7 tokes Theorem Nme: toke's Theorem is higher dimensionl nlogue to Green's Theorem nd the Fundmentl Theorem of clculus. Why, you sk? Well, let us revisit these theorems. Fundmentl Theorem

More information

University of. d Class. 3 st Lecture. 2 nd

University of. d Class. 3 st Lecture. 2 nd University of Technology Electromechnicl Deprtment Energy Brnch Advnced Mthemtics Line Integrl nd d lss st Lecture nd Advnce Mthemtic Line Integrl lss Electromechnicl Engineer y Dr.Eng.Muhmmd.A.R.Yss Dr.Eng

More information

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution Multiple Integrls eview of Single Integrls eding Trim 7.1 eview Appliction of Integrls: Are 7. eview Appliction of Integrls: Volumes 7.3 eview Appliction of Integrls: Lengths of Curves Assignment web pge

More information

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution Multiple Integrls eview of Single Integrls eding Trim 7.1 eview Appliction of Integrls: Are 7. eview Appliction of Integrls: olumes 7.3 eview Appliction of Integrls: Lengths of Curves Assignment web pge

More information

MATH Summary of Chapter 13

MATH Summary of Chapter 13 MATH 21-259 ummry of hpter 13 1. Vector Fields re vector functions of two or three vribles. Typiclly, vector field is denoted by F(x, y, z) = P (x, y, z)i+q(x, y, z)j+r(x, y, z)k where P, Q, R re clled

More information

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016 Physics 333, Fll 16 Problem Set 7 due Oct 14, 16 Reding: Griffiths 4.1 through 4.4.1 1. Electric dipole An electric dipole with p = p ẑ is locted t the origin nd is sitting in n otherwise uniform electric

More information

APPLICATIONS OF THE DEFINITE INTEGRAL

APPLICATIONS OF THE DEFINITE INTEGRAL APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its cross-section in plne pssing through

More information

Note 16. Stokes theorem Differential Geometry, 2005

Note 16. Stokes theorem Differential Geometry, 2005 Note 16. Stokes theorem ifferentil Geometry, 2005 Stokes theorem is the centrl result in the theory of integrtion on mnifolds. It gives the reltion between exterior differentition (see Note 14) nd integrtion

More information

MATH 52 FINAL EXAM SOLUTIONS

MATH 52 FINAL EXAM SOLUTIONS MAH 5 FINAL EXAM OLUION. (a) ketch the region R of integration in the following double integral. x xe y5 dy dx R = {(x, y) x, x y }. (b) Express the region R as an x-simple region. R = {(x, y) y, x y }

More information

(6.5) Length and area in polar coordinates

(6.5) Length and area in polar coordinates 86 Chpter 6 SLICING TECHNIQUES FURTHER APPLICATIONS Totl mss 6 x ρ(x)dx + x 6 x dx + 9 kg dx + 6 x dx oment bout origin 6 xρ(x)dx x x dx + x + x + ln x ( ) + ln 6 kg m x dx + 6 6 x x dx Centre of mss +

More information

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. MTH 34 Review for Exam 4 ections 16.1-16.8. 5 minutes. 5 to 1 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. Review for Exam 4 (16.1) Line

More information

Final Review, Math 1860 Thomas Calculus Early Transcendentals, 12 ed

Final Review, Math 1860 Thomas Calculus Early Transcendentals, 12 ed Finl Review, Mth 860 Thoms Clculus Erly Trnscendentls, 2 ed 6. Applictions of Integrtion: 5.6 (Review Section 5.6) Are between curves y = f(x) nd y = g(x), x b is f(x) g(x) dx nd similrly for x = f(y)

More information

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero

More information

Conducting Ellipsoid and Circular Disk

Conducting Ellipsoid and Circular Disk 1 Problem Conducting Ellipsoid nd Circulr Disk Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 (September 1, 00) Show tht the surfce chrge density σ on conducting ellipsoid,

More information

10 Vector Integral Calculus

10 Vector Integral Calculus Vector Integrl lculus Vector integrl clculus extends integrls s known from clculus to integrls over curves ("line integrls"), surfces ("surfce integrls") nd solids ("volume integrls"). These integrls hve

More information

FINAL REVIEW. 1. Vector Fields, Work, and Flux Suggested Problems:

FINAL REVIEW. 1. Vector Fields, Work, and Flux Suggested Problems: FINAL EVIEW 1. Vector Fields, Work, nd Flux uggested Problems: { 14.1 7, 13, 16 14.2 17, 25, 27, 29, 36, 45 We dene vector eld F (x, y) to be vector vlued function tht mps ech point in the plne to two

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

MATHS 267 Answers to Stokes Practice Dr. Jones

MATHS 267 Answers to Stokes Practice Dr. Jones MATH 267 Answers to tokes Practice Dr. Jones 1. Calculate the flux F d where is the hemisphere x2 + y 2 + z 2 1, z > and F (xz + e y2, yz, z 2 + 1). Note: the surface is open (doesn t include any of the

More information

Mathematics. Area under Curve.

Mathematics. Area under Curve. Mthemtics Are under Curve www.testprepkrt.com Tle of Content 1. Introduction.. Procedure of Curve Sketching. 3. Sketching of Some common Curves. 4. Are of Bounded Regions. 5. Sign convention for finding

More information

MATH 253 WORKSHEET 24 MORE INTEGRATION IN POLAR COORDINATES. r dr = = 4 = Here we used: (1) The half-angle formula cos 2 θ = 1 2

MATH 253 WORKSHEET 24 MORE INTEGRATION IN POLAR COORDINATES. r dr = = 4 = Here we used: (1) The half-angle formula cos 2 θ = 1 2 MATH 53 WORKSHEET MORE INTEGRATION IN POLAR COORDINATES ) Find the volume of the solid lying bove the xy-plne, below the prboloid x + y nd inside the cylinder x ) + y. ) We found lst time the set of points

More information

Total Score Maximum

Total Score Maximum Lst Nme: Mth 8: Honours Clculus II Dr. J. Bowmn 9: : April 5, 7 Finl Em First Nme: Student ID: Question 4 5 6 7 Totl Score Mimum 6 4 8 9 4 No clcultors or formul sheets. Check tht you hve 6 pges.. Find

More information

ragsdale (zdr82) HW2 ditmire (58335) 1

ragsdale (zdr82) HW2 ditmire (58335) 1 rgsdle (zdr82) HW2 ditmire (58335) This print-out should hve 22 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. 00 0.0 points A chrge of 8. µc

More information

Review for final

Review for final eview for 263.02 finl 14.1 Functions of severl vribles. Find domin nd rnge. Evlute. ketch grph. rw nd interpret level curves. (Functions of three vribles hve level surfces.) Mtch surfces with level curves.

More information

Geometric and Mechanical Applications of Integrals

Geometric and Mechanical Applications of Integrals 5 Geometric nd Mechnicl Applictions of Integrls 5.1 Computing Are 5.1.1 Using Crtesin Coordintes Suppose curve is given by n eqution y = f(x), x b, where f : [, b] R is continuous function such tht f(x)

More information

Math 100 Review Sheet

Math 100 Review Sheet Mth 100 Review Sheet Joseph H. Silvermn December 2010 This outline of Mth 100 is summry of the mteril covered in the course. It is designed to be study id, but it is only n outline nd should be used s

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

Section 17.2 Line Integrals

Section 17.2 Line Integrals Section 7. Line Integrls Integrting Vector Fields nd Functions long urve In this section we consider the problem of integrting functions, both sclr nd vector (vector fields) long curve in the plne. We

More information

(uv) = u v + uv, (1) u vdx + b [uv] b a = u vdx + u v dx. (8) u vds =

(uv) = u v + uv, (1) u vdx + b [uv] b a = u vdx + u v dx. (8) u vds = Integrtion by prts Integrting the both sides of yields (uv) u v + uv, (1) or b (uv) dx b u vdx + b uv dx, (2) or b [uv] b u vdx + Eqution (4) is the 1-D formul for integrtion by prts. Eqution (4) cn be

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

Math 233. Practice Problems Chapter 15. i j k

Math 233. Practice Problems Chapter 15. i j k Math 233. Practice Problems hapter 15 1. ompute the curl and divergence of the vector field F given by F (4 cos(x 2 ) 2y)i + (4 sin(y 2 ) + 6x)j + (6x 2 y 6x + 4e 3z )k olution: The curl of F is computed

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 7.9, 8.1 Fall 2016 HOMEWORK SOLUTIONS MATH 9 Sections 7.9, 8. Fll 6 Problem 7.9.33 Show tht for ny constnts M,, nd, the function yt) = )) t ) M + tnh stisfies the logistic eqution: y SOLUTION. Let Then nd Finlly, y = y M

More information

Week 10: Line Integrals

Week 10: Line Integrals Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 6 (First moments of an arc) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 6 (First moments of an arc) A.J.Hobson JUST THE MATHS UNIT NUMBER 13.6 INTEGRATION APPLICATIONS 6 (First moments of n rc) by A.J.Hobson 13.6.1 Introduction 13.6. First moment of n rc bout the y-xis 13.6.3 First moment of n rc bout the x-xis

More information

MATH 260 Final Exam April 30, 2013

MATH 260 Final Exam April 30, 2013 MATH 60 Finl Exm April 30, 03 Let Mpn,Rq e the spce of n-y-n mtrices with rel entries () We know tht (with the opertions of mtrix ddition nd sclr multipliction), M pn, Rq is vector spce Wht is the dimension

More information

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b CHAPTER 5. INTEGRALS 61 where nd x = b n x i = 1 (x i 1 + x i ) = midpoint of [x i 1, x i ]. Problem 168 (Exercise 1, pge 377). Use the Midpoint Rule with the n = 4 to pproximte 5 1 x e x dx. Some quick

More information

Polynomials and Division Theory

Polynomials and Division Theory Higher Checklist (Unit ) Higher Checklist (Unit ) Polynomils nd Division Theory Skill Achieved? Know tht polynomil (expression) is of the form: n x + n x n + n x n + + n x + x + 0 where the i R re the

More information

r = cos θ + 1. dt ) dt. (1)

r = cos θ + 1. dt ) dt. (1) MTHE 7 Proble Set 5 Solutions (A Crdioid). Let C be the closed curve in R whose polr coordintes (r, θ) stisfy () Sketch the curve C. r = cos θ +. (b) Find pretriztion t (r(t), θ(t)), t [, b], of C in polr

More information

Collection of formulas Matematikk 3 (IRF30017)

Collection of formulas Matematikk 3 (IRF30017) ollection of formuls Mtemtikk 3 (IF30017) onic sections onic sections on stndrd form with foci on the x-xis: Ellipse: Hyperbol: Prbol: x 2 2 + y2 b 2 = 1, > b, foci: (±c, 0), c = 2 b 2. x 2 2 y2 b 2 =

More information

Jim Lambers MAT 280 Spring Semester Lecture 17 Notes. These notes correspond to Section 13.2 in Stewart and Section 7.2 in Marsden and Tromba.

Jim Lambers MAT 280 Spring Semester Lecture 17 Notes. These notes correspond to Section 13.2 in Stewart and Section 7.2 in Marsden and Tromba. Jim Lmbers MAT 28 Spring Semester 29- Lecture 7 Notes These notes correspond to Section 3.2 in Stewrt nd Section 7.2 in Mrsden nd Tromb. Line Integrls Recll from single-vrible clclus tht if constnt force

More information

Final Exam - Review MATH Spring 2017

Final Exam - Review MATH Spring 2017 Finl Exm - Review MATH 5 - Spring 7 Chpter, 3, nd Sections 5.-5.5, 5.7 Finl Exm: Tuesdy 5/9, :3-7:pm The following is list of importnt concepts from the sections which were not covered by Midterm Exm or.

More information

Math 113 Exam 1-Review

Math 113 Exam 1-Review Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between

More information

5.2 Volumes: Disks and Washers

5.2 Volumes: Disks and Washers 4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of cross-section or slice. In this section, we restrict

More information

Practice final exam solutions

Practice final exam solutions University of Pennsylvni Deprtment of Mthemtics Mth 26 Honors Clculus II Spring Semester 29 Prof. Grssi, T.A. Asher Auel Prctice finl exm solutions 1. Let F : 2 2 be defined by F (x, y (x + y, x y. If

More information

Math 6A Notes. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30pm Last updated 6/1/2016

Math 6A Notes. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30pm Last updated 6/1/2016 Prmetric Equtions Mth 6A Notes Written by Victori Kl vtkl@mth.ucsb.edu H 6432u Office Hours: R 12:30 1:30pm Lst updted 6/1/2016 If x = f(t), y = g(t), we sy tht x nd y re prmetric equtions of the prmeter

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral

f(x) dx, If one of these two conditions is not met, we call the integral improper. Our usual definition for the value for the definite integral Improper Integrls Every time tht we hve evluted definite integrl such s f(x) dx, we hve mde two implicit ssumptions bout the integrl:. The intervl [, b] is finite, nd. f(x) is continuous on [, b]. If one

More information

l.6 l.6 l.6 l.6 l.6 2' L ds = a4 sin3 4 sin2 0 dm do = sin34 sin2 0 dmde. $ sin2 8; 6. Vector Integral Calculus in Space

l.6 l.6 l.6 l.6 l.6 2' L ds = a4 sin3 4 sin2 0 dm do = sin34 sin2 0 dmde. $ sin2 8; 6. Vector Integral Calculus in Space 6. Vector Integrl Clculus in Spce 6A. Vector Fields in Spce 6A-1 ) the vectors re ll unit vectors, pointing rdilly outwrd. b) the vector t P hs its hed on the y-xis, nd is perpendiculr to it 6A-4 A vector

More information

So the `chnge of vribles formul' for sphericl coordintes reds: W f(x; y; z) dv = R f(ρ cos sin ffi; ρ sin sin ffi; ρ cos ffi) ρ 2 sin ffi dρ d dffi So

So the `chnge of vribles formul' for sphericl coordintes reds: W f(x; y; z) dv = R f(ρ cos sin ffi; ρ sin sin ffi; ρ cos ffi) ρ 2 sin ffi dρ d dffi So Mth 28 Topics for third exm Techniclly, everything covered on the first two exms, plus hpter 15: Multiple Integrls x4: Double integrls with polr coordintes Polr coordintes describe point in the plne by

More information

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics Semester 1, 2002/2003 MA1505 Math I Suggested Solutions to T. 3

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics Semester 1, 2002/2003 MA1505 Math I Suggested Solutions to T. 3 NATIONAL UNIVERSITY OF SINGAPORE Deprtment of Mthemtics Semester, /3 MA55 Mth I Suggested Solutions to T. 3. Using the substitution method, or otherwise, find the following integrls. Solution. ) b) x sin(x

More information

Line Integrals. Chapter Definition

Line Integrals. Chapter Definition hpter 2 Line Integrls 2.1 Definition When we re integrting function of one vrible, we integrte long n intervl on one of the xes. We now generlize this ide by integrting long ny curve in the xy-plne. It

More information

1 Line Integrals in Plane.

1 Line Integrals in Plane. MA213 thye Brief Notes on hpter 16. 1 Line Integrls in Plne. 1.1 Introduction. 1.1.1 urves. A piece of smooth curve is ssumed to be given by vector vlued position function P (t) (or r(t) ) s the prmeter

More information

50. Use symmetry to evaluate xx D is the region bounded by the square with vertices 5, Prove Property 11. y y CAS

50. Use symmetry to evaluate xx D is the region bounded by the square with vertices 5, Prove Property 11. y y CAS 68 CHAPTE MULTIPLE INTEGALS 46. e da, 49. Evlute tn 3 4 da, where,. [Hint: Eploit the fct tht is the disk with center the origin nd rdius is smmetric with respect to both es.] 5. Use smmetr to evlute 3

More information

FINALTERM EXAMINATION 2011 Calculus &. Analytical Geometry-I

FINALTERM EXAMINATION 2011 Calculus &. Analytical Geometry-I FINALTERM EXAMINATION 011 Clculus &. Anlyticl Geometry-I Question No: 1 { Mrks: 1 ) - Plese choose one If f is twice differentible function t sttionry point x 0 x 0 nd f ''(x 0 ) > 0 then f hs reltive...

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

7a3 2. (c) πa 3 (d) πa 3 (e) πa3 1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

More information

Definite integral. Mathematics FRDIS MENDELU

Definite integral. Mathematics FRDIS MENDELU Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová Brno 1 Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function defined on [, b]. Wht is the re of the

More information

Jim Lambers MAT 280 Spring Semester Lecture 26 and 27 Notes

Jim Lambers MAT 280 Spring Semester Lecture 26 and 27 Notes Jim Lmbers MAT 280 pring emester 2009-10 Lecture 26 nd 27 Notes These notes correspond to ection 8.6 in Mrsden nd Tromb. ifferentil Forms To dte, we hve lerned the following theorems concerning the evlution

More information

I. INTEGRAL THEOREMS. A. Introduction

I. INTEGRAL THEOREMS. A. Introduction 1 U Deprtment of Physics 301A Mechnics - I. INTEGRAL THEOREM A. Introduction The integrl theorems of mthemticl physics ll hve their origin in the ordinry fundmentl theorem of clculus, i.e. xb x df dx dx

More information

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30 Definite integrl Mthemtics FRDIS MENDELU Simon Fišnrová (Mendel University) Definite integrl MENDELU / Motivtion - re under curve Suppose, for simplicity, tht y = f(x) is nonnegtive nd continuous function

More information

Sample Problems for the Final of Math 121, Fall, 2005

Sample Problems for the Final of Math 121, Fall, 2005 Smple Problems for the Finl of Mth, Fll, 5 The following is collection of vrious types of smple problems covering sections.8,.,.5, nd.8 6.5 of the text which constitute only prt of the common Mth Finl.

More information

Contents. 4.1 Line Integrals. Calculus III (part 4): Vector Calculus (by Evan Dummit, 2018, v. 3.00) 4 Vector Calculus

Contents. 4.1 Line Integrals. Calculus III (part 4): Vector Calculus (by Evan Dummit, 2018, v. 3.00) 4 Vector Calculus lculus III prt 4): Vector lculus by Evn Dummit, 8, v. 3.) ontents 4 Vector lculus 4. Line Integrls................................................. 4. Surfces nd Surfce Integrls........................................

More information

Math 32B Discussion Session Session 7 Notes August 28, 2018

Math 32B Discussion Session Session 7 Notes August 28, 2018 Mth 32B iscussion ession ession 7 Notes August 28, 28 In tody s discussion we ll tlk bout surfce integrls both of sclr functions nd of vector fields nd we ll try to relte these to the mny other integrls

More information

Electromagnetism Answers to Problem Set 10 Spring 2006

Electromagnetism Answers to Problem Set 10 Spring 2006 Electromgnetism 76 Answers to Problem Set 1 Spring 6 1. Jckson Prob. 5.15: Shielded Bifilr Circuit: Two wires crrying oppositely directed currents re surrounded by cylindricl shell of inner rdius, outer

More information

Integration Techniques

Integration Techniques Integrtion Techniques. Integrtion of Trigonometric Functions Exmple. Evlute cos x. Recll tht cos x = cos x. Hence, cos x Exmple. Evlute = ( + cos x) = (x + sin x) + C = x + 4 sin x + C. cos 3 x. Let u

More information

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain

More information

FINALTERM EXAMINATION 9 (Session - ) Clculus & Anlyticl Geometry-I Question No: ( Mrs: ) - Plese choose one f ( x) x According to Power-Rule of differentition, if d [ x n ] n x n n x n n x + ( n ) x n+

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

Indefinite Integral. Chapter Integration - reverse of differentiation

Indefinite Integral. Chapter Integration - reverse of differentiation Chpter Indefinite Integrl Most of the mthemticl opertions hve inverse opertions. The inverse opertion of differentition is clled integrtion. For exmple, describing process t the given moment knowing the

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS UNIT (ADDITIONAL) Time llowed Three hours (Plus 5 minutes reding time) DIRECTIONS TO CANDIDATES Attempt ALL questions ALL questions re of equl vlue

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWre http://ocw.mit.edu 18.02 Multivrible Clculus Fll 2007 For informtion bout citing these mterils or our Terms of Use, visit: http://ocw.mit.edu/terms. 6. Vector Integrl Clculus in Spce

More information

x 2 1 dx x 3 dx = ln(x) + 2e u du = 2e u + C = 2e x + C 2x dx = arcsin x + 1 x 1 x du = 2 u + C (t + 2) 50 dt x 2 4 dx

x 2 1 dx x 3 dx = ln(x) + 2e u du = 2e u + C = 2e x + C 2x dx = arcsin x + 1 x 1 x du = 2 u + C (t + 2) 50 dt x 2 4 dx . Compute the following indefinite integrls: ) sin(5 + )d b) c) d e d d) + d Solutions: ) After substituting u 5 +, we get: sin(5 + )d sin(u)du cos(u) + C cos(5 + ) + C b) We hve: d d ln() + + C c) Substitute

More information

Problem set 1: Solutions Math 207B, Winter 2016

Problem set 1: Solutions Math 207B, Winter 2016 Problem set 1: Solutions Mth 27B, Winter 216 1. Define f : R 2 R by f(,) = nd f(x,y) = xy3 x 2 +y 6 if (x,y) (,). ()Show tht thedirectionl derivtives of f t (,)exist inevery direction. Wht is its Gâteux

More information

. Double-angle formulas. Your answer should involve trig functions of θ, and not of 2θ. sin 2 (θ) =

. Double-angle formulas. Your answer should involve trig functions of θ, and not of 2θ. sin 2 (θ) = Review of some needed Trig. Identities for Integrtion. Your nswers should be n ngle in RADIANS. rccos( 1 ) = π rccos( - 1 ) = 2π 2 3 2 3 rcsin( 1 ) = π rcsin( - 1 ) = -π 2 6 2 6 Cn you do similr problems?

More information

in a uniform magnetic flux density B = Boa z. (a) Show that the electron moves in a circular path. (b) Find the radius r o

in a uniform magnetic flux density B = Boa z. (a) Show that the electron moves in a circular path. (b) Find the radius r o 6. THE TATC MAGNETC FELD 6- LOENTZ FOCE EQUATON Lorent force eqution F = Fe + Fm = q ( E + v B ) Exmple 6- An electron hs n initil velocity vo = vo y in uniform mgnetic flux density B = Bo. () how tht

More information

MATH , Calculus 2, Fall 2018

MATH , Calculus 2, Fall 2018 MATH 36-2, 36-3 Clculus 2, Fll 28 The FUNdmentl Theorem of Clculus Sections 5.4 nd 5.5 This worksheet focuses on the most importnt theorem in clculus. In fct, the Fundmentl Theorem of Clculus (FTC is rgubly

More information

US01CMTH02 UNIT Curvature

US01CMTH02 UNIT Curvature Stu mteril of BSc(Semester - I) US1CMTH (Rdius of Curvture nd Rectifiction) Prepred by Nilesh Y Ptel Hed,Mthemtics Deprtment,VPnd RPTPScience College US1CMTH UNIT- 1 Curvture Let f : I R be sufficiently

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

Engg. Math. I (Unit-II)

Engg. Math. I (Unit-II) Dr. Stish Shukl of 7 Engg. Mth. I Unit-II) Integrl Clculus iemnn Integrl) The ide. Suppose, f be continuous function defined on [, b nd we wnt to clculte the re bounded by this function with the -is from

More information

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0) eview Exam Math 43 Name Id ead each question carefully. Avoid simple mistakes. Put a box around the final answer to a question (use the back of the page if necessary). For full credit you must show your

More information

660 Chapter 10 Conic Sections and Polar Coordinates

660 Chapter 10 Conic Sections and Polar Coordinates Chpter Conic Sections nd Polr Coordintes 8. ( (b (c (d (e r r Ê r ; therefore cos Ê Ê ( ß is point of intersection ˆ ˆ Ê Ê Ê ß ß ˆ ß 9. ( r cos Ê cos ; r cos Ê r Š Ê r r Ê (r (b r Ê cos Ê cos Ê, Ê ß or

More information

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11 1. ompute the surface integral M255 alculus III Tutorial Worksheet 11 x + y + z) d, where is a surface given by ru, v) u + v, u v, 1 + 2u + v and u 2, v 1. olution: First, we know x + y + z) d [ ] u +

More information

. Double-angle formulas. Your answer should involve trig functions of θ, and not of 2θ. cos(2θ) = sin(2θ) =.

. Double-angle formulas. Your answer should involve trig functions of θ, and not of 2θ. cos(2θ) = sin(2θ) =. Review of some needed Trig Identities for Integrtion Your nswers should be n ngle in RADIANS rccos( 1 2 ) = rccos( - 1 2 ) = rcsin( 1 2 ) = rcsin( - 1 2 ) = Cn you do similr problems? Review of Bsic Concepts

More information

Phys 4321 Final Exam December 14, 2009

Phys 4321 Final Exam December 14, 2009 Phys 4321 Finl Exm December 14, 2009 You my NOT use the text book or notes to complete this exm. You nd my not receive ny id from nyone other tht the instructor. You will hve 3 hours to finish. DO YOUR

More information

We know that if f is a continuous nonnegative function on the interval [a, b], then b

We know that if f is a continuous nonnegative function on the interval [a, b], then b 1 Ares Between Curves c 22 Donld Kreider nd Dwight Lhr We know tht if f is continuous nonnegtive function on the intervl [, b], then f(x) dx is the re under the grph of f nd bove the intervl. We re going

More information

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8 Mth 3 Fll 0 The scope of the finl exm will include: Finl Exm Review. Integrls Chpter 5 including sections 5. 5.7, 5.0. Applictions of Integrtion Chpter 6 including sections 6. 6.5 nd section 6.8 3. Infinite

More information

Unit 5. Integration techniques

Unit 5. Integration techniques 18.01 EXERCISES Unit 5. Integrtion techniques 5A. Inverse trigonometric functions; Hyperbolic functions 5A-1 Evlute ) tn 1 3 b) sin 1 ( 3/) c) If θ = tn 1 5, then evlute sin θ, cos θ, cot θ, csc θ, nd

More information

APPM 4360/5360 Homework Assignment #7 Solutions Spring 2016

APPM 4360/5360 Homework Assignment #7 Solutions Spring 2016 APPM 436/536 Homework Assignment #7 Solutions Spring 6 Problem # ( points: Evlute the following rel integrl by residue integrtion: x 3 sinkx x 4 4, k rel, 4 > Solution: Since the integrnd is even function,

More information

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson.7 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: Consider potentil problem in the hlf-spce defined by, with Dirichlet boundry conditions on the plne

More information

HOMEWORK 8 SOLUTIONS

HOMEWORK 8 SOLUTIONS HOMEWOK 8 OLUTION. Let and φ = xdy dz + ydz dx + zdx dy. let be the disk at height given by: : x + y, z =, let X be the region in 3 bounded by the cone and the disk. We orient X via dx dy dz, then by definition

More information

Phys 6321 Final Exam - Solutions May 3, 2013

Phys 6321 Final Exam - Solutions May 3, 2013 Phys 6321 Finl Exm - Solutions My 3, 2013 You my NOT use ny book or notes other thn tht supplied with this test. You will hve 3 hours to finish. DO YOUR OWN WORK. Express your nswers clerly nd concisely

More information

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors Vectors Skill Achieved? Know tht sclr is quntity tht hs only size (no direction) Identify rel-life exmples of sclrs such s, temperture, mss, distnce, time, speed, energy nd electric chrge Know tht vector

More information

Problem Solving 7: Faraday s Law Solution

Problem Solving 7: Faraday s Law Solution MASSACHUSETTS NSTTUTE OF TECHNOLOGY Deprtment of Physics: 8.02 Prolem Solving 7: Frdy s Lw Solution Ojectives 1. To explore prticulr sitution tht cn led to chnging mgnetic flux through the open surfce

More information

3. Vectors. Vectors: quantities which indicate both magnitude and direction. Examples: displacemement, velocity, acceleration

3. Vectors. Vectors: quantities which indicate both magnitude and direction. Examples: displacemement, velocity, acceleration Rutgers University Deprtment of Physics & Astronomy 01:750:271 Honors Physics I Lecture 3 Pge 1 of 57 3. Vectors Vectors: quntities which indicte both mgnitude nd direction. Exmples: displcemement, velocity,

More information

k ) and directrix x = h p is A focal chord is a line segment which passes through the focus of a parabola and has endpoints on the parabola.

k ) and directrix x = h p is A focal chord is a line segment which passes through the focus of a parabola and has endpoints on the parabola. Stndrd Eqution of Prol with vertex ( h, k ) nd directrix y = k p is ( x h) p ( y k ) = 4. Verticl xis of symmetry Stndrd Eqution of Prol with vertex ( h, k ) nd directrix x = h p is ( y k ) p( x h) = 4.

More information

We divide the interval [a, b] into subintervals of equal length x = b a n

We divide the interval [a, b] into subintervals of equal length x = b a n Arc Length Given curve C defined by function f(x), we wnt to find the length of this curve between nd b. We do this by using process similr to wht we did in defining the Riemnn Sum of definite integrl:

More information

Reference. Vector Analysis Chapter 2

Reference. Vector Analysis Chapter 2 Reference Vector nlsis Chpter Sttic Electric Fields (3 Weeks) Chpter 3.3 Coulomb s Lw Chpter 3.4 Guss s Lw nd pplictions Chpter 3.5 Electric Potentil Chpter 3.6 Mteril Medi in Sttic Electric Field Chpter

More information

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4 WiSe 1 8.1.1 Prof. Dr. A.-S. Smith Dipl.-Phys. Ellen Fischermeier Dipl.-Phys. Mtthis Sb m Lehrstuhl für Theoretische Physik I Deprtment für Physik Friedrich-Alexnder-Universität Erlngen-Nürnberg Theoretische

More information