SET MEMBERSHIP ESTIMATION THEORY

Size: px
Start display at page:

Download "SET MEMBERSHIP ESTIMATION THEORY"

Transcription

1 SET MEMBERSHIP ESTIMATION THEORY Michele TARAGNA Dipartimento di Elettronica e Telecomunicazioni Politecnico di Torino michele.taragna@polito.it Master Course in Mechatronic Engineering Master Course in Computer Engineering 0RKYQW / 0RKYOV Estimation, Filtering and System Identification Academic Year 07/08

2 Example: estimation of a resistance value N voltage-current measurements are performed on a real resistor, assuming that: its static characteristic is linear the device model is given by the Ohm s law v R = R i R the measurements are corrupted by an unknown noise e = [e,...,e N T The following system of linear equations is derived: v R, = R i R, +e v R, = R i R, +e v R,N. = R i R,N +e N 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification

3 In matrix terms: v R, v R,. v R,N }{{} y = i R, i R,. i R,N }{{} Φ [R }{{} θ o + e e. e N }{{} e is in the standard form: y }{{} known data = F(θ o ) }{{} known function + e }{{} unknown noise F (θ o ) = Φ θ o = linear function of the unknown parameterθ o Goal: find an estimate ˆR ofrby means of an estimation algorithm (estimator)ψ applied to the data vectory: ˆR = ψ(y) = R 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification

4 Least squares estimation errors θ o : true parameters that generated the data vectory Due to measurement noise,y = Φθ o +e Φθ o using the least squares algorithm as estimator: ˆθ = ( Φ T Φ ) Φ T y = ( Φ T Φ ) Φ T (Φθ o +e) = = ( Φ T Φ ) Φ T Φ }{{} I θ o + ( Φ T Φ ) Φ T e = θ o + ( Φ T Φ ) Φ T e ˆθ θ o = ( Φ T Φ ) Φ T e = estimation error e is not exactly known, but different assumptions may be made one : - random variable statistical estimation - componentwise bounded Set Membership estimation - energy bounded 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 3

5 Unknown But Bounded (UBB) errors e B e = uncertainty set Be = { ẽ R N : ẽ i ε,i =,...,N } { } = ẽ R N : ẽ = max ẽ i ε i=,...,n { { } Be= ẽ R N : ẽ T ẽ = N N ẽ i ε }= ẽ R N : ẽ = ẽ i ε i= i= e ε % e % e % e ε ε e e ε e 3 Assumption: B e is symmetric with respect to the origin ofr N 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 4 e 3

6 Problem: how to evaluate the uncertainty onˆθ induced by the uncertainty setb e? A = ( Φ T Φ ) Φ T = least squares operator : R N R n }{{}}{{} measurement space parameter space ˆθ θo = ( Φ T Φ ) Φ T e = Ae θ o = ˆθ Ae θ o EUS= ˆθ A[B e =Ay A[B e =A[y B e = Estimate Uncertainty Set y ε A = (Φ T Φ) - Φ T θ y e Φθ o y B e ε ε A = (Φ T Φ) - Φ T θ θ o EUS y y θ y Parameter space R 3 Measurement space R n N Note thatθ o EUS and that the distance betweenφθ o andy is not greater thanε 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 5 θ

7 TheEUS volume gives an idea of the estimation quality and, in particular, the Estimate Uncertainty IntervalsEUI j,j=,...,n, provide this measure: [ EUI j = min θ j, max θ j = [ˆθm j,ˆθ M j R θ EUS θ EUS }{{}}{{} ˆθ m j ˆθ M j the range of thej-th component of the estimate is such that: ˆθm j [θ o j ˆθ M j an upper bound on the estimation error of thej-th component is: ˆθ j [θ o j (ˆθ M j ˆθ m / j ) ˆθ is the symmetry center ofeus, becauseeus is the image of a symmetric set under a linear mapping EUI θ θ M θ θ m θ m θ θ EUS θ o θ M θ EUI 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 6

8 Evaluation ofeus The uncertainty set is a cube inr N centered in the origin: B e = { ẽ R N : ẽ i ε,i =,...,N } y = Φθ o +e the set of any possible measurement (called Measurement Uncertainty Set) is a cube inr N whose symmetry center is the data vectory: MUS = y B e = { ỹ R N : ỹ i y i ε,i =,...,N } R N the vertices ofmus are denoted byȳ k,k =,..., N Theorem: conv{θ,...,θ p } : EUS =A[MUS =conv { Aȳ k,k=,..., N} R n convex hull of the set{θ,...,θ p } is the smallest convex polyhedron (polytope) containingθ,...,θ p y y 6 y y 7 y3 y 3 y y 5 y B e y y 8 y 4 y y y 3 Measurement space R N A = (Φ T Φ) - Φ T θ EUS Ay 6 Ay θ Ay 3 Ay 7 Ay 4 Ay 8 Ay 5 Ay Parameter space R n 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 7 θ

9 Theorem: EUI j = whereˆθ m j = N k= Evaluation ofeui j [ˆθm j,ˆθ M j R a jk [ yk ε sign ( a jk ), ˆθ M j = ˆθ j ˆθ m j, A = [ a jk = (Φ T Φ) Φ T, ˆθ = [ˆθj = Ay Proof:ˆθ m j = min θ EUS θ j= min ỹ MUS (Aỹ) j = N = min a jk ỹ k = min ỹ: ỹ i y i εk= i=,...,n EUI N ỹ: ε ỹ i y i εk= i=,...,n θ θ M θ θ m a jk ỹ k = θ m min θ θ EUI EUS θ o θ M N ỹ:y i ε ỹ i y i +εk= i=,...,n and such a minimum is achieved byỹ k = y k εifa jk > 0, or byỹ k = y k +εifa jk < 0. SinceMUS = y Be is symmetric with respect to the data vectory, then EUS = A[MUS is symmetric with respect to the estimateˆθ = Ay and then: ˆθj = (ˆθ m j +ˆθ M / j ),j =,..., n ˆθ M j = ˆθ j ˆθ m j,j =,..., n θ a jk ỹ k 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 8

10 Description of ellipsoids LetΩ x be an ellipsoid inr N centered inx o : Ω x = { } x R N : (x x o ) T Σ x (x x o ) The form matrixσ x R N N is symmetric and positive definite it is invertible The directions of the main axes ofω x are given by the eigenvectorsu i ofσ x, which are orthogonal becauseσ x is positive definite The lengths of the semi-axes ofω x are given by λi (Σ x ), whereλ i (Σ x ) is thei-th eigenvalue ofσ x x u u u u x x o 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 9 x

11 Linear transformation of ellipsoids LetΩ x be an ellipsoid inr N centered inx o : Ω x = { x R N : (x x o ) T Σ x (x x o ) ε } and consider the linear transformation: z = Px R n, withp R n N,n < N Theorem: ifrank(p) = n, then { Ω z = P [Ω x = z R n : (z z o ) T Σ z (z z o ) ε } z o = Px o R n, Σ z = PΣ x P T R n n x Ω x x o P z P x o Ω z x 3 Space R N x x 3 x Space R n, n < N z 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 0

12 Evaluation ofeus The uncertainty set is a sphere inr N centered in the origin: B e = { ẽ R N : ẽ T ẽ ε } y = Φθ o +e the set of any possible measurement (called Measurement Uncertainty Set) is a sphere inr N whose symmetry center is the data vectory: { MUS = y Be = ỹ R N : (ỹ y) T (ỹ y) ε } R N Theorem: EUS =A [ } y Be = { θ R n :( θ ˆθ) T Φ T Φ( θ ˆθ) ε R n is an ellipsoid inr n withˆθ=ay as symmetry center and(φ T Φ) as form matrix y y 3 ε y Φθ o y B e y A = (Φ T Φ) - Φ T A = (Φ T Φ) - Φ T EUI θ θ M θ m θ m EUS θ M θ EUI Measurement space R N Parameter space R n y 3 y θ θ θ θ o 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification

13 Theorem: EUS =A [ } y Be = { θ R n :( θ ˆθ) T Φ T Φ( θ ˆθ) ε R n is an ellipsoid inr n withˆθ=ay as symmetry center and(φ T Φ) as form matrix y y 3 ε y Φθ o y B e y A = (Φ T Φ) - Φ T A = (Φ T Φ) - Φ T EUI θ M θ m EUS θ EUI Measurement space R N Parameter space R n y 3 y Proof: by definition,eus is the linear mapping ofmus = y Be EUS = A [ y Be = { θ R n : ( θ Ay) T [AA T ( θ Ay) ε } ButAy = ˆθ,A = (Φ T Φ) Φ T and then: θ θ θ m θ θ θ o θ M through the matrixa: AA T = (Φ T Φ) Φ T [(Φ T Φ) Φ T T = (Φ T Φ) Φ T { Φ[(Φ T Φ) T} = = (Φ T Φ) Φ T Φ }{{} I [(Φ T Φ) T = (Φ T Φ) 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification

14 Evaluation ofeui j Theorem: EUIj [ˆθ = j ε σ j, }{{} ˆθ j +ε σ j = }{{} ˆθ m j ˆθ M j [ˆθm j,ˆθ M j R σ j = [ (Φ T Φ) jj θ M θ EUS EUI θ θ θ o θ m θ m θ EUI θ M θ 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 3

15 Optimal (with minimal uncertainty) estimates Is theeus the smallest set containing the true parameterθ o? Are theeui j the smallest possible uncertainty intervals? Does the LS estimator provide the minimal uncertainty intervals? To answer all these questions, it is necessary to analyze the set of all the parameters that are consistent with both the data and the available information on noise Definition: a parameter θ is said to be feasible (or consistent) if(y Φ θ) B e } FPS = { θ R n : (y Φ θ) B e = Feasible Parameter Set = = set of all the parameters consistent with both the data and the information on noise and on the estimation problem FPS is independent of the estimation algorithm If data are generated by the true parameterθ o, thenθ o is feasible; in fact: y = Φθ o +e,e B e y Φθ o = e B e θ o FPS 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 4

16 Theorem: Relationship between FPS and EUS FPS EUS Proof: if θ FPS, then [ (y Φ θ) B e Φ θ y B e A Φ θ A[y B e = EUS [ ButA Φ θ = (Φ T Φ) Φ T Φ θ = θ and then θ EUS. The Parameter Uncertainty IntervalsPUI j,j =,...,n are defined as: [ [ PUI j = min θ j, max θ j = θj m,θj M R θ FPS θ FPS }{{}}{{} θj m θj M from the above theorem: PUI j EUI j,j =,...,n ˆθ m j θ m j [θ o j θ M j ˆθ M j 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 5

17 Evaluation offps andpui j If θ FPS, then(y Φ θ) B e = { ẽ R N : ẽ i ε,i =,...,N } (y Φ θ) i = FPS = { θ R n : ϕ T i : i-th row ofφ y i ϕ T θ i ε, i =,...,N y i ϕ T θ } i ε,i =,...,N i.e.,fps is a polytope (a convex polyhedron) generated by linear inequalities: y i ϕ T θ i ε ε y i ϕ T θ i ε y i ε ϕ T θ i y i +ε [ [ Moreover,PUIj = min θ j, max θ j = θj m,θj M R θ FPS }{{ θ FPS }}{{ } θj m θj M withθ m j andθ M j solutions of linear programming problems of the standard form: min x c T x with the constraint: Ax b 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 6

18 Evaluation offps andpui j Theorem: FPS = { θ R n : ( θ ˆθ) [ T Φ T Φ } ( θ ˆθ) ε α α = (y Φˆθ) T (y Φˆθ) = y Φˆθ ε = fitting error between measured outputs and estimated outputs a greater fitting error asmallerfps a lower uncertainty on parameters Moreover,PUI j [ˆθj = σ j ε α }{{,ˆθ j +σ j ε α }}{{ = } [ θ m j,θ M j R σ j = θ m j θ M j [(Φ T Φ) jj EUS EUI PUI M m FPS o m M PUI EUI 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 7

19 Optimal estimates Definition: given an estimateˆθ, the estimate errore(ˆθ) is given by: E(ˆθ) = sup θ ˆθ θ FPS Definition: an estimateˆθ opt is optimal if: Central estimate: ˆθC = [ˆθC j E(ˆθ opt ) E(ˆθ), ˆθ R n /, whereˆθ C j = (θj m +θj M ), j =,...,n the central estimate is optimal both ifb e = Be and ifb e = Be /, since: [θ o j ˆθ C j (θj M θj m ), j =,...,n ifb e = B e, the least squares estimateˆθ LS = (Φ T Φ) Φ T y is central ˆθ LS is optimal ifb e = B e, but in general it is not optimal ifb e = B e 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 8

20 Example: parametric estimation of a position transducer model 8 Position transducer 6 4 Voltage V z in V Position z in m The static characteristic of the position-voltage transducer is nearly linear in the range between.3 e 3.5 cm the characteristic can be linearly approximated by: V z = K t z +V o 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 9

21 In the linearity interval between.3 e3.5 cm: V z = K }{{} t unknown z + V o }{{} unknown The most relevant error occurs in the positionz measurement and it is not greater than0.5 mm to account for this error, the model equation can be rewritten as: z = K t V z V o K t +e where the unknown parameters are: θ =, θ = V o K t K t The N measurements taken in the linearity interval form a system of equations: z = V z, θ +θ +e z = V z, θ +θ +e z N. = V z,n θ +θ +e N V z,i : voltage provided by the transducer when the position value isz i 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 0

22 In matrix form: z z.. z N = V z, V z,.. V z,n θ θ + e e.. e N i.e., the estimation problem is in the standard form: y = Φ θ+e wherey R N,Φ R N,e R N and the unknown isθ R Using the Least Squares estimation algorithm: ˆθ = A y, witha = (Φ T Φ) Φ T ˆθ = [ ˆθ ˆθ = [ ˆK t = ˆθ = 549.6V/m, ˆVo = ˆθ ˆθ =.56V 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification

23 Evaluation of the Estimate Uncertainty IntervalsEUI j e N Be = { ẽ N R N : ẽ i ε, i =,...,N }, ε = EUIj = [ˆθm j = min θ EUS θ j,ˆθ M j = max θ EUS θ j, j =, ˆθm j = min θ EUS θ j = N k= a jk [y k ε sign(a jk ) ˆθM j = max θ EUS θ j = N k= a jk [y k +ε sign(a jk ) = ˆθ j ˆθ m j [ˆθm,ˆθ M = [ , [ˆθm,ˆθ M = [.9 0,.39 0 [ ˆKm t, ˆK [ t M = /ˆθ M,/ˆθ m = [55.67, V/m m [ˆV o, ˆV [ o M = ˆθ M /ˆθ m, ˆθ m /ˆθ M = [ 3.703,.495 V 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification

24 Envelope of the static characteristics of models whose parameters θ are taken as the extremes of the Estimate Uncertainty IntervalsEUI j,j =, Experimental data (z, V z ) z min(θ M * Vz, θ m * Vz ) + θ m z = θ * V z + θ z max(θ M * Vz, θ m * Vz ) + θ M Position transducer 4 Voltage V z in V linearity interval Position z in m 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 3

25 Evaluation of the Parameter Uncertainty IntervalsPUI j } FPS = { θ R dim( θ) : y i [Φ θ i ε, i =,...,N [ PUIj = min θ FPS θ j, max θ FPS θ j EUIj, j =, The extremes ofpui j min θ FPS θ j= min M θ b ct θ max θ FPS θ j= min M θ b ( c)t θ [ [ θ m = min θ FPS θ,θ M = max,j =,, are solutions of the linear programming problems M= θ FPS θ [ Φ Φ θ m = min θ FPS θ,θ M = max θ FPS θ [ [ K m t,kt M = /θ M,/θ m [ [ V m o,vo M = θ M /θ m, θ m /θ M, b= [ y y +ε, c=j-th column ofi =[ , =[.596 0, = [54.0, V/m = [.735,.5 V 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 4

26 Envelope of the static characteristics of models whose parameters θ belong to the Feasible Parameter SetFPS 0 8 Experimental data (z, V z ) z = θ * V z + θ Position transducer 6 4 Voltage V z in V linearity interval Position z in m 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 5

27 Feasible Parameter SetFPS (continuous line) and set of estimates given by the extremes of Parameter Uncertainty IntervalsPUI j,j =, 0.09 Feasible Parameter Set FPS φ LS (y) 0.07 θ θ x 0 3 0RKYQW / 0RKYOV - Estimation, Filtering and System Identification 6

28 Essential references F. C. Schweppe, Uncertain Dynamics Systems. Englewood Cliffs, NJ: Prentice Hall, 973. M. Milanese, R. Tempo, A. Vicino (editors), Robustness in Identification and Control. New York: Plenum Press, 989. M. Milanese, A. Vicino, Optimal estimation theory for dynamic systems with set membership uncertainty: an overview, Automatica, vol. 7, no. 6, pp , 99. Special Issue on System Identification for Robust Control Design, IEEE Transactions on Automatic Control, vol. AC-37, no. 7, pp , 99. R. S. Smith, M. Dahleh (editors), The Modeling of Uncertainty in Control Systems, vol. 9 of Lecture Notes in Control and Information Sciences. London, UK: Springer-Verlag, 994. M. Milanese, J. Norton, H. Piet-Lahanier, É. Walter (editors), Bounding Approaches to System Identification. New York: Plenum Press, 996. J. R. Partington, Interpolation, Identification, and Sampling, vol. 7 of London Mathematical Society Monographs New Series. New York: Clarendon Press - Oxford, 997. A. Garulli, A. Tesi, A. Vicino (editors), Robustness in Identification and Control, vol. 45 of Lecture Notes in Control and Information Sciences. Godalming, UK: Springer-Verlag, 999. J. Chen, G. Gu, Control-Oriented System Identification: AnH Approach. New York: John Wiley & Sons, Inc., RKYQW / 0RKYOV - Estimation, Filtering and System Identification 7

Bounding the parameters of linear systems with stability constraints

Bounding the parameters of linear systems with stability constraints 010 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 30-July 0, 010 WeC17 Bounding the parameters of linear systems with stability constraints V Cerone, D Piga, D Regruto Abstract

More information

Parameter Bounds for Discrete-Time Hammerstein Models With Bounded Output Errors

Parameter Bounds for Discrete-Time Hammerstein Models With Bounded Output Errors IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 10, OCTOBER 003 1855 Parameter Bounds for Discrete-Time Hammerstein Models With Bounded Output Errors V. Cerone and D. Regruto Abstract In this note,

More information

Set-Membership Identification of Wiener models with noninvertible nonlinearity

Set-Membership Identification of Wiener models with noninvertible nonlinearity Set-Membership Identification of Wiener models with noninvertible nonlinearity V. Cerone, Dipartimento di Automatica e Informatica Politecnico di Torino (Italy) e-mail: vito.cerone@polito.it, diego.regruto@polito.it

More information

J. Liang School of Automation & Information Engineering Xi an University of Technology, China

J. Liang School of Automation & Information Engineering Xi an University of Technology, China Progress In Electromagnetics Research C, Vol. 18, 245 255, 211 A NOVEL DIAGONAL LOADING METHOD FOR ROBUST ADAPTIVE BEAMFORMING W. Wang and R. Wu Tianjin Key Lab for Advanced Signal Processing Civil Aviation

More information

The Rationale for Second Level Adaptation

The Rationale for Second Level Adaptation The Rationale for Second Level Adaptation Kumpati S. Narendra, Yu Wang and Wei Chen Center for Systems Science, Yale University arxiv:1510.04989v1 [cs.sy] 16 Oct 2015 Abstract Recently, a new approach

More information

Sparse identification of nonlinear functions and parametric Set Membership optimality analysis

Sparse identification of nonlinear functions and parametric Set Membership optimality analysis 011 American Control Conference on O'Farrell Street, San Francisco, CA, USA June 9 - July 01, 011 Sparse identification of nonlinear functions and parametric Set Membership optimality analysis Carlo Novara

More information

Stability of linear time-varying systems through quadratically parameter-dependent Lyapunov functions

Stability of linear time-varying systems through quadratically parameter-dependent Lyapunov functions Stability of linear time-varying systems through quadratically parameter-dependent Lyapunov functions Vinícius F. Montagner Department of Telematics Pedro L. D. Peres School of Electrical and Computer

More information

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION Vol. IX Uncertainty Models For Robustness Analysis - A. Garulli, A. Tesi and A. Vicino

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION Vol. IX Uncertainty Models For Robustness Analysis - A. Garulli, A. Tesi and A. Vicino UNCERTAINTY MODELS FOR ROBUSTNESS ANALYSIS A. Garulli Dipartiento di Ingegneria dell Inforazione, Università di Siena, Italy A. Tesi Dipartiento di Sistei e Inforatica, Università di Firenze, Italy A.

More information

A SQUARE ROOT ALGORITHM FOR SET THEORETIC STATE ESTIMATION

A SQUARE ROOT ALGORITHM FOR SET THEORETIC STATE ESTIMATION A SQUARE ROO ALGORIHM FOR SE HEOREIC SAE ESIMAION U D Hanebec Institute of Automatic Control Engineering echnische Universität München 80290 München, Germany fax: +49-89-289-28340 e-mail: UweHanebec@ieeeorg

More information

A Fast Approximation Algorithm for Set-Membership System Identification

A Fast Approximation Algorithm for Set-Membership System Identification A Fast Approximation Algorithm for Set-Membership System Identification J.A. Castaño F. Ruiz J. Régnier Pontificia Universidad Javeriana, Bogotá, Colombia. e-mail: {j-castano,ruizf}@javeriana.edu.co Université

More information

arxiv: v1 [cs.sy] 20 Dec 2017

arxiv: v1 [cs.sy] 20 Dec 2017 Adaptive model predictive control for constrained, linear time varying systems M Tanaskovic, L Fagiano, and V Gligorovski arxiv:171207548v1 [cssy] 20 Dec 2017 1 Introduction This manuscript contains technical

More information

Fixed Order Controller for Schur Stability

Fixed Order Controller for Schur Stability Mathematical and Computational Applications Article Fixed Order Controller for Schur Stability Taner Büyükköroğlu Department of Mathematics, Faculty of Science, Anadolu University, Eskisehir 26470, Turkey;

More information

NEW RESULTS ON THE IDENTIFICATION OF INTERVAL PREDICTOR MODELS

NEW RESULTS ON THE IDENTIFICATION OF INTERVAL PREDICTOR MODELS NEW RESULTS ON THE IDENTIFICATION OF INTERVAL PREDICTOR MODELS M.C. Campi G. Calafiore S. Garatti Dipartimento di Elettronica per l Automazione - Università di Brescia, Italy. e-mail: campi@ing.unibs.it

More information

Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate

Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate www.scichina.com info.scichina.com www.springerlin.com Prediction-based adaptive control of a class of discrete-time nonlinear systems with nonlinear growth rate WEI Chen & CHEN ZongJi School of Automation

More information

ESSENTIALS OF PROBABILITY THEORY

ESSENTIALS OF PROBABILITY THEORY ESSENTIALS OF PROBABILITY THEORY Michele TARAGNA Dipartimento di Elettronica e Telecomunicazioni Politecnico di Torino michele.taragna@polito.it Master Course in Mechatronic Engineering Master Course in

More information

Probabilistic Optimal Estimation and Filtering

Probabilistic Optimal Estimation and Filtering Probabilistic Optimal Estimation and Filtering Least Squares and Randomized Algorithms Fabrizio Dabbene 1 Mario Sznaier 2 Roberto Tempo 1 1 CNR - IEIIT Politecnico di Torino 2 Northeastern University Boston

More information

An LQ R weight selection approach to the discrete generalized H 2 control problem

An LQ R weight selection approach to the discrete generalized H 2 control problem INT. J. CONTROL, 1998, VOL. 71, NO. 1, 93± 11 An LQ R weight selection approach to the discrete generalized H 2 control problem D. A. WILSON², M. A. NEKOUI² and G. D. HALIKIAS² It is known that a generalized

More information

Nonlinear Programming Models

Nonlinear Programming Models Nonlinear Programming Models Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Nonlinear Programming Models p. Introduction Nonlinear Programming Models p. NLP problems minf(x) x S R n Standard form:

More information

Strong Robustness in Multi-Phase Adaptive Control: the basic Scheme

Strong Robustness in Multi-Phase Adaptive Control: the basic Scheme Strong Robustness in Multi-Phase Adaptive Control: the basic Scheme Maria Cadic and Jan Willem Polderman Faculty of Mathematical Sciences University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands

More information

Robust Expansion of Uncertain Volterra Kernels into Orthonormal Series

Robust Expansion of Uncertain Volterra Kernels into Orthonormal Series 21 American Control Conference Marriott Waterfront, Baltimore, MD, USA June 3-July 2, 21 FrA22.4 Robust Expansion of Uncertain Volterra Kernels into Orthonormal Series Alex da Rosa 1, Ricardo J. G. B.

More information

A set-membership state estimation algorithm based on DC programming

A set-membership state estimation algorithm based on DC programming A set-membership state estimation algorithm based on DC programming T. Alamo a, J.M. Bravo b, M.J. Redondo b and E.F. Camacho a a Departamento de Ingeniería de Sistemas y Automática. Universidad de Sevilla.

More information

Graph and Controller Design for Disturbance Attenuation in Consensus Networks

Graph and Controller Design for Disturbance Attenuation in Consensus Networks 203 3th International Conference on Control, Automation and Systems (ICCAS 203) Oct. 20-23, 203 in Kimdaejung Convention Center, Gwangju, Korea Graph and Controller Design for Disturbance Attenuation in

More information

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Prediction Error Methods - Torsten Söderström

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Prediction Error Methods - Torsten Söderström PREDICTIO ERROR METHODS Torsten Söderström Department of Systems and Control, Information Technology, Uppsala University, Uppsala, Sweden Keywords: prediction error method, optimal prediction, identifiability,

More information

Module 3: 3D Constitutive Equations Lecture 10: Constitutive Relations: Generally Anisotropy to Orthotropy. The Lecture Contains: Stress Symmetry

Module 3: 3D Constitutive Equations Lecture 10: Constitutive Relations: Generally Anisotropy to Orthotropy. The Lecture Contains: Stress Symmetry The Lecture Contains: Stress Symmetry Strain Symmetry Strain Energy Density Function Material Symmetry Symmetry with respect to a Plane Symmetry with respect to two Orthogonal Planes Homework References

More information

A Convex Optimization Approach to Worst-Case Optimal Sensor Selection

A Convex Optimization Approach to Worst-Case Optimal Sensor Selection 1 A Convex Optimization Approach to Worst-Case Optimal Sensor Selection Yin Wang Mario Sznaier Fabrizio Dabbene Abstract This paper considers the problem of optimal sensor selection in a worst-case setup.

More information

UTILIZING PRIOR KNOWLEDGE IN ROBUST OPTIMAL EXPERIMENT DESIGN. EE & CS, The University of Newcastle, Australia EE, Technion, Israel.

UTILIZING PRIOR KNOWLEDGE IN ROBUST OPTIMAL EXPERIMENT DESIGN. EE & CS, The University of Newcastle, Australia EE, Technion, Israel. UTILIZING PRIOR KNOWLEDGE IN ROBUST OPTIMAL EXPERIMENT DESIGN Graham C. Goodwin James S. Welsh Arie Feuer Milan Depich EE & CS, The University of Newcastle, Australia 38. EE, Technion, Israel. Abstract:

More information

LECTURE 7. Least Squares and Variants. Optimization Models EE 127 / EE 227AT. Outline. Least Squares. Notes. Notes. Notes. Notes.

LECTURE 7. Least Squares and Variants. Optimization Models EE 127 / EE 227AT. Outline. Least Squares. Notes. Notes. Notes. Notes. Optimization Models EE 127 / EE 227AT Laurent El Ghaoui EECS department UC Berkeley Spring 2015 Sp 15 1 / 23 LECTURE 7 Least Squares and Variants If others would but reflect on mathematical truths as deeply

More information

Lecture: Quadratic optimization

Lecture: Quadratic optimization Lecture: Quadratic optimization 1. Positive definite och semidefinite matrices 2. LDL T factorization 3. Quadratic optimization without constraints 4. Quadratic optimization with constraints 5. Least-squares

More information

A NOVEL METHOD TO DERIVE EXPLICIT KLT KERNEL FOR AR(1) PROCESS. Mustafa U. Torun and Ali N. Akansu

A NOVEL METHOD TO DERIVE EXPLICIT KLT KERNEL FOR AR(1) PROCESS. Mustafa U. Torun and Ali N. Akansu A NOVEL METHOD TO DERIVE EXPLICIT KLT KERNEL FOR AR() PROCESS Mustafa U. Torun and Ali N. Akansu Department of Electrical and Computer Engineering New Jersey Institute of Technology University Heights,

More information

A NONLINEAR TRANSFORMATION APPROACH TO GLOBAL ADAPTIVE OUTPUT FEEDBACK CONTROL OF 3RD-ORDER UNCERTAIN NONLINEAR SYSTEMS

A NONLINEAR TRANSFORMATION APPROACH TO GLOBAL ADAPTIVE OUTPUT FEEDBACK CONTROL OF 3RD-ORDER UNCERTAIN NONLINEAR SYSTEMS Copyright 00 IFAC 15th Triennial World Congress, Barcelona, Spain A NONLINEAR TRANSFORMATION APPROACH TO GLOBAL ADAPTIVE OUTPUT FEEDBACK CONTROL OF RD-ORDER UNCERTAIN NONLINEAR SYSTEMS Choon-Ki Ahn, Beom-Soo

More information

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components Applied Mathematics Volume 202, Article ID 689820, 3 pages doi:0.55/202/689820 Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

More information

Discrete-Time H Gaussian Filter

Discrete-Time H Gaussian Filter Proceedings of the 17th World Congress The International Federation of Automatic Control Discrete-Time H Gaussian Filter Ali Tahmasebi and Xiang Chen Department of Electrical and Computer Engineering,

More information

Convex Optimization Approach to Dynamic Output Feedback Control for Delay Differential Systems of Neutral Type 1,2

Convex Optimization Approach to Dynamic Output Feedback Control for Delay Differential Systems of Neutral Type 1,2 journal of optimization theory and applications: Vol. 127 No. 2 pp. 411 423 November 2005 ( 2005) DOI: 10.1007/s10957-005-6552-7 Convex Optimization Approach to Dynamic Output Feedback Control for Delay

More information

9. Geometric problems

9. Geometric problems 9. Geometric problems EE/AA 578, Univ of Washington, Fall 2016 projection on a set extremal volume ellipsoids centering classification 9 1 Projection on convex set projection of point x on set C defined

More information

"ZERO-POINT" IN THE EVALUATION OF MARTENS HARDNESS UNCERTAINTY

ZERO-POINT IN THE EVALUATION OF MARTENS HARDNESS UNCERTAINTY "ZERO-POINT" IN THE EVALUATION OF MARTENS HARDNESS UNCERTAINTY Professor Giulio Barbato, PhD Student Gabriele Brondino, Researcher Maurizio Galetto, Professor Grazia Vicario Politecnico di Torino Abstract

More information

SET-MEMBERSHIP ESTIMATION: AN ADVANCED TOOL FOR SYSTEM IDENTIFICATION

SET-MEMBERSHIP ESTIMATION: AN ADVANCED TOOL FOR SYSTEM IDENTIFICATION UNIVERSITÀ DEGLI STUDI DI SIENA DIPARTIMENTO DI INGEGNERIA DELL INFORMAZIONE DOTTORATO IN INGEGNERIA DELL INFORMAZIONE - CICLO XV SET-MEMBERSHIP ESTIMATION: AN ADVANCED TOOL FOR SYSTEM IDENTIFICATION Candidato:

More information

Model Error Concepts in Identification for Control

Model Error Concepts in Identification for Control Model Error Concepts in Identification for Control Wolfgang Reinelt, Andrea Garulli, Lennart Ljung, Julio H. Braslavsky and Antonio Vicino Department of Electrical Engineering Linköping University, 581

More information

Interval solutions for interval algebraic equations

Interval solutions for interval algebraic equations Mathematics and Computers in Simulation 66 (2004) 207 217 Interval solutions for interval algebraic equations B.T. Polyak, S.A. Nazin Institute of Control Sciences, Russian Academy of Sciences, 65 Profsoyuznaya

More information

General Properties for Determining Power Loss and Efficiency of Passive Multi-Port Microwave Networks

General Properties for Determining Power Loss and Efficiency of Passive Multi-Port Microwave Networks University of Massachusetts Amherst From the SelectedWorks of Ramakrishna Janaswamy 015 General Properties for Determining Power Loss and Efficiency of Passive Multi-Port Microwave Networks Ramakrishna

More information

ThM06-2. Coprime Factor Based Closed-Loop Model Validation Applied to a Flexible Structure

ThM06-2. Coprime Factor Based Closed-Loop Model Validation Applied to a Flexible Structure Proceedings of the 42nd IEEE Conference on Decision and Control Maui, Hawaii USA, December 2003 ThM06-2 Coprime Factor Based Closed-Loop Model Validation Applied to a Flexible Structure Marianne Crowder

More information

On optimal quadratic Lyapunov functions for polynomial systems

On optimal quadratic Lyapunov functions for polynomial systems On optimal quadratic Lyapunov functions for polynomial systems G. Chesi 1,A.Tesi 2, A. Vicino 1 1 Dipartimento di Ingegneria dell Informazione, Università disiena Via Roma 56, 53100 Siena, Italy 2 Dipartimento

More information

Appendix A Wirtinger Calculus

Appendix A Wirtinger Calculus Precoding and Signal Shaping for Digital Transmission. Robert F. H. Fischer Copyright 0 2002 John Wiley & Sons, Inc. ISBN: 0-471-22410-3 Appendix A Wirtinger Calculus T he optimization of system parameters

More information

ECE 275A Homework 6 Solutions

ECE 275A Homework 6 Solutions ECE 275A Homework 6 Solutions. The notation used in the solutions for the concentration (hyper) ellipsoid problems is defined in the lecture supplement on concentration ellipsoids. Note that θ T Σ θ =

More information

Auxiliary signal design for failure detection in uncertain systems

Auxiliary signal design for failure detection in uncertain systems Auxiliary signal design for failure detection in uncertain systems R. Nikoukhah, S. L. Campbell and F. Delebecque Abstract An auxiliary signal is an input signal that enhances the identifiability of a

More information

Didier HENRION henrion

Didier HENRION   henrion POLYNOMIAL METHODS FOR ROBUST CONTROL Didier HENRION www.laas.fr/ henrion henrion@laas.fr Laboratoire d Analyse et d Architecture des Systèmes Centre National de la Recherche Scientifique Université de

More information

Noise Reduction of JPEG Images by Sampled-Data H Optimal ε Filters

Noise Reduction of JPEG Images by Sampled-Data H Optimal ε Filters SICE Annual Conference 25 in Okayama, August 8-1, 25 Okayama University, Japan Noise Reduction of JPEG Images by Sampled-Data H Optimal ε Filters H. Kakemizu,1, M. Nagahara,2, A. Kobayashi,3, Y. Yamamoto,4

More information

Robust Strictly Positive Real Synthesis for Polynomial Families of Arbitrary Order 1

Robust Strictly Positive Real Synthesis for Polynomial Families of Arbitrary Order 1 Robust Strictly Positive Real Synthesis for Polynomial Families of Arbitrary Order 1 WenshengYu LongWang Center for Systems and Control Department of Mechanics and Engineering Science, Peking University

More information

WWW: WWW:

WWW:     WWW: Comparing Different Approaches to Model Error Modeling in Robust Identification Wolfgang Reinelt #, Andrea Garulli and Lennart Ljung # # Department of Electrical Engineering Linköping University, 581 83

More information

Stable Process. 2. Multivariate Stable Distributions. July, 2006

Stable Process. 2. Multivariate Stable Distributions. July, 2006 Stable Process 2. Multivariate Stable Distributions July, 2006 1. Stable random vectors. 2. Characteristic functions. 3. Strictly stable and symmetric stable random vectors. 4. Sub-Gaussian random vectors.

More information

While using the input and output data fu(t)g and fy(t)g, by the methods in system identification, we can get a black-box model like (In the case where

While using the input and output data fu(t)g and fy(t)g, by the methods in system identification, we can get a black-box model like (In the case where ESTIMATE PHYSICAL PARAMETERS BY BLACK-BOX MODELING Liang-Liang Xie Λ;1 and Lennart Ljung ΛΛ Λ Institute of Systems Science, Chinese Academy of Sciences, 100080, Beijing, China ΛΛ Department of Electrical

More information

Lecture 6 - Convex Sets

Lecture 6 - Convex Sets Lecture 6 - Convex Sets Definition A set C R n is called convex if for any x, y C and λ [0, 1], the point λx + (1 λ)y belongs to C. The above definition is equivalent to saying that for any x, y C, the

More information

On the projection onto a finitely generated cone

On the projection onto a finitely generated cone Acta Cybernetica 00 (0000) 1 15. On the projection onto a finitely generated cone Miklós Ujvári Abstract In the paper we study the properties of the projection onto a finitely generated cone. We show for

More information

NON-LINEAR CONTROL OF OUTPUT PROBABILITY DENSITY FUNCTION FOR LINEAR ARMAX SYSTEMS

NON-LINEAR CONTROL OF OUTPUT PROBABILITY DENSITY FUNCTION FOR LINEAR ARMAX SYSTEMS Control 4, University of Bath, UK, September 4 ID-83 NON-LINEAR CONTROL OF OUTPUT PROBABILITY DENSITY FUNCTION FOR LINEAR ARMAX SYSTEMS H. Yue, H. Wang Control Systems Centre, University of Manchester

More information

A METHOD FOR NONLINEAR SYSTEM CLASSIFICATION IN THE TIME-FREQUENCY PLANE IN PRESENCE OF FRACTAL NOISE. Lorenzo Galleani, Letizia Lo Presti

A METHOD FOR NONLINEAR SYSTEM CLASSIFICATION IN THE TIME-FREQUENCY PLANE IN PRESENCE OF FRACTAL NOISE. Lorenzo Galleani, Letizia Lo Presti A METHOD FOR NONLINEAR SYSTEM CLASSIFICATION IN THE TIME-FREQUENCY PLANE IN PRESENCE OF FRACTAL NOISE Lorenzo Galleani, Letizia Lo Presti Dipartimento di Elettronica, Politecnico di Torino, Corso Duca

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 3: Positive-Definite Systems; Cholesky Factorization Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 11 Symmetric

More information

1 Robust optimization

1 Robust optimization ORF 523 Lecture 16 Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Any typos should be emailed to a a a@princeton.edu. In this lecture, we give a brief introduction to robust optimization

More information

Gaussian Estimation under Attack Uncertainty

Gaussian Estimation under Attack Uncertainty Gaussian Estimation under Attack Uncertainty Tara Javidi Yonatan Kaspi Himanshu Tyagi Abstract We consider the estimation of a standard Gaussian random variable under an observation attack where an adversary

More information

Ellipsoidal Mixed-Integer Representability

Ellipsoidal Mixed-Integer Representability Ellipsoidal Mixed-Integer Representability Alberto Del Pia Jeff Poskin September 15, 2017 Abstract Representability results for mixed-integer linear systems play a fundamental role in optimization since

More information

Constrained interpolation-based control for polytopic uncertain systems

Constrained interpolation-based control for polytopic uncertain systems 2011 50th IEEE Conference on Decision and Control and European Control Conference CDC-ECC Orlando FL USA December 12-15 2011 Constrained interpolation-based control for polytopic uncertain systems H.-N.

More information

Event-based State Estimation of Linear Dynamical Systems: Communication Rate Analysis

Event-based State Estimation of Linear Dynamical Systems: Communication Rate Analysis 2014 American Control Conference Estimation of Linear Dynamical Systems: Dawei Shi, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada Department of Electronic

More information

ECON 7335 INFORMATION, LEARNING AND EXPECTATIONS IN MACRO LECTURE 1: BASICS. 1. Bayes Rule. p(b j A)p(A) p(b)

ECON 7335 INFORMATION, LEARNING AND EXPECTATIONS IN MACRO LECTURE 1: BASICS. 1. Bayes Rule. p(b j A)p(A) p(b) ECON 7335 INFORMATION, LEARNING AND EXPECTATIONS IN MACRO LECTURE : BASICS KRISTOFFER P. NIMARK. Bayes Rule De nition. Bayes Rule. The probability of event A occurring conditional on the event B having

More information

MODELLING OF RECIPROCAL TRANSDUCER SYSTEM ACCOUNTING FOR NONLINEAR CONSTITUTIVE RELATIONS

MODELLING OF RECIPROCAL TRANSDUCER SYSTEM ACCOUNTING FOR NONLINEAR CONSTITUTIVE RELATIONS MODELLING OF RECIPROCAL TRANSDUCER SYSTEM ACCOUNTING FOR NONLINEAR CONSTITUTIVE RELATIONS L. X. Wang 1 M. Willatzen 1 R. V. N. Melnik 1,2 Abstract The dynamics of reciprocal transducer systems is modelled

More information

JOHN THICKSTUN. p x. n sup Ipp y n x np x nq. By the memoryless and stationary conditions respectively, this reduces to just 1 yi x i.

JOHN THICKSTUN. p x. n sup Ipp y n x np x nq. By the memoryless and stationary conditions respectively, this reduces to just 1 yi x i. ESTIMATING THE SHANNON CAPACITY OF A GRAPH JOHN THICKSTUN. channels and graphs Consider a stationary, memoryless channel that maps elements of discrete alphabets X to Y according to a distribution p y

More information

Time-delay in high-gain observer based disturbance estimation

Time-delay in high-gain observer based disturbance estimation Time-delay in high-gain observer based disturbance estimation Xuewu Dai, Zhiwei Gao Usama Abou-Zayed Tim Breikin Control Systems Centre, The University of Manchester, Manchester UK, M6 1QD. Southwest University,

More information

8. Geometric problems

8. Geometric problems 8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 1 Minimum volume ellipsoid around a set Löwner-John ellipsoid

More information

Adaptive MMSE Equalizer with Optimum Tap-length and Decision Delay

Adaptive MMSE Equalizer with Optimum Tap-length and Decision Delay Adaptive MMSE Equalizer with Optimum Tap-length and Decision Delay Yu Gong, Xia Hong and Khalid F. Abu-Salim School of Systems Engineering The University of Reading, Reading RG6 6AY, UK E-mail: {y.gong,x.hong,k.f.abusalem}@reading.ac.uk

More information

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1)

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1) EL 625 Lecture 0 EL 625 Lecture 0 Pole Placement and Observer Design Pole Placement Consider the system ẋ Ax () The solution to this system is x(t) e At x(0) (2) If the eigenvalues of A all lie in the

More information

Explicit Robust Model Predictive Control

Explicit Robust Model Predictive Control Explicit Robust Model Predictive Control Efstratios N. Pistikopoulos Nuno P. Faísca Konstantinos I. Kouramas Christos Panos Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial

More information

The ϵ-capacity of a gain matrix and tolerable disturbances: Discrete-time perturbed linear systems

The ϵ-capacity of a gain matrix and tolerable disturbances: Discrete-time perturbed linear systems IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 11, Issue 3 Ver. IV (May - Jun. 2015), PP 52-62 www.iosrjournals.org The ϵ-capacity of a gain matrix and tolerable disturbances:

More information

Optimal State Estimators for Linear Systems with Unknown Inputs

Optimal State Estimators for Linear Systems with Unknown Inputs Optimal tate Estimators for Linear ystems with Unknown Inputs hreyas undaram and Christoforos N Hadjicostis Abstract We present a method for constructing linear minimum-variance unbiased state estimators

More information

Adaptive Robust Precision Control of Piezoelectric Positioning Stages

Adaptive Robust Precision Control of Piezoelectric Positioning Stages Proceedings of the 5 IEEE/ASME International Conference on Advanced Intelligent Mechatronics Monterey, California, USA, 4-8 July, 5 MB3-3 Adaptive Robust Precision Control of Piezoelectric Positioning

More information

Rank-one LMIs and Lyapunov's Inequality. Gjerrit Meinsma 4. Abstract. We describe a new proof of the well-known Lyapunov's matrix inequality about

Rank-one LMIs and Lyapunov's Inequality. Gjerrit Meinsma 4. Abstract. We describe a new proof of the well-known Lyapunov's matrix inequality about Rank-one LMIs and Lyapunov's Inequality Didier Henrion 1;; Gjerrit Meinsma Abstract We describe a new proof of the well-known Lyapunov's matrix inequality about the location of the eigenvalues of a matrix

More information

Identification of a Chemical Process for Fault Detection Application

Identification of a Chemical Process for Fault Detection Application Identification of a Chemical Process for Fault Detection Application Silvio Simani Abstract The paper presents the application results concerning the fault detection of a dynamic process using linear system

More information

Experimental Design for Identification of Nonlinear Systems with Bounded Uncertainties

Experimental Design for Identification of Nonlinear Systems with Bounded Uncertainties 1 American Control Conference Marriott Waterfront Baltimore MD USA June 3-July 1 ThC17. Experimental Design for Identification of Nonlinear Systems with Bounded Uncertainties Lu Lu and Bin Yao Abstract

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems by Dr. Guillaume Ducard c Fall 2016 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 Outline 1 Lecture 9: Model Parametrization 2

More information

Riccati difference equations to non linear extended Kalman filter constraints

Riccati difference equations to non linear extended Kalman filter constraints International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 1 Riccati difference equations to non linear extended Kalman filter constraints Abstract Elizabeth.S 1 & Jothilakshmi.R

More information

Introduction to Network Analysis of Microwave Circuits

Introduction to Network Analysis of Microwave Circuits 1 Introduction to Network Analysis of Microwave Circuits ABSTRACT Network presentation has been used as a technique in the analysis of lowfrequency electrical electronic circuits. The same technique is

More information

Simultaneous State and Fault Estimation for Descriptor Systems using an Augmented PD Observer

Simultaneous State and Fault Estimation for Descriptor Systems using an Augmented PD Observer Preprints of the 19th World Congress The International Federation of Automatic Control Simultaneous State and Fault Estimation for Descriptor Systems using an Augmented PD Observer Fengming Shi*, Ron J.

More information

NP-hardness of the stable matrix in unit interval family problem in discrete time

NP-hardness of the stable matrix in unit interval family problem in discrete time Systems & Control Letters 42 21 261 265 www.elsevier.com/locate/sysconle NP-hardness of the stable matrix in unit interval family problem in discrete time Alejandra Mercado, K.J. Ray Liu Electrical and

More information

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Recursive Algorithms - Han-Fu Chen

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. V - Recursive Algorithms - Han-Fu Chen CONROL SYSEMS, ROBOICS, AND AUOMAION - Vol. V - Recursive Algorithms - Han-Fu Chen RECURSIVE ALGORIHMS Han-Fu Chen Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy

More information

8. Geometric problems

8. Geometric problems 8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 Minimum volume ellipsoid around a set Löwner-John ellipsoid

More information

Active Nonlinear Observers for Mobile Systems

Active Nonlinear Observers for Mobile Systems Active Nonlinear Observers for Mobile Systems Simon Cedervall and Xiaoming Hu Optimization and Systems Theory Royal Institute of Technology SE 00 44 Stockholm, Sweden Abstract For nonlinear systems in

More information

Optimal input design for nonlinear dynamical systems: a graph-theory approach

Optimal input design for nonlinear dynamical systems: a graph-theory approach Optimal input design for nonlinear dynamical systems: a graph-theory approach Patricio E. Valenzuela Department of Automatic Control and ACCESS Linnaeus Centre KTH Royal Institute of Technology, Stockholm,

More information

Reduced-order Interval-observer Design for Dynamic Systems with Time-invariant Uncertainty

Reduced-order Interval-observer Design for Dynamic Systems with Time-invariant Uncertainty Reduced-order Interval-observer Design for Dynamic Systems with Time-invariant Uncertainty Masoud Pourasghar Vicenç Puig Carlos Ocampo-Martinez Qinghua Zhang Automatic Control Department, Universitat Politècnica

More information

IC MACROMODELS FROM ON-THE-FLY TRANSIENT RESPONSES

IC MACROMODELS FROM ON-THE-FLY TRANSIENT RESPONSES IBIS Summit @ DATE, Mar. 1, 26 MACROMODELS FROM ON-THE-FLY TRANSIENT RESPONSES F.G.Canavero, I.A.Maio, I.S.Stievano Dipartimento di Elettronica, Politecnico di Torino, Italy http://www.emc.polito.it/ IBIS

More information

Applications of Controlled Invariance to the l 1 Optimal Control Problem

Applications of Controlled Invariance to the l 1 Optimal Control Problem Applications of Controlled Invariance to the l 1 Optimal Control Problem Carlos E.T. Dórea and Jean-Claude Hennet LAAS-CNRS 7, Ave. du Colonel Roche, 31077 Toulouse Cédex 4, FRANCE Phone : (+33) 61 33

More information

Parametric Nevanlinna-Pick Interpolation Theory

Parametric Nevanlinna-Pick Interpolation Theory Proc Natl Sci Counc ROC(A) Vol, No 6, 1998 pp 73-733 Parametric Nevanlinna-Pick Interpolation Theory FANG-BO YEH*, CHIEN-CHANG LIN**, AND HUANG-NAN HUANG* *Department of Mathematics Tunghai University

More information

Chapter 1. Preliminaries

Chapter 1. Preliminaries Introduction This dissertation is a reading of chapter 4 in part I of the book : Integer and Combinatorial Optimization by George L. Nemhauser & Laurence A. Wolsey. The chapter elaborates links between

More information

L -Bounded Robust Control of Nonlinear Cascade Systems

L -Bounded Robust Control of Nonlinear Cascade Systems L -Bounded Robust Control of Nonlinear Cascade Systems Shoudong Huang M.R. James Z.P. Jiang August 19, 2004 Accepted by Systems & Control Letters Abstract In this paper, we consider the L -bounded robust

More information

A Probabilistic Approach to Optimal Estimation Part I: Problem Formulation and Methodology

A Probabilistic Approach to Optimal Estimation Part I: Problem Formulation and Methodology 51st IEEE Conference on Decision and Control December 10-13, 2012. Maui, Hawaii, USA A Probabilistic Approach to Optimal Estimation Part I: Problem Formulation and Methodology Fabrizio Dabbene, Mario Sznaier,

More information

Optimal Finite-precision Implementations of Linear Parameter Varying Controllers

Optimal Finite-precision Implementations of Linear Parameter Varying Controllers IFAC World Congress 2008 p. 1/20 Optimal Finite-precision Implementations of Linear Parameter Varying Controllers James F Whidborne Department of Aerospace Sciences, Cranfield University, UK Philippe Chevrel

More information

Partial Eigenvalue Assignment in Linear Systems: Existence, Uniqueness and Numerical Solution

Partial Eigenvalue Assignment in Linear Systems: Existence, Uniqueness and Numerical Solution Partial Eigenvalue Assignment in Linear Systems: Existence, Uniqueness and Numerical Solution Biswa N. Datta, IEEE Fellow Department of Mathematics Northern Illinois University DeKalb, IL, 60115 USA e-mail:

More information

A conjecture on sustained oscillations for a closed-loop heat equation

A conjecture on sustained oscillations for a closed-loop heat equation A conjecture on sustained oscillations for a closed-loop heat equation C.I. Byrnes, D.S. Gilliam Abstract The conjecture in this paper represents an initial step aimed toward understanding and shaping

More information

DESIGNING A KALMAN FILTER WHEN NO NOISE COVARIANCE INFORMATION IS AVAILABLE. Robert Bos,1 Xavier Bombois Paul M. J. Van den Hof

DESIGNING A KALMAN FILTER WHEN NO NOISE COVARIANCE INFORMATION IS AVAILABLE. Robert Bos,1 Xavier Bombois Paul M. J. Van den Hof DESIGNING A KALMAN FILTER WHEN NO NOISE COVARIANCE INFORMATION IS AVAILABLE Robert Bos,1 Xavier Bombois Paul M. J. Van den Hof Delft Center for Systems and Control, Delft University of Technology, Mekelweg

More information

Properties of Linear Transformations from R n to R m

Properties of Linear Transformations from R n to R m Properties of Linear Transformations from R n to R m MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Topic Overview Relationship between the properties of a matrix transformation

More information

State Estimation with Finite Signal-to-Noise Models

State Estimation with Finite Signal-to-Noise Models State Estimation with Finite Signal-to-Noise Models Weiwei Li and Robert E. Skelton Department of Mechanical and Aerospace Engineering University of California San Diego, La Jolla, CA 9293-411 wwli@mechanics.ucsd.edu

More information

Def. The euclidian distance between two points x = (x 1,...,x p ) t and y = (y 1,...,y p ) t in the p-dimensional space R p is defined as

Def. The euclidian distance between two points x = (x 1,...,x p ) t and y = (y 1,...,y p ) t in the p-dimensional space R p is defined as MAHALANOBIS DISTANCE Def. The euclidian distance between two points x = (x 1,...,x p ) t and y = (y 1,...,y p ) t in the p-dimensional space R p is defined as d E (x, y) = (x 1 y 1 ) 2 + +(x p y p ) 2

More information

On the Application of Superposition to Dependent Sources in Circuit Analysis

On the Application of Superposition to Dependent Sources in Circuit Analysis 1 On the Application of Superposition to Dependent Sources in Circuit Analysis W Marshall Leach, Jr c Copyright 1994-009 All rights reserved Abstract Many introductory circuits texts state or imply that

More information

Probabilistic set-membership state estimator

Probabilistic set-membership state estimator Probabilistic set-membership state estimator 1 Luc Jaulin ENSIETA, DTN, 2 rue François Verny, 29806 Brest. Email : jaulinlu@ensieta.fr Abstract Interval constraint propagation methods have been shown to

More information

Optimization methods NOPT048

Optimization methods NOPT048 Optimization methods NOPT048 Jirka Fink https://ktiml.mff.cuni.cz/ fink/ Department of Theoretical Computer Science and Mathematical Logic Faculty of Mathematics and Physics Charles University in Prague

More information