Example: DC Motor Speed Modeling

Size: px
Start display at page:

Transcription

1 Page 1 of 5 Example: DC Motor Speed Modeling Physical setup and system equations Design requirements MATLAB representation and open-loop response Physical setup and system equations A common actuator in control systems is the DC motor. It directly provides rotary motion and, coupled with wheels or drums and cables, can provide transitional motion. The electric circuit of the armature and the free body diagram of the rotor are shown in the following figure: For this example, we will assume the following values for the physical parameters. * moment of inertia of the rotor (J) = 0.01 kg.m^2/s^2 * damping ratio of the mechanical system (b) = 0.1 Nms * electromotive force constant (K=Ke=Kt) = 0.01 Nm/Amp * electric resistance (R) = 1 ohm * electric inductance (L) = 0.5 H * input (V): Source Voltage * output (theta): position of shaft * The rotor and shaft are assumed to be rigid The motor torque, T, is related to the armature current, i, by a constant factor Kt. The back emf, e, is related to the rotational velocity by the following equations:

2 Page 2 of 5 In SI units (which we will use), Kt (armature constant) is equal to Ke (motor constant). From the figure above we can write the following equations based on Newton's law combined with Kirchhoff's law: 1. Transfer Function Using Laplace Transforms, the above modeling equations can be expressed in terms of s. By eliminating I(s) we can get the following open-loop transfer function, where the rotational speed is the output and the voltage is the input. 2. State-Space In the state-space form, the equations above can be expressed by choosing the rotational speed and electric current as the state variab and the voltage as an input. The output is chosen to be the rotational speed. Design requirements First, our uncompensated motor can only rotate at 0.1 rad/sec with an input voltage of 1 Volt (this will be demonstrated later when the open-loop response is simulated). Since the most basic requirement of a motor is that it should rotate at the desired speed, the steady-state error of the motor speed should be less than 1%. The other performance requirement is that the motor must accelerate to its steady-state speed as soon as it turns on. In this case, we want it to have a settling time of 2 seconds. Since a speed faster than the reference may damage the equipment, we want to have an overshoot of less than 5%. If we simulate the reference input (r) by an unit step input, then the motor speed output should have:

3 Page 3 of 5 Settling time less than 2 seconds Overshoot less than 5% Steady-state error less than 1% MATLAB representation and open-loop response 1. Transfer Function We can represent the above transfer function into MATLAB by defining the numerator and denominator matrices as follows: Create a new m-file and enter the following commands: J=0.01; b=0.1; K=0.01; R=1; L=0.5; num=k; den=[(j*l) ((J*R)+(L*b)) ((b*r)+k^2)]; motor=tf(num,den); Now let's see how the original open-loop system performs. Add the following commands onto the end of the m-file and run it in the MATLAB command window: step(motor,0:0.1:3); title('step Response for the Open Loop System'); You should get the following plot:

4 Page 4 of 5 From the plot we see that when 1 volt is applied to the system, the motor can only achieve a maximum speed of 0.1 rad/sec, ten times smaller than our desired speed. Also, it takes the motor 3 seconds to reach its steady-state speed; this does not satisfy our 2 seconds settling time criterion. 2. State-Space We can also represent the system using the state-space equations. Try the following commands in a new m-file. J=0.01; b=0.1; K=0.01; R=1; L=0.5; A=[-b/J K/J -K/L -R/L]; B=[0 1/L]; C=[1 0]; D=0; motor_ss=ss(a,b,c,d); step(motor_ss) Run this m-file in the MATLAB command window, and you should get the same output as the one shown above. Modeling Examples Cruise Control Motor Speed Motor Position Bus Suspension Inverted Pendulum Pitch Controller Ball and Beam

5 Page 5 of 5 Motor Speed Examples Modeling PID Root Locus Frequency Response State Space Digital Control: PID Simulink Tutorials MATLAB Basics MATLAB Modeling PID Control Root Locus Frequency Response State Space Digital Control Simulink Basics Simulink Modeling Examples

Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and Open-Loop Response

Page 1 of 5 Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and Open-Loop Response Physical Setup A common actuator in control systems is the

DC Motor Position: System Modeling

1 of 7 01/03/2014 22:07 Tips Effects TIPS ABOUT BASICS INDEX NEXT INTRODUCTION CRUISE CONTROL MOTOR SPEED MOTOR POSITION SUSPENSION INVERTED PENDULUM SYSTEM MODELING ANALYSIS DC Motor Position: System

System Modeling: Motor position, θ The physical parameters for the dc motor are:

Dept. of EEE, KUET, Sessional on EE 3202: Expt. # 2 2k15 Batch Experiment No. 02 Name of the experiment: Modeling of Physical systems and study of their closed loop response Objective: (i) (ii) (iii) (iv)

LabVIEW 开发技术丛书 控制设计与仿真实战篇

LabVIEW 开发技术丛书 控制设计与仿真实战篇 录目录 Modeling DC Motor Position 1-8 Motor Position PID Control 9-18 Root Locus Design Method for Motor Position Control 19-28 Frequency Design Method for Motor Position Control

Bangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory

Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system

King Saud University

motor speed (rad/sec) Closed Loop Step Response ing Saud University College of Engineering, Electrical Engineering Department Labwork Manual EE 356 Control and Instrumentation Laboratory (كهر 356 معمل

SRV02-Series Rotary Experiment # 1. Position Control. Student Handout

SRV02-Series Rotary Experiment # 1 Position Control Student Handout SRV02-Series Rotary Experiment # 1 Position Control Student Handout 1. Objectives The objective in this experiment is to introduce the

Dept. of EEE, KUET, Sessional on EE 3202: Expt. # 1 2k15 Batch

Experiment No. 01 Name of the experiment Modeling of Physical systems and study of their open loop response Objectie (i) (ii) (iii) The objectie of this experiment is the modeling of physical systems and

The basic principle to be used in mechanical systems to derive a mathematical model is Newton s law,

Chapter. DYNAMIC MODELING Understanding the nature of the process to be controlled is a central issue for a control engineer. Thus the engineer must construct a model of the process with whatever information

Mechatronics Engineering. Li Wen

Mechatronics Engineering Li Wen Bio-inspired robot-dc motor drive Unstable system Mirko Kovac,EPFL Modeling and simulation of the control system Problems 1. Why we establish mathematical model of the control

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

FEEDBACK CONTROL SYSTEMS

FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

Lab 3: Quanser Hardware and Proportional Control

Lab 3: Quanser Hardware and Proportional Control The worst wheel of the cart makes the most noise. Benjamin Franklin 1 Objectives The goal of this lab is to: 1. familiarize you with Quanser s QuaRC tools

Simulink Modeling Tutorial Train system Free body diagram and Newton's law Model Construction Running the Model Obtaining MATLAB Model In Simulink, it is very straightforward to represent a physical system

R10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1

Code No: R06 R0 SET - II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry

International Journal of Advance Research in Computer Science and Management Studies

Volume 2, Issue 9, September 2014 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online

Lab 3: Model based Position Control of a Cart

I. Objective Lab 3: Model based Position Control of a Cart The goal of this lab is to help understand the methodology to design a controller using the given plant dynamics. Specifically, we would do position

R a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies.

SET - 1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Force-current and Force-Voltage analogies..

MATHEMATICAL MODELING OF OPEN LOOP PMDC MOTOR USING MATLAB/SIMULINK

MATHEMATICAL MODELING OF OPEN LOOP PMDC MOTOR USING MATLAB/SIMULINK 1 Mr.Dhaval K.Patel 1 Assistant Professor, Dept. of Electrical Engineering. Gidc Degree Engineering College Abrama, Navsari. ABSTRACT:

Mechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation

Mechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation Dr. Kevin Craig Greenheck Chair in Engineering Design & Professor of Mechanical Engineering Marquette University K.

School of Mechanical Engineering Purdue University. ME375 ElectroMechanical - 1

Electro-Mechanical Systems DC Motors Principles of Operation Modeling (Derivation of fg Governing Equations (EOM)) Block Diagram Representations Using Block Diagrams to Represent Equations in s - Domain

Laboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint

Laboratory 11 State Feedback Controller for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full state feedback controller for endpoint position control

MECH 3140 Final Project

MECH 3140 Final Project Final presentation will be held December 7-8. The presentation will be the only deliverable for the final project and should be approximately 20-25 minutes with an additional 10

Inverted Pendulum: State-Space Methods for Controller Design

1 de 12 18/10/2015 22:45 Tips Effects TIPS ABOUT BASICS HARDWARE INDEX NEXT INTRODUCTION CRUISE CONTROL MOTOR SPEED MOTOR POSITION SYSTEM MODELING ANALYSIS Inverted Pendulum: State-Space Methods for Controller

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted

Rotary Motion Servo Plant: SRV02. Rotary Experiment #01: Modeling. SRV02 Modeling using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02 Rotary Experiment #01: Modeling SRV02 Modeling using QuaRC Student Manual SRV02 Modeling Laboratory Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant

Model of a DC Generator Driving a DC Motor (which propels a car)

Model of a DC Generator Driving a DC Motor (which propels a car) John Hung 5 July 2011 The dc is connected to the dc as illustrated in Fig. 1. Both machines are of permanent magnet type, so their respective

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Torsion Disks. (ECP Systems-Model: 205)

EE 4443/539 LAB 3: Control of Industrial Systems Simulation and Hardware Control (PID Design) The Torsion Disks (ECP Systems-Model: 05) Compiled by: Nitin Swamy Email: nswamy@lakeshore.uta.edu Email: okuljaca@lakeshore.uta.edu

CHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System

CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages

LIAPUNOV S STABILITY THEORY-BASED MODEL REFERENCE ADAPTIVE CONTROL FOR DC MOTOR

LIAPUNOV S STABILITY THEORY-BASED MODEL REFERENCE ADAPTIVE CONTROL FOR DC MOTOR *Ganta Ramesh, # R. Hanumanth Nayak *#Assistant Professor in EEE, Gudlavalleru Engg College, JNTU, Kakinada University, Gudlavalleru

Video 5.1 Vijay Kumar and Ani Hsieh

Video 5.1 Vijay Kumar and Ani Hsieh Robo3x-1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior

3 Lab 3: DC Motor Transfer Function Estimation by Explicit Measurement

3 Lab 3: DC Motor Transfer Function Estimation by Explicit Measurement 3.1 Introduction There are two common methods for determining a plant s transfer function. They are: 1. Measure all the physical parameters

ME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics

ME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics Introduction Often, due to budget constraints or convenience, engineers must use whatever tools are available to create new or improved

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos

Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Lecture 6: Modeling of Electromechanical Systems Principles of Motor Operation

ENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM

CHAPTER 1 BY RADU MURESAN Page 1 ENGG4420 LECTURE 7 September 21 10 2:29 PM MODELS OF ELECTRIC CIRCUITS Electric circuits contain sources of electric voltage and current and other electronic elements such

Mathematical Modeling and Dynamic Simulation of DC Motors using MATLAB/Simulink Environment

Mathematical Modeling and Dynamic Simulation of DC Motors using MATLAB/Simulink Environment K. Kalaiselvi 1, K.Abinaya 2, P. Ramesh Babu 3 1,2 Under Graduate Scholar, Department of EEE, Saranathan College

Rotary Motion Servo Plant: SRV02. Rotary Experiment #11: 1-DOF Torsion. 1-DOF Torsion Position Control using QuaRC. Student Manual

Rotary Motion Servo Plant: SRV02 Rotary Experiment #11: 1-DOF Torsion 1-DOF Torsion Position Control using QuaRC Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1 3. OVERVIEW OF

Positioning Servo Design Example

Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pick-and-place robot to move the link of a robot between two positions. Usually

THE REACTION WHEEL PENDULUM

THE REACTION WHEEL PENDULUM By Ana Navarro Yu-Han Sun Final Report for ECE 486, Control Systems, Fall 2013 TA: Dan Soberal 16 December 2013 Thursday 3-6pm Contents 1. Introduction... 1 1.1 Sensors (Encoders)...

ET3-7: Modelling II(V) Electrical, Mechanical and Thermal Systems

ET3-7: Modelling II(V) Electrical, Mechanical and Thermal Systems Agenda of the Day 1. Resume of lesson I 2. Basic system models. 3. Models of basic electrical system elements 4. Application of Matlab/Simulink

A-type elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 A-type variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,

Introduction to Control (034040) lecture no. 2

Introduction to Control (034040) lecture no. 2 Leonid Mirkin Faculty of Mechanical Engineering Technion IIT Setup: Abstract control problem to begin with y P(s) u where P is a plant u is a control signal

State Feedback Controller for Position Control of a Flexible Link

Laboratory 12 Control Systems Laboratory ECE3557 Laboratory 12 State Feedback Controller for Position Control of a Flexible Link 12.1 Objective The objective of this laboratory is to design a full state

2002 Prentice Hall, Inc. Gene F. Franklin, J. David Powell, Abbas Emami-Naeini Feedback Control of Dynamic Systems, 4e

u Figure 2.1 Cruise-control model x Friction force bx m x u Figure 2.2 Free-body diagram for cruise control S P 278 Figure 2.3 Automobile suspension y m 2 k s b v car x m 1 k w Road surface r Inertial

Full Order Observer Controller Design for DC Motor Based on State Space Approach

ISSN (Online): 2319-764 Index Copernicus Value (213): 6.14 Impact Factor (214): 5.611 Full Order Observer Controller Design for DC Motor Based on State Space Approach Debabrata Pal Aksum University, College

Mechatronics Modeling and Analysis of Dynamic Systems Case-Study Exercise

Mechatronics Modeling and Analysis of Dynamic Systems Case-Study Exercise Goal: This exercise is designed to take a real-world problem and apply the modeling and analysis concepts discussed in class. As

Tutorial 1 - Drive fundamentals and DC motor characteristics

University of New South Wales School of Electrical Engineering & elecommunications ELEC4613 ELECRIC DRIVE SYSEMS utorial 1 - Drive fundamentals and DC motor characteristics 1. In the hoist drive system

Overview of motors and motion control

Overview of motors and motion control. Elements of a motion-control system Power upply High-level controller ow-level controller Driver Motor. Types of motors discussed here; Brushed, PM DC Motors Cheap,

Eigenvalues and eigenvectors System Theory: electricmotor

Eigenvalues and eigenvectors System Theory: electricmotor Alireza Abouhossein Ph.D. Alireza.abouhossein@unibo.it 1 Example-1 Can you calculate A^2, A -1 -I? without multiplying A or finding the inverse

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

Liapunov s Stability Theory-based Model Reference Adaptive control for DC Motor

Liapunov s Stability Theory-based Mol Reference Adaptive control for DC Motor R. Hanumanth nayak Assistant Professor in EEE Chalapathi institute of technology JNTU Kakinada university, AP Ganta Ramesh

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11

sc46 - Control Systems Design Q Sem Ac Yr / Mock Exam originally given November 5 9 Notes: Please be reminded that only an A4 paper with formulas may be used during the exam no other material is to be

Lab 6a: Pole Placement for the Inverted Pendulum

Lab 6a: Pole Placement for the Inverted Pendulum Idiot. Above her head was the only stable place in the cosmos, the only refuge from the damnation of the Panta Rei, and she guessed it was the Pendulum

EE 410/510: Electromechanical Systems Chapter 4

EE 410/510: Electromechanical Systems Chapter 4 Chapter 4. Direct Current Electric Machines and Motion Devices Permanent Magnet DC Electric Machines Radial Topology Simulation and Experimental Studies

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequency-domain analysis and control design (15 pt) Given is a

The Control of an Inverted Pendulum

The Control of an Inverted Pendulum AAE 364L This experiment is devoted to the inverted pendulum. Clearly, the inverted pendulum will fall without any control. We will design a controller to balance the

DOUBLE ARM JUGGLING SYSTEM Progress Presentation ECSE-4962 Control Systems Design

DOUBLE ARM JUGGLING SYSTEM Progress Presentation ECSE-4962 Control Systems Design Group Members: John Kua Trinell Ball Linda Rivera Introduction Where are we? Bulk of Design and Build Complete Testing

UNIVERSITY OF WASHINGTON Department of Aeronautics and Astronautics

UNIVERSITY OF WASHINGTON Department of Aeronautics and Astronautics Modeling and Design of a DC Motor Control System February 21, 2003 Christopher Lum Travis Reisner Amanda Stephens Brian Hass 1 LAB EXPERIMENT

Chapter three. Mathematical Modeling of mechanical end electrical systems. Laith Batarseh

Chapter three Mathematical Modeling of mechanical end electrical systems Laith Batarseh 1 Next Previous Mathematical Modeling of mechanical end electrical systems Dynamic system modeling Definition of

Feedback Control Systems

ME Homework #0 Feedback Control Systems Last Updated November 06 Text problem 67 (Revised Chapter 6 Homework Problems- attached) 65 Chapter 6 Homework Problems 65 Transient Response of a Second Order Model

System Parameters and Frequency Response MAE 433 Spring 2012 Lab 2

System Parameters and Frequency Response MAE 433 Spring 2012 Lab 2 Prof. Rowley, Prof. Littman AIs: Brandt Belson, Jonathan Tu Technical staff: Jonathan Prévost Princeton University Feb. 21-24, 2012 1

PID Controller Design for DC Motor

Contemporary Engineering Sciences, Vol. 11, 2018, no. 99, 4913-4920 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.810539 PID Controller Design for DC Motor Juan Pablo Trujillo Lemus Department

PID Control. Objectives

PID Control Objectives The objective of this lab is to study basic design issues for proportional-integral-derivative control laws. Emphasis is placed on transient responses and steady-state errors. The

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open

(a) Torsional spring-mass system. (b) Spring element.

m v s T s v a (a) T a (b) T a FIGURE 2.1 (a) Torsional spring-mass system. (b) Spring element. by ky Wall friction, b Mass M k y M y r(t) Force r(t) (a) (b) FIGURE 2.2 (a) Spring-mass-damper system. (b)

Modelling of Ball and Plate System Based on First Principle Model and Optimal Control

2017 21st International Conference on Process Control (PC) June 6 9, 2017, Štrbské Pleso, Slovakia Modelling of Ball and Plate System Based on First Principle Model and Optimal Control František Dušek,

ET3-7: Modelling I(V) Introduction and Objectives. Electrical, Mechanical and Thermal Systems

ET3-7: Modelling I(V) Introduction and Objectives Electrical, Mechanical and Thermal Systems Objectives analyse and model basic linear dynamic systems -Electrical -Mechanical -Thermal Recognise the analogies

MCE380: Measurements and Instrumentation Lab. Chapter 5: Electromechanical Transducers

MCE380: Measurements and Instrumentation Lab Chapter 5: Electromechanical Transducers Part I Topics: Transducers and Impedance Magnetic Electromechanical Coupling Reference: Holman, CH 4. Cleveland State

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOP-UP SEMESTER 1 EXAMINATION 2017/2018 ADVANCED MECHATRONIC SYSTEMS

ENG08 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOP-UP SEMESTER EXAMINATION 07/08 ADVANCED MECHATRONIC SYSTEMS MODULE NO: MEC600 Date: 7 January 08 Time: 0.00.00 INSTRUCTIONS TO

Equal Pitch and Unequal Pitch:

Equal Pitch and Unequal Pitch: Equal-Pitch Multiple-Stack Stepper: For each rotor stack, there is a toothed stator segment around it, whose pitch angle is identical to that of the rotor (θs = θr). A stator

The Control of an Inverted Pendulum

The Control of an Inverted Pendulum AAE 364L This experiment is devoted to the inverted pendulum. Clearly, the inverted pendulum will fall without any control. We will design a controller to balance the

EE 422G - Signals and Systems Laboratory

EE 4G - Signals and Systems Laboratory Lab 9 PID Control Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 April, 04 Objectives: Identify the

Modelling and Control of DWR 1.0 A Two Wheeled Mobile Robot

APPLICAIONS OF MODELLING AND SIMULAION http://www.ams-mss.org eissn 600-8084 VOL 1, NO. 1, 017, 9-35 Modelling and Control of DW 1.0 A wo Wheeled Mobile obot Nurhayati Baharudin, Mohamad Shukri Zainal

Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum

ISSN (Online): 347-3878, Impact Factor (5): 3.79 Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum Kambhampati Tejaswi, Alluri Amarendra, Ganta Ramesh 3 M.Tech, Department

Step Response of First-Order Systems

INTRODUCTION This tutorial discusses the response of a first-order system to a unit step function input. In particular, it addresses the time constant and how that affects the speed of the system s response.

State Space Representation

ME Homework #6 State Space Representation Last Updated September 6 6. From the homework problems on the following pages 5. 5. 5.6 5.7. 5.6 Chapter 5 Homework Problems 5.6. Simulation of Linear and Nonlinear

Inverted Pendulum. Objectives

Inverted Pendulum Objectives The objective of this lab is to experiment with the stabilization of an unstable system. The inverted pendulum problem is taken as an example and the animation program gives

State Feedback MAE 433 Spring 2012 Lab 7

State Feedback MAE 433 Spring 1 Lab 7 Prof. C. Rowley and M. Littman AIs: Brandt Belson, onathan Tu Princeton University April 4-7, 1 1 Overview This lab addresses the control of an inverted pendulum balanced

Digital Control Semester Project

Digital Control Semester Project Part I: Transform-Based Design 1 Introduction For this project you will be designing a digital controller for a system which consists of a DC motor driving a shaft with

Predictive Cascade Control of DC Motor

Volume 49, Number, 008 89 Predictive Cascade Control of DC Motor Alexandru MORAR Abstract: The paper deals with the predictive cascade control of an electrical drive intended for positioning applications.

Appendix W. Dynamic Models. W.2 4 Complex Mechanical Systems. Translational and Rotational Systems W.2.1

Appendix W Dynamic Models W.2 4 Complex Mechanical Systems W.2.1 Translational and Rotational Systems In some cases, mechanical systems contain both translational and rotational portions. The procedure

E11 Lecture 13: Motors. Professor Lape Fall 2010

E11 Lecture 13: Motors Professor Lape Fall 2010 Overview How do electric motors work? Electric motor types and general principles of operation How well does your motor perform? Torque and power output

The control of a gantry

The control of a gantry AAE 364L In this experiment we will design a controller for a gantry or crane. Without a controller the pendulum of crane will swing for a long time. The idea is to use control

ECE557 Systems Control

ECE557 Systems Control Bruce Francis Course notes, Version.0, September 008 Preface This is the second Engineering Science course on control. It assumes ECE56 as a prerequisite. If you didn t take ECE56,

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

Solved Problems Electric Circuits & Components 1-1 Write the KVL equation for the circuit shown. 1-2 Write the KCL equation for the principal node shown. 1-2A In the DC circuit given in Fig. 1, find (i)

SRV02-Series Rotary Experiment # 7. Rotary Inverted Pendulum. Student Handout

SRV02-Series Rotary Experiment # 7 Rotary Inverted Pendulum Student Handout SRV02-Series Rotary Experiment # 7 Rotary Inverted Pendulum Student Handout 1. Objectives The objective in this experiment is

Fast Seek Control for Flexible Disk Drive Systems

Fast Seek Control for Flexible Disk Drive Systems with Back EMF and Inductance Chanat La-orpacharapan and Lucy Y. Pao Department of Electrical and Computer Engineering niversity of Colorado, Boulder, CO

Rotary Inverted Pendulum

Rotary Inverted Pendulum Eric Liu 1 Aug 2013 1 1 State Space Derivations 1.1 Electromechanical Derivation Consider the given diagram. We note that the voltage across the motor can be described by: e b

Swinging Tension sensor and Control Structure for Gyroscope Fiber Winding Process

Proceedings of the 10 th ICEENG Conference, 19-21 April, 2016 EE000-1 Military Technical College Kobry El-Kobbah, Cairo, Egypt 10 th International Conference on Electrical Engineering ICEENG 2016 Swinging

EE Homework 3 Due Date: 03 / 30 / Spring 2015

EE 476 - Homework 3 Due Date: 03 / 30 / 2015 Spring 2015 Exercise 1 (10 points). Consider the problem of two pulleys and a mass discussed in class. We solved a version of the problem where the mass was

Position Control Experiment MAE171a

Position Control Experiment MAE171a January 11, 014 Prof. R.A. de Callafon, Dept. of MAE, UCSD TAs: Jeff Narkis, email: jnarkis@ucsd.edu Gil Collins, email: gwcollin@ucsd.edu Contents 1 Aim and Procedure

FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT

http:// FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT 1 Ms.Mukesh Beniwal, 2 Mr. Davender Kumar 1 M.Tech Student, 2 Asst.Prof, Department of Electronics and Communication

QNET Experiment #04: Inverted Pendulum Control. Rotary Pendulum (ROTPEN) Inverted Pendulum Trainer. Instructor Manual

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #04: Inverted Pendulum Control Rotary Pendulum (ROTPEN) Inverted Pendulum Trainer Instructor Manual Table of Contents 1 Laboratory Objectives1 2

Solution for Fq. A. up B. down C. east D. west E. south

Solution for Fq A proton traveling due north enters a region that contains both a magnetic field and an electric field. The electric field lines point due west. It is observed that the proton continues

1 x(k +1)=(Φ LH) x(k) = T 1 x 2 (k) x1 (0) 1 T x 2(0) T x 1 (0) x 2 (0) x(1) = x(2) = x(3) =

567 This is often referred to as Þnite settling time or deadbeat design because the dynamics will settle in a Þnite number of sample periods. This estimator always drives the error to zero in time 2T or

Unit 2 Electrical Quantities and Ohm s Law

Electrical Quantities and Ohm s Law Objectives: Define a coulomb. Define an ampere. Define a volt. Define an ohm. Define a watt. Objectives: Compute electrical values using Ohm s law. Discuss basic types

State space control for the Two degrees of freedom Helicopter

State space control for the Two degrees of freedom Helicopter AAE364L In this Lab we will use state space methods to design a controller to fly the two degrees of freedom helicopter. 1 The state space