B. Barbara, Institut Néel, CNRS, Grenoble. Brief history. Quantum nanomagnetism. Conclusion

Size: px
Start display at page:

Download "B. Barbara, Institut Néel, CNRS, Grenoble. Brief history. Quantum nanomagnetism. Conclusion"

Transcription

1 Quantum tunnelling and coherence of mesoscopic spins B. Barbara, Institut Néel, CNRS, Grenoble Brief history From classical to quantum nanomagnetism Quantum nanomagnetism From relaxation to coherence Ensemble single molecules magnets, single ions magnets Conclusion

2 Brief history 70 s: Search for «macroscopic quantum tunnelling» phenomena ( Schrödinger, Leggett) 1981 First evidence of MQT in J - J (R. Voss & R. Webb, IBM Yorktown-Heights) Rare-earths with «narrow domain walls»: Dy 3 Al 2, SmCo 3.5 Cu s-90 s T-independent relaxation Films, nanoparticles ensembles: a-smco, a-tbfe, (TbCe)Fe 2, Theory: T. Egami R. Schilling, J.L. van Hemmen, P. Stamp, E. Chudnovsky, L. Gunther, N. Prokof ev, 90 s Two directions: 1) single particule Micro-SQUIDs 2) ensembles of identical nanoparticles Single Molecules Magnets

3 ingle Molecule Magnetic Protein Cluster Nanoparticle 1 nm 2 nm 3 nm 20 nm K. Ziemelis, Nature, «Milestones on Spin», S19, March 2008 (Produced by Nature Physics)

4 Quantum nano-magnetism Mn12 acetate (very schematic) Mn(III) S=2 Mn(IV) S=3/2 Total Spin = 10 T. Lis, Acta. Cryst. 1980

5 Single molecule magnets of Mn 12 -ac The molecules are regularly arranged in the crystal Macroscopic quantum magnet 1 mm From Kunio Awaga, Nagoya university

6 Macroscopic quantum magnet of Fe 8 1 mm From Satoru Maegawa, Kyoto university

7 Mn12 acetate (very schematic) Mn(III) S=2 1 M Mn(IV) S=3/2 0 H A H Total Spin = 10

8 Resonant Tunneling of Magnetization (in Mn 12 -ac) Quantum tunneling and classical hysteresis NATO ASI workshop «Quantum Tunnelling of Magnetization», 1994 Grenoble (Organization: B.B., L.Gunther, N.Garcia, and A.J. Leggett). 1,0 1 M / M s Hysteresis loop 0,5 0,5 M/M S 0,0 0-0,5-1 -1, K 0.65 K 0.7 K 0.75 K 0.45 K 1.5K 1.6K 1.9K 2.4K ,5-5,0-4,5-4,0-3,5-3,0-2,5-2,0 H n = nd/gµ B ~ nh A /2S B L (T) B 0 (T) 0.8 K 0.85 K 0.9 K 0.95 K 1 K 1.1 K 1.3 K 1.37 K I. Chiorescu et al L. Thomas et al, Nature (1996); Friedman et al, PRL (1996). B.B. et al, JMMM (1995)

9 Classical barrier and tunnelling of a collective spin (S=10) H = - DS z2 -BS z4 - gµ B S z H z Low Temperature regime ω ²M = ± µ 0 H z (T) 0 - gµ B (S + + S - )H x /2 + E(S +2 + S -2 ) - C(S +4 + S -4 ) Energy (K) Thermally activated reversal S, m-n > S, -m > S,-S+2> S,S-2> 1 P S,-S+1> S, -m > S,-S> spin down H z = 0 S, m-n > Ground state tunneling S Z magnetic field S,S-1> S,S> spin up S + Landau-Zener Γ 2 (TS model n /DS 2 ) 4S/n H 0 (TS n /DS H = 2 0) 2S/n, n 2S H A Probability: Resonances P LZ = 1 exp[-π( /ħ) «under 2 the /γc] barrier ~ 2 /c» 1 - P Thermally activated tunnelling ħ, v H /

10 Usual double-well energy barrier E = Dm 2 E(θ) with θ = Cos -1 (m/s) ; m = <S z >

11 Effect of long-range dipolar interactions lassical barrier E(m) = - Dm 2 E(θ) with θ = cos -1 (m/s) ; m = <S z > From «zero-kelvin» tunneling to Equilibrated superparamagnetism B n (T) 5, ,5 4,0 3,5 3, (n-p) : -S+p S-n-p E (K) N(E) 0,4 0,6 0,8 1,0 1,2 1,4 T(K) 3,0 3,5 4,0 4,5 5,0 B 0 (T) Local fields small shifts of spin levels Inhomogeneous distribution of states Thermally activated tunneling P ~ e B - E/kT

12 From a single spin to an ensemble of spins Effects of the magnetic environment (spin-bath) Long range dipolar interactions at T=0 Kelvin LZ probability: P LZ = 1 exp[-π( /ħ) 2 /γc] ~ 2 /c Spin-bath (Prokofiev & Stamp, 2000) P SB ~ ( 2 /ω 0 )e - ξ /ξ 0 n(ed ) >> P LZ energy 1/2,1/2> 1/2,-1/2> S, m-n > ² 0 S, -m > 1-P 1 - P _ hω H = 0 2 +(2µ B B 0 ) 2 ξ 0 = hyperfine tunnel window >>> T < T c 1 1 P energy 1/2,-1/2> S, -m > P 1/2,1/2> S, m-n > Non-equilibrium hole magnetic field 0,0 applied field Allows observation of mesoscopic tunnelling Strong decoherence

13 Fom molecules to simple paramagnetic ions Nuclear spins! Molecules of Mn 12 ac Ho 3+ ions in YLiF 4 1 1,0 M/M S M/M S 0,5 0-0, B L (T) 1.5K 1.6K 1.9K 2.4K 0,5 0,0 dh/dt=0.55 mt/s -0,5-1,0 200 mk 150 mk 50 mk µ 0 H z (mt) 1/µ 0 dm/dh z (1/T) n=1 dh/dt > 0 n=2 100 n=0 n=-1 n= L.Thomas, F. Lionti, R. Ballou, R. Sessoli, R. Giraud, W. Wernsdorfer, D. Mailly, A.Tkachuk, D. Gatteschi, and B. Barbara, Nature, and B. Barbara, PRL, Steps at B n = 450.n (mt) Steps at B n = 23.n (mt)

14 Ising CF Ground-state + Hyperfine Interactions H = H CF-Z + A{J z I z + (J + I - + J - I + )/2} The ground-state doublet 2(2 x 7/2 + 1) = 16 states E (K) -178,5-179,0-179,5 I = 7/2 5/2-180,0 3/2-7/ µ 0 H z (mt) g J µ B H n = n.a/2-7/2-5/2 5/2 7/2 7/2 1,0 0,5 0,0-0,5-1,0 M/M S 200 mk 150 mk 50 mk µ 0 H z (mt) 1/µ 0 dm/dh z (1/T) A = 38.6 mk n=1 dh/dt > 0 n=2 100 n=0 n=-1 n= Avoided Level Crossings between Ψ, I z > and Ψ +, I z > if I= (I z -I z )/2= odd Co-Tunneling of electronic and nuclear momenta

15 1,0 0,5 E (K) 0,0-0, a) M/M S 50 mk -179,0 0.3 T/s -1,0 n µ 0 H z (mt) 60 b) 8 n = 6-179,5 n=0 1/µ 0 dm/dh z (1/T) 50 mk 200 mk 0.3 T/s -180,0 Additional steps at intermediate fields n=1 µ 0 H n (mt) µ 0 H z (mt) 60 0 linear fit µ 0 H n = n x 23 mt -120 integer n -180 half integer n n = 7 n = 8 n = 9 dh/dt<0 Giraud & B.B et al, Phys. Rev. Lett. (2001) Fast measurements (τ meas ~ τ bott > τ 1 >> τ s ) Simultaneous tunneling of Ho 3+ pairs (4-bodies tunnelling) Detailed studies in ac-susceptibility Accurate fits with spins-spins, spin-phono bottleneck, weak CF disorder (B.Malkin):

16 Ho: YLiF 4 Er: CaWO 4 X band spectrometer (9-10GHz) Continuous wave (CW) Time resolved (TR) or pulsed Temperature 2.5K to 300K Bruker Elexys E580 Copyright CEA-Grenoble

17 Calculated energy spectrum 167 Er 3+ :CaWO 4 I=7/2 7/2 5/2 3/2 1/2-1/2-3/2-5/2-7/2 φ +, m I > m J = ±1 m I =0 H c-axis -7/2-5/2-3/2-1/2 1/2 3/2 5/2 7/2 m I = ±1 φ -, m I > φ 1 > = α 13/2> + δ 11/2> + β 5/2> + γ 3/2>

18 CW-EPR (9.7 GHz) EPR sequence used Electro-nuclear Rabi oscillations Narrow lines t (µs) I=0 H//b Er (0.001%):CaWO 4 I=7/2 ( 167 Er) I =7/2 ( 167 Er) I=0 Excitation π/2 π Echo <S z > Pulsed EPR 9 decoupled 9 decoupled qubits, qubits, adressed adressed with with small small fields fields (large (large moments) moments) S. Bertaina, S. Gambarelli, A. Tkachuk, B. Malkin, A. Stepanov, and B.Barbara, Nature nanotechnology, (2007) A new class of spins qubits

19 Effect of anisotropic hyperfine interaction H c Ω R (n,m,µ)~ g J h µ <φ n S + φ m > Calculated in the electro-nuclear 128 dimension basis

20 Rabi frequency Ω nm measured vs microwave ac field for three different orientations Lines: Calculated Rabi frequency: Ω µ =g µ µ B h µ with g µ = g J <φ 1µ S + φ 2 µ >

21 Rabi oscillations on Er (0.001%):CaWO 4, H=0.522 T //c, 0.15 mt //b, at 3.5 K Ω/2π ~ ±17 MHz (halfwidth ~2 MHz ~ π/τ R ) Varie avec The phase of the wave function Ψ( t) = a( t) Φ Φ 1 + b( t) is preserved at the timescales of µs φ1 > = α 13/2> + δ 11/2> + β 5/2> + γ 3/2> φ2 > = α 13/2> δ 11/2> β 5/2> γ 3/2> 2 <S z > = S 0 e -t/τ R sin(ωt/2) τ R = 0.2 µs << τ 2 ~ 7µs

22 Effect of the microwave power (0.05% Er:CaWO 4 ) h ac = 0.6 mt h ac =0.05mT The damping rate decreases with concentration and power Spin-bath decoherence Stochastic noise, interferences

23 The damping rate scales with the Rabi frequency Decoherence in spin + electromagnetic baths Stamp and Prokof ev Spin-bath Stochastic noise, interferences 1/τ R = 1/τ 2 g(ω R τ 2 ) 1/τ 2

24 Coherence times τ 2 vs T «Pairwise decoherence» T cosh 2 Gd 3+ T 2 = 1ms, 4K

25 Coherent multilevel manipulations in Gd:CaWO 4 2 close transtions: 1 st excite and 2 nd probe ν 1 ν 2 ν 2 τ 2 1ms at 4K ν ms at 80 K ν 1 1

26 From ions to molecules Molecular and supramolecular chemistry Achim Müller (Bielfeld)

27 V ( H ) [ ] IV III 6 V As O O S=1/2 Huge Hibert space! D H = nm

28 ( ) ( ) = = = < = = ,13,31 3 1, 0 i i B i j i ij j i ij j i j i j i g A J H S H S I S S D S S µ Complex Hamiltoninan

29 Well separated molecules Random orientation {( CH 2 ) 17 Me} N CH 3 CH 3 H 3 C N CH 3 V 15 H 3 C N H 3 C + H 3 C N H 3 C CH 3 N CH 3 H 3 C CH 3 N H 3 C H 3 C N {( CH 2 ) 17 Me} DODA + ~ 13 nm Surfactants DODA = Me 2 N{(CH2)17Me} 2 + Embedding material for anionic clusters

30 First Rabi Oscillations in a Molecular Magnet Doublets Entanglement of 15 spins with photons Quartet D H = 2 15 Factor of merit ~ 1 See also: P. Stamp, Nature News & Views May 2008 R. Winpenny, Angew. Chem. Highlights Sept Ardavan et al, PRL (2007) Factor of merit ~ 10 S. Bertaina, S. Gambarelli, T. Mitra, B. Tsukerblat, A. Müller, & B. Barbara

31 T 2 = 1 tanh Inter-molecular décohérence (V 15 ) / kt 2 P. Stamp et al PRL, 2006 Pairwise decoherence i j Ai, j µs Well separated molecules! Protons 4π = 18 s ~ 9 µs E T2 µ 2 CW-EPR ( 1 H, 75 As, 51 V) First time that decoherence can be explained quantitatively (Any system!) Intra-molecular decoherence Nuclear spins ( 1 H, 75 As, 51 V) W ~ 34 mt 4π E= W/2 ~17 mk T2 = 2 1µ s E Main decoherence: Nuclear Spins of V 15

32 CONCLUSION Entanglement of photons with a complex molecule with huge Hilbert space Self-organized 2D supra-molecular depositions become possible From: I. Chiorescu, Y. Nakamura, K. Hartmans, H. Mooij et al, Delft University of Technology M. Ruben, J. V. Barth et. al., INT Karlsruhe, TU Munich 100 µs expected

33 Collaborations Quantum coherence (rare-earth ions, V 15 ) S. Bertaina (Grenoble,Tallahassee), S. Gambarelli (Grenoble), A. Stepanov (Marseille), B. Malkin (Kazan), A.M. Tkachuk (St. Petersbourg). A. Müller and his group (Bielefeld). Thank You!! Quantum relaxation (initial studies in Mn 12 -ac, rare-earth ions) L. Thomas (IBM-Almaden), Chiorescu (Tallahassee), W. Wernsdorfer (Grenoble) R. Giraud (LPN-Marcoussis), D. Gatteschi and his group (Florence).

QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS

QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS B. Barbara, W. Wernsdorfer, E. Bonet, L. Thomas (IBM), I. Chiorescu (FSU), R. Giraud (LPN) Laboratory Louis Néel, CNRS, Grenoble Collaborations with other groups

More information

Recent Developments in Quantum Dynamics of Spins

Recent Developments in Quantum Dynamics of Spins Recent Developments in Quantum Dynamics of Spins B. Barbara, R. Giraud*, I. Chiorescu*, W. Wernsdorfer, Lab. Louis Néel, CNRS, Grenoble. Collaborations with other groups: D. Mailly (Marcoussis) D. Gatteschi

More information

Spins Dynamics in Nanomagnets. Andrew D. Kent

Spins Dynamics in Nanomagnets. Andrew D. Kent Spins Dynamics in Nanomagnets Andrew D. Kent Department of Physics, New York University Lecture 1: Magnetic Interactions and Classical Magnetization Dynamics Lecture 2: Spin Current Induced Magnetization

More information

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006 Quantum Tunneling of Magnetization in Molecular Magnets ANDREW D. KENT Department of Physics, New York University Tutorial T2: Molecular Magnets, March 12, 2006 1 Outline 1. Introduction Nanomagnetism

More information

Intermolecular interactions (dipolar and exchange)

Intermolecular interactions (dipolar and exchange) Intermolecular interactions (dipolar and exchange) SMM ideal Mn 2 ac Mn 4 (SB) spin chains, etc. MM...? doped Fe 6 Fe 5 Ga Fe 8 [Mn 4 ] 2 J/D Mn 4 singlemolecule magnet Mn 4 O 3 (OSiMe 3 )(O 2 CMe) 3 (dbm)

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy Nuclear spin dynamics in quantum regime of a single-molecule magnet Andrea Morello UBC Physics & Astronomy Kamerlingh Onnes Laboratory Leiden University Nuclear spins in SMMs Intrinsic source of decoherence

More information

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent Spin Dynamics in Single Molecule Magnets Andrew D. Kent Department of Physics, New York University Collaborators: Gregoire de Loubens, Enrique del Barco Stephen Hill Dmitry Garanin Myriam Sarachik, Yosi

More information

Quantum dynamics in Single-Molecule Magnets

Quantum dynamics in Single-Molecule Magnets Quantum dynamics in Single-Molecule Magnets Wolfgang Wernsdorfer Laboratoire de Magnétisme Louis Néel C.N.R.S. - Grenoble S = 10 2 to 10 6 S = 1/2 to 30 permanent magnets macroscopic micron particles Magnetic

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Coherent spin manipulations in Yb 3+ : CaWO_4 at X - and W -band EPR frequencies

Coherent spin manipulations in Yb 3+ : CaWO_4 at X - and W -band EPR frequencies Coherent spin manipulations in Yb 3+ : CaWO_4 at X - and W -band EPR frequencies R. Rakhmatullin, I. N. Kurkin, G. V. Mamin, S.B. Orlinskii, E. I. Baibekov, B. Malkin, S. Gambarelli, S. Bertaina, B. Barbara,

More information

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)-

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)- Quantum tunneling of magnetization in lanthanide single-molecule magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)- dysprosium anions** Naoto Ishikawa, * Miki Sugita and Wolfgang Wernsdorfer

More information

Spin electric coupling and coherent quantum control of molecular nanomagnets

Spin electric coupling and coherent quantum control of molecular nanomagnets Spin electric coupling and coherent quantum control of molecular nanomagnets Dimitrije Stepanenko Department of Physics University of Basel Institute of Physics, Belgrade February 15. 2010 Collaborators:

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

Magnetic Resonance in Quantum Information

Magnetic Resonance in Quantum Information Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

LARGE-SCALE QUANTUM PHENOMENA COURSE. UNIVERSITY of INNSBRUCK. (June 2010)

LARGE-SCALE QUANTUM PHENOMENA COURSE. UNIVERSITY of INNSBRUCK. (June 2010) LARGE-SCALE QUANTUM PHENOMENA COURSE to be given at the UNIVERSITY of INNSBRUCK (June 2010) INTRODUCTION 1.BASIC PHENOMENA 2.EXPERIMENTAL OBSERVATIONS 3.THEORETICAL FRAMEWORK LARGE-SCALE QUANTUM PHENOMENA:

More information

arxiv: v1 [cond-mat.mes-hall] 14 May 2015

arxiv: v1 [cond-mat.mes-hall] 14 May 2015 Resonant single and multi-photon coherent transitions in a detuned regime arxiv:.69v [cond-mat.mes-hall] May S. Bertaina,, M. Martens, M. Egels, D. Barakel, and I. Chiorescu IMNP-CNRS (UMR 7) and Aix-Marseille

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology 3 E 532 nm 1 2δω 1 Δ ESR 0 1 A 1 3 A 2 Microwaves 532 nm polarization Pulse sequence detection

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Mean-field theory. Alessandro Vindigni. ETH October 29, Laboratorium für Festkörperphysik, ETH Zürich

Mean-field theory. Alessandro Vindigni. ETH October 29, Laboratorium für Festkörperphysik, ETH Zürich Alessandro Vindigni Laboratorium für Festkörperphysik, ETH Zürich ETH October 29, 2012 Lecture plan N-body problem Lecture plan 1. Atomic magnetism (Pescia) 2. Magnetism in solids (Pescia) 3. Magnetic

More information

Strong tunable coupling between a charge and a phase qubit

Strong tunable coupling between a charge and a phase qubit Strong tunable coupling between a charge and a phase qubit Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Bernard Pannetier Aurélien Fay Ioan Pop Florent Lecocq Rapaël Léone Nicolas Didier

More information

ELECTRON PARAMAGNETIC RESONANCE

ELECTRON PARAMAGNETIC RESONANCE ELECTRON PARAMAGNETIC RESONANCE = MAGNETIC RESONANCE TECHNIQUE FOR STUDYING PARAMAGNETIC SYSTEMS i.e. SYSTEMS WITH AT LEAST ONE UNPAIRED ELECTRON Examples of paramagnetic systems Transition-metal complexes

More information

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000 Final Report Superconducting Qubits for Quantum Computation Contract MDA904-98-C-A821/0000 Project Director: Prof. J. Lukens Co-project Director: Prof. D. Averin Co-project Director: Prof. K. Likharev

More information

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants MolNanoSpin: Spintronique moléculaire avec des molécules-aimants W. Wernsdorfer : Institut Néel T. Mallah : Institut de Chimie Moléculaire et des Matériaux d'orsay P. Mialane : Institut Lavoisier Journées

More information

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations CONTENTS Preface Acknowledgements Symbols Abbreviations 1 INTRODUCTION 1.1 Scope of pulse EPR 1.2 A short history of pulse EPR 1.3 Examples of Applications 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon

More information

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates

Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Bellaterra: anuary 2011 Architecture & Design of Molecule Logic Gates and Atom Circuits Molecular prototypes for spin-based CNOT and SWAP quantum logic gates Fernando LUIS Instituto de Ciencia de Materiales

More information

arxiv:cond-mat/ v2 10 Dec 1998

arxiv:cond-mat/ v2 10 Dec 1998 Quantum Coherence in Fe 8 Molecular Nanomagnets E. del Barco 1, N. Vernier 1, J.M. Hernandez 2, J.Tejada 2, E.M. Chudnovsky 3, E. Molins 4 and G. Bellessa 1 1 Laboratoire de Physique des Solides, Bâtiment

More information

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Superconducting qubits (Phase qubit) Quantum informatics (FKA 172) Thilo Bauch (bauch@chalmers.se) Quantum Device Physics Laboratory, MC2, Chalmers University of Technology Qubit proposals for implementing

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Magnetic Resonance in magnetic materials

Magnetic Resonance in magnetic materials Ferdinando Borsa, Dipartimento di Fisica, Universita di Pavia Magnetic Resonance in magnetic materials Information on static and dynamic magnetic properties from Nuclear Magnetic Resonance and Relaxation

More information

The First Cobalt Single-Molecule Magnet

The First Cobalt Single-Molecule Magnet The First Cobalt Single-Molecule Magnet En-Che Yang and David N Hendrickson Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92037, USA Wolfgang Wernsdorfer

More information

Quantum Phase Slip Junctions

Quantum Phase Slip Junctions Quantum Phase Slip Junctions Joël Peguiron Insitute of Physics, University of Basel Monday Morning Meeting, 24 April 2006 1 Goal Monday Morning Meeting, 24 April 2006 2 Evidence for Thermodynamic Fluctuations

More information

Quantum Computing with Para-hydrogen

Quantum Computing with Para-hydrogen Quantum Computing with Para-hydrogen Muhammad Sabieh Anwar sabieh@lums.edu.pk International Conference on Quantum Information, Institute of Physics, Bhubaneswar, March 12, 28 Joint work with: J.A. Jones

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Chapter 2 Magnetic Properties

Chapter 2 Magnetic Properties Chapter 2 Magnetic Properties Abstract The magnetic properties of a material are the basis of their applications. Specifically, the contrast agents that will be developed in Chaps. 4 and 5 use their magnetic

More information

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego Michigan Quantum Summer School Ann Arbor, June 16-27, 2008. Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego 1. Motivation: Quantum superiority in superposition

More information

Magnetic Resonance Spectroscopy EPR and NMR

Magnetic Resonance Spectroscopy EPR and NMR Magnetic Resonance Spectroscopy EPR and NMR A brief review of the relevant bits of quantum mechanics 1. Electrons have spin, - rotation of the charge about its axis generates a magnetic field at each electron.

More information

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón Martes cuántico Zaragoza, 8 th October 2013 Atomic and molecular spin qubits Fernando LUIS Instituto de Ciencia de Materiales de Aragón Outline Quantum information with spins 1 0 Atomic defects in semiconductors

More information

Overview. Magnetism. Electron paramagnetic resonance (EPR) 28/02/2014. Electron Paramagnetic Resonance and Dynamic Nuclear Polarisation AS:MIT CH916

Overview. Magnetism. Electron paramagnetic resonance (EPR) 28/02/2014. Electron Paramagnetic Resonance and Dynamic Nuclear Polarisation AS:MIT CH916 Electron Paramagnetic Resonance and Dynamic Nuclear Polarisation AS:MIT CH916 Overview What it is Why it s useful Gavin W Morley, Department of Physics, University of Warwick Dynamic nuclear polarization

More information

Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics

Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics PCE STAMP DECOHERENCE in REAL SYSTEMS: MECHANISMS of DECOHERENCE (7 PINES, May 08, 2010) Physics & Astronomy UBC Vancouver Pacific Institute for Theoretical Physics SOME HISTORICAL PERSPECTIVE 1: OLD-STYLE

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov 26 February 2014 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity microwave radiation

Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity microwave radiation EUROPHYSICS LETTERS 1 July 2005 Europhys. Lett., 71 (1), pp. 110 116 (2005) DOI: 10.1209/epl/i2005-10069-3 Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique Josephson junction team Olivier Buisson, Bernard Pannetier,

More information

Voyage dans le nanomonde des aimants

Voyage dans le nanomonde des aimants Voyage dans le nanomonde des aimants Wolfgang Wernsdorfer Laboratoire de Magnétisme Louis Néel C.N.R.S. - Grenoble S = 10 2 to 10 6 S = 1/2 to 30 Magnets nanoworld 10 6 10 3 10 0 10-3 10-6 10-9 1 Mm 1

More information

What is the susceptibility?

What is the susceptibility? What is the susceptibility? Answer which one? M Initial susceptibility Mean susceptibility M st M 0 0 m High field susceptibility i dm = dh H =0 H st H M M st M 0 0 m i H st H H What is the susceptibility?

More information

Electron spin qubits in P donors in Silicon

Electron spin qubits in P donors in Silicon Electron spin qubits in P donors in Silicon IDEA League lectures on Quantum Information Processing 7 September 2015 Lieven Vandersypen http://vandersypenlab.tudelft.nl Slides with black background courtesy

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets

Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets W. Wernsdorfer, 1 S. Bhaduri, 2 A. Vinslava, 2 and G. Christou 2 1 Laboratoire L.

More information

Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet

Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet April 28 EPL, 82 (28) 175 doi: 1.129/295-575/82/175 www.epljournal.org Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet M. Bal 1, Jonathan R. Friedman 1(a),W.Chen 2,

More information

Polarized solid deuteron targets EU-SpinMap Dubrovnik

Polarized solid deuteron targets EU-SpinMap Dubrovnik Experimentalphysik I Arbeitsgruppe Physik der Hadronen und Kerne Prof. Dr. W. Meyer G. Reicherz, Chr. Heß, A. Berlin, J. Herick Polarized solid deuteron targets EU-SpinMap 11.10.2010 Dubrovnik Polarized

More information

Plan of the lectures

Plan of the lectures Plan of the lectures 1. Introductory remarks on metallic nanostructures Relevant quantities and typical physical parameters Applications. Linear electron response: Mie theory and generalizations 3. Nonlinear

More information

PCE STAMP. Physics & Astronomy UBC Vancouver. Pacific Institute for Theoretical Physics

PCE STAMP.   Physics & Astronomy UBC Vancouver. Pacific Institute for Theoretical Physics Physics & Astronomy UBC Vancouver PCE STAMP Pacific Institute for Theoretical Physics http://pitp.physics.ubc.ca/index.html DECOHERENCE in QUANTUM SPIN SYSTEMS PITP/Les Houches Summer School on QUANTUM

More information

Nomenclature: Electron Paramagnetic Resonance (EPR) Electron Magnetic Resonance (EMR) Electron Spin Resonance (ESR)

Nomenclature: Electron Paramagnetic Resonance (EPR) Electron Magnetic Resonance (EMR) Electron Spin Resonance (ESR) Introduction to EPR Spectroscopy EPR allows paramagnetic species to be identified and their electronic and geometrical structures to be characterised Interactions with other molecules, concentrations,

More information

NYU An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets. Andrew D. Kent

NYU An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets. Andrew D. Kent An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets Andrew D. Kent Department of Physics, New York University 1 Outline I. Introduction Quantum tunneling

More information

Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration

Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration Asilomar, CA, June 6 th, 2007 Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration Wang Yao Department of Physics, University of Texas, Austin Collaborated with: L. J. Sham

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits

Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits Room Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits Matteo Atzori, Lorenzo Tesi, Elena Morra, Mario Chiesa, Lorenzo Sorace,

More information

Towards quantum simulator based on nuclear spins at room temperature

Towards quantum simulator based on nuclear spins at room temperature Towards quantum simulator based on nuclear spins at room temperature B. Naydenov and F. Jelezko C. Müller, Xi Kong, T. Unden, L. McGuinness J.-M. Cai and M.B. Plenio Institute of Theoretical Physics, Uni

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supramolecular Spin Valves M. Urdampilleta, 1 J.-P. Cleuziou, 1 S. Klyatskaya, 2 M. Ruben, 2,3* W. Wernsdorfer 1,* 1 Institut Néel, associé á l Université Joseph Fourier, CNRS, BP 166, 38042 Grenoble Cedex

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

arxiv: v1 [cond-mat.mes-hall] 29 Oct 2015

arxiv: v1 [cond-mat.mes-hall] 29 Oct 2015 Narrow Zero-Field Tunneling Resonance in Triclinic Mn 12 Acetate Ribbons I. Imaz 1, J. Espin 1, D. Maspoch 1,2 1 Institut Català de Nanotecnologia, ICN2, Esfera Universitat Autónoma Barcelona (UAB), Campus

More information

Magnetic Resonance in Quantum

Magnetic Resonance in Quantum Magnetic Resonance in Quantum Information Christian Degen Spin Physics and Imaging group Laboratory for Solid State Physics www.spin.ethz.ch Content Features of (nuclear) magnetic resonance Brief History

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ.

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ. Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ. +Vasiliev(Turku) 31 P NMR at low temperatures ( down to

More information

Disordered Solids. real crystals spin glass. glasses. Grenoble

Disordered Solids. real crystals spin glass. glasses. Grenoble Disordered Solids real crystals spin glass glasses Grenoble 21.09.11-1 Tunneling of Atoms in Solids Grenoble 21.09.11-2 Tunneln Grenoble 21.09.11-3 KCl:Li Specific Heat specific heat roughly a factor of

More information

INTRIQ. Coherent Manipulation of single nuclear spin

INTRIQ. Coherent Manipulation of single nuclear spin INTRIQ Coherent Manipulation of single nuclear spin Clément Godfrin Eva Dupont Ferrier Michel Pioro-Ladrière K. Ferhat (Inst. Néel) R. Ballou (Inst. Néel) M. Ruben (KIT) W. Wernsdorfer (KIT) F. Balestro

More information

Superconducting Flux Qubits: The state of the field

Superconducting Flux Qubits: The state of the field Superconducting Flux Qubits: The state of the field S. Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK Outline A brief introduction to the Superconducting

More information

Entangled Macroscopic Quantum States in Two Superconducting Qubits

Entangled Macroscopic Quantum States in Two Superconducting Qubits Entangled Macroscopic Quantum States in Two Superconducting Qubits A. J. Berkley,H. Xu, R. C. Ramos, M. A. Gubrud, F. W. Strauch, P. R. Johnson, J. R. Anderson, A. J. Dragt, C. J. Lobb, F. C. Wellstood

More information

nano Josephson junctions Quantum dynamics in

nano Josephson junctions Quantum dynamics in Permanent: Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Cécile Naud Bernard Pannetier Quantum dynamics in nano Josephson junctions CNRS Université Joseph Fourier Institut Néel- LP2MC GRENOBLE

More information

Magnetic measurements (Pt. IV) advanced probes

Magnetic measurements (Pt. IV) advanced probes Magnetic measurements (Pt. IV) advanced probes Ruslan Prozorov October 2018 Physics 590B types of local probes microscopic (site-specific) NMR neutrons Mossbauer stationary Bitter decoration magneto-optics

More information

arxiv: v1 [cond-mat.mes-hall] 22 Aug 2014

arxiv: v1 [cond-mat.mes-hall] 22 Aug 2014 Resonant Spin Tunneling in Randomly Oriented Nanospheres of Mn Acetate S. Lendínez, R. Zarzuela, J. Tejada Departament de Física Fonamental, Facultat de Física, Universitat de Barcelona, Martí i Franquès,

More information

Quantum Optics. Manipulation of «simple» quantum systems

Quantum Optics. Manipulation of «simple» quantum systems Quantum Optics Manipulation of «simple» quantum systems Antoine Browaeys Institut d Optique, Palaiseau, France Quantum optics = interaction atom + quantum field e g ~ 1960: R. Glauber (P. Nobel. 2005),

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

An introduction to Solid State NMR and its Interactions

An introduction to Solid State NMR and its Interactions An introduction to Solid State NMR and its Interactions From tensor to NMR spectra CECAM Tutorial September 9 Calculation of Solid-State NMR Parameters Using the GIPAW Method Thibault Charpentier - CEA

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments

Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments Maximilian Schlosshauer Department of Physics University of Washington Seattle, Washington Very short biography Born in

More information

Cristaux dopés terres rares pour les mémoires quantiques

Cristaux dopés terres rares pour les mémoires quantiques Cristaux dopés terres rares pour les mémoires quantiques A. Ferrier, M. Lovric, Ph. Goldner D. Suter M.F. Pascual-Winter, R. Cristopher Tongning, Th. Chanelière et J.-L. Le Gouët Quantum Memory? Storage

More information

SUPERCONDUCTING QUANTUM BITS

SUPERCONDUCTING QUANTUM BITS I0> SUPERCONDUCTING QUANTUM BITS I1> Hans Mooij Summer School on Condensed Matter Theory Windsor, August 18, 2004 quantum computer U quantum bits states l0>, l1> Ψ = αl0> + βl1> input - unitary transformations

More information

arxiv: v1 [cond-mat.mes-hall] 18 May 2012

arxiv: v1 [cond-mat.mes-hall] 18 May 2012 Detection and control of individual nuclear spins using a weakly coupled electron spin T. H. Taminiau 1, J. J. T. Wagenaar 1, T. van der Sar 1, F. Jelezko 2, V. V. Dobrovitski 3, and R. Hanson 1 1 Kavli

More information

Photon-induced magnetization changes in single-molecule magnets invited

Photon-induced magnetization changes in single-molecule magnets invited JOURNAL OF APPLIED PHYSICS 99, 08D103 2006 Photon-induced magnetization changes in single-molecule magnets invited M. Bal and Jonathan R. Friedman a Department of Physics, Amherst College, Amherst, Massachusetts

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids

Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids Physica B 280 (2000) 264}268 Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids W. Wernsdorfer *, E. Bonet Orozco, B. Barbara, A. Benoit,

More information

NMR Spectroscopy Laboratory Experiment Introduction. 2. Theory

NMR Spectroscopy Laboratory Experiment Introduction. 2. Theory 1. Introduction 64-311 Laboratory Experiment 11 NMR Spectroscopy Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful and theoretically complex analytical tool. This experiment will introduce to

More information

1.b Bloch equations, T 1, T 2

1.b Bloch equations, T 1, T 2 1.b Bloch equations, T 1, T Magnetic resonance eperiments are usually conducted with a large number of spins (at least 1 8, more typically 1 1 to 1 18 spins for electrons and 1 18 or more nuclear spins).

More information

Quantum step heights in hysteresis loops of molecular magnets

Quantum step heights in hysteresis loops of molecular magnets PHYSICAL REVIEW B, VOLUME 65, 224401 Quantum step heights in hysteresis loops of molecular magnets Jie Liu, 1 Biao Wu, 1 Libin Fu, 2 Roberto B. Diener, 1 and Qian iu 1 1 Department of Physics, The University

More information

From SQUID to Qubit Flux 1/f Noise: The Saga Continues

From SQUID to Qubit Flux 1/f Noise: The Saga Continues From SQUID to Qubit Flux 1/f Noise: The Saga Continues Fei Yan, S. Gustavsson, A. Kamal, T. P. Orlando Massachusetts Institute of Technology, Cambridge, MA T. Gudmundsen, David Hover, A. Sears, J.L. Yoder,

More information

Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation

Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation OFFPRINT Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation G. de Loubens, D. A. Garanin, C. C. Beedle, D. N. Hendrickson and A. D. Kent EPL, 83 (2008) 37006

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Ultrafast Universal Quantum Control of a Quantum Dot Charge Qubit Using Landau-Zener-Stückelberg Interference Gang Cao, Hai-Ou Li, Tao Tu, Li Wang, Cheng Zhou, Ming Xiao,

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Multi-bit magnetic memory using Fe 8 high spin molecules. Oren Shafir Magnetism Group, Physics Department

Multi-bit magnetic memory using Fe 8 high spin molecules. Oren Shafir Magnetism Group, Physics Department Multi-bit magnetic memory using Fe 8 high spin molecules Oren Shafir Magnetism Group, Physics Department Outline Preface: memory unit Fe8 as a high spin molecule Quantum tunneling In Fe8 Experiments: Faraday

More information

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin Time-dependent single-electron transport: irreversibility and out-of-equilibrium Klaus Ensslin Solid State Physics Zürich 1. quantum dots 2. electron counting 3. counting and irreversibility 4. Microwave

More information

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes Polyhedron 22 (2003) 1783/1788 www.elsevier.com/locate/poly New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes Mònica Soler a, Wolfgang Wernsdorfer b, *, Ziming Sun c,

More information