The Solar Interior - The Standard Model. Topics to be covered: o Solar interior. Radiative Zone. Convective Zone

Size: px
Start display at page:

Download "The Solar Interior - The Standard Model. Topics to be covered: o Solar interior. Radiative Zone. Convective Zone"

Transcription

1 Lecture 1 - The Slar Interir Tpics t be cvered: Slar interir Cre Radiative zne Cnvectin zne Lecture 1 - The Slar Interir The Slar Interir - The Standard Mdel Cre Energy generated by nuclear fusin (the prtn-prtn chain). Radiative Zne Energy transprt by radiatin. Cnvective Zne Energy transprt by cnvectin. Lecture 1 - The Slar Interir

2 The Slar Interir Christensen-Dalsgaard, J. et al., Science, 272, , (1996). Lecture 1 - The Slar Interir The Slar Cre R: R sun T(r): 15-8 MK!(r): g cm -3 Temperatures and densities sufficiently high t drive hydrgen burning (H->He). Ultimate surce f energy in the Sun and Sun-like stars. Lecture 1 - The Slar Interir

3 The Slar Cre What is the temperature and pressure in the cre? Assume hydrstatic equilibrium: dp dr = " GM# r 2 and mass cnservatin: Divide t cancel! s => Therefre, LHS => and RHS => " # M 0 dm dr = "4#r2 $ dp dr / dm dr = dp dm = " GM 4#r 4 dp dm dm = P C " P S M GM # 4"r dm = GM "r 4 " P C = P S + GM 2 8#r 4 P C = pressure at cre P S = pressure at surface Lecture 1 - The Slar Interir The Slar Cre Assuming P S << P C and setting r = R, Using the Ideal Gas Law k = Bltzmann s cnst n = number density atms/cm 3! = density = M/4"R 3 P C = nkt = "kt m H P C ~ GM 2 8"R 4 The cre temperature is therefre T C ~ GMm H kr Which gives T c ~ 2.7 x 10 7 K (actual value is ~1.5 x 10 7 K). Lecture 1 - The Slar Interir

4 The Slar Cre Culmb barrier between prtns must be vercme fr fusin t ccur. T vercme Culmb barrier, particles must have sufficient thermal kinetic energy t exceed Culmb repulsin: 3 e2 kt > 2 r nuc => T > 2e2 3kr nuc =10 10 K! Particles have Maxwell-Bltzmann distributin: P(E)dE " Ee # E kt de There is a high-energy tail, but nt sufficient need quantum mechanics. Lecture 1 - The Slar Interir The Slar Cre Frm Heisenberg Uncertainty Principle ("x"p # h /2) a prtn f a given (insufficient) energy may be lcated within nucleus f neighburing prtn. Cmbined with high-energy M-B tail, we get the Gamw Peak. S prtns in 3-10 kev energy range can vercme the Culmb barrier (i.e., T>15MK). Fusin can therefre ccur. Lecture 1 - The Slar Interir

5 Prtn-prtn cycle The p-p cycle ccurs in three main steps. Step 1: 1 H + 1 H! 2 H + e + + " (Q = 1.44 MeV) Might then expect a 2 H + 2 H reactin, but because f the large numbers f 1 H, the fllwing is mre prbable: Step 2: 2 H + 1 H! 3 He + # (Q = 5.49 MeV) 3 He can then react with 1 H, but the resultant 4 Li is unstable (i.e. 3 He + 1 H! 4 Li! 3 He + 1 H). The final step is then: Step 3: 3 He + 3 He! 4 He H + # (Q = MeV) The net result is: 4 1 H! 4 He + 2e " (Q = 26.7 MeV) Lecture 1 - The Slar Interir Prtn-prtn cycle (cnt.) ~99% f the Sun s energy is prduced via the p-p cycle. The remaining ~1% is prduced by the Carbn-Nitrgen-Oxygen (CNO) cycle. CNO cycle is mre imprtant in mre massive stars. Lecture 1 - The Slar Interir

6 Prtn-prtn vs.. CNO Lecture 1 - The Slar Interir The Radiative Zne R: R sun T(r): MK!(r): g cm -3 Hydrgen burning cuts ff abruptly at r ~ 0.25 R sun. Interir becmes ptically thin r transparent as density decreases. Energy transprted radiatively. Phtns cannt be absrbed in the radiative zne as the temperature are t high t allw atms t frm. Therefre n mechanism fr the absrptin f phtns. Lecture 1 - The Slar Interir

7 The Radiative Zne Fr T = 15MK Wien s displacement law implies # max = 0.19 nm i.e., the center f the Sun is full f X-rays. Phtns d 3D randm walk ut f Sun. Assume phtn mves l between interactins (mean free path) and takes a ttal number f steps N. On average it will have mved a distance d = l N As t difusin = N l / c and => t diffusin >10 4 yrs! R = l N => t diffusin = R 2 /lc Lecture 1 - The Slar Interir Slar Interir Ttal radiative energy inside Sun is: # 4 & E = at 4 % 3 "R3 ( $ ' J where a = 4$/c is the radiatin cnstant. Can thus estimate slar luminsity frm, E L = = 16" t diffusin 3 #T 4 Rl W Which gives, L ~ 3 x W. Actual value is actually 4 x W. Lecture 1 - The Slar Interir

8 The Cnvective Zne R: R sun T(r): 0.5 MK K.! <0.01 g cm -3 Phtns nw absrbed as temperature is sufficiently lw t allw atms t frm. Gas is ptically thick r paque. Cntinuus absrptin f phtns by lwer layers causes a temperature gradient t build up between the lwer and upper layers. Plasma becme cnvectively unstable, and large cnvective mtins becme the dminant transprt mechanism. T C T H r T H > T C Lecture 1 - The Slar Interir The Cnvective Zne Lecture 1 - The Slar Interir

9 Advanced Stellar Physics / Office: 3.17A. 80%: Final exam. 20%: 2000 wrd essay and 10-min presentatin. Deadline and presentatin: Last lecture (March 9) Claire: The Crnal Heating Debate Brian: The Slar Activity Cycle Lecture 1 - The Slar Interir

Lecture 17: The solar wind

Lecture 17: The solar wind Lecture 17: The slar wind Tpics t be cvered: Slar wind Inteplanetary magnetic field The slar wind Biermann (1951) nticed that many cmets shwed excess inizatin and abrupt changes in the utflw f material

More information

Chapter 30: Stars. B. The Solar Interior 1. Core : the combining of lightweight nuclei into heavier nuclei

Chapter 30: Stars. B. The Solar Interior 1. Core : the combining of lightweight nuclei into heavier nuclei Chapter 30: Stars Sectin 1: The Sun Objectives 1. Explre the structure f the Sun. 2. Describe the slar activity cycle and hw the Sun affects Earth. 3. Cmpare the different types f spectra. A. Prperties

More information

To get you thinking...

To get you thinking... T get yu thinking... 1.) What is an element? Give at least 4 examples f elements. 2.) What is the atmic number f hydrgen? What des a neutral hydrgen atm cnsist f? Describe its "mtin". 3.) Hw des an atm

More information

Dispersion Ref Feynman Vol-I, Ch-31

Dispersion Ref Feynman Vol-I, Ch-31 Dispersin Ref Feynman Vl-I, Ch-31 n () = 1 + q N q /m 2 2 2 0 i ( b/m) We have learned that the index f refractin is nt just a simple number, but a quantity that varies with the frequency f the light.

More information

CHEMISTRY 1903 SHI-LING KOU 2011

CHEMISTRY 1903 SHI-LING KOU 2011 CHEMISTRY 1903 SHI-LING KOU 2011 THE ORIGINS OF MODERN CHEMISTRY Evlutin f the atmic thery Daltn s Atmic Thery (1808) Matter cnsists f indivisible particles (atms) Atms f ne element can t be cnverted int

More information

AQA GCSE Physics. Topic 4: Atomic Structure. Notes. (Content in bold is for Higher Tier only)

AQA GCSE Physics. Topic 4: Atomic Structure. Notes. (Content in bold is for Higher Tier only) AQA GCSE Physics Tpic 4: Atmic Structure Ntes (Cntent in bld is fr Higher Tier nly) Atmic Structure Psitively charged nucleus (which cntains neutrns and prtns) surrunded by negatively charged electrns.

More information

Matter Content from State Frameworks and Other State Documents

Matter Content from State Frameworks and Other State Documents Atms and Mlecules Mlecules are made f smaller entities (atms) which are bnded tgether. Therefre mlecules are divisible. Miscnceptin: Element and atm are synnyms. Prper cnceptin: Elements are atms with

More information

d sinθ = mλ Interference and diffraction double slit or diffraction grating d sinθ = mλ d sinθ is the path difference x (small angle approximation)

d sinθ = mλ Interference and diffraction double slit or diffraction grating d sinθ = mλ d sinθ is the path difference x (small angle approximation) Wave Optics Wave prperties f light The clrs in a rainbw are ROY G. BIV (Red, range, yellw, green, blue, indig, vilet). White light is a cmbinatin f all clrs Black is the absence f light Wavelength determines

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments Lectures 5-6: Magnetic diple mments Sdium D-line dublet Orbital diple mments. Orbital precessin. Grtrian diagram fr dublet states f neutral sdium shwing permitted transitins, including Na D-line transitin

More information

NUPOC STUDY GUIDE ANSWER KEY. Navy Recruiting Command

NUPOC STUDY GUIDE ANSWER KEY. Navy Recruiting Command NUPOC SUDY GUIDE ANSWER KEY Navy Recruiting Cmmand CHEMISRY. ph represents the cncentratin f H ins in a slutin, [H ]. ph is a lg scale base and equal t lg[h ]. A ph f 7 is a neutral slutin. PH < 7 is acidic

More information

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals f Diffusin Diffusin: Transprt in a slid, liquid, r gas driven by a cncentratin gradient (r, in the case f mass transprt, a chemical ptential

More information

GASES. PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2. Pressure & Boyle s Law Temperature & Charles s Law Avogadro s Law IDEAL GAS LAW

GASES. PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2. Pressure & Boyle s Law Temperature & Charles s Law Avogadro s Law IDEAL GAS LAW GASES Pressure & Byle s Law Temperature & Charles s Law Avgadr s Law IDEAL GAS LAW PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2 Earth s atmsphere: 78% N 2 21% O 2 sme Ar, CO 2 Sme Cmmn Gasses Frmula Name

More information

Chapter 23 Electromagnetic Waves Lecture 14

Chapter 23 Electromagnetic Waves Lecture 14 Chapter 23 Electrmagnetic Waves Lecture 14 23.1 The Discvery f Electrmagnetic Waves 23.2 Prperties f Electrmagnetic Waves 23.3 Electrmagnetic Waves Carry Energy and Mmentum 23.4 Types f Electrmagnetic

More information

Complex Reactions and Mechanisms (continued)

Complex Reactions and Mechanisms (continued) 5.60 Spring 2005 Lecture #29 page 1 Cmplex Reactins and Mechanisms (cntinued) Sme cmments abut analyzing kinetic data A) Reactins with ne reactant: A prducts a) Plt r analyze [A vs. t ln[a vs. t 1/[A vs.

More information

Lecture 19: Electronic Contributions to OCV in Batteries and Solar Cells. Notes by MIT Student (and MZB) March 18, 2009

Lecture 19: Electronic Contributions to OCV in Batteries and Solar Cells. Notes by MIT Student (and MZB) March 18, 2009 Lecture 19: lectrnic Cntributins t OCV in Batteries and Slar Cells Ntes by MIT Student (and MZB) March 18, 2009 -In many situatins the µ e cnstant fr metal electrdes, this due t the abundance and freedm

More information

Electromagnetic Radiation

Electromagnetic Radiation CLASSICALLY -- ELECTROMAGNETIC RADIATION Maxwell (1865) Electrmagnetic Radiatin http://apd.nasa.gv/apd/astrpix.html Classically, an electrmagnetic wave can be viewed as a self-sustaining wave f electric

More information

1. Write a balanced nuclear equation for each decay process indicated. a. The isotope Th-234 decays by an alpha emission.

1. Write a balanced nuclear equation for each decay process indicated. a. The isotope Th-234 decays by an alpha emission. 1. Write a balanced nuclear equatin fr each decay prcess indicated. a. The istpe Th-234 decays by an alpha emissin. b. The istpe Fe-59 decays by a beta emissin. c. The istpe Tc-99 decays by a gamma emissin.

More information

lecture 5: Nucleophilic Substitution Reactions

lecture 5: Nucleophilic Substitution Reactions lecture 5: Nuclephilic Substitutin Reactins Substitutin unimlecular (SN1): substitutin nuclephilic, unimlecular. It is first rder. The rate is dependent upn ne mlecule, that is the substrate, t frm the

More information

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY Energy- the capacity t d wrk r t prduce heat 1 st Law f Thermdynamics: Law f Cnservatin f Energy- energy can be cnverted frm ne frm t anther but it can be neither

More information

Chapter 11: Atmosphere

Chapter 11: Atmosphere Chapter 11: Atmsphere Sectin 1: Atmspheric Basics Objectives 1. Describe the cmpsitin f the atmsphere. 2. Cmpare and cntrast the varius layers f the atmsphere. 3. Identify three methds f transferring energy

More information

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Name: Perid: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant

More information

Downloaded from Downloaded from

Downloaded from   Downloaded from MATTER IN OUR SURROUNDINGS Date Diagram Observatin Explanatin Cnclusin ACTIVITY 1.1 (10 marks) date n which the experiment was perfrmed. I have drawn a diagram. My diagram is neat. My diagram is well labeled.

More information

Edexcel GCSE Physics

Edexcel GCSE Physics Edexcel GCSE Physics Tpic 10: Electricity and circuits Ntes (Cntent in bld is fr Higher Tier nly) www.pmt.educatin The Structure f the Atm Psitively charged nucleus surrunded by negatively charged electrns

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

General Chemistry II, Unit I: Study Guide (part I)

General Chemistry II, Unit I: Study Guide (part I) 1 General Chemistry II, Unit I: Study Guide (part I) CDS Chapter 14: Physical Prperties f Gases Observatin 1: Pressure- Vlume Measurements n Gases The spring f air is measured as pressure, defined as the

More information

BIOLOGY 101. CHAPTER 10: Photosynthesis: Process that Feeds the Biosphere

BIOLOGY 101. CHAPTER 10: Photosynthesis: Process that Feeds the Biosphere BIOLOGY 101 CHAPTER 10: Phtsynthesis: Prcess that Feeds the Bisphere Phtsynthesis: Prcess that Feeds the Bisphere CONCEPTS: 10.1 Phtsynthesis cnverts light energy t the chemical energy f fd 10.2 The light

More information

Stellar Structure. Observationally, we can determine: Can we explain all these observations?

Stellar Structure. Observationally, we can determine: Can we explain all these observations? Stellar Structure Observationally, we can determine: Flux Mass Distance Luminosity Temperature Radius Spectral Type Composition Can we explain all these observations? Stellar Structure Plan: Use our general

More information

Name: Period: Date: PERIODIC TABLE NOTES ADVANCED CHEMISTRY

Name: Period: Date: PERIODIC TABLE NOTES ADVANCED CHEMISTRY Name: Perid: Date: PERIODIC TABLE NOTES ADVANCED CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant

More information

Chapter 9 Lecture Notes

Chapter 9 Lecture Notes Bilgy Chapter 9 Lecture Ntes Name Per Quiz #11 Yu will be able t describe the structure and functin f ATP Yu will be able t identify the inputs and utputs f each prcess f respiratin and phtsynthesis. Yu

More information

Name: Period: Date: PERIODIC TABLE NOTES HONORS CHEMISTRY

Name: Period: Date: PERIODIC TABLE NOTES HONORS CHEMISTRY Name: Perid: Date: PERIODIC TABLE NOTES HONORS CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant

More information

11. DUAL NATURE OF RADIATION AND MATTER

11. DUAL NATURE OF RADIATION AND MATTER 11. DUAL NATURE OF RADIATION AND MATTER Very shrt answer and shrt answer questins 1. Define wrk functin f a metal? The minimum energy required fr an electrn t escape frm the metal surface is called the

More information

A Chemical Reaction occurs when the of a substance changes.

A Chemical Reaction occurs when the of a substance changes. Perid: Unit 8 Chemical Reactin- Guided Ntes Chemical Reactins A Chemical Reactin ccurs when the f a substance changes. Chemical Reactin: ne r mre substances are changed int ne r mre new substances by the

More information

Chem 115 POGIL Worksheet - Week 8 Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra

Chem 115 POGIL Worksheet - Week 8 Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra Chem 115 POGIL Wrksheet - Week 8 Thermchemistry (Cntinued), Electrmagnetic Radiatin, and Line Spectra Why? As we saw last week, enthalpy and internal energy are state functins, which means that the sum

More information

ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA. December 4, PLP No. 322

ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA. December 4, PLP No. 322 ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA by J. C. SPROTT December 4, 1969 PLP N. 3 These PLP Reprts are infrmal and preliminary and as such may cntain errrs nt yet eliminated. They are fr private

More information

Energy Inputs and Outputs

Energy Inputs and Outputs Energy Inputs and Outputs Sun Earth ultravilet visible infrared Bth Sun and Earth behave as blackbdies (absrb 100% incident radiatin; emit radiatin at all wavelengths in all directins) Earth receives energy

More information

The Atmosphere. Giovanna Jerse

The Atmosphere. Giovanna Jerse The Atmsphere Givanna Jerse Thickness f the Atmsphere Apprximately 80% f the atmsphere ccurs in the lwest 20km abve the Earth. Radius f the Earth is ver 6,000 km Atmsphere is a thin shell cvering the Earth.

More information

Chapter 17: Thermodynamics: Spontaneous and Nonspontaneous Reactions and Processes

Chapter 17: Thermodynamics: Spontaneous and Nonspontaneous Reactions and Processes Chapter 17: hermdynamics: Spntaneus and Nnspntaneus Reactins and Prcesses Learning Objectives 17.1: Spntaneus Prcesses Cmparing and Cntrasting the hree Laws f hermdynamics (1 st Law: Chap. 5; 2 nd & 3

More information

PHYS 219 Spring semester Lecture 28: Radioactive Decay. Ron Reifenberger Birck Nanotechnology Center Purdue University

PHYS 219 Spring semester Lecture 28: Radioactive Decay. Ron Reifenberger Birck Nanotechnology Center Purdue University PHYS 219 Spring semester 2014 Lecture 28: Radiactive Decay Rn Reifenberger Birck Nantechnlgy Center Purdue University PHYS 219 Test III Friday; May 9, 2014 1 PM-3 PM PHYS 1 Lecture 28 1 Radiactivity Early

More information

What Powers the Stars?

What Powers the Stars? What Powers the Stars? In brief, nuclear reactions. But why not chemical burning or gravitational contraction? Bright star Regulus (& Leo dwarf galaxy). Nuclear Energy. Basic Principle: conversion of mass

More information

Therefore the atomic diameter is 5 orders of magnitude ( times) greater than the m

Therefore the atomic diameter is 5 orders of magnitude ( times) greater than the m Orders f Magnitude Pwers f 10 are referred t as rders f magnitude e.g. smething a thusand times larger (10 3 ) is three rders f magnitude bigger. A prtn has a diameter f the rder ~10-15 m The diameter

More information

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium Lecture 17: 11.07.05 Free Energy f Multi-phase Slutins at Equilibrium Tday: LAST TIME...2 FREE ENERGY DIAGRAMS OF MULTI-PHASE SOLUTIONS 1...3 The cmmn tangent cnstructin and the lever rule...3 Practical

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

Today. Today in Milky Way. ASTR 1040 Accel Astro: Stars & Galaxies

Today. Today in Milky Way. ASTR 1040 Accel Astro: Stars & Galaxies ASTR 1040 Accel Astr: Stars & Galaxies Prf. Juri Tmre TA: Nichlas Nelsn Lecture 19 Tues 15 Mar 2011 zeus.clrad.edu/astr1040-tmre tmre Superbubble NGC 3079 Tday in Milky Way Lk at cmpnents f galaxy: stars,

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Ay 1 Lecture 8. Stellar Structure and the Sun

Ay 1 Lecture 8. Stellar Structure and the Sun Ay 1 Lecture 8 Stellar Structure and the Sun 8.1 Stellar Structure Basics How Stars Work Hydrostatic Equilibrium: gas and radiation pressure balance the gravity Thermal Equilibrium: Energy generated =

More information

Spontaneous Processes, Entropy and the Second Law of Thermodynamics

Spontaneous Processes, Entropy and the Second Law of Thermodynamics Chemical Thermdynamics Spntaneus Prcesses, Entrpy and the Secnd Law f Thermdynamics Review Reactin Rates, Energies, and Equilibrium Althugh a reactin may be energetically favrable (i.e. prducts have lwer

More information

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY, MANIPAL SECOND SEMESTER B.Tech. END-SEMESTER EXAMINATION - MAY 013 SUBJECT: ENGINEERING PHYSICS (PHY101/10) Time: 3 Hrs. Max. Marks: 50 Nte: Answer any

More information

Stellar Interior: Physical Processes

Stellar Interior: Physical Processes Physics Focus on Astrophysics Focus on Astrophysics Stellar Interior: Physical Processes D. Fluri, 29.01.2014 Content 1. Mechanical equilibrium: pressure gravity 2. Fusion: Main sequence stars: hydrogen

More information

Chem 111 Summer 2013 Key III Whelan

Chem 111 Summer 2013 Key III Whelan Chem 111 Summer 2013 Key III Whelan Questin 1 6 Pints Classify each f the fllwing mlecules as plar r nnplar? a) NO + : c) CH 2 Cl 2 : b) XeF 4 : Questin 2 The hypthetical mlecule PY 3 Z 2 has the general

More information

Stellar Nucleosynthesis

Stellar Nucleosynthesis Stellar Nucleosynthesis What makes the sun shine? Gravita7onal contrac7on Chemical reac7ons Nucleosynthesis Stellar Nucleosynthesis The PP chain The CNO cycle The Triple alpha process and on to Fe Stellar

More information

First Semester 6 th Grade Exam Review

First Semester 6 th Grade Exam Review Name: Perid First Semester 6 th Grade Exam Review Exam Schedule: Tuesday, Dec. 18 th -4 th Perid Wednesday, Dec 19 th - 2 nd & 7 th Perids Thursday, Dec. 20 th - 3 rd and 6 th Perids Friday, Dec. 21 th

More information

Astro Instructors: Jim Cordes & Shami Chatterjee.

Astro Instructors: Jim Cordes & Shami Chatterjee. Astro 2299 The Search for Life in the Universe Lecture 8 Last time: Formation and function of stars This time (and probably next): The Sun, hydrogen fusion Virial theorem and internal temperatures of stars

More information

Chapter One Atoms and Elements

Chapter One Atoms and Elements S u m m e r S c h l 2 0 1 4 S c i e n c e S T P a g e 1 Chapter One Atms and Elements Histry f the Atm Daltn s Atmic Mdel Daltn thught f atms as slid, indivisible balls f different Thmsn s Atmic Mdel Thmsn

More information

EE247B/ME218: Introduction to MEMS Design Lecture 7m1: Lithography, Etching, & Doping CTN 2/6/18

EE247B/ME218: Introduction to MEMS Design Lecture 7m1: Lithography, Etching, & Doping CTN 2/6/18 EE247B/ME218 Intrductin t MEMS Design Lecture 7m1 Lithgraphy, Etching, & Dping Dping f Semicnductrs Semicnductr Dping Semicnductrs are nt intrinsically cnductive T make them cnductive, replace silicn atms

More information

AP Chemistry Assessment 2

AP Chemistry Assessment 2 AP Chemistry Assessment 2 DATE OF ADMINISTRATION: January 8 January 12 TOPICS COVERED: Fundatinal Tpics, Reactins, Gases, Thermchemistry, Atmic Structure, Peridicity, and Bnding. MULTIPLE CHOICE KEY AND

More information

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1 Ph 13: General Phsics III 6/14/007 Chapter 8 Wrksheet 1 Magnetic Fields & Frce 1. A pint charge, q= 510 C and m=110-3 m kg, travels with a velcit f: v = 30 ˆ s i then enters a magnetic field: = 110 T ˆj.

More information

Chapter 17 Free Energy and Thermodynamics

Chapter 17 Free Energy and Thermodynamics Chemistry: A Mlecular Apprach, 1 st Ed. Nivald Tr Chapter 17 Free Energy and Thermdynamics Ry Kennedy Massachusetts Bay Cmmunity Cllege Wellesley Hills, MA 2008, Prentice Hall First Law f Thermdynamics

More information

Astronomy 404 October 9, 2013

Astronomy 404 October 9, 2013 Nuclear reaction rate: Astronomy 404 October 9, 2013 from the tunneling increases with increasing E from the velocity distrib. decreases with increasing E The Gamow peak occurs at energy Energy generation

More information

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics CHEM 116 Electrchemistry at Nn-Standard Cnditins, and Intr t Thermdynamics Imprtant annuncement: If yu brrwed a clicker frm me this semester, return it t me at the end f next lecture r at the final exam

More information

Stellar Interiors. Hydrostatic Equilibrium. PHY stellar-structures - J. Hedberg

Stellar Interiors. Hydrostatic Equilibrium. PHY stellar-structures - J. Hedberg Stellar Interiors. Hydrostatic Equilibrium 2. Mass continuity 3. Equation of State. The pressure integral 4. Stellar Energy Sources. Where does it come from? 5. Intro to Nuclear Reactions. Fission 2. Fusion

More information

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantizatin Light 9.1 Planck s Quantum Thery 9.1.1 Distinguish between Planck s quantum thery and classical thery energy The undatin the Planck s quantum thery is a thery black bdy radiatin.

More information

3. Mass Transfer with Chemical Reaction

3. Mass Transfer with Chemical Reaction 8 3. Mass Transfer with Chemical Reactin 3. Mass Transfer with Chemical Reactin In the fllwing, the fundamentals f desrptin with chemical reactin, which are applied t the prblem f CO 2 desrptin in ME distillers,

More information

CHAPTER PRACTICE PROBLEMS CHEMISTRY

CHAPTER PRACTICE PROBLEMS CHEMISTRY Chemical Kinetics Name: Batch: Date: Rate f reactin. 4NH 3 (g) + 5O (g) à 4NO (g) + 6 H O (g) If the rate f frmatin f NO is 3.6 0 3 ml L s, calculate (i) the rate f disappearance f NH 3 (ii) rate f frmatin

More information

Today in Our Galaxy SECOND MID-TERM EXAM. ASTR 1040 Accel Astro: Stars & Galaxies. Another useful experience (we hope)

Today in Our Galaxy SECOND MID-TERM EXAM. ASTR 1040 Accel Astro: Stars & Galaxies. Another useful experience (we hope) ASTR 1040 Accel Astr: Stars & Galaxies Prf. Juri Tmre TA: Kyle Augustsn Lecture 20 Thur 20 Mar 08 zeus.clrad.edu/astr1040-tmre tmre Eagle Nebula Tday in Our Galaxy Hw t detect black hles (indirectly) Our

More information

Study Guide- Bare Bones list Physics Comprehensive Exam 2014

Study Guide- Bare Bones list Physics Comprehensive Exam 2014 Study Guide- Bare Bnes list Physics Cmprehensive Exam 2014 I. Scientific Measurement Metric Units S.I. English Length Meter (m) Feet (ft.) Mass Kilgram (kg) Pund (lb.) Weight Newtn (N) Ounce (z.) r pund

More information

General Chemistry II, Unit II: Study Guide (part 1)

General Chemistry II, Unit II: Study Guide (part 1) General Chemistry II, Unit II: Study Guide (part 1) CDS Chapter 21: Reactin Equilibrium in the Gas Phase General Chemistry II Unit II Part 1 1 Intrductin Sme chemical reactins have a significant amunt

More information

Unit 14 Thermochemistry Notes

Unit 14 Thermochemistry Notes Name KEY Perid CRHS Academic Chemistry Unit 14 Thermchemistry Ntes Quiz Date Exam Date Lab Dates Ntes, Hmewrk, Exam Reviews and Their KEYS lcated n CRHS Academic Chemistry Website: https://cincchem.pbwrks.cm

More information

The Virial Theorem for Stars

The Virial Theorem for Stars The Virial Theorem for Stars Stars are excellent examples of systems in virial equilibrium. To see this, let us make two assumptions: 1) Stars are in hydrostatic equilibrium 2) Stars are made up of ideal

More information

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25 CHAPTER 17 1. Read Chapter 17, sectins 1,2,3. End f Chapter prblems: 25 2. Suppse yu are playing a game that uses tw dice. If yu cunt the dts n the dice, yu culd have anywhere frm 2 t 12. The ways f prducing

More information

UNIT 5: ATOMIC THEORY & THE PERIODIC TABLE CHEMISTRY 215, DUFFEY, CHAPTER 4 & SECTION 6.1

UNIT 5: ATOMIC THEORY & THE PERIODIC TABLE CHEMISTRY 215, DUFFEY, CHAPTER 4 & SECTION 6.1 UNIT 5: ATOMIC THEORY & THE PERIODIC TABLE CHEMISTRY 215, DUFFEY, CHAPTER 4 & SECTION 6.1 BIG IDEAS (we will tuch n small parts f Chp.5 as well) 4.1 Early Ideas Abut Matter 4.2 Defining the Atm 4.3 Hw

More information

Short notes for Heat transfer

Short notes for Heat transfer Furier s Law f Heat Cnductin Shrt ntes fr Heat transfer Q = Heat transfer in given directin. A = Crss-sectinal area perpendicular t heat flw directin. dt = Temperature difference between tw ends f a blck

More information

arxiv:hep-ph/ v1 2 Jun 1995

arxiv:hep-ph/ v1 2 Jun 1995 WIS-95//May-PH The rati F n /F p frm the analysis f data using a new scaling variable S. A. Gurvitz arxiv:hep-ph/95063v1 Jun 1995 Department f Particle Physics, Weizmann Institute f Science, Rehvt 76100,

More information

Journal of Molecular EvOlution by Springer-Verlag. 1979

Journal of Molecular EvOlution by Springer-Verlag. 1979 0022-28447900140057~ 01.60 J. Ml. Evl. 14, 57--64 (1979) Jurnal f Mlecular EvOlutin by Springer-Verlag. 1979 Slar Radiatin Incident n the Martian Surface W.R. Kuhn and S.K. Atreya Department f Atmspheric

More information

Molecular Spectroscopy

Molecular Spectroscopy Prf. Dr. I. Nasser Atmic and mlecular physics -55 (T-) April 0, 0 Mlecular Spectrscpy Fr mlecules (e.g. diatmic), the ttal energy f mlecule is a cntributin f the fllwing: Translatin kinetic energy, E FOR

More information

Stellar Nucleosynthesis

Stellar Nucleosynthesis Stellar Nucleosynthesis What makes the sun shine? Gravita7onal contrac7on Chemical reac7ons Nucleosynthesis Stellar Nucleosynthesis The PP chain The CNO cycle The Triple alpha process and on to Fe Stellar

More information

Trimester 2 Exam 3 Study Guide Honors Chemistry. Honors Chemistry Exam 3 Review

Trimester 2 Exam 3 Study Guide Honors Chemistry. Honors Chemistry Exam 3 Review Trimester 2 Exam 3 Study Guide Hnrs Chemistry BOND POLARITY Hnrs Chemistry Exam 3 Review Identify whether a bnd is plar r nnplar based ff difference in electrnegativity btwn 2 atms (electrnegativity values

More information

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!**

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!** Tpics lists: UV-Vis Absrbance Spectrscpy Lab & ChemActivity 3-6 (nly thrugh 4) I. UV-Vis Absrbance Spectrscpy Lab Beer s law Relates cncentratin f a chemical species in a slutin and the absrbance f that

More information

CHE 105 EXAMINATION III November 11, 2010

CHE 105 EXAMINATION III November 11, 2010 CHE 105 EXAMINATION III Nvember 11, 2010 University f Kentucky Department f Chemistry READ THESE DIRECTIONS CAREFULLY BEFORE STARTING THE EXAMINATION! It is extremely imprtant that yu fill in the answer

More information

Chapter 4 The debroglie hypothesis

Chapter 4 The debroglie hypothesis Capter 4 Te debrglie yptesis In 194, te Frenc pysicist Luis de Brglie after lking deeply int te special tery f relatiity and ptn yptesis,suggested tat tere was a mre fundamental relatin between waes and

More information

CHEM 1001 Problem Set #3: Entropy and Free Energy

CHEM 1001 Problem Set #3: Entropy and Free Energy CHEM 1001 Prblem Set #3: Entry and Free Energy 19.7 (a) Negative; A liquid (mderate entry) cmbines with a slid t frm anther slid. (b)psitive; One mle f high entry gas frms where n gas was resent befre.

More information

From Last Time: We can more generally write the number densities of H, He and metals.

From Last Time: We can more generally write the number densities of H, He and metals. From Last Time: We can more generally write the number densities of H, He and metals. n H = Xρ m H,n He = Y ρ 4m H, n A = Z Aρ Am H, How many particles results from the complete ionization of hydrogen?

More information

Lectures 10-11: Planetary interiors

Lectures 10-11: Planetary interiors Lectures 10-11: Planetary interirs Tpics t be cvered: Heat f frmatin Chemical differentiatin Natural radiactivity Planet cling Surface f Venus Summary f planetary interirs Make-up f planetary interirs

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenmena Phsics 5c Lecture Gemetrical Optics (H&L Chapter ) Tw Mre Lectures T G!! Will inish gemetrical ptics tda! Next week will cver less serius material! Laser and hlgraph! Quantum Mechanics Hw

More information

Outline. 13./ 16. March Introduction. Photochemistry. Ozone chemistry Chapman model Catalytic cycles

Outline. 13./ 16. March Introduction. Photochemistry. Ozone chemistry Chapman model Catalytic cycles Institute f Applied Physics University f Bern 13./ 16. March 2012 Outline The rle f Ozne hle: what causes what? Culd it be that ClO destrys O 3? Atmsphere as a chemical vessel The can be thught f as a

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Topics ASTR 3730: Fall 2003

Topics ASTR 3730: Fall 2003 Topics Qualitative questions: might cover any of the main topics (since 2nd midterm: star formation, extrasolar planets, supernovae / neutron stars, black holes). Quantitative questions: worthwhile to

More information

Lecture 15. Physics 1202: Lecture 15 Today s Agenda

Lecture 15. Physics 1202: Lecture 15 Today s Agenda Physics 1202: Lecture 15 Tday s Agenda Annuncements: Team prblems tday Team 7: Cailin Catarina, Matthew Canapetti, Kervin Vincent Team 8: Natalie Kasir, Adam Antunes, Quincy Alexander Team 9: Garrett Schlegel,

More information

A Mechanistic Approach to Bond Formation in H 2

A Mechanistic Approach to Bond Formation in H 2 A Mechanistic Apprach t Bnd Frmatin in H Frank Riux Department f Chemistry Cllege f Saint Benedict Saint Jhnʹs University St. Jseph, MN 5674 Intrductin Ruedenbergʹs innvative analysis f the cvalent bnd

More information

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture Few asic Facts but Isthermal Mass Transfer in a inary Miture David Keffer Department f Chemical Engineering University f Tennessee first begun: pril 22, 2004 last updated: January 13, 2006 dkeffer@utk.edu

More information

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA Mental Experiment regarding 1D randm walk Cnsider a cntainer f gas in thermal

More information

4 Fe + 3 O 2 2 Fe 2 O 3

4 Fe + 3 O 2 2 Fe 2 O 3 UNIT 7: STOICHIOMETRY NOTES (chapter 9) INTRO TO STOICHIOMETRY Reactin Stichimetry: Stichimetry is simply a way t shw f smething this is. Relatinship between a given and an unknwn: GIVEN UNKNOWN Type 1

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS3010W1 SEMESTER 2 EXAMINATION 2014-2015 STELLAR EVOLUTION: MODEL ANSWERS Duration: 120 MINS (2 hours) This paper contains 8 questions. Answer all questions in Section A and

More information

Nuclear Binding Energy

Nuclear Binding Energy Nuclear Energy Nuclei contain Z number of protons and (A - Z) number of neutrons, with A the number of nucleons (mass number) Isotopes have a common Z and different A The masses of the nucleons and the

More information

LCAO APPROXIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (cation, anion or radical).

LCAO APPROXIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (cation, anion or radical). Principles f Organic Chemistry lecture 5, page LCAO APPROIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (catin, anin r radical).. Draw mlecule and set up determinant. 2 3 0 3 C C 2 = 0 C 2 3 0 = -

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

Chapter 5: Diffusion (2)

Chapter 5: Diffusion (2) Chapter 5: Diffusin () ISSUES TO ADDRESS... Nn-steady state diffusin and Fick s nd Law Hw des diffusin depend n structure? Chapter 5-1 Class Eercise (1) Put a sugar cube inside a cup f pure water, rughly

More information

Chemistry 1A Fall 2000

Chemistry 1A Fall 2000 Chemistry 1A Fall 2000 Midterm Exam III, versin B Nvember 14, 2000 (Clsed bk, 90 minutes, 155 pints) Name: SID: Sectin Number: T.A. Name: Exam infrmatin, extra directins, and useful hints t maximize yur

More information

Nuggets of Knowledge for Chapter 8 Chemical Reactions II Chem 2310

Nuggets of Knowledge for Chapter 8 Chemical Reactions II Chem 2310 Nuggets f Knwledge fr Chapter 8 Chemical Reactins II Chem 2310 I. Substitutin, Additin, and Eliminatin Reactins The terms dissciatin, assciatin, and displacement are useful fr describing what happens t

More information

1 The limitations of Hartree Fock approximation

1 The limitations of Hartree Fock approximation Chapter: Pst-Hartree Fck Methds - I The limitatins f Hartree Fck apprximatin The n electrn single determinant Hartree Fck wave functin is the variatinal best amng all pssible n electrn single determinants

More information